
Lecture 4: Transformations
and Matrices

CSE 40166 Computer Graphics (Fall
2010)

Overall Objective

Define object in object frame
Move object to world/scene frame
Bring object into camera/eye frame

Instancing!

Graphics... how does it work?

Linear Algebra and geometry (magical math)

Frames are represented by tuples and we change frames
(representations) through the use of matrices.
In OpenGL, vertices are modified by the Current
Transformation Matrix (CTM)

4x4 homogeneous coordinate matrix that is part of the state and
applied to all vertices that pass down the pipeline.

Basic Geometric Elements

Scalars: members of sets which can be combined by two
operations (addition, multiplication).

Real numbers.
No geometric properties.

Vectors: a quantity with both direction and magnitude.
Forces, velocity
Synonymous with directed line segment
Has no fixed location in space

Points: location in space. (neither size nor shape).

Basic Geometric Operations

Vector Operations

Dot Product

Viewed as projection of one vector on another

Cross Product

Result is vector perpendicular to originals

 (images from wikipedia)

Affine Space

Vectors and points exist without a reference point

Manipulate vectors and points as abstract geometric entities

Linear Vector Space

Mathematical system for manipulating vectors

Affine Space

Vector space + points

Lines, Rays, Segments

Line: Set of all points that pass
through P0 in the direction of d
Ray: a >= 0
Segments: 0 <= a <= 1

Curves and Surfaces

Curves

One parameter entities of the form P(a) where the function is
nonlinear

Surfaces

Entities are formed from two-parameter functions P(a, b)

Planes

A plane can be defined by either a point and two vectors, or
by three non-collinear points.

Normals

Every plane has a vector n normal (perpendicular, orthogonal)
to it.

Surfaces have multiple normals.

Convexity

An object is convex iff for any two points in the object, all
points on the line segment between these points are also in the
object.

convex non-convex

Convex Hull

Smallest convext object containing all points Pi in

P = a1P1 + a2P2 + ... + anPn

Formed by "shrink wrapping" points

Linear Independence and Dimension

Linear Independence
If a set of vectors is linearly independent, we cannot represent one in
terms of the others:

Dimension

In a vector space, the maximum number of linearly independent
vectors is fixed and is called the dimension.

In an n-dimensional space, any set of n linearly independent vectors
form a basis for the space.

Given a basis v1, v2, ... vn, any vector v can be written: v = a1v1 + a2v2
+ ... + anvn

Coordinate Systems

Thus far, we have been able to work with geometric entities
without using any frame of reference or coordinate system

However, we need a frame of reference to relate points and
objects in our abstract mathematical space to our physical
world

Where is a point?
How does object map to world coordinates?
How does object map to camera coordinates?

Representation

Consider a basis v1, v2, ..., vn, a vector v is written as
v = a1v1 + a2v2 + ... + anvn

The list of scalars {a1, a2, ..., an} is the representation of v
with respect to the given basis:

v1 = e1 = (1, 0, 0)T

v2 = e2 = (0, 1, 0)T

v3 = e3 = (0, 0, 1)T

a = [a1, a2, a3]T

Homogeneous Coordinates

Using 3-tuples, it is not possible to distinguish between
points and vectors:

v = [a1, a2, a3]
p = [b1, b2, b3]

 By adding a 4th coordinate component, we can use the
same representation for both:

v = [a1, a2, a3, 0]T

p = [b1, b2, b3, 1]T

Change of Representation

We can represent one frame in terms of another by applying a
transformation matrix C:

a = Cb = MTb

where

 [a11 a12 a13 a14]
 MT = [a21 a22 a23 a24]
 [a31 a32 a33 a34]
 [0 0 0 1]

Matrices in Computer Graphics

In OpenGL, we have multiple frames: model, world, camera
frame
 To change frames or representation, we use
transformation matrices

 All standard transformations (rotation, translation, scaling) can
be implemented as matrix multiplications using 4x4 matrices
(concatenation)
Hardware pipeline optimized to work with 4-dimensional
representations

Affine Transformations

Tranformation maps points/vectors to other points/vectors
Every affine transformation preserves lines

Preserve collinearity
Preserve ratio of distances on a line

Only have 12 degrees of freedom because 4 elements of
the matrix are fixed [0 0 0 1]
Only comprise a subset of possible linear transformations

Rigid body: translation, rotation
Non-rigid: scaling, shearing

Translation

Move (translate, displace) a point to a new location:

P' = P + d

Translation Matrix

P' = P + d

Rotation (about an axis)

Rotation about z axis leaves all points with the same z:

x' = x cos(t) - y sin(t)
y' = x sin(t) + y cos(t)
z' = z

 P' = Rz(t)P

Rotation About Z Axis Matrix

Rotation About X Axis Matrix

Rotation About Y Axis Matrix

Scaling

Expand or contract along each axis (fixed point of origin)

P' = SP

Scaling Matrix

If sx, sy, sz are negative, then we will perform reflection.

Concatenation

To form arbitrary affine transformation matrices we can
multiply together translation, rotation, and scaling matrices:

 p' = ABCDp

To optimize the computation, we group the transformation
matrices:

 p' = Mp where M = ABCD

This saves us the cost of multiplying every vertex by multiple
matrices; instead we multiply by just one.

Order of Transformations

The right matrix is the first applied to the vertex:

 p' = ABCp = A(B(Cp))

Sometimes we may use column matrices to represent points,
so this equation becomes:

 p'T = pTCTBTAT

OpenGL Matrices

In OpenGL matrices are part of the state

GL_MODELVIEW
GL_PROJECTION
GL_TEXTURE
GL_COLOR

Select which matrix to manipulate by using glMatrixMode:

 glMatrixMode(GL_MODELVIEW);

Current Transformation Matrix (CTM)

Conceptually there is a 4x4 homogeneous coordinate matrix,
the current transformation matrix (CTM), that is part of the
state and is applied to all vertices that pass down the pipeline.

Transformation Pipeline

CTM Operations
Loading a 4x4 Matrix:

glLoadIdentity() C <- I
glLoadMatrix(M) C <- M

Postmultiplying by another 4x4 Matrix:

glTranslatef(dx, dy, dz) C <- MT
glRotatef(theta, vx, vy, vz) C <- MTR
glScalef(sx, sy, sz) C <- MTRS

Saving and Restoring Matrix:

glPushMatrix()
glPopMatrix()

Instancing

In modeling, we start with a simple object centered at the origin,
oriented with some axis, and at a standard size.

To instantiate an object, we apply an instance transformation:

Scale
Orient
Locate

Remember the last matrix specified in the program is the
first applied!

Translate, Rotate, Scale (TRS)

Remember the last matrix specified in the program is
the first applied!

For instancing, you want to scale, rotate, and then translate:

 glPushMatrix();
 glTranslatef(i->x, i->y, 0.0);
 glRotatef(i->angle, 0.0, 0.0, 1.0);
 glScalef(10.0, 10.0, 1.0);
 glCallList(DisplayListsBase + MissileType);
 glPopMatrix();

