Lecture 4: Transformations and Matrices

CSE 40166 Computer Graphics (Fall 2010)
Overall Objective

- Define object in **object frame**
- Move object to **world/scene frame**
- Bring object into **camera/eye frame**
Graphics... how does it work?

- **Linear Algebra and geometry** *(magical math)*

 Frames are represented by *tuples* and we change frames (representations) through the use of *matrices*.

- **In OpenGL, vertices are modified by the Current Transformation Matrix (CTM)**

 4x4 homogeneous coordinate matrix that is part of the state and applied to all vertices that pass down the pipeline.
Basic Geometric Elements

- **Scalars:** members of sets which can be combined by two operations (addition, multiplication).
 - Real numbers.
 - No geometric properties.
- **Vectors:** a quantity with both direction and magnitude.
 - Forces, velocity
 - Synonymous with *directed line segment*
 - Has no fixed location in space
- **Points:** location in space. (neither size nor shape).
Basic Geometric Operations

- **Inverse**: v and $-v$
- **Multiply by Scalar**: v and $2v$
- **Add Two Vectors**: a, b, and $c = a + b$
- **Point-Point Subtraction**: $v = P - Q$
- **Point-Vector Addition**: $P = v + Q$
Vector Operations

Dot Product

- Viewed as projection of one vector on another

\[
a \cdot b = \sum_{i=1}^{n} a_i b_i = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n
\]

Cross Product

- Result is vector perpendicular to originals

\[
a \times b = i a_2 b_3 + j a_3 b_1 + k a_1 b_2 - i a_3 b_2 - j a_1 b_3 - k a_2 b_1.
\]

(images from wikipedia)
Affine Space

Vectors and points exist without a reference point

- Manipulate vectors and points as abstract geometric entities

Linear Vector Space

- Mathematical system for manipulating vectors

Affine Space

- Vector space + points
Lines, Rays, Segments

- **Line**: Set of all points that pass through \(P_0 \) in the direction of \(d \)
- **Ray**: \(a \geq 0 \)
- **Segments**: \(0 \leq a \leq 1 \)
Curves and Surfaces

Curves

- One parameter entities of the form $P(a)$ where the function is nonlinear

Surfaces

- Entities are formed from two-parameter functions $P(a, b)$
Planes

A plane can be defined by either a **point and two vectors**, or by **three non-collinear points**.

\[
P(a, b) = R + au + Bv
\]

\[
P(a, b) = R + a(Q - R) + b(P - Q)
\]
Normals

Every plane has a vector \mathbf{n} normal (perpendicular, orthogonal) to it.

Surfaces have multiple normals.
Convexity

An object is **convex** iff for any two points in the object, all points on the line segment between these points are also in the object.
Convex Hull

Smallest convex object containing all points P_i in

$$P = a_1 P_1 + a_2 P_2 + ... + a_n P_n$$

Formed by "shrink wrapping" points
Linear Independence and Dimension

Linear Independence
If a set of vectors is **linearly independent**, we cannot represent one in terms of the others:

Dimension

\[a_1 v_1 + a_2 v_2 + \cdots + a_n v_n = 0. \]

In a vector space, the maximum number of linearly independent vectors is fixed and is called the **dimension**.

In an \(n \)-dimensional space, any set of \(n \) linearly independent vectors form a **basis** for the space.

Given a basis \(v_1, v_2, \ldots, v_n \), any vector \(v \) can be written:

\[v = a_1 v_1 + a_2 v_2 + \cdots + a_n v_n \]
Coordinate Systems

- Thus far, we have been able to work with geometric entities without using any frame of reference or coordinate system.

- However, we need a frame of reference to relate points and objects in our abstract mathematical space to our physical world.
 - Where is a point?
 - How does object map to world coordinates?
 - How does object map to camera coordinates?
Consider a basis \(v_1, v_2, \ldots, v_n \), a vector \(v \) is written as

\[v = a_1 v_1 + a_2 v_2 + \ldots + a_n v_n \]

The list of scalars \(\{a_1, a_2, \ldots, a_n\} \) is the representation of \(v \) with respect to the given basis:

- \(v_1 = e_1 = (1, 0, 0)^T \)
- \(v_2 = e_2 = (0, 1, 0)^T \)
- \(v_3 = e_3 = (0, 0, 1)^T \)
- \(a = [a_1, a_2, a_3]^T \)
Homogeneous Coordinates

- Using 3-tuples, it is not possible to distinguish between points and vectors:
 - $v = [a_1, a_2, a_3]$
 - $p = [b_1, b_2, b_3]$
- By adding a 4th coordinate component, we can use the same representation for both:
 - $v = [a_1, a_2, a_3, 0]^T$
 - $p = [b_1, b_2, b_3, 1]^T$
Change of Representation

We can represent one frame in terms of another by applying a transformation matrix C:

$$a = Cb = M^Tb$$

where

$$M^T = \begin{bmatrix}
 a_{11} & a_{12} & a_{13} & a_{14} \\
 a_{21} & a_{22} & a_{23} & a_{24} \\
 a_{31} & a_{32} & a_{33} & a_{34} \\
 0 & 0 & 0 & 1
\end{bmatrix}$$
Matrices in Computer Graphics

- In OpenGL, we have multiple **frames**: model, world, camera frame
- To change frames or representation, we use **transformation matrices**
 - All standard transformations (rotation, translation, scaling) can be implemented as matrix multiplications using 4x4 matrices (concatenation)
 - Hardware pipeline optimized to work with 4-dimensional representations
Affine Transformations

- Tranformation maps points/vectors to other points/vectors
- Every affine transformation *preserves lines*
 - Preserve collinearity
 - Preserve ratio of distances on a line
- Only have 12 *degrees of freedom* because 4 elements of the matrix are fixed $[0 \ 0 \ 0 \ 1]$
- Only comprise a *subset* of possible linear transformations
 - **Rigid body**: translation, rotation
 - **Non-rigid**: scaling, shearing
Translation

Move (translate, displace) a point to a new location:

\[P' = P + d \]
Translation Matrix

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 & 0 & tx \\
 0 & 1 & 0 & ty \\
 0 & 0 & 1 & tz \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]

resulting coordinate
3d translation matrix
original coordinate
Rotation (about an axis)

Rotation about z axis leaves all points with the same z:

- $x' = x \cos(t) - y \sin(t)$
- $y' = x \sin(t) + y \cos(t)$
- $z' = z$

$P' = R_z(t)P$
Rotation About Z Axis Matrix

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{bmatrix}
\begin{bmatrix}
 \cos\theta & -\sin\theta & 0 & 0 \\
 \sin\theta & \cos\theta & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]
Rotation About X Axis Matrix

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & \cos\theta & -\sin\theta & 0 \\
 0 & \sin\theta & \cos\theta & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]

resulting coordinate

3d rotation matrix in X

original coordinate
Rotation About Y Axis Matrix

\[
\begin{bmatrix}
x' \\
y' \\
z' \\
1
\end{bmatrix}
=
\begin{bmatrix}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]

resulting coordinate
3d rotation matrix in Y
original coordinate
Scaling

Expand or contract along each axis (fixed point of origin)

\[P' = SP \]
Scaling Matrix

If sx, sy, sz are negative, then we will perform reflection.
Concatenation

To form arbitrary affine transformation matrices we can *multiply together* translation, rotation, and scaling matrices:

\[p' = ABCDp \]

To optimize the computation, we group the transformation matrices:

\[p' = Mp \text{ where } M = ABCD \]

This saves us the cost of multiplying every vertex by multiple matrices; instead we multiply by just one.
Order of Transformations

The *right matrix* is the first applied to the vertex:

$$p' = ABCp = A(B(Cp))$$

Sometimes we may use column matrices to represent points, so this equation becomes:

$$p'^T = p^T C^T B^T A^T$$
OpenGL Matrices

In OpenGL matrices are part of the state

- GL_MODELVIEW
- GL_PROJECTION
- GL_TEXTURE
- GL_COLOR

Select which matrix to manipulate by using `glMatrixMode`:

```c
glMatrixMode(GL_MODELVIEW);
```
Current Transformation Matrix (CTM)

Conceptually there is a 4x4 homogeneous coordinate matrix, the **current transformation matrix (CTM)**, that is part of the state and is applied to all vertices that pass down the pipeline.
Transformation Pipeline

- vertex position
 - object space
 - MODELVIEW Matrix
 - eye space
 - PROJECTION Matrix
 - clip space
 - Perspective Divide
 - normalized device coordinate space
 - Viewport/Depth range scale and bias
 - window space
 - window coordinate
CTM Operations

Loading a 4x4 Matrix:

- `glLoadIdentity()` $C \leftarrow I$
- `glLoadMatrix(M)` $C \leftarrow M$

Postmultiplying by another 4x4 Matrix:

- `glTranslatef(dx, dy, dz)` $C \leftarrow MT$
- `glRotatef(theta, vx, vy, vz)` $C \leftarrow MTR$
- `glScalef(sx, sy, sz)` $C \leftarrow MTRS$

Saving and Restoring Matrix:

- `glPushMatrix()`
- `glPopMatrix()`
Instancing

In modeling, we start with a simple object centered at the origin, oriented with some axis, and at a standard size.

To instantiate an object, we apply an instance transformation:

- Scale
- Orient
- Locate

Remember the last matrix specified in the program is the first applied!
Translate, Rotate, Scale (TRS)

Remember the last matrix specified in the program is the first applied!

For instancing, you want to scale, rotate, and then translate:

```c
glPushMatrix();
glTranslatef(i->x, i->y, 0.0);
glRotatef(i->angle, 0.0, 0.0, 1.0);
glScalef(10.0, 10.0, 1.0);
glCallList(DisplayListsBase + MissileType);
glPopMatrix();
```