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Overall Objective

Define object in object frame
Move object to world/scene frame
Bring object into camera/eye frame

Instancing!



Graphics... how does it work?

Linear Algebra and geometry (magical math)

Frames are represented by tuples and we change frames 
(representations) through the use of matrices.
In OpenGL, vertices are modified by the Current 
Transformation Matrix (CTM)

4x4 homogeneous coordinate matrix that is part of the state and 
applied to all vertices that pass down the pipeline.



Basic Geometric Elements

Scalars: members of sets which can be combined by two 
operations (addition, multiplication). 

Real numbers.
No geometric properties.

Vectors: a quantity with both direction and magnitude.
Forces, velocity
Synonymous with directed line segment
Has no fixed location in space

Points: location in space. (neither size nor shape).



Basic Geometric Operations



Vector Operations

Dot Product

Viewed as projection of one vector on another
 
 
 
Cross Product

Result is vector perpendicular to originals
 
 
 
 

 (images from wikipedia) 



Affine Space

Vectors and points exist without a reference point

Manipulate vectors and points as abstract geometric entities
 
Linear Vector Space
 

Mathematical system for manipulating vectors 
 
Affine Space
 

Vector space + points



Lines, Rays, Segments

Line: Set of all points that pass 
through P0 in the direction of d
Ray: a >= 0
Segments: 0 <= a <= 1 



Curves and Surfaces

Curves
 

One parameter entities of the form P(a) where the function is 
nonlinear 

 
Surfaces 

Entities are formed from two-parameter functions P(a, b)



Planes

A plane can be defined by either a point and two vectors, or 
by three non-collinear points.



Normals

Every plane has a vector n normal (perpendicular, orthogonal) 
to it.
 
Surfaces have multiple normals. 
 
 



Convexity

An object is convex iff for any two points in the object, all 
points on the line segment between these points are also in the 
object.

convex non-convex



Convex Hull

Smallest convext object containing all points Pi in
 

P = a1P1 + a2P2 + ... + anPn

Formed by "shrink wrapping" points



Linear Independence and Dimension

Linear Independence
If a set of vectors is linearly independent, we cannot represent one in 
terms of the others:
 
Dimension
 
In a vector space, the maximum number of linearly independent 
vectors is fixed and is called the dimension.
 
In an n-dimensional space, any set of n linearly independent vectors 
form a basis for the space.  
 
Given a basis v1, v2, ... vn, any vector v can be written: v = a1v1 + a2v2 
+ ... + anvn

 
 
 



Coordinate Systems

Thus far, we have been able to work with geometric entities 
without using any frame of reference or coordinate system

 
However, we need a frame of reference to relate points and 
objects in our abstract mathematical space to our physical 
world

Where is a point?
How does object map to world coordinates?
How does object map to camera coordinates?



Representation

Consider a basis v1, v2, ..., vn, a vector v is written as
v = a1v1 + a2v2 + ... + anvn

 
The list of scalars {a1, a2, ..., an} is the representation of v 
with respect to the given basis:

v1 = e1 = (1, 0, 0)T

v2 = e2 = (0, 1, 0)T

v3 = e3 = (0, 0, 1)T

a = [a1, a2, a3]T 



Homogeneous Coordinates

Using 3-tuples, it is not possible to distinguish between 
points and vectors:

v = [a1, a2, a3]
p = [b1, b2, b3]

 By adding a 4th coordinate component, we can use the 
same representation for both:

v = [a1, a2, a3, 0]T

p = [b1, b2, b3, 1]T



Change of Representation

We can represent one frame in terms of another by applying a 
transformation matrix C:

a = Cb = MTb

where
 

                                              [a11 a12 a13 a14]                        
                                    MT =  [a21 a22 a23 a24] 
                                              [a31 a32 a33 a34]
                                              [    0    0    0    1] 



Matrices in Computer Graphics

In OpenGL, we have multiple frames: model, world, camera 
frame
 To change frames or representation, we use 
transformation matrices

 All standard transformations (rotation, translation, scaling) can 
be implemented as matrix multiplications using 4x4 matrices 
(concatenation)
Hardware pipeline optimized to work with 4-dimensional 
representations



Affine Transformations

Tranformation maps points/vectors to other points/vectors
Every affine transformation preserves lines

Preserve collinearity
Preserve ratio of distances on a line

Only have 12 degrees of freedom because 4 elements of 
the matrix are fixed [0 0 0 1]
Only comprise a subset of possible linear transformations 

Rigid body: translation, rotation
Non-rigid: scaling, shearing



Translation

Move (translate, displace) a point to a new location:
 

P' = P + d



Translation Matrix

 
P' = P + d

 
 



Rotation (about an axis) 

Rotation about z axis leaves all points with the same z:
 

x' = x cos(t) - y sin(t)
y' = x sin(t) + y cos(t)
z' = z

 P' = Rz(t)P



Rotation About Z Axis Matrix

 

 
 



Rotation About X Axis Matrix

 

 
 



Rotation About Y Axis Matrix

 

 
 



Scaling

Expand or contract along each axis (fixed point of origin)
 

P' = SP



Scaling Matrix

If sx, sy, sz are negative, then we will perform reflection.
 

 
 



Concatenation

To form arbitrary affine transformation matrices we can 
multiply together translation, rotation, and scaling matrices:
 
    p' = ABCDp
 
To optimize the computation, we group the transformation 
matrices:
 
    p' = Mp where M = ABCD 

This saves us the cost of multiplying every vertex by multiple 
matrices; instead we multiply by just one.

 

 
 



Order of Transformations

The right matrix is the first applied to the vertex:
 
    p' = ABCp = A(B(Cp)) 

Sometimes we may use column matrices to represent points, 
so this equation becomes:

    p'T = pTCTBTAT

 

 
 



OpenGL Matrices

In OpenGL matrices are part of the state
 

GL_MODELVIEW
GL_PROJECTION
GL_TEXTURE
GL_COLOR

 
Select which matrix to manipulate by using glMatrixMode:
 
    glMatrixMode(GL_MODELVIEW);
 
 

 
 



Current Transformation Matrix (CTM)

Conceptually there is a 4x4 homogeneous coordinate matrix, 
the current transformation matrix (CTM), that is part of the 
state and is applied to all vertices that pass down the pipeline.

 
 

 
 



Transformation Pipeline

 
 

 
 



CTM Operations
Loading a 4x4 Matrix:

glLoadIdentity() C <- I
glLoadMatrix(M)  C <- M

 
Postmultiplying by another 4x4 Matrix:
 

glTranslatef(dx, dy, dz)      C <- MT
glRotatef(theta, vx, vy, vz)  C <- MTR
glScalef(sx, sy, sz)          C <- MTRS

Saving and Restoring Matrix:

glPushMatrix()
glPopMatrix()

 
 



Instancing

In modeling, we start with a simple object centered at the origin, 
oriented with some axis, and at a standard size.
 
To instantiate an object, we apply an instance transformation:

Scale
Orient
Locate

Remember the last matrix specified in the program is the 
first applied!

 

 
 



Translate, Rotate, Scale (TRS)

Remember the last matrix specified in the program is 
the first applied!

For instancing, you want to scale, rotate, and then translate:
 
    glPushMatrix(); 
    glTranslatef(i->x, i->y, 0.0); 
    glRotatef(i->angle, 0.0, 0.0, 1.0); 
    glScalef(10.0, 10.0, 1.0); 
    glCallList(DisplayListsBase + MissileType); 
    glPopMatrix();

 


