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If you listen to music you may have noticed that you can tell what in-

struments are used in a given song or symphony. In some cases, the melody

is sequentially played by different instruments. For example, you may hear it

played by violins and a little later repeated by flutes. Although the violins and

the flutes may play the same exact notes, you can definitely tell when the violins

or the flutes are playing. Why? The answer is that, when two different instru-

ments play the same note, the pitch or frequency of the sound waves are the

same, but the shape of the sound wave is different. For example, the sound wave

of one instrument may have the shape of a sine function while the sound wave

of the second one may be a square wave as shown in Fig. 1 for two hypothetical

instruments A and B1.

Looking at time record of the sound wave of different musical instruments

may be interesting on its own right but it is strictly a qualitative exercise. The

question is, can we quantitatively characterize such waves or, in other words,

write them as mathematical expressions. In the case of wave A in Fig. 1 we can

write

y = A sin 2πft.

In the case of wave B it is harder to write an expression valid for any time. The

1Of course, the sound waves of actual musical instruments are much more complex than
sine and square waves.
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Figure 1: Sound waves of three hypothetical instruments.
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best we can do is write an expression for one period as

y =

{
A : 0 ≤ t < T/2

−A : T/2 ≤ t < T

and then announce it is periodic. Obviously, this approach gets to be hopeless

as waves get more complex. For example, how would you write an expression

for the wave C in Fig. 1?

In 1807, Joseph Fourier proposed the first systematic way to answer the

question above. He stated that a completely arbitrary periodic function f(t)

could be expressed as a series of the form

f(t) =
ao

2
+

∞∑

n=1

(
an cos

2nπt

T
+ bn sin

2nπt

T

)
(1)

where n is a positive integer, T is the fundamental period of the function, defined

as shown in Fig. 1, and ao, an and bn are constant coefficients that we will deter-

mine later. Imagine the surprise of many with such proposal stating that even

discontinuous functions such as square waves could be represented by beautifully

smooth sines and cosines! It is said that even Lagrange was so surprised the he

categorically denied such possibility. Of course, Fourier was eventually proven

right, otherwise we would not be concerned with this now.

The expressions for the coefficients ao, an and bn are derived in many

books2 and are given by:

an =
2

T

∫ T/2

−T/2
f(t) cos

2nπt

T
dt, n = 0, 1, 2, . . . (2)

bn =
2

T

∫ T/2

−T/2
f(t) sin

2nπt

T
dt, n = 1, 2, 3, . . . (3)

For example, to find the Fourier series for a triangular wave as shown in

Fig. 2 we would calculate the coefficients as follows:

2See, for example, Boyce and DiPrima, Elementary Differential Equations and Boundary
Value Problems, 3rd Edition, John Wiley & Sons, 1977.
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Figure 2: Triangular wave.

• The function f(t) in the range −T/2 ≤ t ≤ T/2 is given by

f(t) =

{
−2At

T
: −T/2 ≤ t < 0

2At
T

: 0 ≤ t < T/2
.

• The coefficient ao is given by

ao =
4A

T 2

[∫ 0

−T/2
−tdt +

∫ T/2

0
tdt

]

so

ao = A

• The coefficients an are given by

an =
4A

T 2

[∫ 0

−T/2
−t cos

2nπt

T
dt +

∫ T/2

0
t cos

2nπt

T
dt

]

so

an =
2A

(nπ)2
(cos nπ − 1), n = 1, 2, . . .

• The coefficients bn are given by

bn =
4A

T 2

[∫ 0

−T/2
−t sin

nπt

T
dt +

∫ T/2

0
t sin

nπt

T
dt

]

so

bn = 0, n = 1, 2, . . .
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• The Fourier series is then

f(t) =
A

2
− 4A

π2

∞∑

n=1

1

(2n− 1)2
cos

2(2n− 1)πt

T
.

Note that the upper limit of the series is ∞. This says that an infinite

number of terms in the series is required to represent the triangular wave. The

series does not seem very useful, but we are saved by the fact that it converges

rather rapidly. For example, Fig. 3 compares the approximation obtained with

truncated series (solid) with the actual triangular wave (dashed line). In this

figure, A has been taken as one and T has been taken as one Hertz. N denotes the

upper limit of the series. Note that as we take more terms, the approximation

becomes better and better. Taking as few as four terms gives a very good

approximation to the actual triangular wave.

The most intuitive way to represent a function of time is, perhaps, to

plot it with time in the horizontal axis and the value of the function in the

vertical axis. This is what we have done in Figs. 2 and 3 and is called the

time representation of the function. The Fourier approach, however, suggests

an alternative. We can plot the frequency of each trigonometric term in the

horizontal axis and the the value of the corresponding coefficient in the vertical

axis. This plot is called the frequency representation of the function or the

amplitude spectrum. The amplitude spectrum for the first few terms of the

triangular wave above is shown in Fig. 4. Note that the amplitude decreases

rapidly as the frequency increases. This means that the higher frequencies are

not as important as the lower ones. One of the best examples of the Fourier

representation of a quantity is a rainbow, which gives us the spectrum of colors

contained in white light.
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Figure 3: Fourier representation of a triangular wave when the series is truncated
at the Nth term.
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Figure 4: Amplitude spectrum of the triangular wave discussed.
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Exercises

1. Derive the Fourier series for a square wave with period T , amplitude A

and zero mean. Generate plots similar to those in Figs. 3 and 4 for A = 5

and T = 0.3 s.
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