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Laboratory Exercise 1: Pendulum Acceleration  
Measurement and Prediction  

Laboratory Handout 
AME 20213: Fundamentals of Measurements and Data Analysis 

 
Prepared by: Daniel Van Ness 
Date exercises to be performed: 4 – 15 September, 2006 
Due date: 21 September, 2006 
 
Overview:  
 

In this experiment, the motion of a pendulum will be measured by a 
microcontroller based data acquisition system using an on-board accelerometer. The data 
acquisition card is mounted directly to the pendulum, measuring the acceleration of the 
pendulum system as well as a component of gravity. From the data, the period and the 
initial angle of the pendulum release can be determined. Data will be collected for both a 
small angle and a large angle assigned to your lab group. Comparison of the small angle 
case and the large angle case will be made. Differences between the theoretical and 
experimental results will be examined. Uncertainty in the results will also be computed.  

 
Deliverables:  
There are six deliverables for this lab: 

1) Derive, in symbolic form, the theoretical period for: 
a. Pendulum 1 

i. Point Mass, Small Angle approximation 
ii. Distributed Mass, Large Angle approximation 

b. Pendulum L 
i. Point Mass, Small Angle approximation 

ii. Distributed Mass, Large Angle approximation 
Leave all solutions in terms of system variables, i.e., length, mass, etc., and do not 
substitute any numeric values.  
 
2) Compute the period values for the experimental cases you ran in lab, using the 

equations derived from Deliverable (1): 
a. Pendulum 1 

i. Small Angle 
ii. Large Angle 

b. Pendulum L 
i. Large Angle 

c. Pendulum S 
i. Large Angle 

Results should be given in seconds, with appropriate significant digits. 
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3) Determine the first and last period for all the cases listed in Deliverable (2). 
Compare these values with those you found in Deliverable (2). How is the period 
affected by a large or small release angle? What can you say about the decay of 
the period in time? Note, that for the small angle approximation, the period is 
independent of the release angle. 

 
4) Determine the maximum apex angle for the first and last period of data for all 

cases listed in Deliverable (2). Compare these results with the release angles 
recorded in lab. To find the maximum apex angle for the first and last periods of 
the ten second data sets, use the maxima and minima of the data. (All data points 
for a given case make up a ‘data set’ or ‘data series’.) How does the apex angle 
change from the beginning to the end of the ten second cycle? Is there a great 
effect on the large angle case compared to the small angle case?  

 
5) Compare Experimental Data with Theoretical Results. 
a. How well does theory predict the experimental results? 
b. Determine the percent error between experimental and theoretical results. 
c. How do the large angle and small angle data differ? 
d. Discuss your findings.     
 
6) Compute the uncertainty in acceleration for the accelerometer and explain each 

uncertainty in detail, making sure to describe each type of uncertainty error in 
your own words.  

 
Introduction:  
 

Galileo Galilei1 was the first person to discover that pendulums keep good time.  
As a medical student in Pisa, he noticed that lamps swinging in the cathedral oscillated 
with a period that remained fairly constant. After Galileo, Christiaan Huygens 
experimented with pendulums and built on the work the former scientist began. Huygens 
was able to make pendulum clocks that kept time accurate to better than one minute a 
day. The work that Galileo initially did led to the creation of clocks and eventually 
changed how the world thought about the order of the universe.  
 For small angle deflections, Galileo’s idea that the period of a pendulum is 
constant was and still is true today. Understanding the centuries old experiment of an 
oscillating pendulum is the focus of this laboratory experiment. Thus, the equation of 
motion for a simple pendulum point mass system undergoing small angle oscillations is 
presented2. One of the experimental pendulums used in this laboratory experiment is 
constructed of a thin metal rod connected to a thin disk on which the accelerometer is 
mounted. Figure (1) shows the forces that act on a pendulum at some angle θ. The mass 
moment of inertia is counteracted by gravity, which tries to restore the pendulum to an 
angle of zero.  
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Figure (1): Forces Acting on Pendulum. 

 
The pendulum is acted on by a component of gravity, the moment of which is defined as 
the cross product of the distance the mass is from the point of rotation with the 
gravitational force acting on the mass: 

l mgτ = ×  
( )sinlmgτ θ= −  

where l is the length of the rod from the axis of rotation to the center of the disk, m is the 
mass of the disk, g is the gravitational acceleration due to gravity, and θ  is the angle of 
the pendulum with respect to the vertical axis. From Newton’s Second Law, the only 
other force acting on the pendulum is that caused by the system’s inertia. The moment 
created from the inertial force is defined as 

Iτ θ= . 
Here, I is the mass moment of inertia of the disk andθ is the angular acceleration of the 
pendulum, or simply the second derivative of acceleration with respect to time. For a 
simple pendulum in which the mass of the rod is neglected, the moment becomes 

2mlτ θ= . 
The sum of these moments represent all the forces that act on the system, so adding them 
together will yield the following governing equation for this system 

( )2 lg sin 0ml mθ θ+ = . 
This equation is nonlinear inθ , so the solution is not straightforward. Often, to simplify 
the solution, the following small angle approximation is made 

( )sin θ θ≈ . 
The resulting governing equation is a formula of simple harmonic motion, 

2 0pθ θ+ = , 
where p is the circular frequency, defined by  
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with C being a constant that corresponds to the initial release angle. Based on the initial 
conditions of the pendulum, the value of C can be computed by differentiating these 
solutions twice and plugging back into the original differential equation. During 
movement through one period, the argument of the sine or cosine moves from zero 
through 2π . So the period for this solution can be found by setting 

2gT
l

π= . 

Thus the period for a simple pendulum undergoing small angle oscillations is 

2 lT
g

π= . 

This result is the same that Galileo found, that for small angle oscillations the period is 
not dependent on the initial release angle of the pendulum or on the mass of the 
pendulum. For a distributed mass pendulum or one which experiences oscillations where 
the small angle approximation is not valid, the period will differ from that stated above.  
 For this laboratory experiment, you will be required to derive the period of the 
pendulum for both a point mass and a distributed mass using the small angle 
approximation and large angle perturbation solution.  
 
Accelerometer and Data Acquisition Equipment: 
 
 The accelerometer3 used in this experiment, an Analog Devices model ADXL105 
single axis unit, is a spring mass system that is sensitive to accelerations along a specific 
axis of movement. This sensor is described in the accompanying literature in the 
following manner:  
 
 “The sensor is a surface micromachined polysilicon structure built on top of the 
 silicon wafer. Polysilicon springs suspend the structure over the surface of the 
 wafer and provide a resistance against acceleration-induced forces. Deflection of 
 the structure is measured with a differential capacitor structure that consists of 
 two independent fixed plates and a central plate attached to the moving mass. A 
 180 degrees out-of-phase square wave drives the fixed plates. An acceleration 
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 causing the beam to deflect will unbalance the differential capacitor resulting in 
 an output square wave whose amplitude is proportional to acceleration. Phase 
 sensitive demodulation techniques are then used to rectify the signal and 
 determine the direction of the acceleration.” 
 
The accelerometer outputs a voltage that is proportional to the force acting on the sensing 
element. The accelerometer output voltage is an analog signal that is digitized by an 
analog-to-digital (A/D) converter and stored in binary form. The output voltage is 
sampled and stored by the on-board data acquisition system, which in this lab is 
integrated into the microcontroller processing unit (MPU), allowing for remote storage of 
data. The MPU samples the accelerometer voltage for a finite number of points at a given 
sampling frequency over a specified time interval. Here, the sampling frequency is 100 
Hz, and 1000 data points are acquired over a 10 second time period. This set of data 
points, commonly called a ‘data set’ or ‘data series’, is stored on-board the MPU that can 
then be downloaded later to a computer. The results in this laboratory experiment are 
converted to acceleration using LabVIEW with a calibration previously conducted by the 
teaching assistant. The calibration consists of placing the MPU with the accelerometer in 
a centrifuge and subjecting the unit to a range of known accelerations. The recorded 
voltage of the accelerometer can be plotted versus the known acceleration to obtain a 
linear calibration equation that relates output voltage to acceleration values. Thus, the 
accelerations felt under unknown forcing can be reconstructed from acquired voltages 
stored remotely on the MPU. 

In this experiment, the accelerometer is mounted so that it records accelerations 
perpendicular to the long axis, or radial component, of the pendulum rod in the plane of 
motion. Therefore, when the pendulum is moving, the accelerations recorded always 
include centripetal acceleration and a component of gravity, written as 

( )2 cosa r gθ θ= + . 
To decipher the contributions of both accelerations to the resultant acceleration recorded 
by the data acquisition system, the acceleration of the pendulum at its apex as well as at 
an angle of zero degrees can be used. At its apex angle where the inertia and gravitational 
forces bring the pendulum to a momentary stop, the centripetal acceleration is zero and 
the accelerometer measures only the component of gravity. This appears in the set of data 
points as a minimum. As the pendulum passes through zero degrees, both accelerations 
are included, which yields a maximum in the data.  

As the pendulum begins a period at its apex angle, it then swings through zero 
degrees, or a quarter cycle in the period (T/4) up to the other side, where it momentarily 
comes to rest (T/2). It then reverses direction and swings back through zero degrees 
(3T/4) up to another apex angle (T), completing one full period. From the maximum 
acceleration, the apex angle is found by: 

[ ]maxarccos 1  rad
2m

a g
g

θ
  −

= −  
  

 

where g is the gravitational constant, and maxa is the maximum acceleration being 
considered. From the minimum acceleration, the apex angle is: 
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[ ]minarccos  radm
a
g

θ
 

=  
 

 

where mina is the minimum acceleration being looked at. Referring to Figure (2) below, 
local minima will occur three times in one period. This can also be applied to the 
maximum acceleration values as well. 

 
Figure (2): Period calculation 

 
To determine the first and last periods of a given data series, take the difference in time 
between the first three maxima apart, or first three minima apart as in Figure (2), and the 
difference in time between the last three maxima or minima, respectively. 
 
Experimental Setup Physical Properties: 
 

The properties of the three pendulum apparatus are listed below. These will be 
needed to complete the deliverables required for the Technical Memo. Remember to 
include the accelerometer/MPU assembly and digital protractor when computing the 
moment of inertia for pendulum L and pendulum S. For pendulum 1, the accelerometer 
assembly is already included as part of the ‘thin disk’. Also be sure to use the parallel 
axis theorem for each component. 
 
Pendulum 1: 
Thin Disk properties: (This includes all supports, mounts, data acquisition equipment, 
and battery.) 

 Mass: 0.6673 kg 
 Diameter: 0.30 m 
Note: Assume the center of mass of the disk is located at the center point of the 
disk.  
  

Slender Rod properties:  
 Mass: 0.4970 kg 
 Length: 0.8954 kg 

  Diameter: 0.0093 m 
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Pendulum S: 
I-beam support properties:  
 Cross section: 
  

 
3 3

12COM
BH bhI −

=  

 
 
 
 
b: 0.025 m 
h: 0.059 m 
B: 0.028 m 
H: 0.064 m 
 
Overall length: 1.22 m 
Bearing location offset from center of pendulum: 0.29 m 

 Mass: 1.03 kg 
   

Note: Pendulum S has no added brass masses. 
 
Pendulum L: 
I-beam support properties:  
 Cross section: 
  

 
3 3

12COM
BH bhI −

=  

 
 
 
 
b: 0.025 m 
h: 0.059 m 
B: 0.028 m 
H: 0.064 m 

            
 Overall length: 1.22 m 

Bearing location offset from center of pendulum: 0.57 m 
 Mass: 1.03 kg 
 

Note: Pendulum L has the following added brass masses. 
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Brass masses: 
Hollow Cylinder properties: 
 Mass: 0.200 kg each 
 Outer diameter: 0.05 m 
 Inner diameter: 6.731 mm 
 Thickness: 12.014 mm 
 

Note: Each position holds 2 washers. 
 

Mass locations from pendulum L bearing location: 
W2:  0.17 m 
W3:  0.23 m 
W5:  0.51 m  
W6   0.63 m 
W7:  0.88 m 

 
Digital Protractor:  
Rectangular properties: 

Mass: 0.23 kg 
 Width: 0.0358 m 
 Depth: 0.169 m 
 Offset from bearing location on Pendulum L: 0.76 m 
 Offset from bearing location on Pendulum S: 0.48 m 
 
Accelerometer/MPU assembly: 
 Mass:  0.20 kg 
 Offset from bearing location on Pendulum L: 1.15 m 
 Offset from bearing location on Pendulum S: 0.87 m 
 

Notre: Assume assembly is a point mass for computing the moment of inertia. 
 
Uncertainty: 
 
 To understand the results obtained from an experiment, the error inherent in the 
results must be obtained. The uncertainty in a measured result must be determined by 
performing an uncertainty analysis4 before the validity of the result can be quantified. 
Since uncertainty analysis has not yet been taught in this class, the major errors 
associated with this experiment will be explained and given to you. However, an 
uncertainty analysis must be completed individually in the future. 

The overall error, or uncertainty, is a combination of systematic (bias) and 
random (precision) errors. Systematic errors are errors between true and measured 
quantities, whereas precision errors are due to statistical fluctuations in a measured value. 
Systematic errors include errors associated with the data acquisition equipment and errors 
that propagate through equations. 
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In this laboratory experiment, the errors which are of most importance are 
Random error, Quantization error, Misalignment error, and Temperature dependence 
error.  The last three errors listed here are bias errors. Random error (eR) is the statistical 
fluctuation in a measured quantity under fixed conditions over a repeated number of 
acquisitions.  

 
 
Quantization error (eQ) is the result of digitizing an analog signal. It occurs in 

measuring physical quantities, such as the initial release angle, the length of the 
pendulum, and the masses of the disk, and the length of the rod. It is also found in the 
data recorded by the accelerometer, since the data acquisition system converts continuous 
data into a set of discrete points, which is limited by the resolution of the analog to digital 
converter. The resolution of the device used to measure the signal causes to error in the 
final measured result. The resolution of an instrument is the smallest physically indicated 
division that the instrument displays or is marked. Normally, the quantization error is 
defined as one-half the resolution of an instrument. For example, if a thermometer is only 
marked in one-degree increments, the resolution is one degree and quantization error in 
reading this is one-half of a degree. Misalignment error (eM) is due to the accelerometer 
sensitivity direction being misaligned with the radial direction of the pendulum. Due to 
manufacturing tolerances, the angle at which the sensitive direction of the accelerometer 
is mounted may deviate by a small angle. This will result in an incorrect acceleration 
being measured. Temperature Dependence error (eT) is a result of the accelerometer 
response being a function of ambient temperature. As the room temperature fluctuates 
during an experiment, the response will be affected by this fluctuation.  

For this experiment, which contains a 12-bit analog to digital converter with a 
2.43 V full scale range, 1 degree maximum misalignment, and a temperature dependence 
of 0.50% of full scale, the errors are computed to be: 

Re = 0.3197 m/s2 

Qe = 0.0229 m/s2 

Me =0.2618 m/s2 

Te =  0.0750 m/s2 
All elemental errors such as those above are combined to form the total uncertainty, e, 
using the method of Kline and McClintock5: 

2 2 2 2
R Q M Te e e e e= + + + . 

Thus for this experiment the uncertainty in the acceleration is 0.421 m/s2. Other 
elemental errors that are important but which are not included in this simple error 
analysis include: Hysteresis, Sensitivity, Zero-shift, Repeatability, and Stability. For a 
more detailed error analysis in the future, you could refer to the specifications sheets for 
the accelerometer6 and data acquisition card7 that list all errors associated with these 
devices. For more information see Reference [4]. 
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