How to Make Your Graphics Stand Out

What are different ways we can present data?

N SEPERATE OF

X-Y-Y Plot

- Correct use of data point symbols
 with error bars
- Kinetic fits color coded to match data point colors

 Good use of arrows and color to indicate corresponding y-axes

X-Y Plot with error bar and data fit and X-Y-Y plot showing how to identify corresponding y-axes Sources: Source: **DOI:** 10.1021/acs.biochem.9b00532 **DOI** 10.1021/acs.chemmater.5b01689

2-D Plots

Two examples of high-quality 2-D contour plots Sources: **DOI** 10.1021/acs.jpca.9b04938, **DOI** 10.1021/acs.jpca.9b03592

Bar and Column Graph

(A) Bar and (B) column graphs to present noncausal data Sources: 10.1021/acs.est.9b01609, 10.1021/acscatal.9b00601

Correct axis labeling

Waterfall Plot

Initial state = 343 (+0.8090 eV)

Good use of contrasting colors in a waterfall plot Source: **DOI** 10.1021/acs.jpclett.6b00283 **3-D Plot**

3D plot (surface plot) showing the functional relationship between one dependent variable and two independent variables. Source: DOI 10.1021/acs.jpclett.9b01522

Histograms

TIP: "It is clear that the appearance of the histogram is fundamentally dependent on the bin width. The bin width must be chosen to be small enough to show the distribution as a discrete function but not too small as to capture only individual points and return the original data set." DOI: 10.1021/acs.chemmater.6b03430

All text in these histograms are complete and legible without having to enlarge the graphics. Note: The bin width can make the distributions look different Sources: **DOI** 10.1021/acs.chemmater9b02292, **DOI** 10.1021/jz501409q

Pie Charts

- Labels are concise, easy to read
- Proportions are clearly identified

Clear presentation of data via pie charts. Source: DOI 10.1021/acs.est.9b01420

Axis Offset for Multiple Data Set Presentation

- Multiple spectra with shifted X- axis offset
- Provides a good visual distinction among the spectra

- Multiple spectra with yaxis offset
- Allows comparison of peak positions

- Multiple offset data with allow comparison of cyclic voltammograms
- Current quantified properly using scale bar

Multiple spectra in a single plot Sources: **DOI** 10.1021/jacs.8b04803, **DOI** 10.1021/acsnano.9b05157, **DOI** 10.1021/acsenergylett.6b00255

Multiple Data Presentation - Graphs with Insets

- Inset is used to show the analysis of the main set of traces
- All the text and linewidth in the inset are legible
- Correct representation of units in the main figure and inset

Good presentation of insets Sources: **DOI** 10.1021/jp071191w, **DOI** 10.1021/acs.jpcc.7b05207

- Distinguishable colors with clearly identified legends in both the main figure and inset
- The inset shows a related property of the main set of data

Multiple Data Presentation – Separate Panels

Multipanels with related data. Data in panel **(B)** were obtained from the measurements in panel **(A)** (viz, recording spectra at different times and monitoring changes in absorbance Source: **DOI** 10.1021/jacs.6b04661

Multiple Data Presentation – Different Content

Additional example of multiple panels presenting related data Source: **DOI** 10.1021/acsenergylett.9b00403

Presenting Large Range of Data

Figure 22. Present a large range of data values using a logarithmic and/or discontinuous scale Sources: **DOI** 10.1021/acsenergylett.8b01974, **DOI** 10.1021/jacs.9b04556

Data Identification

Identifying data sets using legends, keys and labels. Three different ways to identify individual data sets and it avoids defining sets with colors. Sources: **DOI** 10.1021/acsenergylett.9b01280, **DOI** 10.1021/acs.langmuir.8b03551, **DOI** 10.1021/acsenergylett.9b01252

Microscopy Images

- The instrument-generated description is hard to read (A). A more legible scale bar was added (B)
- Alternatively, the scale bar dimension could be included in the caption.

Legible scale bars are essential in micrographs and images Source: **DOI** 10.1021/acsenergylett.8b00380

What Happens when you do not pay attention?

Α

It is not clear what is the normalization factor or how these traces were normalized

- Absorbance and emission scales correctly represented on two different Y- axis
- Spectra are distinguishable

When to use an X-Y-Y plot rather than an X-Y plot. (A) Single Y-axis to represent different properties (B) Good use of dual Y-axes with distinguishable spectra. Sources: DOI 10.1021/acs.jpcc.8b11493, DOI: 10.1021/jp9050897

Panel A

- Aesthetically pleasing with distinguishable colors
- Bar diagram is appropriate and presents a nice comparison
- The offset angle, however, makes it difficult to estimate the magnitude of the bars

Panel B

- Color code used inconsistently between panels A and B
- Trendlines are misleading since there is no causality between the X- and Y-axes (i.e., there should be no connecting lines)

Good use of color, although inconsistent choice of color codes between panels Source: **DOI** 10.1021/acs.jpclett.9b01225

Α

- Bold and vibrant colors with individual labels makes traces easily identifiable
- Large fonts are easy to see
- Thick axis lines with well marked major and minor ticks

- Light colors makes the data difficult to differentiate
- Small fonts and thin lines are not helpful
- Colors too similar to distinguish

Why the choice of colors matters. **(A)** Selection of vibrant, distinguishable colors makes the data stand out. **(B)** Very similar colors make the data blend together. Source, panel A: **DOI** 10.1021/acsmaterialslett.9b00001

- Good collection of spectra with distinguishable colors
- Spectra not clearly identified or quantified

These multipanels are not self-explanatory. (You need to refer to the manuscript text to interpret them.) Source: **DOI**: 10.1021/acs.jpclett.9b01575

What happens when you cram in too many panels with limited readability?

- Multipanels with unreadable data sets. Insets and additional panels make it difficult to comprehend
- Multipanels do not serve the purpose of communicating results with clarity

Multipanel graphic viewed at its published size. Can you read this without magnification? Source **DOI:** 10.1021/acsami.9b00439

Will presenting same data in different forms be useful?

- Panel C is from the same data set presented in panel B. It does not add any additional scientific information.
- Panel A y-axis Relative units on Y-axis would have been more
 - relevant. The shifted scale makes it difficult to gauge the changes.

Panels (A) and (B) present related data. Panels (B) and (C) do not provide any significantly different information. Source: DOI 10.1039/C9TC02635E

When not to use a trend line or a fit

(A) Incorrect presentation of data since it lacks causality and (B) "fits" that are not really fits. Source: DOI 10.1021/acsenergylett.8b01942

Why use of proper units is important

 Units and scale are not expressed on Yscale

EtOH

EtOH@ 2.5 µmol H_N-U-Arg-OH

15

10

Time (hr.)

I

20

• The data points and error bars provide no quantitative information

Check axis titles, units and scales for accuracy. The lack of typographical errors does not assure correctness.

Sources: DOI 10.1021/acs.jpcc.8b09706, DOI 10.1021/acsomega.9b01260

- Normalized units are unitless
- Wrong X-axis title

DOI: 10.1021/acs.nanolett.9b00387

Am I the only one confused about these units?

Getting the units right is not always easy. Source: **DOI** 10.1021/acsenergylett.9b01571

 The Y-axis representation of "Normalized intensity" does not apply to all traces (Either all traces should be normalized to a constant intensity value or the Y-axis should be labeled with Intensity (arbitrary or relative units)

- It is not clear how these spectra are normalized
- Offset Y-axis makes it difficult to compare spectra
- Inset is missing Y-axis title

The word "normalized" is frequently misused.

Sources: **DOI:** 10.1021/acs.jpcc.9b00494, **DOI** 10.1021/acs.jpcc.8b05188, 10.1021/acsmaterialslett.9b00001

С max.) (a) 0 min (a) 0 min 1.0 (b) 5 min (b) 5 min (c) 10 min (c) 10 min (normalized to (d) 15 mir (d) 15 min 0.8 (e) 20 mir (e) 20 min (f) 25 mir (f) 25 min 0.6 (g) 30 mi (g) 30 min (h) 35 mi (h) 35 min (i) 40 min (i) 40 min 0.4 (j) 45 min Intensity (i) 45 min (k) 50 min (k) 55 min (I) 55 min 0.2 (I) 55 min 500 550 600 550 450 500 600 Wavelength (nm) Wavelength (nm) Correct use of Y-axis units • Panel A represents relative units to compare the intensity Panel B displays normalized intensity to compare peak shift

Other Important Considerations

Default format, "thin" double bonds, small font

Chemical structures drawn with ChemBioDraw. The lower panel was created using ACS Catalysis format, increasing the clarity Source: **DOI** 10.1021/cs400678e

Schemes and Illustrations

Good use of color and visualization in schemes and illustrations. Sources: **DOI** 10.1021/acsenergylett.9b00860, **DOI** 10.1021/jacs.9b02731

Well-drawn schemes present conceptual views to the intended disciplines' broader readership Sources: **DOI** 10.1021/acs.est.9b00399, **DOI** acsmedchemlett.9b00134

You be the judge to gauge the effectiveness of TOC graphics

- Can you predict what these articles are about?
- Can you even easily read the text in the graphic in order to find out?
- Are these representative of the quality of the graphics in the article?
- Which one(s) make you want to find out more the article(s)? Which was the first one to catch your eye?

Examples of Table of Contents/Abstract Graphics highlighting the importance of clarity and theme. Sources: **DOI** 10.1021/acscatal.9b01033, **DOI** 10.1021/jacs.8b05542, **DOI** 10.1021/acsaem.8b00539, **DOI** 10.1021/acsmacrolett.9b00296, **DOI** 10.1021/acsenergylett.7b00547, **DOI** 10.1021/acs.est.9b01469

