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Lecture 1,
08/24/2016.

1. Introduction/motivation

Idea of locality (in the interpretation of Atiyah-Segal): a quantum field theory
(QFT) assigns some values (“partition functions”) to manifolds. It can be evaluated
on manifolds and satisfies a gluing/cutting property. So, a manifold can be chopped
into simple (small) pieces, then the QFT can be evaluated on those pieces and then
assembled to the value of the QFT on the entire manifold.

1.1. Atiyah’s axioms of topological quantum field theory. An n-dimensional
topological quantum field theory (TQFT) is the following set of data.

• To a closed (n − 1)-dimensional manifold Σ, the TQFT assiociates a
vector space HΣ over C – the “space of states”.
• To an n-manifold M with boundary split into in- and out-parts, ∂M =

Σ̄in tΣout (bar refers to reversing the orientation on the in-boundary), the
TQFT associates a C-linear map ZM : HΣin

→ HΣout
– the “partition

function”.1
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1Another possible name for ZM is the “evolution operator”.
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We call such M a cobordism between Σin and Σout, and we denote

Σin
M−→ Σout

• Diffeomorphisms of closed (n−1)-manifolds act on spaces of states: to
φ : Σ→ Σ′ a diffeomorphism, the TQFT associates an isomorphism ρ(φ) :
HΣ → HΣ′ (in the way compatible with composition of diffeomorphisms).
For φ orientation-preserving, ρ(φ) is C-linear; for φ orientation-reversing,
ρ(φ) is C-anti-linear.

This set of data should satisfy the following axioms:

• Multiplicativity: disjoint unions are mapped to tensor products. Explic-
itly,

HΣtΣ′ = HΣ ⊗HΣ′ , ZMtM ′ = ZM ⊗ ZM ′

• Gluing: given two cobordisms Σ1
M ′−−→ Σ2 and Σ2

M ′′−−→ Σ3, with out-
boundary of the first one coinciding with the in-boundary of the second
one,
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we can glue (or “concatenate”) them over Σ2 to a new cobordism M :=

M ′ ∪Σ2 M
′′, going as Σ1

M−→ Σ3.
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Then the partition function for M is the composition of partition functions
for M ′ and M ′′ as linear maps:

ZM = ZM ′′ ◦ ZM ′ : HΣ1 → HΣ3

• Normalization:
– For ∅ the empty (n− 1)-manifold,

H∅ = C
– For Σ a closed (n− 1)-manifold, the partion function for the cylinder

Σ
Σ×[0,1]−−−−−→ Σ is the identity on HΣ.
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• For φ : M → M ′ a diffeomorphism between two cobordisms, denote φ|in,
φ|out the restrictions of φ to the in- and out-boundary. We have a commu-
tative diagram

HΣin

ZM−−−−→ HΣout

ρ(φ|in)

y yρ(φ|out)

HΣ′in
−−−−→
ZM′

HΣ′out

Remark 1.1. Atiyah’s TQFT is a functor of symmetric monoidal categories,
Cobn → VectC, where the structure is as follows:

Cobn VectC
objects closed (n− 1)-manifolds vector spaces/C
morphisms cobordisms Σin

M−→ Σout linear maps
composition gluing composition of maps

identity morphism cylinder Σ
Σ×[0,1]−−−−−→ Σ identity map id : V → V

monoidal product disjoint union t tensor product ⊗
monoidal unit ∅ C

Remark 1.2. A closed n-manifold M can be viewed as a cobordism from ∅ to ∅,
thus ZM : C→ C is a multiplication by some number z ∈ C. By abuse of notations,
we denote ZM := z ∈ C. Thus, with this convention, the partition function for
a closed n-manifold is a complex number, invariant under diffeomorphisms and
compatible with gluing-cutting. E.g., for n = 2, we can cut any closed surface into
disks and pairs of pants

Thus, Z for any surface can be calculated from the gluing axiom, provided that Z
is known for a disk and for a pair of pants.

Remark 1.3. In Segal’s approach to (not necessarily topological) quantum field
theory, one allows manifolds to carry a local geometric structure (of the type de-
pending on the particular QFT): Riemannian metric, conformal structure, com-
plex structure, framing, local system,. . . Atiyah’s axioms above have to be modified
slightly to accommodate for the geometric structure.

Example 1.4 (Quantum mechanics). Consider the 1-dimensional Segal’s QFT
with geometric structure the Riemannian metric on 1-cobordisms. Objects are
points with + orientation, assigned a vector space H and points with − orientation,
assigned the dual space H∗. Consider an interval of length t > 0 (our partition
functions depend on a metric on the interval considered modulo diffeomorphisms,
thus only on the length), It = [0, t]. Denote Z(t) := ZIt ∈ End(H). By the gluing
axiom (from considering the gluing [0, t1] ∪{t1} [t1, t1 + t2] = [0, t1 + t2]), we have
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the semi-group law Z(t1 + t2) = Z(t2) ◦ Z(t1). It implies in turn that

(1) Z(t) = Z(
t

N
)N

for N an arbitrarily large integer. Assume that for τ small, we have Z(τ) =

id− i
~Ĥ · τ +O(τ2), for Ĥ ∈ End(H) some operator. Then (1) implies that

Z(t) = exp

(
− i
~
Ĥt

)
This system is the quantum mechanics, with Z(t) the evolution operator in time t

and Ĥ the Schrödinger operator (or quantum Hamiltonian), describing the infini-
tesimal evolution of the system.

E.g. the choice H = L2(X) for X a Riemannian manifold and Ĥ = − ~2

2m∆X +
U(x)· would correspond to the quantum particle of mass m moving on the manifold
X in the force field with potential U . In this case Z(t) : ψ(x) 7→

∫
X3y dy Z(t;x, y)ψ(y)

is the integral operator whose integral kernel Z(t;x, y) is intepreted as the propa-
gation amplitude of the particle from position y to position x in time t.

1.2. The idea of path integral construction of quantum field theory.

1.2.1. Classical field theory data. We start by fixing the data of classical field theory
on an n-manifold:

• A space of fields FM = Γ(M,FM ) – a space of sections of some sheaf FM
over M . Typical examples of FM are:

– C∞(M)
– Space of connections on a principal G-bundle P over M . (This exaple

is typical for some of gauge theories e.g. Chern-Simons theory, Yang-
Mills theory,. . . )

– Mapping space Map(M,N) with N some fixed target manifold. This
is typical for so-called sigma models.

• The action functional SM : FM → R of form

SM (φ) =

∫
M

L(φ, ∂φ, ∂2φ, . . .)

where L is the Lagrangian density – a density on M depending on the value
of the field φ ∈ FM and its derivatives (up to fixed finite order) at the point
of integration on M . Variational problem of extremization of S (i.e. the
critical point equation δS = 0) leads to Euler-Lagrange PDE on φ.

Example 1.5 (Free massive scalar field). Let (M, g) be a Riemannian manifold,
we set FM = C∞(M) 3 φ with the action

SM (φ) =

∫
M

(
1

2
〈dφ, dφ〉g−1 +

m2

2
φ2

)
dvol

Here m ≥ 0 is a parameter of the theory – the mass; dvol is the Riemannian volume
element on M . The associated Euler-Lagrange equation on φ is: (∆ +m2)φ = 0.
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1.2.2. Idea of path integral quantization. The idea of quantization is then to con-
struct the partition function for M a closed manifold as

(2) ZM (~) := “

∫
FM

Dφ e i~SM (φ) ”

Here ~ is a parameter of the quantization (morally, ~ measures the “distance to
classical theory”); Dφ is a symbol for a reference measure on the space FM . Integral
(2) is problematic to define directly as a measure-theoretic integral, however it can
be defined as an asymptotic series in ~→ 0, as we will discuss in a moment. So far,
r.h.s. of (2) is a heuristic expression which is to be made mathematical sense of.

Consider M with boundary Σ. Denote BΣ the set of boundary values of fields
on M ; we have a map of evaluation of the field at the boundary (or pullback by the
inclusion Σ ↪→ M) FM → BΣ sending φ 7→ φ|∂ . For the space of states on Σ, we
set HΣ := FunC(BΣ) – complex-valued functions on BΣ. For the partition function
ZM , we set

(3) ZM (φΣ; ~) :=

∫
φ∈FM s.t. φ|∂=φΣ

Dφ e i~SM (φ)

This path integral gives us a function on BΣ 3 φΣ and thus a vector in ZM (−; ~) ∈
HΣ.

1.2.3. Heuristic argument for gluing. Let a closed (for simplicity) n-manifold M be
cut by a codimension 1 submanifold Σ into two M ′ and M ′′, i.e. M = M ′ ∪Σ M

′′.
Then the integral (2) can be performed in steps:

(i) Fix φΣ on Σ.
(ii) Integrate over fields on M ′ with boundary condition φΣ on Σ.
(iii) Integrate over fields on M ′′ with boundary condition φΣ on Σ.
(iv) Integrate over φΣ ∈ BΣ.

This yields

ZM =

∫
BΣ3φΣ

DφΣ ZM ′(φΣ) · ZM ′′(φΣ)

One can recognize in this formula the Atiyah-Segal gluing axiom: M ′ and M ′′ yield
two vectors in HΣ which are paired in HΣ to a number – the partition function for
the whole manifold.

1.2.4. How to define path integrals? Let us first look at finite-dimensional oscillating
integrals: consider X a compact manifold with µ a fixed volume form and f ∈
C∞(X) a function. The asymptotics, as ~→ 0, of the integral∫

X

µ e
i
~ f(x)

is given by the stationary phase formula2∫
X

µ e
i
~ f(x) ∼

~→0

∑
x0∈{crit. points of f}

e
i
~ f(x0)|det f ′′(x0)|− 1

2 e
πi
4 signf ′′(x0)(2π~)

dimX
2

The rough idea here is that the rapid oscillations of the integrand cancel out except
in the neighborhood of critical points x0 of f (i.e. points with df(x0) = 0), which are

2See e.g. [14, 27]
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the “stationary phase points” for the integrand – points around which oscillations
slow down.

This formula can be improved to accommodate corrections in powers of ~:

(4)∫
X

µ e
i
~ f(x) ∼

~→0

∑
x0∈{crit. points of f}

e
i
~ f(x0)|det f ′′(x0)|− 1

2 e
πi
4 signf ′′(x0)(2π~)

dimX
2 ·

·
∑

Γ

~−χ(Γ)ΦΓ

where Γ ranges over graphs with vertices of valence ≥ 3 (possibly disconnected,
including Γ = ∅); χ(Γ) ≤ 0 is the Euler characteristic of the graph. Graphs Γ are
called the Feynman diagrams. Assume that Γ has E edges and V vertices. We
decorate all half-edges of Γ with labels i1, . . . , i2E each of which can take values
1, 2, . . . , p := dimX. The weight of the graph Γ, ΦΓ, is defined as follows.

• We assign to every edge e consisting of half-edges h1, h2 the decoration
f ′′(x0)−1

ih1
ih2

– the matrix element of the inverse Hessian given by the labels

of the constituent half-edges.
• We assign to every vertex v of valence k with adjacent half-edges h1, . . . , hk

the decoration ∂ih1
· · · ∂ihk f(x0) – a k-th partial derivative of f at the crit-

ical point.
• We take the product of all the decorations above and sum over all possible

values of labels on the half-edges. ΦΓ is this sum times the factor iE+V )

|Aut(Γ)|
with Aut(Γ) the automorphism group of the graph.

I.e., we have

ΦΓ :=
iE+V

|Aut(Γ)|
·

∑
i1,...,i2E∈{1,...,p}

∏
edges e=(h1h2)

f ′′(x0)−1
ih1

ih2
·
∏

vertices v

∂ih1
· · · ∂ihval(v)

f(x0)

Example 1.6. Consider the “theta graph”

(Note that its Euler characterestic is −1, hence it enters in (4) in the order ~1.)
For its weight, we obtain

Φ


n

i

j

k

l

m

 =
i3+2

12
·

∑
i,j,k,l,m,n∈{1,...,p}

f ′′(x0)−1
il f

′′(x0)−1
jmf

′′(x0)−1
knf

′′′(x0)ijkf
′′′(x0)lmn

Stationary phase formula (4) replaces, in the asymptotics ~ → 0, a measure-
theoretic integral on the l.h.s. with the purely algebraic expression on the r.h.s.,
involving only values of derivatives of f at the critical points x0.

The idea then is to define the path integral (2) by formally applying the station-
ary phase formula, as the r.h.s. of (4), i.e. as a series in ~ with coefficients given
by weights of Feynman diagrams.
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We expect that if we started with a classical field theory with SM invariant under
diffeomorphisms of M , the partition functions ZM coming out of the path integral
quantization procedure yield manifold invariants and arrange into a TQFT.

Problem: Stationary phase formula requires critical points of f to be isolated
(more precisely, we need the Hessian of f at critical points to be non-degenerate).
However, diffeomorphism invariant classical field theories are gauge theories, i.e.
there is a tangential distribution E on FM which preserves the action SM (in some
examples, E corresponds to an action of a group G – the gauge group – on FM ).
Thus, critical points of SM come in E-orbits and therefore are not isolated. Put
another way, the Hessian of SM is degenerate in the direction of E . So, the station-
ary phase formula cannot be applied to the path integral (2) in the case of a gauge
theory.

The cure for this problem comes from using the Batalin-Vilkovisky construction.

1.2.5. Towards Batalin-Vilkovisky (BV) formalism. Batalin-Vilkovisky construc-
tion replaces the classical field theory package F, S with a new package consisting
of:

• A Z-graded supermanifold F (the “space of BV fields”) endowed with odd-
symplectic structure ω of internal degree −1.
• A function SBV on F – the “master action”, satisfying the “master equa-

tion”

{SBV , SBV } = 0

In particular, this implies that the corresponding Hamiltonian vector field
Q = {SBV , •} is cohomological, i.e. satisfies Q2 = 0. Thus, Q endows
C∞(F) with the structure of a cochain complex. In other words, (F , Q) is
a differential graded (dg) manifold.

The idea is then to replace

(5)

∫
F

e
i
~S →

∫
L⊂F

e
i
~SBV

with L ⊂ F a Lagrangian submanifold w.r.t. the odd-symplectic structure ω.
The integral on the l.h.s. of (5) is ill-defined (by means of stationary phase

formula) in the case of a gauge theory whereas the integral on the r.h.s. is well-
defined, for a good choice of Lagrangian submanifold L ⊂ F and moreover is
invariant under deformations of L.

Remark 1.7. 3 Space F is constructed, roughly speaking, as Spec of a two-sided
resolution of C∞(F ) construted out of

• Chevalley-Eilenberg resolution for the subspace of gauge-invariant functions
of fields C∞(F )G and
• Koszul-Tate resolution for functions on the space of solutions of Euler-

Lagrange equations C∞(EL ⊂ F ).

So, coordinates on F of nonzero degree arise as either Chevalley-Eilenberg gen-
erators (in positive degree) or Koszul-Tate generators (in negative degree). In
particular, this is the reason why F has to be a supermanifold (since C-E and K-T
generators anti-commute).

3See [31].
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Remark 1.8. In the case of a gauge field theory, one could try to remedy the
problem of degenerate critical points in the path integral by passing to the integral
over the quotient,

∫
F
→
∫
F/G . The latter may indeed have nondegenerate critical

points. But the issue is then that we know how to make sense of Feynman diagrams
for the path integral over the space of sections of a sheaf over M , but the quotient
F/G would not be of this type. In this sense, one may think of the r.h.s. of (5) as
a resolution of the integral over a quotient F/G by an integral over a locally free
object – the space of sections of a sheaf over M .

Remark 1.9. There are finite-dimensional cases when l.h.s. of (5) exists as a
measure-theoretic integral (despite having non-isolated critical points). Then, un-
der certain assumptions, one has a comparison theorem that l.h.s. and r.h.s. of (5)
coincide. We will return to this when talking about Faddeev-Popov construction
and how it embeds into BV.

Lecture 2,
08/29/2016. 1.3. Tentative program of the course.

• Classical Chern-Simons theory.
• Feynman diagrams (in the context of finite-dimensional integrals):4

– Stationary phase formula.
– Wick’s lemma for moments of a Gaussian integral. Perturbed Gaussian

integral.
– Berezin integral over an odd vector space.5 Feynman diagrams for

integrals over a super vector space.
• Introduction to BV formalism:

– (Z-graded) supergeometry: odd-symplectic geometry (after [29]), dg
manifolds (partly after [1]), integration on supermanifolds.

– BV Laplacian, classical and quantum master equation (CME and QME).
– 1

2 -densities on odd-symplectic manifolds, BV integrals, fiber BV inte-
gral as a pushforward of solutions of quantum master equation ([25, 6]).

– BV as a solution to the problem of gauge-fixing: Faddeev-Popov con-
struction, BRST (as a homological algebra interpretation of Faddeev-
Popov), BV (as a “doubling” of BRST).6

• AKSZ (Alexandrov-Kontsevich-Schwarz-Zaboronsky) construction [1].

Applications:

(I) A topological quantum field theory (not in Atiyah sense, but in the sense of
compatibility with cellular subdivisions/aggregations) on CW complexes X

4References: [14, 27].
5Reference: [22].
6Reference: e.g. [25].
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– cellular non-abelian BF theory [25, 12].

invariants

CW aggregation

X X′

Here a CW complex X gets assigned a BV package – a space of fields
comprised of cellular cochains and chains twisted by a G-local system E,
FX = C•(X,E) ⊕ C•(X,E∗) (with certain homological degree shifts which
we omitted here); G is a fixed Lie group – the structure group of the the-
ory. FX carries a natural odd-symplectic structure (coming from pairing
chains with cochains). The action is given as a sum, over cells e ⊂ X of all
dimensions, of certain universal local building blocks S̄e depending only on
combinatorial type of the cell and on values of fields restricted to the cell.

One calculates certain invariant ψ(X) of X by pushing forward the BV
package to the (cellular) cohomology of X, via a finite-dimensional fiber BV
integral. If X ′ is a cellular subdivision of X (then we say that X is an
“aggregation” of X ′), the pushforward of the BV package on X ′ to X yields
back the package on X, and for the invariant one has ψ(X ′) = ψ(X). More
precisely, one gets a simple-homotopy invariant of CW complexes.

We will also discuss here:
• Solutions of the QME vs. infinity algebras (relevant case for this model:

unimodular L∞ algebras). Fiber BV integral as homotopy transfer of
infinity algebras. Feynman diagrams from homological perturbation the-
ory.

• Relation to rational homotopy type, to formal geometry (neighborhoods
of singularities) of the moduli space MX,G of local systems on X, to
behavior of the R-torsion near the singularities of MX,G.

(II) Perturbative Chern-Simons theory (after Axelrod-Singer [2, 3]). Perturba-
tive invariants of 3-manifolds M given in terms of integrals over Fulton-
MacPherson-Axelrod-Singer compactifications of configuration spaces of n
distinct points on M .

(III) Kontsevich’s deformation quantization of Poisson manifolds (M,π) [20], partly
following [5]. Here the problem is to costruct a family (parameterized by ~)
of associative non-commutative deformations of the pointwise product on
C∞(M), of the form

(6) f ∗~ g(x) = f · g(x)− i~
2
{f, g}π +

∑
n≥2

(i~)nBn(f, g)(x)

where Bn are some bi-differential operators (of some order depending on n).
The idea of the construction (following [5]) is to write the star-product as
as path integral representing certain expectation value for a 2-dimensional
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topological field theory (the Poisson sigma model) on a disk D, with two
observables placed on the boundary, at points 0 and 1:

(7) f ∗~ g(x0) =

∫
X(∞)=x0,η∂D=0

DX Dη e
i
~SPSM (X,η)f(X(0)) · g(X(1))

Here the fields X, η are the base and fiber components of a bundle map

TD
η−−−−→ T ∗My y

D −−−−→
X

M

and the action is: SPSM =
∫
D
〈η, dX〉+ 1

2 〈X
∗π, η ∧ η〉. This action possesses

a rather complicated gauge symmetry (given by a non-integrable distribution
on the space of fields) and one needs BV to make sense of the integral (7).
The final result is the explicit construction of operators Bn in (6) in terms
of integrals over compactified configuration spaces of points on the 2-disk D.

(IV) BV formalism for field theories on manifolds with boundary, with Atiyah-
Segal’s gluing/cutting – “BV-BFV formalism” [7, 10] (a very short survey in
[11]). Examples:
• Non-abelian BF theory on cobordisms endowed with CW decomposition

[12].
• AKSZ theories on manifolds with boundary.

2. Classical Chern-Simons theory

2.1. Chern-Simons theory on a closed 3-manifold. Let, for simplicity, G =
SU(2) (we will comment on generalization to other Lie groups later) and let M be
a closed oriented 3-manifold. Let P be the trivial G-bundle over M .

2.1.1. Fields. We define the space of fields to be the space of principal connections
on P. Since P is trivial, we can use the trivialization to identify connections with
g-valued 1-forms on M (by pulling back the connection 1-form A ∈ Ω1(P, g) on the
total space of P to M by the trivializing section σ : M → P). Here g is the Lie
algebra of G, i.e. in our case g = su(2). So, we have FM = ConnM,G ' Ω1(M, g).

2.1.2. Action. We define the action functional on FM as

SCS(A) :=

∫
M

tr
1

2
A ∧ dA+

1

3
A ∧A ∧A

with A ∈ Ω1(M, g) a connection 1-form in fundamental representation of su(2).

Remark 2.1. It can be instructive to rewrite the action as
∫
M

tr 1
2A ∧ dA+ 1

6A ∧
[A,A] where [, ] is the (super-)Lie bracket on the differential graded Lie algebra of
g-valued forms, Ω•(M, g); here [A,A] is simply A ∧ A+ A ∧ A. But this rewriting
exhibits denominators 1/2!, 1/3! and suggests that there might be some “homotopy
Chern-Simons” action associated to infinity algebras where higher terms would
appear, which is indeed correct [6].
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2.1.3. Euler-Lagrange equation. Let us calculate the variation of the action:

δSCS =

∫
M

tr
1

2
δA ∧ dA+

1

2
A ∧ dδA+ δA ∧A ∧A =

∫
M

tr δA ∧ (dA+A ∧A︸ ︷︷ ︸
curvature FA

)

Here in the second equality we used integration by parts to remove d from δA.
Note that the coefficient of δA in the final expression is the curvature 2-form of the
connection A, FA = dA+A∧A = A+ 1

2 [A,A] ∈ Ω2(M, g). Thus, the Euler-Lagrange
equation δSCS = 0 (the critical point equation for SCS) reads

FA = 0

– flatness condition on the connection.

2.1.4. Gauge symmetry. For any group-valued map g : M → G and a connection
A ∈ Ω1(M, g), we define the gauge transformation as mapping

(8) A 7→ Ag := g−1Ag + g−1dg

This defines a (right) action of the gauge group GaugeM,G = Map(M,G) on FM =
ConnM,G.

One can understand the transformation formula (8) as the effect of a change
of trivialization of the principal bundle P: assume that the connection 1-form on
total space A ∈ Ω1(P, g) is fixed but we are given two different trivializations
σ, σ′ : M → P with σ′ = σ · g. Then, the corresponding 1-forms on the base,
Aσ = σ∗A and Aσ′ = (σ′)∗A are related by (8).

Alternatively, one can interpret (8) as the action of a bundle automorphism

(9)

P ·g−−−−→
'

Py y
M M

on a connection.
Note that Ag is flat iff A is flat.
Chern-Simons action changes under the gauge transformation (8) as

SCS(Ag)− SCS(A) = −1

6

∫
M

tr (g−1dg)∧3

where (g−1dg)∧3 = (g−1dg)∧ (g−1dg)∧ (g−1dg) is a 3-form on M with coefficients
in matrices (endomorphisms of the space where g is represented).

Recall that for G ⊂ U(N) a simple compact group, one has the Cartan 3-form

θ = − 1

24π2
tr (g−1dg)∧3 ∈ Ω3(G)

– a closed G-invariant form on G with integral periods representing the generator
of H3(G,Z) ' Z. In particular, for G = SU(2), θ is the volume form on SU(2)
viewed as the 3-sphere, normalized to have total volume 1.

Therefore, (9) implies the following

Lemma 2.2 (Gauge (in)dependence of Chern-Simons action).

1

4π2
(SCS(Ag)− SCS(A)) =

∫
M

g∗θ = 〈[M ], g∗[θ]〉 ∈ Z
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Note that, for G = SU(2), the r.h.s. is simply the degree of the map g : M →
SU(2) ∼ S3.

Thus, SCS(A) is invariant under infinitesimal gauge transformations; more pre-
cisely, it is invariant under Gauge0

M,G ⊂ GaugeM,G – the connected component
of trivial transformation g = 1 in GaugeM,G. However, under a general gauge

transformation SCS(A) can change by an integer multiple of 4π2.Lecture 3,
08/31/2016. Introduce a function

(10) ψk(A) := e
ik
2πSCS(A)

with k ∈ Z a parameter – the “level” of Chern-Simons theory. By Lemma 2.2, ψk
is a GaugeM,G-invariant function on FM = ConnM,G. In particular, we can regard
ψk as a function on the quotient ConnM,G/GaugeM,G.

2.1.5. Chern-Simons invariant on the moduli space of flat connections. Restriction
of the function ψk to flat connections yields a locally constant function on the
quotient

MM,G = FlatConnM,G/GaugeM,G =
{A ∈ Ω1(M, g) s.t. dA+ 1

2 [A,A] = 0}
A ∼ g−1Ag + g−1dg ∀g : M → G

– the moduli space of flat connections. The locally constant property of ψk on
the moduli space follows immediately from the fact that flat connections solve the
Euler-Lagrange equation δSCS = 0.

Recall that MM,G can be identified7 with Hom(π1(M), G)/G – the space of
group homomorphisms π1(M) → G, modulo action of G on such homomorphisms
by conjugation on the target G.8

Moduli space MM,G is typically disconnected and ψk can take different values
on different connected components.

Example 2.3. Take G = SU(2) and take M to be a lens space:

M = L(p, q) :=
{(z1, z2) ∈ C2 s.t. |z1|2 + |z2|2 = 1}

(z1, z2) ∼ (ζ · z1, ζq · z2)
∼ S3/Zp

where ζ = e
2πi
p the p-th root of unity; we assume that (p, q) are coprime (otherwise

L(p, q) is not a smooth manifold).

The moduli spaceMM,G is the space of elements of order p in SU(2) considered

modulo conjugation. Thus, MM,G consists of
[
p+1

2

]
isolated points corresponding

to classes of flat connections [A]0, . . . , [A][ p−1
2 ] where class [A]r has the holonomy

around the loop γ, representing the generator of π1(M) = Zp, of the form

holγ [A]r =

(
e

2πir
p 0

0 e−
2πir
p

)
∈ SU(2)

7The identification goes via mapping a flat connection A to a map associating to based loops

γ on M the holonomy of A around γ. Flatness of A implies that this map on loops descends

to homotopy classes of loops and implies the group homomorphism property of the map. Final
quotient by G corresponds to quotienting out the changes of trivialization of the fiber of P over

the base point.
8The identification MM,G ' Hom(π1(M), G)/G is true for M of arbitrary dimension, if one

allows flat connections in all – possibly non-trivial – G-bundles over M . Thus, MM,G is in fact

the moduli space of flat bundles, rather than just flat connections in a trivial bundle.
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We consider consider r as defined mod p, and moreover r and −r correspond to
conjugate elements in SU(2). Therefore choices r ∈ {0, 1, . . . ,

[
p−1

2

]
} do indeed

exhaust all distinct points of MM,G.
The value of the function ψk (10) on the point [A]r ∈MM,G is:

ψk([A]r) = e
2πikq∗r2

p

(This is the result of a non-trivial calculation.) Here q∗ is the residue mod p
reciprocal to q, i.e. defined by q∗q = 1 mod p. In particular, the set of values of
ψk on MM,G distinguishes between non-homotopic lens spaces, e.g. distinguishes
between L(5, 1) and L(5, 2).

2.1.6. Remark: more general G. We can allow G to be any connected, simply-
connected, simple, compact Lie group (e.g. G = SU(N)) without having to change
anything.

We can also allow G to be semi-simple, G = G1 × · · · ×Gn with Gn the simple
factors – the corresponding Chern-Simons theory is effectively a collection of n
mutually non-interacting Chern-Simons theories for groups G1, . . . , Gn. In this
case we can introduce independent levels k1, . . . , kn ∈ Z for different factors.

The assumption that π0(G) and π1(G) are trivial is crucial. By a result of W.
Browder, 1961, π2(G) is trivial for any finite-dimensional Lie group (in fact, even
for any finite-dimensional H-space). Thus, under our assumptions G is 2-connected
and the classifying space BG is 3-connected. Therefore, for M of dimension ≤ 3,
[M,BG] = ∗ – all classifying maps are homotopically trivial. Thus a G-bundle P
over M has to be trivial. And then we can globally identify connections in P with
g-valued 1-forms and can make sense of Chern-Simons action. However, if either
π0(G) or π1(G) is nontrivial, then there can exist non-trivial G-bundles (and one
has to allow connections in all possible G-bundles as valid fields for the theory, if one
wants ultimately to construct a field theory compatible with gluing/cutting). In
this case special techniques are needed to construct SCS (e.g. by defining the action
on patches where the bundle is trivialized and then gluing the patches while taking
into account the corrections arising from the change of trivialization on overlaps).
In particular, for G = U(1), SCS is constructed in terms of Deligne cohomology.

2.1.7. Relation to the second Chern class. We assume again that G = SU(2) (or,
more generally, any simply-connected subgroup of U(N)).

Fact: any closed oriented 3-manifold M is null-cobordant, i.e. there exists a
4-manifold N with boundary ∂N = M .

As before, let P be the trivial G-bundle over M and let P̃ be the trivial G-bundle
over N

Lemma 2.4. Let A ∈ Ω1(M, g) be a connection in P and a ∈ Ω1(N, g) its extension

to a connection in P̃ (i.e. the pullback by the inclusion of the boundary ι : M ↪→ N
is a|M := ι∗a = A). Then we have

(11) SCS(A) =
1

2

∫
N

trFa ∧ Fa

where Fa = da+ 1
2 [a, a] ∈ Ω2(N, g) is the curvature of a.

Proof. Indeed, we have

(12) d tr (
1

2
a ∧ da+

1

3
a ∧ a ∧ a) = tr (

1

2
da ∧ da+ da ∧ a ∧ a)
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and

(13) tr
1

2
Fa∧Fa = tr

1

2
(da+a∧a)∧(da+a∧a) = tr (

1

2
da∧da+da∧a∧a+a∧a∧a∧a)

Note that the last term on the r.h.s. vanishes under trace: tr a∧4 = tr a ∧ a∧3 =
−tr a∧3∧a = −tr a∧4, hence tr a∧4 = 0. Thus, (12)=(13) and the statement follows
by Stokes’ theorem. �

Let N+, N− be two copies of N (with N− carrying the opposite orientation).
Let N̄ = N+∪M N− be the closed 4-manifold obtained by gluing N+ and N− along
M .

Fix g : M → G and construct a (generally, non-trivial) G-bundle P̄g over N̄
which is trivial over N+ and N− and has transition function g on the tubular
neighborhood of M ⊂ N̄ .

Let A be some connection on M ; let a+ be its extension over N+ and let a− be
an extension of the gauge transformed connection Ag = g−1Ag + g−1dg over N−.
The pair (a+, a−) defines a connection ā in P̄g.

By Lemma 2.4, we have

(14)

1

8π2

∫
N̄

trFā∧Fā =
1

8π2

∫
N+∪N−

trFā∧Fā =
1

8π2

(∫
N

trFa+
∧ Fa+

−
∫
N

trFa− ∧ Fa−
)

=
1

4π2
(SCS(A)− SCS(Ag))

Input from Chern-Weil theory. Recall that for P a G-bundle over M (with
M of arbitrary dimension and with G a subgroup of U(N)), for A an arbitrary
connection in P, the closed 4-form

(15)
1

8π2
trFA ∧ FA ∈ Ω4(M)closed

represents the image of the second Chern class of P,9 c2(P) ∈ H4(M,Z) in de Rham
cohomology H4(M,R). In particular, 4-form (15) has integral periods independent
of A.

We conclude that the gauge transformation property of Chern-Simons action
can be expressed in terms of characteristic classes for G-bundles on 4-manifolds as
follows.

Lemma 2.5.

1

4π2
(SCS(Ag)− SCS(A)) = 〈[N̄ ], c2(P̄g)〉 ∈ Z

2.2. Chern-Simons theory on manifolds with boundary. Let now M be an
oriented 3-manifold with boundary ∂M = Σ - a closed surface, or several closed
surfaces.

As in the case of M closed, fields are connections on M and the action is un-
changed, SCS(A) =

∫
M

tr 1
2A ∧ dA+ 1

6A ∧ [A,A].

9More precisely, this is the second Chern class of the associated vector bundle P×G CN .
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2.2.1. Phase space. We define the phase space ΦΣ associated to the boundary Σ
as the space of pullbacks of fields (connections) on M to the boundary. Thus,
ΦΣ = ConnΣ,G – connections on Σ, and we have a natural projection from fields
on M to the boundary phase space

(16)

FM = ConnM,G

π=ι∗
y

ΦΣ = ConnΣ,G

– the pullback by the inclusion of the boundary ι : Σ ↪→M .

2.2.2. δS, Euler-Lagrange equations. Let us calculate δS. Now we will interpret δ as
the exterior derivative on the space of fields, i.e. δS ∈ Ω1(FM ) is a 1-form on fields
and one can contract it with a tangent vector v ∈ TAFM ' Ω1(M, g) to produce
a number. This is a (marginally) different interpretation from δ as a variation
in variational calculus; the computations are the same but sign conventions are
affected as now we treat δ as an odd operator.

Note that now we have two de Rham differentials: d – the “geometric” de Rham
operator on M (or Σ) and the “field” de Rham operator δ on FM (resp. ΦΣ).

The computation is as follows:

(17) δS =

∫
M

tr

(
−1

2
δA ∧ dA− 1

2
A ∧ dδA− 1

2
δA ∧ [A,A]

)
= −

∫
M

tr δA ∧ FA︸ ︷︷ ︸
“bulk term”

+

∫
Σ

tr
1

2
A|Σ ∧ δA|Σ︸ ︷︷ ︸

“boundary term”

Here we used Stokes’ theorem to remove d from δA, and, unlike in the computation
for M closed, a boundary term appeared as a result.

Euler-Lagrange equation read off from the first term in the r.h.s. of (17) – the
equation that 〈δS, v〉 = 0 for a field variation v ∈ Ω(M, g) supported away from the
boundary – is

(18) FA = 0

– the flatness equation, as for M closed.

2.2.3. Noether 1-form, symplectic structure on the phase space. We interpret the
boundary term in the r.h.s. of (17) as π∗αΣ – the pullback by the projection (16)
of the Noether 1-form on the phase space αΣ ∈ Ω1(ΦΣ) defined as

αΣ =

∫
Σ

tr
1

2
AΣ ∧ δAΣ

I.e., for AΣ ∈ ConnΣ,G a fixed connection on the boundary and for v ∈ TAΣ
ΦΣ '

Ω1(Σ, g) a tangent vector (“a variation of boundary field”), we have

ιvαΣ = −
∫

Σ

tr
1

2
AΣ ∧ v ∈ R

(symbol ιv stands for the contraction with a vector or vector field).
The exterior derivative of the 1-form αΣ yields a 2-form

(19) ωΣ := δαΣ =

∫
Σ

tr
1

2
δAΣ ∧ δAΣ ∈ Ω2(ΦΣ)
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In particular, for u, v ∈ TAΣ
ΦΣ ' Ω1(M, g) a pair of tangent vectors, we have

ιuιvωΣ =

∫
Σ

tr u ∧ v ∈ R

The 2-form ωΣ is closed by construction. Also, it is weakly non-degenerate (in
the sense that the induced sharp-map ω# : TΦΣ → T ∗ΦΣ is injective). Thus, ωΣ

defines a symplectic structure on ΦΣ, viewed as an infinite-dimensional (Fréchet)
manifold.

2.2.4. “Cauchy subspace”. We define the Cauchy10 subspace CΣ ⊂ ΦΣ as the sub-
space of fields on the boundary which can be extended to a neighborhood of the
boundary, Σ× [0, ε) ⊂M , as solutions to Euler-Lagrange equations.11

For Chern-Simons theory, this means that CΣ is comprised of connections on Σ
which can be extended to flat connections on Σ×[0, ε). Thus, CΣ = FlatConnΣ,G ⊂
ConnΣ,G is simply the space of all flat connections on Σ.Lecture 4,

09/05/2016. Recall that, a vector subspace U of a symplectic vector space (V, ω) is called

• isotropic if U ⊂ U⊥, with U⊥ = {w ∈ V s.t. ω(w, u) = 0 ∀u ∈ U} –
the symplectic orthogonal complement of U (equivalently, U ⊂ (V, ω) is
isotropic if ω vanishes on pairs of vectors from U);
• coisotropic if U⊥ ⊂ U ;
• Lagrangian if U = U⊥.

Similarly, a submanifoldN ⊂ (Φ, ω) of a symplectic manifold is isotropic/coisotropic/Lagrangian
if, for any point x ∈ N , the tangent space TxN is a isotropic/coisotropic/Lagrangian
subspace in (TxΦ, ωx).

Recall that, for C ⊂ (Φ, ω) a coisotropic submanifold, the characteristic distribu-
tion is defined as (TC)⊥ ⊂ TC – a subbundle of the tangent bundle of C assigning
to x ∈ C a subspace (TxC)⊥ in TxC. This distribution is integrable (by Frobenius
theorem and dω = 0) and thus induces a foliation of C by the leaves of charac-
tersitic foliation. We denote C the corresponding space of leaves (the “coisotropic
reduction” of C). The reduction C inherits a symplectic structure ω characterized
by p∗ω = ω|C where p : C → C is the quotient map.12

Lemma 2.6. (i) The submanifold CΣ ⊂ ΦΣ is coisotropic.
(ii) The characteristic distribution (TCΣ)⊥ on CΣ is given by infinitesimal gauge

transformations.

Proof. Fix AΣ ∈ CΣ a flat connection on Σ. The tangent space TAΣ
CΣ is the

space of first order deformations of AΣ as a flat connection. For the curvature of
a generic small deformation of AΣ, we have FAΣ+ε·α = ε · dAΣα︸ ︷︷ ︸

=: dα+[AΣ,α]

+O(ε2) for a

deformation α ∈ Ω1(Σ, g) and ε→ 0 a small deformation parameter. Hence,

TAΣ
CΣ = {α ∈ Ω1(Σ, g) s.t. dAΣ

α = 0} = Ω1(Σ, g)dAΣ
−closed

10Or “constraint” or “coisotropic” (see below).
11Thus, a “Cauchy subspace” – space of valid (in the sense of guaranteeing existence of a

solution) initial data on Σ×{0} for the Cauchy problem for Euler-Lagrange equations on Σ×[0, ε).
12Put another way, forgetting about the ambient symplectic manifold, (C,ω|C) is itself a pre-

symplectic manifold, i.e. one equipped with a pre-symplectic structure – a closed 2-form which can

be degenerate but its kernel is required to be a subbundle of the tangent bundle TC (in particular,
is required to have constant rank). From this point of view, C is the space of leaves of the kernel
of pre-symplectic structure kerω|C ⊂ TC.
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Let us calculate the symplectic orthogonal:

(20) (TAΣCΣ)⊥ = {β ∈ Ω1(Σ, g) s.t.

∫
Σ

trα ∧ β = 0 ∀α ∈ Ω1(Σ, g)dAΣ
−closed}

Let us put a metric on Σ and let ∗ be the corresponding Hodge star operator. We
then continue (20) making a change β = ∗γ:

(21) (TAΣ
CΣ)⊥ = ∗{γ ∈ Ω1(Σ, g) s.t. (α, γ) = 0 ∀α ∈ Ω1(Σ, g)dAΣ

−closed}

where (α, γ) =
∫

Σ
trα∧ γ is the positive definite Hodge inner product on Ω•(Σ, g).

By Hodge decomposition theorem, we have

Ω•(Σ, g) = Ω•(Σ, g)dAΣ
−exact ⊕ Ω•(Σ, g)harmonic︸ ︷︷ ︸

Ω•(Σ,g)dAΣ
−closed

⊕Ω•(Σ, g)d∗AΣ
−exact

Thus, the orthogonal complement of Ω1(Σ, g)dAΣ
−closed w.r.t. Hodge inner product

is Ω1(Σ, g)d∗AΣ
−exact. Therefore,

(22) (TAΣ
CΣ)⊥ = ∗

(
Ω•(Σ, g)d∗AΣ

−exact

)
= Ω1(Σ, g)dAΣ

−exact

Since exact forms are a subspace of closed forms, we have (TAΣ
CΣ)⊥ ⊂ TAΣ

CΣ

which proves item (i) – coisotropicity of CΣ.
Infinitesimal gauge transformations are the action of the Lie algebra gaugeΣ =

Lie(GaugeΣ) ' Map(Σ, g) by vector fields on ConnΣ; this infinitesimal action arises
from considering the action of a path of gauge transformations, gt ∈ GaugeΣ with
t ∈ [0, ε), starting at gt=0 = 1, on a connection AΣ and taking the derivative at
t = 0. Thus the gauge transformation formula

g ∈ GaugeΣ 7→ (AΣ 7→ AgΣ = g−1AΣg + g−1dg) ∈ Diff(ConnΣ)

implies that infinitesimal gauge transformations are given by

(23) γ ∈ gaugeΣ 7→ (AΣ 7→ dAΣ
γ︸ ︷︷ ︸

∈TAΣ
ConnΣ

) ∈ X(ConnΣ)

Note that, fixing AΣ and varying γ in (23), we obtain the subspace

{dAΣ
γ | γ ∈ Ω0(Σ, g)} ⊂ TAΣ

ConnΣ

which coincides with the value (22) of the characteristic distribution on CΣ at
AΣ ∈ CΣ. This proves item (ii). �

2.2.5. LM,Σ. Let ELM = FlatConnM be the space of solutions of Euler-Lagrange
equation on M – the space of flat connections, and let LM,Σ := π(ELM ) ⊂ ΦΣ

be the set of boundary values of flat connections on M . Since a solution of E-L
equation on M is in particular a solution of E-L equation on the neighborhood of
Σ, we have

LM,Σ ⊂ CΣ ⊂ ΦΣ

Remark 2.7 (Aside on the evolution relation in classical mechanics.).
Consider a classical mechanical system in Hamiltonian formalism as a 1-dimensional
field theory on an interval. It assigns to a point with + orientation a phase space
Φ (a symplectic manifold (Φ, ω)) and to a point with − orientation the same space
with the opposite sign of symplectic structure, Φ̄ (i.e. (Φ,−ω)). To an interval
[t0, t1] it assigns L = π(EL[t0,t1]) ⊂ Φ̄ × Φ; L consists of pairs of (initial state,
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final state) related by time evolution of the system from time t0 to time t1. In
the case of a non-degenerate classical system, any point in Φt0 defines a unique
solution for the Cauchy problem for E-L equation and evaluating it at t = t1 we
obtain an evolution map U[t0,t1] : Φt0 → Φt1 which is a symplectomorphism (since
the equations of motion are Hamiltonian), and then L = graph U[t0,t1]. Being a

graph of a symplectomorphism, L ⊂ Φ̄t0×Φt1 is Lagrangian. One can think of L as
a set-theoretic relation between Φt0 and Φt1 with additional Lagrangian property
(such relations are called “canonical relations”). Since L encodes the time evolution
of the system (or “dynamics”), it deserves a name of the “evolution relation” or
“dynamic relation”.

Now we are back to Chern-Simons.

Lemma 2.8. LM,Σ ⊂ ΦΣ is isotropic.

Proof. Let AΣ ∈ LM,Σ be the boundary value of a flat connection Ã on M . The
tangent space to LM,Σ is

TAΣ
LM,Σ = {α ∈ Ω1(Σ, g) s.t. α = α̃|Σ for some α̃ ∈ Ω1(Σ, g)dÃ−closed}

Thus, for α, β ∈ TAΣ
LM,Σ, we have

ωΣ(α, β) =

∫
Σ

trα ∧ β =
Stokes′

∫
M

tr (dÃα̃ ∧ β̃ − α̃ ∧ dÃβ̃) = 0

(Note that replacing d→ dÃ under trace is an innocent operation, as tr [Ã, •] = 0.)
Thus, ωΣ vanishes on LM,Σ, which is the isotropic property. �

2.2.6. Reduction of the boundary structure by gauge transformations. Let CΣ =
CΣ/GaugeΣ be the coisotropic reduction of CΣ (by definition, this is the space of
leaves of characterisitc distribution on CΣ) – the space of classes of flat connections
on Σ module gauge transformations. Thus,

CΣ =MΣ ' Hom(π1(Σ), G)/G

is the moduli space of flat connections on Σ.
Note that the tangent space to the moduli space is

T[AΣ]MΣ =
TAΣCΣ

(TAΣ
CΣ)⊥

=
Ω1(Σ, g)dAΣ

−closed

Ω1(Σ, g)dAΣ
−exact

= H1
dAΣ

(Σ, g)

– the twisted (by a flat connection AΣ) first de Rham cohomology.
Symplectic structure ωΣ on MΣ (the Atiyah-Bott symplectic structure) is:

ωΣ([α], [β]) =

∫
Σ

trα ∧ β

– the standard Poincaré duality pairing (with coefficients in a local system deter-
minaed by AΣ), 〈, 〉Σ : H1

dAΣ
⊗H1

dAΣ
→ R.

Let LM,Σ = LM,Σ/GaugeΣ ⊂ CΣ be the reduction of the evolution relation by
gauge symmetry, i.e. LM,Σ is the space of gauge classes of connections on Σ which
can be extended as flat connection over all M .
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2.2.7. Lagrangian property of LM,Σ.

Lemma 2.9. Submanifold LM,Σ ⊂MΣ is Lagrangian.

Proof. Fix some AΣ ∈ LM,Σ with Ã a flat extension into M . Then the tangent space

T[AΣ]LM,Σ =
{α∈Ω1(Σ,g) s.t. ∃ α̃∈Ω1(M,g)d

Ã
−closed with α=α̃|Σ}

Ω1(Σ,g)dAΣ
−exact

= im(Π) the image of

the map Π in the long exact sequence of cohomology of the pair (M,Σ):

(24) · · · → H1
dÃ

(M ; g)
Π−→ H1

dAΣ
(Σ; g)

κ−→ H2
dÃ

(M,Σ; g)→ · · ·

Let us calculate the symplectic complement im(Π)⊥ in H1(Σ):

(25) im(Π)⊥ = {[α] ∈ H1(Σ) s.t. 〈[α],Π[β̃]〉Σ = 0 ∀[β̃] ∈ H1(M)}

Note that

〈[α],Π[β̃]〉Σ =

∫
Σ

trα ∧ β̃|Σ =
Stokes′

∫
M

d tr α̃ ∧ β̃ =

∫
M

tr dÃα̃ ∧ β̃ − α̃ ∧ dÃβ̃︸︷︷︸
0

Here α̃ is an arbitrary (not necessarily closed) extension of the closed 1-from α
into the bulk of M . Note that dÃα̃ is a closed 2-form on M vanishing on Σ.
The class [dÃα̃] in relative cohomology H2(M,Σ) is κ[α], by construction of the

connecting homomorphism κ. Thus, we have 〈[α],Π[β̃]〉Σ = 〈κ[α], [β̃]〉M where
〈, 〉M : H1(M) ⊗ H2(M,Σ) → R is the Lefschetz pairing between relative and
absolute cohomology. We then continue the calculation (25):

im(Π)⊥ = {[α] ∈ H1(Σ) s.t. 〈κ[α], [β̃]〉Σ = 0 ∀[β̃] ∈ H1(M)}
= {[α] ∈ H1(Σ) s.t. κ[α] = 0} = kerκ = im(Π)

Here we used non-degeneracy of the Lefschetz pairing and, in the last step, used
exactness of the sequence (24). This finishes the proof that LM,Σ ⊂ MΣ is La-
grangian. �

A corollary of this is the following.

Theorem 2.10. Submanifold LM,Σ ⊂ ΦΣ is Lagrangian.

Proof. Fix AΣ ∈ LM,Σ. Denote Θ := TAΣ
LM,Σ and V := TAΣ

ΦΣ. We know by
Lemma 2.8 that Θ is isotropic in V , i.e. Θ ⊂ Θ⊥. Let also U := TAΣ

CΣ and
H := U⊥ ⊂ U . We have then a sequence of subspaces

H ⊂ Θ ⊂ Θ⊥ ⊂ U ⊂ V

Note that Λ := Θ/H = T[AΣ]LM,ΣNote that

Λ⊥ = {[v] ∈ U/H s.t. ω([v], [θ]) = 0 ∀[θ] ∈ Θ/H}

= {v ∈ U s.t. ω(v, θ) = 0 ∀θ ∈ Θ}/H = Θ⊥/H

On the other hand, Λ is the space we have proven to be a Lagrangian subspace
U/H = T[AΣ]CΣ in Lemma 2.9. Thus

Θ/H = Λ = Λ⊥ = Θ⊥/H

which, in combination with Θ ⊂ Θ⊥, proves Θ = Θ⊥. �
Lecture 5,
09/07/2016.
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2.2.8. Behavior of SCS under gauge transformations, Wess-Zumino cocycle. For a
manifold M with boundary Σ, Chern-Simons action changes w.r.t. gauge transfor-
mation of a connection in following way (result of a straightforward calculation):

(26) SCS(Ag)− SCS(A) =

∫
Σ

tr
1

2
g−1Ag ∧ g−1dg−

∫
M

tr
1

6
(g−1dg)∧3︸ ︷︷ ︸

=:WΣ(g)

The last term here is called the Wess-Zumino term.

Lemma 2.11. WΣ(g) mod 4π2Z depends only on the restriction of g to the bound-
ary, g|Σ ∈ GaugeΣ.

Proof. Let M ′ be a second copy of M and let M̃ = M ∪Σ M ′ be the closed 3-
manifold obtained by gluing M and M ′ along Σ. Let g : M → G and g′ : M ′ → G
be two maps to the group which agree on Σ, g|Σ = g′|Σ. The pair (g, g′) determines

a map g̃ : M̃ → G. We have

WΣ(g)−WΣ(g′) = −
∫
M̃

tr
1

6
(g̃−1dg̃)∧3 = 4π2〈[M ]g̃∗[θ]〉 ∈ 4π2 · Z

where [θ] is the class of Cartan’s 3-form in H3(G). �

Denote
ckΣ(A, g) := e

ik
2π (
∫
Σ

tr 1
2 g
−1Ag∧g−1dg+WΣ(g))

By the Lemma above, for k ∈ Z, it this is a well-defined function of a pair (A, g) ∈
ConnΣ ×GaugeΣ.

In particular, (26) can be rewritten as the gauge transformation rule for the

(normalized) exponential of Chern-Simons action ψk(A) = e
ik
2πSCS(A) (which we

introduced earlier in the closed case):

(27) ψk(Ag) = ψk(A) · ckΣ(A|Σ, g|Σ)

Remark 2.12. ckΣ can be viewed as a 1-cocycle in the cochain complex of the
group GaugeΣ acting on Map(ConnΣ, S

1). Group cocycle property amounts to(
g ◦ ckΣ(A, h)

)
·
(
ckΣ(A, gh)

)−1 ·
(
ckΣ(A, g)

)
= 1

(here · refers to the product in abelian group S1 and g◦φ(A) = φ(Ag) is the GaugeΣ

action on the module {φ(A)} = Map(ConnΣ, S
1)). This property in turn follows

from (26) by exponentiating the obvious relation

0 =
(
SCS(Agh)− SCS(Ag)

)
−
(
SCS(Agh)− SCS(A)

)
+ (SCS(Ag)− SCS(A))

Remark 2.13. The construction of ckΣ from ψk is similar to the transgression in
the inflation-restriction exact sequence in group cohomology:

· · · → Hj(G/N ,AN )→ Hj(G,A)→ Hj(N ,A)G/N
T−→ Hj+1(G/N ,AN )→ · · ·

which holds for G a group, N ⊂ G a normal subgroup and A a G-module (this
exact sequence is related to the Lyndon-Hochschild-Serre spectral sequence). In
our case, G = GaugeM , N = {g : M → G s.t. g|Σ = 1}, with the quotient
G/N ∼= GaugeΣ; the module is A = Map(ConnM , S

1). In particular, invariants
AN are the functionals of connections on M which are gauge-invariant w.r.t. gauge
transformations relative to the boundary (i.e. fixed to 1 at the boundary). We can
view ψk as a class in H0(N ,A) and ckΣ = “T(ψk)” as a class in H1(G/N ,AN ).
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Let LM = S1 × ConnM be the trivial circle bundle over ConnM . We define the
action of GaugeM on LM by

g : (λ,A) 7→ (λ · ckΣ(A|Σ, g|Σ), Ag)

with λ ∈ S1. By (27), ψk is a GaugeM -invariant section of LM .
Similarly, on the boundary, we have a trivial bundle LΣ = S1 × ConnΣ with

action of GaugeΣ defined as

gΣ : (λ,AΣ) 7→ (λ · ckΣ(AΣ, gΣ), AgΣ

Σ )

The 1-form

αkΣ =
ik

2π

∫
Σ

tr
1

2
AΣ ∧ δAΣ︸ ︷︷ ︸
αΣ

∈ Ω1(ConnΣ, u(1))

defines a GaugeΣ-invariant connection in LΣ (here u(1) = iR is the Lie algebra of
S1 = U(1)). Its curvature is

ωkΣ =
ik

2π

∫
Σ

tr
1

2
δAΣ ∧ δAΣ︸ ︷︷ ︸
ωΣ

∈ Ω2(ConnΣ, u(1))

Exponential of the action ψk restricted to flact connections satisfies the following
property (instead of beilng locally constant as a function on FlatConnM as in the
case of M closed):

(δ − π∗αkΣ)ψk = 0

with π : ConnM → ConnΣ the pullback of connections to the boundary; π∗αkΣ is
the pullback of an S1-connection αkΣ on ConnΣ to an S1-connection on ConnM .

2.2.9. Prequantum line bundle on the moduli space of flat connections on the sur-
face. Restricting the circle bundle LΣ to flat connections and taking the quotient
over gauge transformations, we obtain a non-trivial circle bundle LkΣ over the mod-
uli space MΣ with connection αkΣ with curvature ωkΣ = ik

2πωΣ – a multiple of
the standard Atiyah-Bott symplectic structure on the moduli space MΣ. In fact,
LkΣ = (L1

Σ)⊗k (here we implicitly identify a circle bundle and the associated com-
plex line bundle L ×S1 C). L1

Σ is known as the prequantum line bundle on the
moduli space of flat connections on the surface.

Another point of view on the line bundle LkΣ is as follows. Consider CΣ as a space
with GaugeΣ-action with quotient MΣ. Restriction of the symplectic form ωΣ|CΣ

is a basic form (horizontal and invariant) w.r.t. GaugeΣ and thus is a pullback
of a form ωΣ on the quotient. But ωΣ before reduction is exact, with primitive
1-form αΣ. The first question is: can we reduce αΣ to a primitive 1-form for the
reduced symplectic structure? The answer is: NO, because αΣ|CΣ is not basic (in
particular, not horizontal).13

The solution is to promote αΣ to a connection ∇ in the trivial circle bundle over
CΣ, then one can identify the circle fibers along GaugeΣ-orbits on CΣ. Locally this
identification is consistent because ∇ is flat when restricted to the orbit (since F∇ =
ωΣ and orbits are isotropic submanifolds). For the identification to be globally
consistent, the holonomy of ∇ on the orbit has to be trivial. This turns out to

13Also, we could not have succeded in constructing a primitive 1-form for ωΣ because, being
a symplectic structure on a compact manifold (for G compact, MΣ is also compact), it has to
define a nontrivial class in H2(MΣ).
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be true precisely if we normalize the connection 1-form as ik
2παΣ = αkΣ with k an

integer! The resulting consistent identification of circle fibers along gauge orbits on
CΣ yields the circle bundle LkΣ over the moduli space CΣ/GaugeΣ =MΣ.

Remark 2.14. The Chern-Weil representative of the first Chern class of LkΣ is
1

2πiω
k
Σ = k

4π2ωΣ - the (normalized) curvature of the connection in LkΣ. In particular,

this implies that the 2-form 1
4π2ωΣ on the moduli space MΣ has integral periods.

Exponential of the action ψk restricted to flat connections, after reduction mod-
ulo gauge symmetry, yields a section ψ

k
∈ Γ(MM , (π∗)

∗LkΣ) which satisfies

(δ − (π∗)
∗αkΣ)ψ

k
= 0

i.e. is horizontal w.r.t. the connection LkΣ pulled back to MM by the map π∗ :
MM →MΣ sending the gauge class of a connection on M to the gauge class of its
restriction to the boundary.

Remark 2.15. Existence of a global section ψ
k

of the line bundle (π∗)
∗LkΣ over

MM implies, in particular, that the latter is trivial. Put another way, the pullback
of the (nontrivial) first Chern class c1(LkΣ) ∈ H2(MΣ) by π∗ :MM →MΣ is zero.

2.2.10. Two exciting formulae. Symplectic volume of the moduli space of flat con-
nections on a surface of genus h ≥ 2 is given by
(28)

Vol(MΣ) :=

∫
MΣ

(ωΣ)∧m

m!
= #Z(G) · (Vol(G))2h−2

∑
R∈{irrep of G}

1

(dimR)2h−2

where m := 1
2 dimMΣ = dimG · (h− 1) and #Z(G) is the number of elements in

the center of G; R runs over irreducible representations of G (see [37]).
A related result is the celebrated Verlinde formula for the dimension of the space

of holomorphic sections of the line bundle LkΣ over MΣ (with respect to some a
priori chosen complex structure on the surface Σ which in turn endowsMΣ with a
complex structure – and, moreover, makesMΣ a Kähler manifold). For simplicity,
we give the formula for G = SU(2):

(29) dimH0
∂̄(MΣ,LkΣ) =

(
k + 2

2

)h−1 k−1∑
j=0

1(
sin π(j+1)

k+2

)2h−2

This formula gives the dimension of the space of states which quantum Chern-
Simons theory assigns to the surface Σ (see [36]). The r.h.s. here is, in fact, a
polynomial in k of degree m = 3h − 3 (in case h ≥ 2), with the coefficient of the
leading term given by (28). This follows from Riemann-Roch-Hirzebruch formula
which gives the following for the dimension of the space of holomorphic sections:

dimH0
∂̄(MΣ,LkΣ) =

∫
MΣ

Td(MΣ) · e k
2πωΣ

=

(
k

2π

)m
Vol(MΣ) + polynomial of degree < m in k

The sum in (29) runs, secretely, over “integrable” irreducible representations
of the affine Lie algebra ĝ (with g = su(2) in the case at hand) at level k (resp.

irreducible representations of the quantum group SLq(2) with q = e
πi
k+2 a root of

unity).Lecture 6,
09/12/2016.
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2.2.11. Classical field theory as a functor to the symplectic category.

Definition 2.16. 14 Let (Φ1, ω1) and (Φ2, ω2) be two symplectic manifolds. A
canonical relation L between Φ1 and Φ2 is a Lagrangian submanifold L ⊂ Φ1 ×Φ2

where Φ1 = (Φ1,−ω1) is the symplectic dual of Φ1, i.e. Φ1 endowed with symplectic
structure of opposite sign. The notation is: L : Φ1 →/ Φ2. Composition of canonical
relations L : Φ1 →/ Φ2 and L′ : Φ2 →/ Φ3 is defined as the set-theoretic composition
of relations:

(30) L′ ◦ L := {(x, z) ∈ Φ1 × Φ3 s.t. ∃y ∈ Φ2 s.t. (x, y) ∈ L and (y, z) ∈ L′}
= P

(
(L× L′) ∩ (Φ1 ×DiagΦ2

× Φ3)
)

where DiagΦ2
= {(y, y) ∈ Φ2 × Φ2} – the diagonal Lagrangian in Φ2 × Φ2 and

P : Φ1 × Φ2 × Φ2 × Φ3 → Φ1 × Φ3 is a projection to the outmost factors.

Composition of canonical relations is guaranteed to be a canonical relation in the
context of finite-dimensional symplectic vector spaces. More generally (for symplec-
tic manifolds, possibly infinite-dimensional), the composition is always isotropic but
may fail to be Lagrangian, if the intersection in (30) fails to be transversal. Also,
the composition may fail to be smooth.

Thus, we have a symplectic category of symplectic manifolds and canonical re-
lations between them with partially-defined composition. Unit morphisms are the
diagonal Lagrangians idΦ = DiagΦ : Φ → Φ. The monoidal structure is given
by direct products and the monoidal unit is the point (regarded as a symplectic
manifold).

For C ⊂ (Φ, ω) a coisotropic submanifold, introduce a special canonical relation
rC : Φ →/ Φ defined as the set of pairs (x, y) ∈ C × C such that x and y are on
the same leaf of the characterictic distribution on C. Note that this relation is an
idempotent: rC ◦ rC = rC . Also note that for C = Φ, rC is the identity (diagonal)
relation on Φ.

One can formulate an n-dimensional classical field theory in the spirit of Atiyah-
Segal axiomatics of QFT, as the following association.15

• To an (n− 1)-manifold Σ (possibly with geometric structure), the classical
field theory assigns a symplectic manifold (ΦΣ, ωΣ) – the phase space.16

• To an n-cobordism Σin
M−→ Σout, the classical field theory assigns a canon-

ical relation LM : ΦΣin →/ ΦΣout .
17

14See [34].
15See [8] for an overview of this approach and examples.
16The idea of construction of the phase space from variational calculus data (fields and action

functional) of the field theory is to first construct Φpre
Σ as normal ∞-jets of fields at Σ on some

manifold M containing Σ as a boundary component. Thus, tautologically, one has a projection
πpre : FM → Φpre

Σ – evaluation of the normal jet of a field at Σ. By integrating by parts in

the variation of action δSM , one gets the pre-Nöther 1-form αpre
Σ ∈ Ω1(Φpre

Σ ). Setting ωpre
Σ , one

performs the symplectic reduction by the kernel of ωpre
Σ . Phase space ΦΣ is the result of this

reduction. By construction, it comes with a symplectic structure and a projection π : FM → ΦΣ.
17The idea is to consider the space ELM of solutions of Euler-Lagrange equations on M

(as defined by the bulk term of the variation of action δSM ), and to construct LM := (πin ×
πout)(ELM ) ⊂ ΦΣin

×ΦΣout – the set of boundary values of solutions of Euler-Lagrange equations.

Warning: though it is automatic that LM is isotropic, fact that is Lagrangian has to be proven
for individual field theories and there exist (pathological) examples where Lagrangianity fails, e.g.

2-dimensional scalar field on Misner’s cylinder [9].
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• Composition (gluing) of cobordisms Σ1
M−→ Σ2

M ′−−→ Σ3 is mapped to the

set-theoretic composition of relations ΦΣ1

LM−−→/ ΦΣ2

LM′−−−→/ ΦΣ3
.

• Disjoint unions are mapped to direct products.
• Null (n− 1)-manifold is mapped to the point as its phase space.
• A short18 cylinder Σ × [0, ε] is mapped to the relation rCΣ

: ΦΣ →/ ΦΣ for
some distinguished coisotropic CΣ ⊂ ΦΣ – the Cauchy subspace.

Thus, from this point of view, a classical field theory, similarly to quantum field
theory, is a functor of monoidal categories from the category of n-cobordisms (pos-
sibly with geometric structure) to the symplectic category. With two corrections:

• The target category has only partially defined composition. On the other
hand, if we know that the space of solutions of Euler-Lagrange equations
induces a Lagrangian submanifold in the phase space on the boundary
for any spacetime manifold M (which is the case in all but pathological
examples), then we know that there is no problem with composition of
relations in the image of cobordisms under the given field theory.
• Units do not go to units (if we deal with a gauge theory; for a non-

degenerate/unconstrained theory, we have CΣ = ΦΣ and then units do
go to units). One can then pass to a reduced field theory, by replacing
phase spaces ΦΣ with coisotropic reductions CΣ =: Φreduced

Σ and replacing
relations LM with respective reduced relations Lreduced

M := LM : CΣin
→/

CΣout
(pushforwards of LM along the coisotropic reduction). The reduced

theory is a functor to the symplectic category and takes units to units, but
there may be a problem with reductions not being smooth manifolds.

Example 2.17 (Non-degenerate classical mechanics). This is a 1-dimensional clas-
sical field theory. A point with positive orientation pt+ is mapped to some symplec-
tic manifold Φ and pt− is mapped to the symplectic dual Φ. An interval [t0, t1] (our
cobordisms are equipped with Riemannian metric and so have length) is mapped
to a relation L[t0,t1] : Φ →/ Φ. Using the gluing axiom, by the argument similar
to Example 1.4 (where we considered quantum mechanics as an example of Segal’s
axioms), we have that

L[t0,t1] = {(x, y) ⊂ Φ× Φ s.t. y = Flowt1−t0(X) ◦ x}
– the graph of the flow, in time t1 − t0, of a vector field X on Φ preserving sym-
plectic structure. If Φ is simply connected, X has to be a Hamiltonian vector
field, X = {H, •}ω for some Hamiltonian H ∈ C∞(R). On the other hand L[t0,t1]

is constructed out of the action of the classical field theory (e.g. in the case of

second-order Lagrangian, S[x(τ)] =
∫ t1
t0
dτ
(
ẋ2

2m − U(x(τ))
)

) as

L[t0,t1] = {(x, y) ∈ Φ× Φ | ∃ sol. of EL eq. x(τ) s.t. x(t0) = x, x(t1) = y}
In particular, evolution in infinitesimal time relates the Lagrangian density and the
Hamiltonian (the relation being the Legendre transform).

Example 2.18 (Classical Chern-Simons theory). Classical Chern-Simons theory
as we discussed it here is the prototypical example of a functorial classical field
theory, with n = 3, ΦΣ = ConnΣ, CΣ = FlatConnΣ and LM = im(FlatConnM →
ConnΣin × ConnΣout).

18In a topological theory, we can think of a unit cylinder Σ × [0, 1] and in a theory e.g. with

cobordisms endowed with metric, we should think of taking a limit ε→ 0.
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3. Feynman diagrams

Here we will discuss how Feynman diagrams arise in the context of finite-dimensional
integrals. References: [14, 27].

3.1. Gauss and Fresnel integrals. Gauss integral:19

(31)

∫ ∞
−∞

dx e−x
2

=
√
π or more generally

∫ ∞
−∞

dx e−αx
2

=

√
π

α

with Reα > 0 needed for absolute convergence. Multi-dimensional version:

(32)

∫
Rn
dnx e−Q(x,x) = π

n
2 (detQ)−

1
2

Here Q(x, x) =
∑n
i,j=1Qijxixj is a positive-definite (as necessary for convergence)

quadratic form and detQ stands for the determinant of the matrix (Qij).
20

Fresnel integral is the oscillating version of Gauss integral:

(33)

∫ ∞
−∞

dx eix
2

=
√
π · e iπ4 ,

∫ ∞
−∞

dx e−ix
2

=
√
π · e− iπ4

To calculate e.g. the first one, one way is to take the limit α → −i in (31).
Equivalently, one views it as an integral over the real line in the complex plane

R ⊂ C and rotates the integration contour counterclockwise R → e
πi
4 · R ⊂ C.

On the new contour, the integrand becomes the standard Gaussian integrand (not
oscillating but decaying). Note that we could not have rotated the contour clockwise
because then the integral would have diverged.

Fresnel integrals are only conditionally convergent, as opposed to Gaussian in-
tegrals which are absolutely convergent.

Multi-dimensional Fresnel integral:

(34)

∫
Rn
dnx eiQ(x,x) = π

n
2 · eπi4 signQ · | detQ|− 1

2

with Q(x, x) =
∑n
i,j=1Qijxixj a non-degenerate quadratic form (not required to

be positive-definite); signQ is the signature of Q – the number of positive eigen-
values minus the number of negative eigenvalues. (Proven as in footnote 20, by
diagonalization of Q).

Remark 3.1 (On convergence of Fresnel integrals). Although one-dimensional in-
tegral can be made sense of as a limit of integrals with cut-off integration domain,

limΛ→∞
∫ Λ

−Λ
dx eix

2

(the cut-off integral oscillates as a function of Λ but the am-

plitude of oscillation goes to zero as Λ→∞), in the higher-dimensional case there
are problems. E.g. if Q = x2

1 + · · · + x2
n, then cutting-off the integration domain

to a ball of radius Λ, we obtain
∫
||x||2<Λ

dnx ei||x||
2 ∝

∫∞
0
dΛ Λn−1eiΛ

2

– here the

amplitude of oscillations in Λ does not decrease for n = 2 and actually increases
for n ≥ 3. The solution is to say that the limit Λ → ∞ exists not pointwise, but
in the distributional sense, i.e. convolving with a smoothing function ρ (that is,

replacing limΛ→∞
∫ Λ · · · with limΛ0→∞

∫
dΛ ρ( Λ

Λ0
)
∫ Λ · · · ). This is equivalent to

19Sometimes also called Poisson integral.
20 (32) is proven e.g. by making an orthogonal change of coordinates on Rn which diagonalizes

Q; then the integration variables split and the problem is reduced to a product of 1-dimensional

Gaussian integrals.
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replacing an abrupt cut-off of the integration domain by “smeared cut-off” (e.g.
multiplying the integrand by a bump function which realizes the smeared cut-off).
A technically convenient way of arranging a smeared cut-off is simply to multiply
the integrand by e−εQ0(x,x) for some fixed positive-definite Q0, and then take the
limit ε→ 0. I.e. the meaning of the integral (34) is:

lim
ε→0

∫
Rn
dnx eiQ(x,x)−εQ0(x,x)

The integral now is absolutely convergent ∀ε > 0; the result is independent of Q0

and is equal to the r.h.s. of (34). Note that, for Q of diagonal (Morse) form Q =∑p
i=1 x

2
i −

∑n
i=p+1 x

2
i , our regularization is equivalent to infinitesimally rotating

the integration contour for xi counterclockwise for i = 1, . . . , p and clockwise for
i = p+ 1, . . . , n.

3.2. Stationary phase formula.

Theorem 3.2. LetX be an oriented n-manifold, µ ∈ Ωnc (X) a top-degree form with
compact support, f ∈ C∞(X) a smooth function which has only non-degenerate

critical points x
(1)
0 , . . . , x

(m)
0 on Supp µ ⊂ X. Then the integral I(k) :=

∫
X
µ eikf(x)

has the following asymptotics at k →∞:
(35)

I(k) ∼
∑

x0∈{crit. points of f}

eikf(x0)

(
2π

k

)n
2

|det f ′′(x0)|− 1
2 ·eπi4 sign f ′′(x0)·µx0+O(k−

n
2−1)

Here:

• We assume that we have chosen, arbitrarily, a coordinate chart (y1, . . . , yn)
near each critical point x0.
• Critical point x0 of f is said to be non-degenerate if the Hessian matrix

f ′′(x0) = ∂2

∂yi∂yj

∣∣∣
y=0

f is non-degenerate. (In particular, a non-degenerate

critical point has to be isolated and therefore there can be only finitely
many of them on the compact Suppµ.)
• µx0 is the density of µ at x0 in local coordinates y1, . . . , yn. I.e., if µ is

written in local coordinates as µ = ρ(y)dy1 · · · dyn for some local density
ρ(y), then µx0

:= ρ(y = 0).

Remark 3.3. Note that, although the Hessian f ′′(x0) and the density of µ at a
critical point depend on the choice of local coordinates near x0, this dependence
cancels out in the r.h.s. of (35): if we change the coordinate chart (y1, . . . , yn) 7→
(y′1, . . . , y

′
n), then det f ′′(x0) changes by the square of the Jacobian of the transfor-

mation at y = 0 (we assume that charts are centered at x0), and µx0
changes by

the Jacobian. Thus the product |det f ′′(x0)|− 1
2 · µx0 is, in fact, invariant.

Lemma 3.4. Let g ∈ C∞c (R) a compactly-supported function on R and let

I(k) :=

∫ ∞
−∞

dx g(x)eikx

Then I(k) decays faster than any power of k as k →∞,

I(k) ∼
k→∞

O(k−∞)

In other words, for any N there exists some CN ∈ R such that |kNI(k)| ≤ CN .
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Proof. We have

kN · I(k) =

∫ ∞
−∞

dx g(x)

(
−i ∂
∂x

)N
eikx =

Stokes′

∫ ∞
−∞

dx eikx
(
i
∂

∂x

)N
g(x)

In the second step we have integrated by parts N times, removing derivatives from
the exponential and putting them on g. The integral on the r.h.s. is certainly
bounded by

∫∞
−∞ dx |∂Ng(x)| =: CN . This proves the Lemma. �

Lemma 3.5. Let g ∈ C∞c (Rn) and let f ∈ C∞(Rn) with no critical points on
Supp g ⊂ Rn. Then

I(k) :=

∫
Rn
dnx g(x)eikf(x) ∼

k→∞
O(k−∞)

Proof. Since f has no critical points on Supp g, it defines a submersion f : Supp g →
R. Thus, the pushforward (fiber integral) f∗(d

nx g(x)) ∈ Ω1
c(R) is a smooth 1-form

on R. Thus, we can calculate I(k) by first integrating over the level sets of f ,
f(x) = y (the same as computing the pushforward f∗) and then integrating over
the values y of f :

I(k) =

∫
R
eikyf∗(g d

nx)

This integral behaves as O(k−∞) by Lemma 3.4. �

Lemma 3.6. Let g ∈ C∞c (Rn) such that g and its derivatives of all orders vanish
at x = 0. Let Q(x, x) be a non-degenerate quadratic form on Rn. Then:

I(k) :=

∫
Rn
dnx g(x) eikQ(x,x) ∼

k→∞
O(k−∞)

Lecture 7,
09/14/2016.Proof. First consider the case when Q is positive-definite. Then Q : Rn − {0} →

(0,∞) is a submersion; we can calculate I(k), similarly to the proof of Lemma 3.5,
by integrating first over the level sets of Q and then over values y of Q:

I(k) =

∫ ∞
0

eikyQ∗(d
nx g(x))

The pushforward Q∗(d
nx g(x)) ∈ Ω1

c [0,∞) has vanishing ∞-jet at y = 0 (because
of the assumption on ∞-jet of g at the origin x = 0). Thus one can repeat the
proof of Lemma 3.4 and no boundary terms at y = 0 will appear when performing
integration by parts multiple times. Thus we obtain I(k) ∼

k→∞
O(k−∞).

For Q not positive-definite, we can assume without loss of generality (by making
a linear change of coordinates) that Q has Morse form Q =

∑p
i=1 x

2
i −

∑n
i=p+1 x

2
i .

We can present g(x) as a limit of finite sums of functions of form g′(x1, . . . , xp) ·
g′′(xp+1, . . . , xn) (since C∞c (Rp)⊗C∞c (Rn−p) is dense in C∞c (Rn)). For such prod-

ucts we have
∫
Rn d

nx g′ ·g′′ eikQ(x,x) =
(∫

Rp dx1 · · · dxpg′(x1, . . . , xp)e
ik(x2

1+···+x2
p)
)
·(∫

Rn−p dxp+1 · · · dxng′′(xp+1, . . . , xn)e−ik(x2
p+1+···+x2

n)
)
∼ O(k−∞) by the result in

the positive-definite case. One can check that the bound we get is uniform and one
can pass to the limit.

�
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Corollary 3.7. Let g ∈ C∞c (Rn) and let Q(x, x) be a non-degenerate quadratic
form on Rn. Let

(36) I(k) :=

∫
Rn
dnx g(x) eikQ(x,x)

Then:

(i) I(k) modulo O(k−∞)-terms depends only on the ∞-jet of g at x = 0.

(ii) In particular I(k) = g(0) ·
(
π
k

)n
2 |detQ|− 1

2 e
πi
4 signQ +O(k−

n
2−1)

Proof. (i) is an immediate consequence of Lemma 3.6.
For (ii), write g(x) = g(0) + (x, dg(0)) + R(x) – a constant term, a linear term

(which, being an odd function of x, vanishes when integrated with eiQ(x,x)), and
the “error term” which has zero of order two at x = 0. Thus, we have

I(k) = g(0) ·
∫
Rn
dnx eikQ(x,x) +

∫
Rn
dnx R(x)eikQ(x,x)︸ ︷︷ ︸

r(k)

The first term on the r.h.s. is the standard Fresnel integral and we need to show
that the error r(k) behaves as O(k−

n
2−1). Write

r(k) =

∫
Rn
dnx R(x)eikQ(x,x) = k−

n
2−1

∫
Rn
dny kR

(
y√
k

)
eiQ(y,y)

Here we made a change x = y√
k

. Integrand on the r.h.s. has a well-defined limit as

k →∞ (since R has a zero of order 2 at the origin) and converges to eiQ(y,y) times
some quadratic form in y.21 Thus r(k) behaves as k−

n
2−1 times an integral which

converges in the sense of Remark 3.1. �

The general idea is that in the integral (36) one can replace g with a piece of its
Taylor series at the origin and the error will be estimated by the contribution of
the first discarded term of the Taylor series (or the next one if the discarded term
was of odd degree).An afterthought:

better/cleaner way
(instead of Lemma
3.6 and Corollary
3.7).

Lemma 3.8. Let g be a Schwartz class function on Rn, let gN be the Taylor series
for g truncated at N -th order for arbitrary N , so that h(x) := g(x) − gN (x) ∼

x→0

O(xN+1), and let Q(x, x) be a non-degenerate quadratic form on Rn. Then

(37) I(k) :=

∫
Rn
dnx h(x)eikQ(x,x) ∼

k→∞
O(k−

n
2−[N+2

2 ])

Proof. Consider the differential operator D = − i
2

∑n
j,k=1(Q−1)jk

1
xj

∂
∂xk

and its

transpose DT = i
2

∑n
j,k=1(Q−1)jk

∂
∂xj

1
xk

, acting on functions on Rn. Operator

D is constructed so that we have the following property: D eikQ(x,x) = k · eikQ(x,x).
Thus, multiplying I(k) by a power of k, we have

(38) kmI(k) =

∫
Rn
dnx h(x)DmeikQ(x,x) =

∫
Rn
dnx eikQ(x,x)(DT )mh(x)

Where we have integrated by parts m times (we think of point x = 0 as being
punctured out of the integration domain). Note that (DT )mh(x) ∼

x→0
O(xN+1−2m)

21This is a bit sketchy: one has to explain why integration and limit can be interchanged; see
a better argument below - Lemma 3.8.



BATALIN-VILKOVISKY FORMALISM AND APPLICATIONS IN TOPOLOGICAL QUANTUM FIELD THEORY31

and thus on the r.h.s. of (38) we get an integrable singularity at the origin iff
N+1−2m > −n (e.g. m =

[
N+n

2

]
satisfies this inequality); convergence at infinity

holds in the sense of Remark 3.1. Thus we have proven that I(k) ∼ O(k−[N+n
2 ]).

This is a slightly weaker estimate than claimed in (37); one can get the improved
estimate considering a truncation of the Taylor series for g three steps further, gN+3.
Then, by the result that we have proven,

(39)

∫
Rn
dnx (g − gN+2)eikQ(x,x) ∼ O(k−[N+n+3

2 ])

(which is a better or equivalent estimate to the r.h.s. of (37)). On the other hand
gN − gN+3 is a polynomial in x containing monomials of degrees N + 1, N + 2 and
N + 3 only. Thus,
(40)∫

Rn
dnx (gN − gN+2)eikQ(x,x) = CN+1k

−n+N+1
2 + CN+2k

−n+N+2
2 + CN+3k

−n+N+3
2

where the constant CN+j vanishes if N + j is odd for j = 1, 2, 3. Thus, (39) and
(40) together imply (37). �

In particular: (ii) of Corollary 3.7 is the N = 0 case of (37). Also note that
Lemma 3.6 is a special case of the new Lemma (for g with vanishing jet at the
origin and N arbitrarily large) - here we avoid splitting coordinates into positive
and negative eigenspaces of Q (and the painful discussion of approximating g by
products) by the trick with the differential operator D. /End after-

thought.
Proof of Theorem 3.2. We can assume without loss of generality that X is compact
(since we only care about Supp g anyway which is compact by assumption). Choose
a covering {Uα} of X by open subsets such that

• each Uα contains at most one critical point of f ,
• each critical point of f is contained in exactly one Uα.

Choose a partition of unity {ψα ∈ C∞(X)} subordinate to the covering {Uα}, i.e.

• Supp ψα ⊂ Uα,
• ψα ≥ 0,
•
∑
α ψα = 1.

Then I(k) =
∑
α Iα(k) with Iα(k) =

∫
Uα
µψα(x) eikf(x). We should consider two

case:

(i) Uα does not contain critical points of f . Then Iα(k) ∼ O(k−∞) by Lemma
3.5.

(ii) Uα contains a critical point x0 of f . By Morse Lemma, we can introduce local
coordinates (y1, . . . , yn) on Uα such that f = f(x0)+y2

1 + · · ·+ y2
p − y2

p+1 − · · · − y2
n︸ ︷︷ ︸

Q(y,y)

.

Then, by (ii) of Corollary 3.7 (or by Lemma 3.8 for N = 0), we have

Iα(k) =

∫
Rn
dny ρ(y) ψα e

ikf(x0)+ikQ(y,y) ∼

∼ ρ(0)eikf(x0)
(π
k

)n
2 |detQ|− 1

2 e
πi
4 signQ +O(k−

n
2−1)
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where dny ρ(y) is µ expressed in coordinates y. Note that Qij = 1
2

∂2

∂yi∂yj
f ,

thus

Iα(k) ∼ µx0e
ikf(x0)

(
2π

k

)n
2

|det f ′′(x0)|− 1
2 e

πi
4 sign f ′′(x0) +O(k−

n
2−1)

Summing over α, we obtain the stationary phase formula for I(k). Note that, by
Remark 3.3, it does not matter that we have chosen the Morse chart around every
critical point: the result is independent of this choice.

�

3.3. Gaussian expectation values. Wick’s lemma. Consider normalized ex-
pectation values with respect to Gaussian measure

(41) � p�:=

∫
Rn d

nx e−
1
2Q(x,x) · p(x)∫

Rn d
nx e−

1
2Q(x,x)

with Q(x, x) =
∑
i,j Qijxixj a positive-definite quadratic form on Rn, for p(x) a

polynomial on Rn.

Definition 3.9. For H a finite set with even number of elements we call partitions
of H into two-element subsets perfect matchings on H.

Note that a perfect matching is the same as an involution γ on H with no fixed
points. Then the two-element subsets are the orbits of γ.

Example 3.10. On the set {1, 2, 3, 4} there exist three different perfect matchings:

{1, 2} ∪ {3, 4}, {1, 3} ∪ {2, 4}, {1, 4} ∪ {2, 3}

More generally, on the set of order 2m there are (2m− 1)!! = 1 · 3 · 5 · · · (2m− 1)
perfect matchings.22

The following lemma allows one to calculate the expectation � p � for any
monomial (and hence every polynomial) p.

Lemma 3.11 (“Wick’s lemma”). 23

(i) � 1�= 1.
(ii) � xi1 · · ·xi2m−1

�= 0.
(iii) � xixj �= (Q−1)ij – the (i, j)-th matrix element of the inverse matrix to

the matrix of the quadratic form Q(x, x).
(iv)

(42) � xi1 · · ·xi2m �=

=
∑

perfect matchings {1,...,2m}={a1,b1}∪···∪{am,bm}

� xia1
xib1 �︸ ︷︷ ︸

(Q−1)ia1 ib1

· · · · ·� xiamxibm �︸ ︷︷ ︸
(Q−1)iamibm

22Indeed, the first element of the set has to be matched with one of 2m − 1 other elements,
first element among those left has to be matched with one of (2m− 3) remaining elements etc.

23The original Wick’s lemma, though a similar statement, was formulated in the context
of expressing words constructed out of creation and annihilation operators in terms of normal
ordering.
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Remark 3.12. We can identify perfect matchings on the set H = {1, . . . , 2m}
with elements of the quotient of the symmetric group S2m of permutations of H
by the group of permutations of two-element subsets constituting the partition and
transpositions of the elements inside the two-element subsets. In other words, the
set of perfect matchings can be presented as S2m/(Sm n Zm2 ). Thus, in particular,
expectation value (42) can be written as

(43) � xi1 · · ·xi2m �=
∑

σ∈S2m/(SmnZm2 )

� xiσ1
iσ2
� · · · · · � xiσ2m−1

iσ2m
�

Example 3.13.

� xixjxkxl �=� xixj � · � xkxl � +� xixk � · � xjxl � +� xixl � · � xjxk �

Pictorially, the three terms on the r.h.s. can be drawn as follows:

(44)

li j k li j k li j k

Example 3.14. From the count of perfect matchings and Wick’s formula, we

deduce, for 1-dimensional moment of Gaussian measure dx e−
x2

2 , that

� x2m �= (2m− 1)!!

or equivalently ∫ ∞
−∞

dx e−
x2

2 x2m =
√

2π · (2m− 1)!!

Proof of Lemma 3.11. Item (i) is obvious, and (ii) also (integrand in the numerator
of (41) is odd with respect to x → −x, hence the integral is zero). For (iii) and
(iv), consider an auxiliary integral

(45) W (J) :=

∫
Rn
dnx e−

1
2Q(x,x)+〈J,x〉

with J ∈ Rn the source. The integral is easily calculated by completing the expres-
sion in the exponential to the full square:

(46) W (J) =

∫
Rn
dnx e−

1
2Q(x,x)+〈J,x〉− 1

2 〈J,Q
−1J〉︸ ︷︷ ︸

e−
1
2
Q(x−Q−1J,x−Q−1J)

·e 1
2 〈J,Q

−1J〉 =

= e
1
2 〈J,Q

−1J〉 ·
∫
Rn
dny e−

1
2Q(y,y) = e

1
2 〈J,Q

−1J〉 · (2π)
n
2 (detQ)

− 1
2

Here in the second step we made a shift x 7→ y = x−Q−1J .
From definition (45), we have

(47) � xi1 · · ·xi2m �=
1

W (0)

∣∣∣∣ ∂

∂Ji1
· · · ∂

∂Ji2m
W (J)

∣∣∣∣
J=0

=

=
1

2mm!

∂

∂Ji1
· · · ∂

∂Ji2m
Q−1(J, J) · · · · ·Q−1(J, J)︸ ︷︷ ︸(∑

j1,k1
Q−1
j1k1

Jj1Jk1

)
···(
∑
jm,km

Q−1
jmkm

JjmJkm)
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Here in the second step we replaced W (J) by m-th term of the Taylor series for the
exponential in the explicit formula (46) for W (J) (lower terms do not contribute
because they are killed by the 2m derivatives in the source J and higher terms
do not contribute as tehy are killed by setting J = 0 after taking the derivatives).
Then (iv) follows by evaluating the multiple derivative in the source in (47) by
Leibniz rule. Item (iii) is the trivial m = 1 case of this computation.

�

Remark 3.15. In a slightly more invariant language, replace Rn by an abstract
finite-dimensional R-vector space V . Our input is a positive-definite quadratic form
Q ∈ Sym2V ∗. We are interested in the map � −�: SymV ∗ → R sending

p 7→ � p�=

∫
V
µ e−

1
2Q p∫

V
µ e−

1
2Q

with µ ∈ ∧topV ∗ a fixed constant volume form (irrelevant for the normalized ex-
pectation values). Then the Wick’s lemma (43) can be formulated as

(48) � φ1 � · · · � φ2m �=
∑

σ∈S2m/(SmnZm2 )

〈σ ◦ (Q−1)⊗m, φ1 ⊗ · · · ⊗ φ2m〉

Here φ1, . . . , φ2m ∈ V ∗ are linear functions on V , � is the commutative product in
SymV ∗. We understand the inverse to Q as an element in the symmetric square of
V , Q−1 ∈ Sym2V ; σ acts on V ⊗2m by permuting the copies of V ; the pairing in
the r.h.s. is the pairing between V ⊗2m and (V ∗)⊗2m

Remark 3.16. Another visualization (as opposed to (44)) of the terms on the
r.h.s. of Wick’s lemma, corresponding to the presentation (48) is like as follows:

σ

· · ·

· · ·
Q−1 Q−1 Q−1

φ1 φ2 φ2m

Here the lower strip presents φ1 ⊗ · · · ⊗ φ2m ∈ (V ∗)⊗2m, the upper strip presents
pairing with (Q−1)⊗m ∈ V ⊗2m and middle strip presents the action of σ by per-
muting the V -factors (if we read the diagram from top to bottom), or equivalently
the action of σ−1 by permuting V ∗-factors (if we read te diagram from bottom to
top).Lecture 8,

09/19/2016. Remark 3.17. In the setup of Remark 3.15, the value of the Gaussian integral
itself,

∫
V
µ e−

1
2Q, can be understood as follows (without referring explicitly to the

matrix of Q or, in other words, without identifying bilinears on V with endomor-
phisms). To Q ∈ Sym2V ∗, there is an associated sharp map Q# : V → V ∗.
Raising it to the maximal exterior power, we obtain a map of determinant lines
∧nQ# : ∧nV → ∧nV ∗ (with n = dimV ) or equivalently, dualizing the domain line
and putting it to the right side, DetQ := ∧nQ# ∈ (∧nV ∗)⊗2.24 Thus, DetQ in

24Here we implicitly used the identification (∧nV )∗ ∼= ∧nV ∗. It is induced by the pairing

∧nV ⊗ ∧nV ∗ → R which sends (v1 ∧ · · · ∧ vn) ⊗ (θ1 ∧ · · · ∧ θn) 7→ det
(
〈vi, θj〉

)n
i,j=1

, where on

the r.h.s.〈, 〉 is the canonical pairing between V and V ∗.
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this context is not a number, but an element of the line (∧nV ∗)⊗2. (Whenever a
basis in V is chosen, we have a trivialization (∧nV ∗)⊗2 ' R, and then DetQ gets
assigned the number value, which coincides with the determinant of the matrix of
the bilinear Q in the chosen basis). Note that µ⊗2 is a nonzero element of the same

line, thus we can form a quotient DetQ
µ⊗2 ∈ R. Value of the Gaussian integral is then

∫
V

µ e−
1
2Q = (2π)

n
2

(
DetQ

µ⊗2

)− 1
2

3.4. A reminder on graphs and graph automorphisms.

Definition 3.18. A graph is the following set of data:

• A set V of vertices.
• A set HE of half-edges.
• A map i : HE → V – incidence.
• A perfect matching E on HE, i.e. a partition of E into two-element subsets

– edges. Put differently, we have a fixed-point-free involution γ on HE and
its orbits are the edges.

We will only consider finite graphs, i.e. with V and HE finite. Here is a picture
of a generic graph.

Definition 3.19. For v ∈ V a vertex, one calls i−1(v) ⊂ HE the star (or corolla)
of v and the number of incident halh-edges to the vertex, #i−1(v), is called the
valency of v.

Definition 3.20. For two graphs Γ = (V,HE, i, E), Γ′ = (V ′, HE′, i′, E′), a graph

isomorphism Γ
∼→ Γ′ is a pair of bijections σV : V

∼→ V ′, σHE : HE
∼→ HE′

commuting with the incidence maps (satisfying i′ ◦ σHE = σV ◦ i) and preserving
the partition into edges (i.e. γ′◦σHE = σHE ◦γ with γ, γ′ the respective involutions
on half-edges).

Example 3.21. Vertices: V = {a, b, c}, half-edges: HE = {1, 1′, 2, 2′, 3, 3′}, inci-
dence:

i :

1 7→ a
1′ 7→ a
2 7→ b
2′ 7→ b
3 7→ c
3′ 7→ c
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Edges: E = {1, 2′} ∪ {2, 3′} ∪ {3, 1′}. Equivalently, the invloution is γ : 1 ↔
2′, 2↔ 3′, 3↔ 1′. Here is the picture:

3

a b

c

1

1′

2′

2

3′

Example of an automorphism of this graph:

σV : (a, b, c) 7→ (b, a, c), σHE : (1, 1′, 2, 2′, 3, 3′) 7→ (2′, 2, 1′, 1, 3′, 3)

(Check explicitly that this pair of permutations commutes with incidence maps
and with involutions!) On the picture of the graph above, this automorphism
corresponds to reflection w.r.t. the vertical axis.

We will be interested in the group of automorphisms Aut(Γ) of a graph Γ.

Example 3.22 (Automorphism groups). (i) A “polygon graph” with n ≥ 3 ver-
tices and n edges:

Automorphism group: Aut(Γ) = Z2 n Zn.
(ii) “Theta graph”:

Automorphism group: Aut(Γ) = Z2 × S3.
(iii) “Figure-eight graph”:

Automorphism group: Aut(Γ) = Z2 n (Z2 × Z2).

Remark 3.23. A graph automorphism has to preserve valencies of vertices, in
particular it permutes vertices of any given valency and maps the star of a source
vertex to the star of a target vertex (via some permutation). Therefore, for a
graph Γ which has Vd vertices of valency d for d = 0, . . . , D, the automorphism
group can be seen as a subgroup of permutations of vertices for each valency d and
permutations of incident half-edges for each vertex:

Aut(Γ) ⊂
D∏
d=0

SVd n S×Vdd
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Remark 3.24. Graphs naturally form a groupoid, with morphisms given by graph
isomorphisms. Consider the restriction GraphV0,...,VD of this groupoid to graphs
with number of vertices of valency d fixed to Vd for d = 0, . . . , D (and no vertices of
higher valency than D). One can realize objects of GraphV0,...,VD as all (2m− 1)!!

(for 2m =
∑D
d=1 d · Vd) perfect matchings on the set of half-edges constituting the

given vertex stars. The total group of isomorphisms is then
∏D
d=0 SVdnS

×Vd
d . Thus

the groupoid volume of GraphV0,...,VD is:

(49) Vol
(
GraphV0,...,VD

)
=

∑
Γ

1

|Aut(Γ)|︸ ︷︷ ︸
Vol π0(GraphV0,...,VD

)

=
(2m− 1)!!∏D
d=0 Vd! · d!Vd

where Γ runs over isomorphism classes of graphs; on the r.h.s. the numerator and
denominator are the numbers of objects and morphisms of GraphV0,...,VD , respec-
tively.

Remark 3.25. One can also define graphs as 1-dimensional CW complexes. From
this point of view, the automorphism group of Γ is π0 of the group of cellular
homeomorphisms of Γ viewed as a CW complex.

3.5. Back to integrals: Gaussian expectation value of a product of ho-
mogeneous polynomials. Fix Q ∈ Sym2V ∗ a positive-definite quadratic form on
V = Rn. Let Ψa ∈ SymdaV ∗ for a = 1, . . . , r be a collection of homogeneous polyno-
mials of degrees d1, . . . , dr on V . In coordinates, Ψa =

∑n
i1,...,ida=1(Ψa)i1···idaxi1 · · ·xida .

Consider the Gaussian expectation value � 1
d1!Ψ1 · · · 1

dr!Ψr �. Denote 2m =∑r
a=1 da. Also denote

Matchings2m := S2m/(Sm n Zm2 )

the set of perfect mathcings on 2m elements. We have the following:

� 1

d1!
Ψ1 · · ·

1

dr!
Ψr �=

1

d1! · · · dr!
∑

σ∈Matchings2m

〈σ ◦ (Q−1)⊗m,Ψ1 ⊗ · · · ⊗Ψr〉

=
∑

[σ]∈(
∏r
a=1 Sda )\ Matchings2m

1

|Stab[σ]|
〈σ ◦ (Q−1)⊗m,Ψ1 ⊗ · · · ⊗Ψr〉

Here in the first step we have applied the Wick’s lemma to calculate the Gaussian
expectation value and in the second step we collected similar terms in the sum.
In the second sum [σ] runs over classes of perfect matchings under the action of∏r
a=1 Sda ⊂ S2m (in other words, [σ] is a class in the two-sided quotient of the

symmetric group, [σ] ∈ (
∏r
a=1 Sda)\S2m/(Sm n Zm2 )). This action is not free and

has stabilizer subgroups Stab[σ] ⊂
∏r
a=1 Sda . Note that the coefficient 1

|Stab[σ]|
arises as

1

|Stab[σ]|
=

#{orbit of σ under Sd1
× · · · × Sdr−action}

|Sd1
× · · · × Sdr |

where the denominator is d1! · · · dr!.

Example 3.26. Let Ψ =
∑n
i,j,k,l=1 Ψijkl xixjxkxl ∈ Sym4V ∗ be a quartic polyno-

mial. Then we have
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� 1

4!
Ψ�=

1

4!

∑
σ∈Matchings4

� σ ◦ (Q−1)⊗2,Ψ�=

=
1

4!


〈

l

Ψ

Q−1 Q−1

i
j k

〉
+

〈
l

Ψ

Q−1
Q−1

i
j k

〉
+

〈
l

Ψ

Q−1

Q−1

i
j k

〉

=
3

4!

〈
l

Ψ
Q−1

Q−1

i

j k 〉
=

1

8

n∑
i,j,k,l=1

Ψijkl (Q−1)ij(Q
−1)kl

Here all three matchings give the same contribution to the expectation value (cor-
respondingly, S4\Matchings4 3 [σ] consists of a single class).

Example 3.27. Let Ψ1 =
∑n
i,j,k=1(Ψ1)ijk xixjxk, Ψ2 =

∑n
i′,j′,k′=1(Ψ2)i′j′k′ xi′xj′xk′ ∈

Sym3V ∗ be two cubic polynomials. Then we have

� 1

3!
Ψ1 ·

1

3!
Ψ2 �=

1

3! 3!

∑
σ∈Matchings6

� σ ◦ (Q−1)⊗3,Ψ1 ⊗Ψ2 �=

=
1

3! 3!


〈 Q−1Q−1

i
j

k

Ψ1 Ψ2

i′
j′
k′

Q−1 〉
+ 5 similar terms +

〈 Q−1Q−1

i
j

k

Ψ1 Ψ2

i′
j′
k′

Q−1 〉
+ 8 similar terms



=
6

3!3!

〈
k′k

i′

j′Ψ1 Ψ2

Q−1

Q−1

Q−1

i

j

〉
+

9

3!3!

〈
Ψ2i

j

k

i′

j′

k′

Q−1
Q−1

Q−1

Ψ1

〉

=
1

6

n∑
i,j,k,i′,j′,k′=1

(Ψ1)ijk(Ψ2)i′j′k′(Q
−1)ii′(Q

−1)jj′(Q
−1)kk′+

+
1

4

n∑
i,j,k,i′,j′,k′=1

(Ψ1)ijk(Ψ2)i′j′k′(Q
−1)ii′(Q

−1)jk(Q−1)j′k′

Here (S3 × S3)\Matchings6 3 [σ] consists of two different classes:

• one with 6 representatives in Matchings6 (i.e. with stabilizer subgroup of
order 3! 3!

6 = 6), corresponding to the “theta graph”;
• the second with 9 representatives in Matchings6 (i.e. with stabilizer sub-

group of order 3! 3!
9 = 4), corresponding to the “dumbbell graph”.

3.6. Perturbed Gaussian integral. Fix again Q(x, x) a positive-definite qua-
dratic form on V = Rn. We are interested in the integrals of form

(50)

∫
V

dnx e−
1
2Q(x,x)+p(x)
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with p a small polynomial perturbation of the quadratic form in the exponential.
More precisely, consider the perturbation p(x) of the form

(51) p(x) =

D∑
d=0

gd
d!
Pd(x)

with D some fixed degree, Pd =
∑n
i1,...,id=1(Pd)i1···idxi1 · · ·xid ∈ SymdV ∗ a homo-

geneous polynomial of degree d, and g0, . . . , gD – infinitesmial formal parameters
(“coupling constants”). Note that then the exponential of the perturbation ep(x)

is a formal power series in the couplings g0, . . . , gD where the coefficient of each
monomial gv0

0 · · · g
vD
D is a finite-degree polynomial in x, i.e.

ep(x) ∈ SymV ∗ ⊗ R[[g0, . . . , gD]] = SymV ∗[[g0, . . . , gD]]

Definition 3.28. We define the perturbative evaluation of the integral (50) as
follows:

(52)

∫ pert

V

dnx e−
1
2Q(x,x)+p(x) :=

(∫
V

dnx e−
1
2Q(x,x)

)
︸ ︷︷ ︸

(2π)
n
2 (detQ)−

1
2

· � ep(x) �

where the symbol � ep(x) � is to be understood as the evaluation on ep(x) ∈
SymV ∗[[g0, . . . , gD]] of the Gaussian expectation value � · · · �: SymV ∗ → R,
extended by linearity to a map � · · · �: SymV ∗[[g0, . . . , gD]]→ R.

Remark 3.29. Perturbative integral (52) is well-defined for any perturbation p(x)
of form (51), while (50) as a measure-theoretic integral may fail to exist for non-zero
coupling constants. E.g. the integral∫

R
dx e−

x2

2 + α
3!x

3

diverges for any non-zero coefficient α = g3 (except for the case of α ∈ i · R purely
imaginary), while ∫

R
dx e−

x2

2 + λ
4!x

4

converges for λ = g4 negative (or, more generally, for Reλ ≤ 0) and diverges for λ
positive (resp. Reλ > 0). Lecture 9,

09/26/2016.Definition 3.30. Let Γ be a graph (“Feynman diagram”). Fix a collection of
symmetric tensors (the “Feynman rules”):

• The “propagator”

η =

n∑
i,j=1

ηij ei � ej ∈ Sym2V

with {ei} the standard basis in Rn (or, more abstractly, a basis in V ).
• “Vertex functions25 for vertices of valency d”,

pd =

n∑
i1,...,id=1

(pd)i1···id xi1 · · ·xid ∈ SymdV ∗

for d = 0, . . . , D; {xi} is the basis in V ∗ dual to {ei}.

25Or, more appropriately, “vertex tensors”.
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We define the Feynman weight (or the “value of the Feynman diagram”) of Γ as

1

|Aut(Γ)|
Φη;p0,...,pD (Γ)

where Φη;p0,...,pD (Γ) is defined as the following state sum.

• We define a state s on Γ as a decoration of all half-edges of Γ by numbers
in {1, . . . , n}.
• To a state s : HE → {1, . . . , n} we assign a weight

ws :=
∏

edges e=(h,h′)

ηs(h)s(h′) ×
∏

vertices v

(pd)s(h1)···s(hd)

In the first product, h, h′ are the two constituent half-edges of the edge e.
In the second product, d is the valency of the vertex v and h1, . . . , hd are
the half-edges adjacent to v.
• We define Φ as the sum over states on Γ:

Φη;p0,...,pD (Γ) :=
∑

states s:HE→{1,...,n}

ws

Example 3.31. Consider Γ the theta-graph; we label the half-edges by {A,B,C,D,E, F}:

F

A

B

C

D

E

A state s on Γ maps half-edges to numbers s : (A,B,C,D,E, F ) 7→ (i, j, k, i′, j′, k′)
each of which can take values from 1 to n:

k′ = s(F )

i = s(A)

j = s(B)

k = s(C)

i′ = s(D)

j′ = s(E)

The weight of the state is:

ws = ηii′ηjj′ηkk′ × (p3)ijk(p3)i′j′k′

And thus the Feynman value of the theta graph is

1

12

n∑
i,j,k,i′,j′,k′=1

ηii′ηjj′ηkk′ × (p3)ijk(p3)i′j′k′

Theorem 3.32 (Feynman). For Q a positive-definite quadratic form on V = Rn

and p(x) =
∑D
d=0

gd
d! Pd(x) a polynomial perturbation with homogeneous terms

Pd ∈ SymdV ∗, the perturbative evaluation of the integral (50) is given by the sum
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over all finite graphs (up to graph isomorphism) of their Feynman weights:
(53)∫ pert

V

dnx e−
1
2Q(x,x)+p(x) = (2π)

n
2 (detQ)−

1
2

∑
graphs Γ

1

|Aut(Γ)|
ΦQ−1;g0P0,...,gDPD (Γ)

Proof. By definition (52), we need to compute the Gaussian expectation value �
ep(x) �. Writing ep =

∏D
d=1 e

gd
d! Pd(x) and expanding each exponential in Taylor

series, we obtain

(54)

� ep �=�
D∏
d=1

e
gd
d! Pd(x) �=

∑
v0,...,vD≥0

D∏
d=1

gvdd
vd! d!vd

� P0(x)v0 · · ·PD(x)vD �

=
Wick′s lemma

∑
v0,...,vD≥0

gv0
0 · · · g

vD
D

|Vv0...vD |
∑

σ∈Matchings2m

〈
σ ◦ (Q−1)⊗m,⊗Dd=0P

⊗vd
d

〉
·
〈
σ ◦ (Q−1)⊗m,⊗Dd=0P

⊗vd
d

〉

Here we denoted Vv0···vD =
∏D
d=0 Svd n (Sd)

×vd – group of “vertex symmetries”

which we understand as a subgroup of S2m with 2m =
∑D
d=0 d vd. The picture

is that for each d = 0, 1, . . . , D, we have vd of d-valent stars decorated with Pd
(the vertex tensors); thus, in total, we have 2m =

∑D
d=0 d vd half-edges. Then we

attach m edges decorated by Q−1 according to all possible perfect matchings σ of
half-edges. The sum over matchings contains many similar terms, collecting which
we get:

� ep �=

=
∑

v0,...,vD≥0

gv0
0 · · · g

vD
D

∑
[σ]∈Vv0···vD\Matchings2m

|orbit of σ in Matchings2m under Vv0···vD |
|Vv0···vD |

·

·
〈
σ ◦ (Q−1)⊗m,⊗Dd=0P

⊗vd
d

〉
Equivalence classes of matchings

[σ] ∈ Vv0···vD\Matchings2m =

(
D∏
d=0

Svd n (Sd)
×vd

)
\S2m /(Sm n Z×m2 )

are in bijection with isomorphism classes of graphs with v0 of 0-valent vertices, . . . ,
vD of D-valent vertices; the weight of the class [σ] is easily seen to be the Feynman
weight of the corresponding graph:

� ep �=
∑

v0,...,vD≥0

gv0
0 · · · g

vD
D

∑
graphs Γ with vd d−valent vertices, d=0,...,D

1

|Aut(Γ)|
ΦQ−1,{Pd}Dd=0

(Γ)

We can absorb gd-factors into the normalization of vertex tensors, getting the r.h.s.
of (53). �
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Example 3.33. The contribution of the following graph

to the r.h.s. of (53)is:

g1 g3 g4

|Aut|
Φ

 i

j

kl
m

n
o

p

P1 P3 P4

Q−1

Q−1

Q−1

Q−1


=

=
g1 g3 g4

4

n∑
i,j,k,l,m,n,o,p=1

(Q−1)kl(Q
−1)im(Q−1)jn(Q−1)op×(P3)ijk(P1)l(P4)mnop

Remark 3.34. We can see the sum over graphs in the r.h.s. of (53) as the volume of
the groupoid of graphs with standard groupoid measure 1

|Aut(Γ)| on objects (graphs)

deformed by Feynman rules to 1
|Aut(Γ)|ΦQ−1,{gd Pd}(Γ).

Example 3.35. Consider

(55) I(λ) =

∫
R
dx e

x2

2 + λ
4!x

4

By (53), the perturbative evaluation yields the sum over 4-valent graphs:

(56)

∫ pert

R
dx e

x2

2 + λ
4!x

4

=
√

2π
∑

4−valent graphs Γ

λ#vertices

|Aut(Γ)|

=
√

2π

(
1 +

1

8
λ+

(
1

2 · 82
λ2 +

1

2 · 4!
λ2 +

1

16
λ2

)
+ · · ·

)
The first contributing graphs here are: the empty graph, , , , .

Note that, using (49), we can evaluate the total coefficient of λn:

(57)

∫ pert

R
dx e

x2

2 + λ
4!x

4

=
√

2π

∞∑
n=0

λn
(4n− 1)!!

n! 4!n

Coefficients of this power series in λ grow super-exponentially (roughly, as n!),
therefore the convergence radius in λ is zero! On the other hand, for λ = −ν < 0
the integral (55) converges, as a usual measure-theoretic integral, to the function

(58)

√
3

ν
· e 3

4νK 1
4

(
3

4ν

)
where Kα(x) =

∫∞
0
dt e−x cosh t cosh(αt) is the modified Bessel’s function. The

relation between formal power series (57) and the measure-theoretic evaluation(58)
is that the former is the asymptotic series for the latter at λ = −ν → −0 (i.e. λ
approaching zero along the negative half-axis).
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Definition 3.36. Let φ(z) ∈ C∞(0,∞) a function on the open positive half-line
and let fn(z) ∈ C∞(0,∞) be a collection of functions for n = 0, 1, . . .. One says that∑
n fn(z) is a Poincaré asymptotic series for the function φ(z) at z = 0 (notation:

φ(z) ∼
z→0

∑
n fn(z)) if:

(i) φ(z)−
∑N
n=0 fn(z) ∼

z→0
O(fN+1(z)) for any N ≥ 0 and

(ii) fn+1(z) ∼
z→0

o(fn(z)) for any n ≥ 0, i.e. limz→+0
fn+1(z)
fn(z) = 0.

Lecture 10,
09/28/2016.3.6.1. Aside: Borel summation. Introduce an operation which assigns to a power

series f(z) =
∑
n≥0 anz

n a new power series Bf(t) :=
∑
n≥0

an
n! t

n.

We can recover f(z) from Bf(t) by certain integral transform T (the Laplace
transform, up to a change of variable):

T(Bf)(z) :=

∫ ∞
0

dt e−tBf(tz) =
∑
n≥0

an
n!

∫ ∞
0

dt e−t(tz)n︸ ︷︷ ︸
n!zn

= f(z)

Note that the map f(z) 7→ Bf(t) improves convergence properties: if f(z) has
finite convergence radius in z, then Bf(t) is an entire function in t.

Borel’s summation method amounts to taking a possibly divergent series as f(z)
(e.g. with zero convergence radius); then Bf(t) can still be convergent (possibly,
with a finite convergence radius but possessing an analytic continuation). Then
one can define fBorel(z) – the Borel summation of f(z), as a function which can be
evaluated for nonzero z, rather than just a formal power series, as T(Bf).

Example 3.37. Consider the power series f(z) =
∑
n≥0(−1)nn!zn – it clearly has

zero convergence radius in z. We have Bf(t) =
∑
n≥0(−1)ntn – this power series

converges to 1
1+t with convergence radius 1 and extends to an analytic function in

t ∈ C\{−1}. Thus, the Borel summation of f(z) is:

fBorel(z) := T
(

1

1 + t

)
=

∫ ∞
0

dt e−t
1

1 + tz
= z−1 ez

−1

E1(z−1)

where E1(x) =
∫∞
x
ds e−s

s is the exponential integral.

General fact: Original power series f(z) is the asymptotic series for the Borel
summation fBorel(z) at z → 0.

In application to perturbative integral, the idea is that one may be able to recover
the value of the integral at finite value of coupling constants from the perturbation
series by means of Borel summation (which is particularly interesting for path inte-
grals where a direct measure theoretic definition at finite coupling constants/Planck
constant is not accessible and one only has the perturbative expansion).

If F (z) is a function and f(z) =
∑
n≥0 anz

n is the asymptotic series for F at
z → 0 then under some assumptions it is guaranteed that the Borel summation of
f(z) gives back F (z) (i.e. the question is when is the function uniquely determined
by its asymptotic expansion).

Theorem 3.38 (Watson). Assume that, for some positive constants R,κ, ε, c, we
have the following:

• F (z) is holomorphic in the region

D := {z ∈ C | |z| < R, | arg(z)| < κ
π

2
+ ε}
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• In this region F (z) is “well approximated” by its asymptotic series f(z):∣∣∣∣∣F (z)−
N−1∑
n=0

anz
n

∣∣∣∣∣ < cN (κn)! zN

Then, in the region D, we F (z) coincides with Borel summation of its asymptotic
series f(z) =

∑
n≥0 anz

n.

Example 3.39. Function F (z) = e−
1
z has zero asymptotic series f(z) = 0 and

thus cannot be recovered by Borel summation of f(z). On the other hand, F (z)
fails the assumptions of Watson’s theorem for any value of κ. (Check this!)

3.6.2. Connected graphs. It turns out, one can reformulate the r.h.s. of Feynman’s
formula (53) in terms of summation over connected graphs only.

Theorem 3.40. For a positive-definite quadratic form Q and a polynomial per-

turbation p(x) =
∑D
d=0

gd
d! Pd(x) as in Theorem 3.32, we have

(59)∫ pert

V

dnx e−
1
2Q(x,x)+p(x) = (2π)

n
2 (detQ)−

1
2 ·exp

 ∑
connected graphs γ

1

|Aut(γ)|
ΦQ−1,{gdPd}(γ)


Proof. Note that any graph Γ can be uniquely split into connected components:

(60) Γ = γtr11 t · · · t γtrkk

where γ1, . . . , γk are pairwise non-isomorphic connected graphs and r1, . . . , rk are
multiplicities with which they appear in the graph Γ. Automorphisms of Γ are
generated by automorphisms of individual connected components and permutations
of connected components of same isomorphism type:

(61) Aut(Γ) =

k∏
i=1

Sri n Aut(γi)
×ri

Choose some total ordering on the set of isomorphism classes of connected
graphs. Let us calculate exp

∑
γ connected

1
|Aut(γ)|Φ(γ) by expanding the exponential

in the Taylor series:

(62) exp
∑

γ connected

1

|Aut(γ)|
Φ(γ) =

∏
γ connected

∞∑
r=0

1

|Aut(γ)|r r!
Φ(γ)r =

=

∞∑
k=0

∑
γ1<...<γk

∞∑
r1,...,rk=1

1∏k
i=1 ri!|Aut(γi)|ri

Φ(γ1)r1 · · ·Φ(γk)rk

=

∞∑
k=0

∑
γ1<...<γk

∞∑
r1,...,rk=1

1

|Aut(Γ)|
Φ(Γ)

where in the last step we set Γ := γtr11 t · · · t γtrkk and we used (61) and mul-
tiplicativity of Feynman state sum on graphs: Φ(Γ1 t Γ2) = Φ(Γ1) · Φ(Γ2). The
sum in the final expression in (62) corresponds simply to summing over all Γ (by
uniqueness of decomposition (60)). Thus, we have proven that

(63) exp
∑

γ connected

1

|Aut(γ)|
Φ(γ) =

∑
Γ

1

|Aut(Γ)|
Φ(Γ)
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which, together with Feynman’s formula (53) implies (59).
�

Example 3.41. Returning to the Example 3.35, we can now rewrite (56) as a sum
over connected graphs with 4-valent vertices:∫ pert

R
dx e−

1
2x

2+ λ
4!x

4

=
√

2π · exp

 ∑
γ connected, 4−valent

λ#vertices

|Aut(γ)|


=
√

2π · exp

(
λ

8
+

λ2

2 · 4!
+
λ2

16
+ · · ·

)
where the first contributing graphs are , , . Note that the empty

graph and are disconnected and do not contribute here.26

3.6.3. Introducing the “Planck constant” and bookkeeping by Euler characteristic of
Feynman graphs. Consider the integral

(64)

∫
V

dnx e
1
~ (− 1

2Q(x,x)+p(x))

with ~ an infinitesimal parameter, Q a positive-definite quadratic form and p(x) =∑D
d=3

1
d!Pd(x) with Pd ∈ SymdV ∗. Note that here, unlike in (51), we did not scale

terms of the perturbation p(x) with coupling constants, however here we only allow
at least cubic terms in p(x). We define the perturbative evaluation of (64) by

rescaling the integration variable x =
√
~ y which converts it to the perturbative

integral of the type defined in (52):
(65)∫ pert

V

dnx e
1
~ (− 1

2Q(x,x)+p(x)) := ~
n
2

∫ pert

V

dny e−
1
2Q(y,y)+

∑D
d=3

~
d
2
−1

d! Pd(y) ∈ ~
n
2 R[[~

1
2 ]]

Note that, in the integral on the r.h.s., the terms of the perturbation got scaled with

“coupling constants” ~ d2−1 – positive powers of ~ (as we only allowed terms with
d ≥ 3 in p(x)). Moreover, there are finitely many Feynman graphs contributing to
each order in ~.

Lemma 3.42 (“Loop expansion”). We have

(66)∫ pert

V

dnx e
1
~ (− 1

2Q(x,x)+p(x)) = (2π~)
n
2 (detQ)−

1
2

∑
graphs Γ

~−χ(Γ)

|Aut(Γ)|
ΦQ−1,{Pd}Dd=3

(Γ)

= (2π~)
n
2 (detQ)−

1
2 exp

1

~
∑

γ connected

~l(γ)

|Aut(γ)|
ΦQ−1,{Pd}Dd=3

(γ)


where χ(Γ) is the Euler characteristic of the graph and l(γ) = B1(γ) is the “number
of loops” (the first Betti number of a connected graph). Feynman graphs in these
expansions are assumed to have valency ≥ 3 for all vertices (in particular, this
implies l(γ) ≥ 2).

26Empty graph is regarded as disconnected: it has zero connected components whereas a
connected graph should have one connected component.
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Proof. Applying Feynman’s formula (3.32) to the r.h.s. of the definition (65), we
get the following Feynman wights of graphs:

1

|Aut(Γ)|
Φ
Q−1,{~

d
2
−1Pd}Dd=3

(Γ) = ~
∑

vertices v(
val(v)

2 −1) 1

|Aut(Γ)|
ΦQ−1,{Pd}Dd=3

(Γ)

with val(v) the valency of a vertex v of Γ. Note that
∑

vertices v val(v) = #HE –
the number of half-edges, therefore∑

vertices v

(
val(v)

2
− 1) = #E −#V = −χ(Γ)

Thus the Feynman weight of a graph is ~−χ(Γ) 1
|Aut(Γ)|Φ(Γ) which proves the first

equality in (66). For the second equality, we simply notice that, for γ connected,
~−χ(γ) = 1

~ · ~
l(γ).

�

Remark 3.43. An intuitive way to recover the result (66) is to interpret the
normalization of the integrand of l.h.s. of (66) by ~ as a change of normalization
of the quadratic form Q 7→ ~−1Q (and thus Q−1 7→ ~Q−1), p(x) 7→ ~−1p(x) with
respect to (53). Thus, each edge of a graph picks a factor ~ and each edge picks
a factor ~−1 which results in the value of the entire graph being scaled with the
factor ~−χ(Γ).

Remark 3.44. If we allow terms of degree < 3 in p(x), in the integral (65) (denote
it by I(~)) there will be infinitely many terms contributing in each order in ~,
also, I(~) ∈ ~n2 R[[~−1, ~]] – a two-sided formal Laurent series; more precisely,
I(~) ∈ ~n2 exp

(
~−1R[[~]]

)
.27

3.6.4. Expectation values with respect to perturbed Gaussian measure. We can con-
sider graphs with vertices marked by elements of a set of colors C. Then we only
allow those graph automorphisms which preserve the vertex colors.

Here is the modification of Feynman’s Theorem 3.32 for expectation values w.r.t.
perturbed Gaussian measure:

Theorem 3.45. LetQ be a positive-definite quadratic form, let p(x) =
∑D
d=0

gd
d! Pd(x)

be a polynomial perturbation and let Ψj =
∑
d≥0

1
d!Ψj,d ∈ SymV ∗ for j = 1, . . . , r

be a collection of r polynomials (“observables”) with Ψj,d their respective homoge-
neous pieces of degree d. Then we have:

(i)

(67)

∫ pert

V

dnx e−
1
2Q(x,x)+p(x)Ψ1(x) · · ·Ψr(x) =

= (2π)
n
2 (detQ)−

1
2

∑
Γ

1

|Aut(Γ)|
ΦQ−1;{gdPd},{Ψj,d}rj=1

(Γ)

where in the r.h.s. we sum over graphs with vertices colored with elements of
C = {0; 1, 2, . . . , r} with the condition that vertices of each color 6= 0 occur in
the graph exactly once (and there are arbitrarily many vertices of color 0 –
the “neutral color”). Vertices of color 0 and valency d are assigned the vertex

27Note however that not every power series of form
∑
n≥−1 an~n can be exponentiated to a

formal Laurent series – certain convergence condition needs to hold for an for the coefficients of
exp(

∑
n≥−1 an~n) to be finite.
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tensor gdPd, while a vertex of color j ∈ {1, . . . , r} and valency d is assigned
the vertex tensor Ψj,d.

The normalized expectation value of the product of observables w.r.t. the perturbed
the Gaussian measure is:

(68) � Ψ1 · · ·Ψr �pert:=

∫ pert

V
dnx e−

1
2Q(x,x)+p(x)Ψ1(x) · · ·Ψr(x)∫ pert

V
dnx e−

1
2Q(x,x)+p(x)

=

=
∑

Γ

1

|Aut(Γ)|
ΦQ−1;{gdPd},{Ψj,d}rj=1

(Γ)

where the sum over graphs is as in (67) with additional requirement that each
connected component Γ should contain at least one vertex of nonzero color. (Thus,
Γ can have at most r connected components.)

The proof is a straightforward modification of the proof of Theorem 3.32. Lecture 11,
09/30/2016.Remark 3.46. If we normalize the perturbed Gaussian measure in Theorem 3.45

by a Planck constant, as e
1
~ (− 1

2Q(x,x)+p(x)), then Feynman graphs will get weighed
with ~r−χ(Γ). We can interpret the power of ~ here as minus the Euler characteristic
of the graph with vertices marked by nonzero colors removed (but the adjacent edges
retained as half-open intervals).

3.6.5. Fresnel (oscillatory) version of perturbative integral. Instead of considering
perturbed Gaussian integrals, one can consider perturbed Fresnel integrals in the
exact same manner. E.g. Fresnel version of (67), with normalization by Planck
constant, is as follows:

(69)

∫ pert

V

dnx e
i
~ ( 1

2Q(x,x)+p(x))Ψ1(x) · · ·Ψr(x) =

= (2π~)
n
2 |detQ|− 1

2 e
πi
4 signQ

∑
graphs Γ

~r−χ(Γ)

|Aut(Γ)|
ΦiQ−1;{iPd};{Ψj,d}

Here Q is a non-degenerate (not necessarily positive-definite) quadratic form and

p(x) =
∑D
d=3

1
d!Pd(x) a polynomial perturbation. Note that the effect of passing to

Fresnel version (i.e. introducing the factor i in the exponential in the integrand)
amounts to introducing a factor i in the Feynman rules for edges and vertices of

neutral color (and the appearance of phase e
πi
4 signQ which comes from bare Fresnel

integral and has nothing to do with perturbation).

3.6.6. Perturbation expansion via exponential of a second order differential opera-
tor. For a non-degenerate quadratic form Q(x, x), introduce a second order differ-
ential operator Q−1( ∂

∂x ,
∂
∂x ) :=

∑n
i,j=1(Q−1)ij

∂
∂xi

∂
∂xj

.

One can rewrite perturbation expansion (53) as follows:

(70)
1

(2π)
n
2 (detQ)−

1
2

∫ pert

V

dnx e−
1
2Q(x,x)+p(x) = e

1
2Q
−1( ∂∂x ,

∂
∂x ) ◦ ep(x)

∣∣∣
x=0

Here on the l.h.s. both exponentials are to be understood via expanding them in
the Taylor series.

This follows from the fact that Wick’s lemma can be rewritten as

� xi1 · · ·xi2m �=
1

2mm!

(
Q−1(

∂

∂x
,
∂

∂x
)

)m
◦(xi1 · · ·xi2m) = e

1
2Q
−1( ∂∂x ,

∂
∂x ) ◦ (xi1 · · ·xi2m)

∣∣∣
x=0
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And, consequently, for any f ∈ SymV ∗, the Gaussian expectation value can be
written as

� f(x)�= e
1
2Q
−1( ∂∂x ,

∂
∂x ) ◦ f(x)

∣∣∣
x=0

Setting f(x) = ep(x), we get (70).

Remark 3.47. Pictorially, the mechanism of producing Feynman graphs from the
r.h.s. of (70) is as follows: ep produces, upon Taylor expansion, collections of
stars of vertices (decorated with gdPd for a d-valent vertex). Applying the operator

e
1
2Q
−1( ∂∂x ,

∂
∂x ) connects some of the half-edges of those stars by arcs, into edges

marked by Q−1. Then, setting x = 0, we kill all pictures where some half-edges
were left unpaired, thus retaining only the perfect matchings on all available half-
edges.

3.7. Stationary phase formula with corrections. The following version of the
stationary phase formula (Theorem 3.2) explains that formal perturbative integrals
we studied in Section 3.6 do indeed provide asymptotic expansions for measure-
theoretic oscillating integrals in the limit of fast oscillation.

Theorem 3.48. Let X be an n-manifold, let µ ∈ Ωnc (X) be a compactly supported
top-degree form, and let f ∈ C∞(X) be a function with only non-degenerate critical

points on Suppµ. Let I(~) :=
∫
X
µ e

i
~ f – a smooth complex-valued function on

~ ∈ (0,∞). Then the behavior of I(~) at ~→ 0 is given by the following asymptotic
series:

(71)

I(~) ∼
~→0

∑
crit. points x0 of f on Suppµ

e
i
~ f(x0)(2π~)

n
2 |det f ′′(x0)|− 1

2 · eπi4 sign f ′′(x0)µx0
·

· exp ~−1

 ∑
γ conn. graphs with vertices of val≥3

~l(γ)

|Aut(γ)|
Φif ′′(x0)−1;{i∂df |x0

}d≥3
(γ)


Here we assumed that around every critical point x0 of f on Suppµ we have chosen
some coordinate chart (y1, . . . , yn) with the property that locally near x0 we have
µ = dny µx0

with µx0
a constant. Total d-th partial derivative appearing in the

Feynman rules on the r.h.s. is understood as a symmetric tensor ∂df |x0
∈ SymdV ∗

with components ∂
∂yi1

. . . ∂
∂yd

f
∣∣∣
y=0

.

For the proof, see e.g. [18, 17, 38].

Remark 3.49. One can drop the assumption that the density of µ in the local
coordinates (y1, . . . , yn) around a critical point x0 is constant. Let µ = ρ(y) · dny
with possibly non-constant ρ(y). Then (71) becomes

(72)

I(~) ∼
~→0

∑
crit. points x0 of f on Suppµ

e
i
~ f(x0)(2π~)

n
2 |det f ′′(x0)|− 1

2 · eπi4 sign f ′′(x0)·

·
∑

Γ

~1−χ(Γ)

|Aut(Γ)|
Φ
if ′′(x0)−1;{i∂df |x0}d≥3︸ ︷︷ ︸

color 0

;{∂dρ|y=0}d≥0︸ ︷︷ ︸
color 1

(Γ)
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where the sum on the r.h.s. is over (possibly disconnected) graphs Γ with vertices
of valency ≥ 3 colored by neutral color 0 and a single marked vertex, of arbitrary
valency, colored by 1.

3.7.1. Laplace method. Laplace method applies to integrals of form I(~) =
∫
dx e−

1
~ f(x).

The idea is that the integrand is concentrated around the minimum x0 of f , in the
neighborhood of x0 of size ∼

√
~; in this neighborhood the integrand is well approx-

imated by a Gaussian (given by expanding f at x0 in Taylor series and retaining
only the constant and quadratic terms; higher Taylor terms may be accounted for
as a perturbation, to obtain higher corrections in powers of ~).

Simplest version of this asymptotic result is as follows.

Theorem 3.50 (Laplace). Let f ∈ C∞[a, b] be a function on an interval attaining a
unique absolute minimum on [a, b] at an interior point x0 ∈ (a, b), with f ′′(x0) > 0.
Let g ∈ C∞[a, b] be another function on the interval with g(x0) 6= 0. Then the
integral

I(~) :=

∫ b

a

dx g(x)e−
1
~ f(x)

as a smooth function of ~ > 0 has the following asymptotics as ~→ 0:

(73) I(~) ∼
~→0

e−
1
~ f(x0)

√
2π~
f ′′(x0)

· g(x0)

A more general multi-dimensional version, with ~-corrections is as follows.

Theorem 3.51 (Feynman-Laplace). Let X be a compact n-manifold, possibly with
boundary, and let f ∈ C∞(X) be a function attaining a unique minimum on X at
an interior point x0 ∈ int(X) and assume that the Hessian f ′′(x0) is non-degenerate
(thus, automatically, positive-definite); also, let µ ∈ Ωn(X) be a top-degree form.
Assume that we have chosen some local coordinates (y1, . . . , yn) near x0 and in
these coordinates µ = ρ(y) dny. Then the integral

I(~) :=

∫
X

µ e−
1
~ f(x) ∈ C∞(0,∞)

has the following asymptotic expansion at ~→ 0:

(74) I(~) ∼
~→0

e−
1
~ f(x0)(2π~)

n
2 (det f ′′(x0))−

1
2 ·

·
∑

Γ

~1−χ(Γ)

|Aut(Γ)|
Φf ′′(x0)−1;{−∂df |x0

}d≥3;{∂dρ|y=0}d≥0
(Γ)

where, as in (72), the sum is over graphs with arbitrarily many vertices of color 0
and valency ≥ 3 and a single vertex of color 1 and arbitrary valency.

Lecture 12,
10/03/2016.Example 3.52 (Stirling’s formula with corrections). Consider z →∞ asymptotics

of the Euler’s Gamma function

Γ(z) =

∫ ∞
0

dt tz−1e−t

It is convenient to make a change of the integration variable t = z ex, yielding

Γ(z) = zz
∫ ∞
−∞

dx e−zf(x)
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with f(x) = ex−x; f has unique absolute minimum at x = 0 with Taylor expansion
f(x) = 1+ 1

2x
2+ 1

3!x
3+· · · . The asymptotics of this integral at z →∞ can evaluated

using Laplace’s theorem (73), with ~ := 1
z :

Γ(z) ∼
z→∞

zze−z
√

2π

z

Using (74), we can find corrections to this asymptotics in powers of 1
z :

Γ(z) ∼
z→∞

zze−z
√

2π

z
exp

∞∑
n=1

cn
zn

with cn =
∑

Γ
(−1)#vertices

|Aut(Γ)| where the sum goes over connected graphs with n − 1

loops (all valencies ≥ 3 allowed). E.g. the first coefficient c1 gets contributions from

the three connected 2-loop graphs: , , : c1 = − 1
8 + 1

12 + 1
8 = 1

12 .28

In particular, this implies that the factorial of a large number n! = nΓ(n) behaves
as

n! ∼
n→∞

√
2πn nne−n

(
1 +

1

12n
+O(

1

n2
)

)
3.8. Berezin integral.

3.8.1. Odd vector spaces. Fix n ≥ 1. Consider the “odd Rn”, denoted as ΠRn or
R0|n, – space with anti-commuting29 coordinates θ1, . . . , θn. I.e. ΠRn is defined by
its algebra of functions

Fun(ΠRn) := R 〈θ1, . . . , θn〉 / θiθj = −θjθi

More abstractly, for V a vector space over R, its odd version ΠV has the algebra
of functions

Fun(ΠV ) = ∧•V ∗

– the exterior algebra of the dual (viewed as a super-commutative associative al-

gebra), whereas for an even vector space Fun(V ) = ŜymV ∗ – the (completed)
symmetric algebra of the dual.

3.8.2. Integration on the odd line. Consider the case n = 1 – the odd line ΠR
with coordinate θ subject to relation θ2 = 0. Functions on ΠR have form a + bθ
with a, b ∈ R arbitrary coefficients. We define the integration map

∫
ΠRDθ (· · · ) :

Fun(ΠR)→ R by

(75)

∫
ΠR

Dθ (a+ bθ) := b

I.e. the integration simply picks the coefficient of θ in the function being integrated.
Integration as defined above is uniquely characterized by the following properties:

• integration maps is R-linear,

28In fact, as can be obtained independently, e.g., from Euler-Maclaurin formula, cn =
Bn+1

n(n+1)
,

with Bn+1 the (n+ 1)-st Bernoulli number.
29“Odd” or “Grassman” or “fermionic” variables.
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• “Stokes’ theorem”:
∫

ΠRDθ
∂
∂θg(θ) = 0 for g(θ) an arbitrary function on

ΠR.30 This implies that the integral of a constant function has to vanish.
• Normalization convention:

∫
ΠRDθ θ = 1.

3.8.3. Integration on the odd vector space. A function on ΠRn can be written as

f(θ1, . . . , θn) =

n∑
k=0

∑
1≤i1<···<ik≤n

fi1···ikθi1 · · · θik

with fi1···ik ∈ R the coefficients. Berezin integral on ΠRn is defined as follows:

(76)

∫
ΠRn

Dθn · · ·Dθ1 f := f1···n = coefficient of θ1 · · · θn in f

This definition can be obtained from the definition (75) for the 1-dimensional case
by formally imposing the Fubini theorem, e.g. for n = 2 and f(θ1, θ2) = f∅+f1θ1 +
f2θ2 + f12θ1θ2 we have∫

Dθ2Dθ1 f =

∫
Dθ2

(∫
Dθ1 f

)
︸ ︷︷ ︸
f1+f12θ2

= f12

Case of general n is treated similarly, by inductively integrating over odd variables
θi, in the order of increasing i.

Remark 3.53. Berezin integral can also be seen as an iterated derivative:∫
ΠRn

Dθn · · ·Dθ1 f =
∂

∂θn
· · · ∂

∂θ1
f

∣∣∣∣
θ=0

More abstractly, f ∈ Fun(ΠV ) a function on an odd vector space ΠV (for V
of dimension n) and µ ∈ ∧nV a “Berezinian” (a replacement of the notion of
integration measure or volume form in the context of integration over odd vector
spaces), Berezin integral is defined as∫

ΠV

µ · f := 〈µ, f〉

– the pairing between the top component of f in ∧nV ∗ and µ ∈ ∧nV . The pairing
between ∧nV and ∧nV ∗ is defined by

〈ψn ∧ · · · ∧ ψ1, θ1 ∧ · · · ∧ θn〉 := det 〈ψi, θj〉

for ψi ∈ V vectors, θj ∈ V ∗ covectors and 〈ψi, θj〉 the canonical pairing between V
and V ∗.

Note that constant volume forms on an even space V are (nonzero) elements of
∧nV ∗ whereas Berezinians are elements of ∧nV . Note that there is no dual in the
second case!

Given a basis e1, . . . , en in V and the associated dual basis regarded as coordinate
functions on the odd space θ1, . . . , θn ∈ V ∗ ⊂ Fun(ΠV ), we have a “coordinate
Berezinian”

µ = Dθn · · ·Dθ1 := en ∧ · · · ∧ e1 ∈ ∧nV

30Derivatives are defined on ΠRn in the following way: ∂
∂θi

is an odd derivation of Fun(ΠRn)

(i.e. a linear map Fun(ΠRn) → Fun(ΠRn) satisfying the Leibniz rule with appropriate sign
∂
∂θi

(f · g) = ( ∂
∂θi

f) · g + (−1)|f |f · ( ∂
∂θi

g)) and defined on generators by ∂
∂θi

θj = δij .
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Note that, if we have a change of coordinates on ΠV , θi =
∑
j Aijθ

′
j , the respective

coordinate Berezinians are related by

(77) Dnθ = (detA)−1Dnθ′

where Dnθ is a shorthand for Dθn · · ·Dθ1 and similarly for Dnθ′. Then we have a
change of coordinates formula for the Berezin integral:∫

ΠV

Dnθf(θ) =

∫
ΠV

(detA)−1Dnθ′ f(θi =
∑
j

Aijθ
′
j)

Observe the difference from the case of a change of variables xi =
∑
j Aijx

′
j in an

integral over an even space:∫
V

dnx f(x) =

∫
V

|detA| dnx′ f(xi =
∑
j

Aijx
′
j)

In even case we have the absolute value of the Jacobian of the transformation,31

whereas in the odd case we have the inverse of the Jacobian, without taking the
absolute value.

3.9. Gaussian integral over an odd vector space. LetQ(θ, θ) =
∑
i,j=1n Qijθiθj

be a quadratic form on ΠRn with Qij an anti-symmetric matrix, so that 1
2Q(θ, θ) =∑

i<j Qijθiθj . We assume that n = 2s is even. Then we have the following version
of Gaussian integral over ΠRn:

(78)

∫
ΠRn

Dnθ e
1
2Q(θ,θ) =

1

2ss!

∑
σ∈Sn

(−1)σ
s∏
i=1

Qσ2i−1σ2i
= pf(Q)

– the Pfaffian of the anti-symmetric matrix Qij ; here (−1)σ is the sign of permuta-

tion σ. We obtain the Pfaffian simply by expanding e
1
2Q in Taylor series, picking

the top monomial in θ-s and evaluating its coefficients (as per definition of Berezin
integral (76)).32 Note that, for n odd, the integral on the l.h.s. of (78) vanishes
identically (the exponential contains only monomials of even degree in θ, hence
there is no monomial of top degree).

Recall the basic properties of Pfaffians:

• pf(Q)2 = detQ,
• for A any n× n matrix, pf(ATQA) = detA · pf(Q),
• pf(Q1 ⊕Q2) = pf(Q1) · pf(Q2),
• pf(λQ) = λspf(Q).

31In the even case we either think of an integral over an oriented space against a top form, or

of an integral over a non-oriented space against a measure (density). A measure transforms with
the absolute value of the Jacobian, while a top form transform just with the Jacobian itself – but

then one has to take the change of orientation into account separately.
32Recall that an alternative definition of Pfaffian is as the coefficient on the r.h.s. of

1
s!

(
∑
i<j Qijθiθj)

s = pf(Q) · θ1 · · · θn, which is precisely what we need to evaluate the Berezin

integral (78).
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Example 3.54.

pf



0 a1

−a1 0
0

0 a2

−a2 0
. . .

0 0 as
−as 0


= a1 · . . . · as

Example 3.55.

pf


0 a12 a13 a14

−a12 0 a23 a24

−a13 −a23 0 a34

−a14 −a24 −a34 0

 = a12a34 − a13a24 + a14a23

Remark 3.56. Consider a special instance of Berezin Gaussian integral where odd
variables come in pairs θi, θ̄i (the bar does not stand for complex conjugation: θ̄i is
an independent variable from θi):

(79)

∫
ΠRn⊕ΠRn

(DθnDθ̄n) · · · (Dθ1Dθ̄1) eB(θ̄,θ) = detB

here B(θ̄, θ) =
∑n
i,j=1Bij θ̄iθj where Bij is a matrix which does not have to be

symmetric or anti-symmetric. The fact that the integral above is equal to detB is
a simple calculation of the Berezin integral:

l.h.s. =
1

n!

∑
σ,σ′∈Sn

(−1)σ(−1)σ
′
Bσ1σ′1

· · ·Bσnσ′n =
∑
σ′′∈Sn

(−1)σ
′′
B1σ′′1

· · ·Bnσ′′n = detB

where σ′′ = σ′ ·σ−1. More invariantly, for endomorphism B ∈ End(V ) ' V ∗⊗V ⊂
Fun(ΠV ⊕ΠV ∗), we have∫

ΠV⊕ΠV ∗
µcan

ΠV⊕ΠV ∗ e
B = detB

where µcan
ΠV⊕ΠV ∗ is the canonical Berezinian on ΠV ⊕ΠV ∗, which, for any choice of

coordinates θ1, . . . , θn on V and dual coordinates θ̄1, . . . , θ̄n on V ∗, takes the form
(DθnDθ̄n) · · · (Dθ1Dθ̄1).

3.10. Perturbative integral over a vector superspace.

3.10.1. “Odd Wick’s lemma”. We have the following version of Wick’s lemma for
integration over an odd vector space.

Lemma 3.57. Let V be a vector space over R of even dimension n = 2s. Let
Q ∈ ∧2V ∗ be a non-degenerate anti-symmetic bilinear, viewed as a quadratic form
on ΠV , and let ξ1, . . . , ξ2m be a collection of elements of V ∗ (viewed as linear
functions on ΠV ). Then the expectation value

� ξ1 · · · ξ2m �:=

∫
ΠV

µ e−
1
2Qξ1 · · · ξ2m∫

ΠV
µ e−

1
2Q
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(here µ is an arbitrary non-zero Berezinian on ΠV ; the expectation value is clearly
independent of µ) is equal to the sum over perfect matchings with signs:

(80) � ξ1 · · · ξ2m �=
∑

σ∈S2m/SmnZm2

(−1)σ
〈
σ ◦ (Q−1)⊗m, ξ1 ⊗ · · · ⊗ ξ2m

〉
It is proven by the same technique as the usual Wick’s lemma for an even Gauss-

ian integral: one introduces a source J (which is now odd) and obtains the expec-
tation values as derivatives in J of the Gaussian integral modified by the source
term.Lecture 13,

10/05/2016. Example 3.58. Gaussian expectation value of a quartic monomial on ΠRn is:

� θiθjθkθl �=� θiθj � · � θkθl � −� θiθk � · � θjθl � +� θiθl � · � θjθk �

where e.g. the sign of the second term in the r.h.s. is (−1)

 i j k l
i k j l


= −1.

Quadratic expectation values in turn are the matrix element of the inverse of Q:

� θiθj �= (Q−1)ij

3.10.2. Perturbative integral over an odd vector space. Perturbed Gaussian inte-
gral over an odd space can be treated similarly to the even case. Let Q be a

non-degenerate quadratic form on ΠV = ΠRn and let p(θ) =
∑D
d=0

gd
d! Pd(θ) be a

polynomial perturbation where we allow only even degrees d for the homogeneous
components Pd ∈ ∧dV ∗. Consider the integral

I :=

∫
ΠV

Dnθ e−
1
2Q(θ,θ)+p(θ)

Evaluating it be expanding ep(θ) in Taylor series and applying Wick’s lemma termwise,
we obtain:

(81)

∫
ΠV

Dnθ e−
1
2Q(θ,θ)+p(θ) =

= pf(−Q)·
∞∑

v0,...,vD=0

∑
[σ]∈(

∏
d SvdnS

×vd
d )\ S2m /SmnZm2

1

Stab[σ]
(−1)σ

〈
σ ◦ (Q−1)⊗m,

D∏
d=0

(gdPd)
⊗vd

〉

= pf(−Q) ·
∑

Γ

1

|Aut(Γ)|
ΦQ−1;{gdPd}(Γ)

Here 2m =
∑
d d · vd; the sum runs over all graphs Γ with vertices of even valency

ranging between 0 and D. Feynman state sum Φ(Γ) for a graph now contains the
sign of a permutation σ ∈ S2m representing Γ.

Remark 3.59. • Note that (81) is an exact evaluation of a Berezin inte-
gral (i.e. the perturbative evaluation and exact evaluation automatically
coincide for integrals over finite-dimensional odd vector spaces).
• Since sufficiently high powers of p(θ) vanish identically, the r.h.s. of (81) is

a finite-degree polynomial in g0, . . . , gD.
• Graphs with > n half-edges are guaranteed to cancel out on the r.h.s. (note

that individual graphs with #HE > n can be still nonzero, but cancel out
once all graphs are summed over).
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• R.h.s. of (81) can be rewritten as

(82) pf(−Q) · exp
∑
γ

1

|Aut(γ)|
ΦQ−1;{gdPd}(γ)

where the sum is over connected graphs γ. Here the sum in the exponential
is, generally, not a polynomial in gd and contributions of connected graphs
do not cancel out for graphs of high complexity.

Example 3.60. Here is an example of a weight of a Feynman graph in the r.h.s.
of (81):

1

48
Φ

 8

1

2

3

4

5

6

7

 =

=
(g4)2

48

n∑
s1,...,s8=1

(Q−1)s1s3(Q−1)s6s2(Q−1)s4s8(Q−1)s7s5 · (P4)s1s6s4s7(P4)s3s2s8s5 ·

· (−1)

(
1 3 6 2 4 8 7 5
1 6 4 7 3 2 8 5

)

Here we assigned arbitrary labels (from 1 to 8) to the half-edges; the sign factor
is the sign of the permutation taking the order of labels for edges to the order of
labels for the vertices.

Example 3.61. Let B ∈ GL(V ) and P ∈ End(V ). Consider the following pertur-
bation of the integral (79):

(83) I(α) =

∫
ΠV⊕ΠV ∗

←−
n∏
j=1

DθjDθ̄j e
−
∑
i,j Bij θ̄iθj+α

∑
i,j Pij θ̄iθj

with α a coupling constant. Using (81,82) we find that

(84) I(α) = det(−B) · exp

(
−
∞∑
k=1

αk

k
tr (B−1P )k

)
Terms in the exponential correspond to oriented polygon graphs with k vertices
and k edges

Oriented graphs appear if we label half-edges corresponding to variables θi as out-
going and half-edges corresponding to θ̄i as incoming. In the sum in the exponential
in (84) we can recognize the Taylor expansion of log(1− x), thus we obtain

I(α) = det(−B)·exp tr log(1−αB−1P ) = det(−B)·det(1−αB−1P ) = det(−B+αP )

which is what we would have obtained if we evaluated (83) directly as a Gaussian
integral with quadratic form B − αP rather than treating αP as a perturbation.
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Note that the series in the exponential in (84) has a finite convergence radius
|α| < 1

||B−1P || where ||A|| = maxλ |λ| with λ going over eigenvalues of A.

3.10.3. Perturbative integral over a superspace. Consider a vector superspace

V = V e ⊕ΠV o

for V e, V o two vector spaces of dimensions n,m (superscripts e, o stand for “even”,
“odd”), with the algebra of functions Fun(V) := C∞(V e)⊗∧•(V o)∗. Let x1, . . . , xn
be coordinates on V e and θ1, . . . , θm be coordinates on ΠV o. Let Qe be a quadratic
form on V e and Qo a quadratic form on ΠV o, and let p(x, θ) =

∑
j,k

gjk
j!k!Pjk(x, θ)

be a perturbation, with Pjk ∈ Symj(V e)∗⊗∧k(V o)∗ the homogeneous parts; degree
k here is only allowed to take even values. Consider the perturbative integral

(85) I :=

∫ pert

V e⊕ΠV o
dnx Dmθ e−

1
2Qe(x,x)− 1

2Q0(θ,θ)+p(x,θ)

It is understood by formally imposing Fubini theorem: we first integrate over the
odd variables and then – perturbatively – over even variables. The result is the
following generalization of Feynman’s theorem (Theorem 3.32) for integration over
a superspace:

I = (2π)
n
2 (detQe)

− 1
2 pf(−Qo)

∑
Γ

1

|Aut(Γ)|
Φ(Γ)

Feynman rules for evaluating Φ(Γ) are as follows:

• Graphs Γ are allowed to have half-edges marked as e (even) and o

(odd).
• Edges are pairs of even half-edges e e (assigned Q−1

e ) or pairs of odd
half-edges o o (assigned Q−1

o ).
• Vertices have bi-valency (j, k) – j adjacent even half-edges and k (an even

number) adjacent odd half-edges
o

e
e

e

o
o o

(assigned gjkPjk).

Put another way, a graph Γ, with Ee, Eo the numbers of even/odd half-edges
and with vjk the number of vertices of bi-valency (j, k), is identified with the class
of a pair of permutations (σe, σo) in the double coset∏

j,k

Svjk n (Sj × Sk)vjk\ S2Ee × S2Eo /(SEe n ZEe2 )× (SEo n ZEo2 )

Pictorially:

Q−1
e Q−1

e Q−1
e

Q−1
o Q−1

o Q−1
o Q−1

o

σe

σo

gjkPjk vertices

even edges

odd edges
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Note that, when defining automorphisms of a graph, we now only allow permuta-
tions of half-edges which preserve the parity. The Feynman state sum of a graph
is

(86) Φ(Γ) = (−1)σo

〈(
σe ◦ (Q−1

e )⊗Ee
)
⊗
(
σo ◦ (Q−1

o )⊗Eo
)
,
⊗
j,k

(gjkPjk)⊗vjk

〉

Example 3.62 (“Faux quantum electrodynamics” integral). Fix V ' Rn, U ' Rm
two vector spaces. Let V = V ⊕Π(U ⊕ U∗) with coordinates xi, θa, θ̄a – “photon”,
“electron” and “positron” variables. We also need the following input data:

• quadratic form Qe(x, x) ∈ Sym2V ∗,
• quadratic form Qo(θ̄, θ) =

〈
θ̄,Dθ

〉
with D ∈ GL(U) – “faux Dirac opera-

tor”,
• a tensor P (x, θ, θ̄) ∈ V ∗ ⊗ U∗ ⊗ U – “photon-electron interaction”.

We then consider the following perturbative integral
(87)∫ pert

V
dnx Dmθ Dmθ̄ e−

1
2Qe(x,x)−〈θ̄,Dθ〉+gP (x,θ,θ̄) =

(
det

Qe
2π

)− 1
2

·det(−D)·
∑

Γ

1

|Aut(Γ)|
Φ(Γ)

Here g is a coupling constant (“charge of the electron”). Graphs Γ in the r.h.s. of
(87) have three types of half-edges:

(i) for “photon” variables xi,
(ii) for “electron” variables θa,

(iii) for “positron” variables θ̄a

Admissible edges are: (non-oriented, assigned the propagator Q−1
e ) and

(oriented, assigned the propagator D−1). The only admissible vertex is

(assigned g · P ). Typical graph contributing to the r.h.s. of (87) looks like

this:

An admissible Γ is always a collection of oriented solid (elctron/positron) cycles
arbitrarily interconnected by photon edges. Here is an example of evaluation of a
simple admissible graph:

1

2
Φ


D−1

D−1

g · Pg · P
Q−1
e

 = −g
2

2
〈Q−1

e , tr U (D−1PD−1P )︸ ︷︷ ︸
∈(V ∗)⊗2

〉

Here we understand P as an element of V ∗ ⊗ End(U) and take compositions of
endomorphisms of U . The minus sign here is (−1)σo , cf. (86).
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3.11. Digression: the logic of perturbative path integral. In the case of

finite-dimensional integrals of oscillatory type I(~) =
∫
X
µ e

i
~ f , asymptotics of

the measure-theoretic integral (which exists for finite ~) at ~ → 0 is given by the
expansion in Feynman diagrams (Theorem 3.48).

On the other hand a path (functional) integral

(88) I(~) = “

∫
Γ(M,Fields)3φ

Dφ e i~S(φ) ”

with M the spacetime manifold and Fields the sheaf of fields on M , and with action
S = 1

2

∫
M
〈φ,Dφ〉+

∫
M
Lint(φ) (here D is some differential operator), is a heuristic

expression which is defined as an asymptotic series in ~ by its expansion in Feynman
diagrams,

(89) I(~) := (detD)−
1
2 ·
∑

Γ

~−χ(Γ)

|Aut(Γ)|
Φ(Γ)

Here Φ(Γ) is given as an integral over M×V (V is the number of vertices in Γ) of
certain differential form on M×V (which we view as the space of configurations of V
points onM) which depends on Γ and is constructed in terms of the propagator – the
integral kernel of the inverse operator D−1 assigned to edges and vertex functions,
read off from Lint, assigned to vertices. Expansion (89) is obtained by treating (88)
following the logic of finite-dimensional perturbed Gaussian integral: one expands

e
i
~
∫
M
Lint(φ) in Taylor series, thereby producing integrals over configuration spaces

of V points on M (with V the term in the Taylor series for the exponential);
then one averages individual terms with (Fresnel version of) Gaussian measure

Dφ e i
2~
∫
M
〈φ,Dφ〉 using (formally) Wick’s lemma.

3.11.1. Example: scalar theory with φ3 interaction. Let (M, g) be a compact Rie-
mannian manifold. Consider the path integral

(90) I(~) =

∫
C∞(M)

Dφ e
i
~
∫
M

(
1
2 〈dφ,dφ〉g−1+m2

2 φ2+ g
3!φ

3
)
dvol

where m > 0 is a parameter of the theory – the “mass” (of the field quanta); g
is a coupling constant and we treat the φ3 as perturbing the Gaussian integral.
Perturbative evaluation of (90) yields

(91) Ipert(~) = det−
1
2 (∆ +m2) ·

∑
Γ

~−χ(Γ)

|Aut(Γ)|
Φ(Γ)

where the sum goes over 3-valent graphs Γ, with

(92) Φ(Γ) = gV
∫
M×V

dnx1 · · · dnxV
∏

e=(v1,v2)

G(xv1
, xv2

)

where V is the number of vertices in Γ, dxi stands for the Riemannian volume
element on i-th copy of M , the product goes over edges e of Γ and v1, v2 are the
vertices adjacent to the edge; G(x, y) is the Green’s function for the differential
operator ∆ +m2.

Remark 3.63. One can represent the Green’s function G(x, y) by Feynman-Kac
formula, as an integral over paths on M going from y to x. Then Φ(Γ) becomes
represented as an integral over the mapping space Map(Γ,M). Note that this
mapping space is fibered over M×V (by evaluating the map at the vertices of Γ)
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and r.h.s. of (92) can be viewed as the result of the fiber integral over fibers of
Map(Γ,M) → M×V (i.e. over paths on M representing the edges of Γ, between
vertices fixed at points x1, . . . , xV on M).

Example 3.64. The contribution of theta graph to the r.h.s. of (91) is:

(93)
~
12

Φ


 =

~ g2

12

∫
M×M

dnx dny G(x, y)3

And the contribution of the dumbbell graph is:
(94)

~
8

Φ

( )
=

~ g2

8

∫
M×M

dnx dny G(x, x)G(x, y)G(y, y)

Similarly, one can calculate expectation values, e.g. of products
∏m
i=1 φ(xi) of

the values of the field φ in several fixed points on M , with respect to the perturbed
Gaussian measure (the integrand of (90)). The result is again given as a sum over
graphs, with several unique marked vertices.

Example 3.65. The following Feynman graph gives a contribution to the normal-
ized expectation value (w.r.t. to the perturbed measure) � φ(x1)φ(x2)�pert:
(95)
~2

2
Φ

(
x1 x2

x y

)
=

~2 g2

2

∫
M×M

dnx dny G(x1, x)G(x, y)2G(y, x2)

Here the two marked vertices are fixed at points x1, x2 whereas the unmarked
vertices move around and we integrate over their possible positions on M .

3.11.2. Divergencies! Problem: Green’s function G(x, y) for the operator ∆ +m2

an n-dimensional Riemannian manifold M behaves,as the points x and y approach
each other, as

G(x, y) ∼
x→y

const

|x− y|n−2

(Case n = 2 is special: then G(x, y) ∼ C · log |x−y|.) This implies that the integrals
over M×V on the r.h.s. of (92) are, typically, (depending on n = dimM and on
the combinatorics of Γ, see examples below) divergent: the integrand typically has
non-integrable singularities near diagonals of M×V . Lecture 14,

10/10/2016.Examples.

(i) for n = 2 and Γ any graph without “short loops” (edges connecting a vertex
to itself), there is no divergency.

(ii) The integrand in (93) behaves as 1
|x−y|3n−6 near the diagonal x = y; this

singularity is non-integrable iff 3n − 6 ≥ n or, equivalently, if n ≥ 3. So, for
M of dimension ≥ 3, theta graph for scalar φ3 theory is divergent.

(iii) By a similar argument, graph (95) diverges iff 2 · (n− 2) ≥ n or equivalently
n ≥ 4.

(iv) For the graph (94), singularity of G(x, y) on the diagonal x = y is always
integrable but evaluations of the propagator at coinciding points G(x, x) and
G(y, y), corresponding to short loops of the graph, are ill-defined for n ≥ 2.
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(v) Consider the graph

Φ

 z

x1

x2x3

x

y

 =

= g3

∫
M×M×M

dnx dny dnz G(x1, x)G(x2, y)G(x3, z)G(x, y)G(y, z)G(z, x)︸ ︷︷ ︸
ψ

contribution to the 3-point correlation function � φ(x1)φ(x2)φ(x3) �pert.
The integrand ψ has integrable singularities at all diagonals where pairs of
points collide. However,near the diagonal x = y = z, when x, y, z are within
distance of order r → 0 of each other, we have ψ ∼ 1

r3(n−2) , and we think of

the integral as
∫
M
dnx

∫
M×M dny dnz. The internal integral over y, z for fixed

x diverges iff 3(n− 2) ≥ 2n or equivalently n ≥ 6.

Generally, one can say whether the graph diverges or not by analyzing the behav-
ior of the integrand at all diagonals. The answer is as follows. Define the weight
w(Γ′) of a graph Γ′ with EΓ′ edges and VΓ′ vertices as

w(Γ′) := EΓ′ · (n− 2)− (VΓ′ − 1) · n

Lemma 3.66. Φ(Γ) diverges iff the graph Γ contains a subgraph Γ′ ⊂ Γ with
non-negative weight w(Γ′) ≥ 0.

This lemma applies to scalar theory with arbitrary polynomial interaction p(φ),
not necessarily φ3 (monomials present in p(φ) restrict admissible valencies of ver-
tices of contributiong graphs Γ).

Remark 3.67. Consider φ3 theory on a manifold of dimension n.

• For n = 3, a graph Γ diverges iff Γ either contains a short loop or contains
a theta graph (93) as a subgraph (a corollary of Lemma 3.66).
• More generally, for n < 6, there is a finite list of subgraphs with non-

negative weight.
• For Γ′ ⊂ Γ, let us call “leaves” of Γ′ the edges connecting vertices of Γ′

to vertices of Γ not belonging to Γ′. For n = 6, the weight of Γ′ is non-
negative, iff the number of leaves of Γ′ is ≤ 3. (There are infinitely many
such subgraphs.)

• For n > 6, there are infinitely many divergent Γ′ and there is nor restriction
on the number of leaves for them.

3.11.3. Regularization and renormalization. The logic of dealing with divergencies
of Feynman graphs for the path integral is to first introduce a
Step I: Regularization. We want to replace the path integral I(~) by a regu-
larized version Iε(~) with a small parameter ε the regulator. Here are some of the
ideas of regularization.

a) Replace M →Mε – a lattice or trianglation or cellular decomposition with spac-
ing/typical cell size ε. Space of fields F gets replaces by a finite-dimensional
space Fε (modelled on functions on the set vertices or, e.g., cellular cochains
of Mε). Action S gets replaced by a finite-difference approximation Sε. Then
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Iε(~) =
∫
Fε
e
i
~Sε is a well-defined finite-dimensional integral. It can be devel-

oped in Feynman graphs, Iε(~) ∝
∑

Γ Φε(Γ) with Φε(Γ) the regularized (finite)
weights of Feynman graphs.

b) Regularize the Feynman weights of graphs directly (without deriving this regu-
larization from a regularization of the path integral itself), Φ(Γ)→ Φε(Γ). E.g.
regularize the propagator G(x, y) as follows (some of the possible options):
1. Proper time cut-off: Gε(x, y) =

∫∞
ε
dtK(x, y|t) with K(x, y|t) the heat kernel

– the integral kernel of the operator e−t(∆+m2).
2. Spectral cut-off: GΛ(x, y) =

∑
λ<Λ

1
λΨλ(x)Ψλ(y) where λ runs over eigen-

values of the operator ∆ + m2 (up to Λ) and Ψλ are the corresponding
eigenfunctions. Here the cut-off Λ = 1/ε is large rather than small.

3. Momentum cut-off (case of M = Rn): GΛ(x, y) =
∫
|k|<Λ

dnk ei(k,x−y)

k2+m2 where

the integral is over a ball of large radius Λ = ε−1 in the momentum space
(Rn)∗ 3 k.

4. Regularization Gε(x, y) =
∫∞

0
dt tεK(x, y|t), with ε the regulator. The in-

tegral over t is convergent for Re(ε) > n
2 − 1, and possesses a meromorphic

continuation to the entire C 3 ε; we are interested in the limit ε → 0 of the
continuation.

Remark 3.68. The functional determinant in (91) also has to be regularized, e.g.

via zeta-regularization, as detζ−reg(∆+m2) := e−ζ
′(0) with ζ(s) =

∑
λ λ
−s the zeta

function of the operator ∆ +m2 (λ runs over the eigenvalues and it is implied that
we take the analytic continuation of the zeta function to s = 0).

Whichever way we go about regularization, we get regularized weights of Feyn-
man graphs Φε(Γ). However, the limit of removing the regulator limε→0 Φε(Γ)
typically does not exist. To deal with this, we introduce
Step II: Renormalization.
We replace the action with the renormalized action

(96) S(φ)→ S̃ε(φ) = S(φ) +
∑
i

ci(ε)Ai(φ)

where corrections Ai(φ) =
∫
M
dnx Ai(φ) are local expressions in the field φ –

counterterms, with coefficients ci(ε) diverging as ε−k (for some positive k) or log ε
as ε → 0. Replacement (96) should be such that when we compute Feynman

diagrams for the renormalized action Φ̃ε(Γ), the limit ε→ 0 exists.33

Thus, local action S(φ) is replaced by S̃ε(φ) with counterterms divergent as the
regulator ε→ 0, but the path integral is now perturbatively well-defined:

lim
ε→0

Ĩε(~) =: Ĩ(~)

where l.h.s. is defined by regularized Feynman diagrams for the renormalized action.
In practice, counterterms in (96) correspond to the possible divergent subgraphs

(cf. Lemma 3.66) and are introduced in order to compensate for these divergencies.
E.g. in scalar theory with polynomial perturbation p(φ), one can assign to a diver-
gent subgraph Γ′ of weight w(Γ′) ≥ 0 with d leaves the counterterm AΓ′(φ) = φ(x)d

33To be more precise: counterterms in the renormalized action produce new vertices (with
ε-dependent coefficients) for the Feynman rules. Contributions of graphs containing these new

vertices compensate for the divergence, in the limit ε→ 0, of the graphs of original theory.
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with coefficient cΓ′(ε) = cΓ′ · ε−w(Γ′) if the weight w(Γ′) > 0 and cΓ′(ε) = cΓ′ · log ε
if w(Γ′) = 0 with cΓ′ a constant.

Remark 3.69. In particular, by Remark 3.67, for φ3 scalar theory in dimension
< 6, we need finitely many counterterms of form φd for some values of d ≥ 0
(number of leaves of Γ′) in (96). In dimension 6 there are infinitely many divergent
subgraphs, but we only need counterterms φd with 0 ≤ d ≤ 3. In dimension > 6, we
need counterterms of form φd for all d. Thus, one says that in dimensions up to 6,
scalar φ3 theory is renormalizable (finitely many counterterms) and in dimensions
> 6 it is non-renormalizable.

3.11.4. Wilson’s picture of renormalization (“Wilson’s RG flow”). In Wilson’s pic-
ture [35], one considers the tower of spaces of fields FΛ with different values of
cut-off Λ (originally, the momentum cut-off, though other realizations are possible,
see below), equipped with associated actions SΛ “at cut-off Λ” (“Wilson’s effective
actions”):
(97)
F = F∞, S︸ ︷︷ ︸
local theory

· · ·� FΛ, SΛ︸ ︷︷ ︸
theory at finite Λ

� FΛ′ , SΛ′ � · · ·� F0, S0︸ ︷︷ ︸
effective theory on zero−modes

For Λ > Λ′, we have a projection

(98) PΛ→Λ′ : FΛ � FΛ′

and the actions are related by a pushfroward (fiber integral) SΛ′ = PΛ→Λ′

∗ SΛ defined
by

(99) e
i
~SΛ′ (φ

′) :=

∫
Dφ̃ e i~SΛ(φ′+φ̃)

where we are integrating over φ̃ in the fiber F̃Λ,Λ′ of the projection (98) – “fields
between Λ and Λ′”.

Examples of realizations:

(1) Wilson’s original realization. For M = Rn, take FΛ to be the space of
functions of form φ(x) =

∫
BΛ⊂(Rn)∗

dnk ei(k,x)ψ(k) where BΛ = {k ∈
(Rn)∗ s.t. ||k|| ≤ Λ}. I.e. FΛ consists of functions whose Fourier transform
is supported inside the ball of radius Λ in the momentum space (Rn)∗ 3 k.

Then, for Λ→ Λ′, pushforward PΛ→Λ′

∗ corresponds to integrating out fields
in a spherical layer Λ′ < ||k|| ≤ Λ in the momentum space.
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Λ

Λ′

Picture of Wilson’s “renormalization group (RG) flow” amounts to “flow-
ing” from theory at large Λbig (the cut-off) to theory at small Λ by succes-
sively integrating out thin spherical layers in the momentum space.

(2) For M compact, we can take FΛ = Spanλ≤Λ{Ψλ} – the span of eigenfunc-

tions of the operator ∆ +m2 with eigenvalues λ ≤ Λ.
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(3) Let · · · � Ti+1 � Ti � · · · be a sequence of CW decompositions of M such
that Ti+1 is a subdivision Ti (the we say that Ti is an aggregation of Ti+1)
and mesh (typical size of cells) of Ti decays fast enough as i→∞.

We can set Fi = C0(Ti) – zero-cochains (functions on vertices of Ti), and
Si ∈ Fun(Fi) a suitable finite-difference replacement of the action satisfying
the compatibility condition w.r.t. aggregations Si = P∗(Si+1).34

Remark 3.70. Pushforwards out of the top tier F, S of the tower (97) are ill-
defined, and it has to be replaced with the asymptotic “tail” of the tower FΛbig

, SΛbig

with SΛbig
(φ) ∼

Λbig→∞
S̃Λbig

(φ) = S(φ) +
∑
i ci(Λbig)Ai(φ) the renormalized action

(96). Then, if e.g. F0 is a point, S0 is given by the sum of connected Feynman
diagrams for the renormalized action.

Lecture 15,
10/12/2016.

4. Batalin-Vilkovisky formalism

4.1. Faddeev-Popov construction. Faddeev-Popov construction appeared in [?]
as a way to resolve the problem of degeneracy of critical points of the Yang-Mills
action, in order to construct the perturbative path integral (Feynman diagrams)
for the Yang-Mills theory. The construction in fact applies to a large class of gauge
theories. Here we study a finite-dimensional model for this situation.

LetG be a compact Lie group of dimensionm acting freely on a finite-dimensional
n-manifold X with

(100) γ : G×X → X

the action map. Let g = Lie(G) be the Lie algebra of G and assume that we have
chosen a basis {Ta} in g. Denote by va ∈ X(X) the fundamental vector fields on X
by which the generators Ta act on X.

Let S ∈ C∞(X)G be a G-invariant function on X, and let µ ∈ Ωnc (X)G be a
G-invariant top form with compact support.

We are interested in the integral

(101) I =

∫
X

µ e
i
~S

We can rewrite it as the integral over the quotient X/G:

(102) I = Vol(G)

∫
X/G

µ̃ e
i
~ S̃

Where S̃ ∈ C∞(X/G) is such that

(103) S = p∗S̃

34See [24, 25, 12] for an example; there we need cochains of all degrees in Fi.
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where p : X → X/G is the quotient map; µ̃ ∈ Ωn−m(X/G) is a top form on the
quotient constructed in such a way that

ιvm · · · ιv1
µ = p∗µ̃

Note that the (n − m)-form on the l.h.s. here is basic (invariant and horizontal
w.r.t G-action) and hence is a pullback from the quotient. Note that we can write

(104) µ = p∗µ̃ ∧ χ
where χ ∈ Ωm(X) is a (any) form on X with the property that its restrictions to
G-orbits in X yield the volume form on the orbits induced from Haar measure on
G (via the identification of an orbit with G by picking a base point on the orbit).
The normalization of χ should be such that ιvm∧···∧v1

χ = 1. Note that (103,104)
together imply (102).

Let φ : X → g be a g-valued function on X such that:

• zero is a regular value of φ,
• σ = φ−1(0) ⊂ X intersects every G-orbit transversally, exactly N times,

for some fixed N ≥ 1.35

We think of σ as a (local) section of G-orbits. We refer to σ as the gauge-fixing
(and to φ as the gauge-fixing function).

Since σ ⊂ X is an N -fold covering of the quotient X/G, (102) implies

(105) I =
Vol(G)

N

∫
σ

ιvm∧···∧v1µ e
i
~S
∣∣∣
σ

=
Vol(G)

N

∫
X

δ(m)(φ) ιvm∧···∧v1µ e
i
~S

Here δ(m)(φ) = δ(φ) ·
∧
a dφ

a is the distributional m-form supported on σ; δ(φ) =∏
a δ(φ

a(x)) is the delta-distribution (not a form) supported on σ ⊂ X. We can

think of δ(φ) and δ(m)(φ) as the pullbacks by φ of the standard Dirac delta function
and delta form, respectively, centered at the origin in g.

Note that, generally, for C ⊂ X a k-cycle, we have a distributional form δ
(n−k)
C :

Ωk(X)→ R mapping

ω 7→
∫
C

ω|C =: “

∫
X

δ
(n−k)
C ∧ ω ”

Formula (105) is a special case of this, for C = σ.

Remark 4.1. The delta form δ(m)(φ) depends only on zero-locus of φ and, in
particular, does not change under rescaling φ 7→ λ · φ with λ 6= 0 a constant. On
the other hand, the delta function δ(φ) changes with rescaling of φ, by λ−m.

Let J be a function on X such that

(106)
∧
a

dφa ∧ ιvm∧···∧v1µ = J · µ

Lemma 4.2. The coefficient J in (106) is:

(107) J(x) = detgFP (x)

where

(108) FP (x) = dxφ ◦ d1,xγ : g→ g

35Ideally, we would like to have a single intersection, i.e. N = 1, but typically, for G compact,

there are topological obstructions for having a global section of p : X → X/G defined as a zero
locus of a globally defined function. E.g. for G = U(1), orbits are circles, thus φ has to have some

even number of zeroes on an orbit.
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is an endomorphism of g depending on a point x ∈ X; here d1,xγ : g → TxX is
the infinitesimal action of g on X viewed as a derivative of the group action (100);
dxφ : TxX → g is the derivative of φ. In components, we have

(109) FP (x)ab = 〈dφa(x), vb(x)〉 = vb(φa)|x
One calls J(x) given by (107) the Faddeev-Popov determinant.

Proof. First note that nondegeneracy of FP (x) is equivalent to φ−1(φ(x)) ⊂ X
intersecting the G-orbit through X transversally. If the intersection is nontransver-
sal, then l.h.s. of (106) is obviously vanishing ant the statement is trivial. So, we
assume that the intersection is transversal, i.e. theat FP (x) is non-degenerate.

Let V = imd1,xγ = Span(va(x)) ⊂ TxX be the tangent space to G-orbit
through x and let Ann(V ) ⊂ T ∗xX be its annihilator in the cotangent space. Let
α1, . . . , αn−m be a basis in Ann(V ). We have a basis (dφ1(x), . . . , dφm(x), α1, . . . , αn−m)
in T ∗xX (fact that this is a basis is equivalent to non-degeneracy of FP (x) which we
assumed). Without loss of generality (by normalizing αs appropriately), we may
assume µ =

∧m
a=1 dφ

a(x) ∧ α1 ∧ · · · ∧ αn−m. Contracting with vm ∧ · · · ∧ v1 and
using orthogonality of vs and αs, we have

ιvm∧···∧v1
µ =

(∑
s∈Sm

(−1)s
m∏
a=1

〈
dφa, vs(a)

〉)
α1∧· · ·∧αn−m = detgFP (x)·α1∧· · ·∧αn−m

Wedging with
∧m
a=1 dφ

a(x), we get the statement of the Lemma. �

Thus, we have the following.

Theorem 4.3 (Faddeev-Popov).

(110)

∫
X

µ e
i
~S =

Vol(G)

N

∫
X

µ δ(φ(x)) · detgFP (x) · e i~S

Next, we would like to deal with integrals of stationary phase type, i.e. with

integrands of form e
i
~ (··· ). We can achieve that, at the cost of introducing auxiliary

integration variables, by using integral presentations for the delta function (as a
Fourier transform on the unit) and for the determinant (as a Gaussian integral over
odd variables):

δ(φ(x)) =
1

(2π~)m

∫
g∗
dmλ e

i
~ 〈λ,φ(x)〉(111)

detgFP (x) =

(
~
i

)m ∫
Π(g⊕g∗)

m∏
a=1

(DcaDc̄a) e
i
~ 〈c̄,FP (x)c〉(112)

Here the auxiliary odd variables ca, c̄a are called Faddeev-Popov ghosts; λ is the even
Lagrange multiplier variable. For brevity, we will denote the odd Berezin measure
in (112) by Dmc Dmc̄. Plugging integral presentations (111,112) into (110), we
obtain the following.

Theorem 4.4 (Faddeev-Popov).

(113)

∫
X

µ e
i
~S =

Vol(G)

N · (2πi)m

∫
X×g∗×Π(g⊕g∗)

µ dmλ Dmc Dmc̄ e
i
~SFP (x,λ,c,c̄)

where

(114) SFP (x, λ, c, c̄) = S(x) + 〈λ, φ(x)〉+ 〈c̄, FP (x)c〉
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is the Faddeev-Popov action associated to the gauge-fixing φ.

The point of replacing the integral (101) with the r.h.s. of (113) is that the former
cannot be calculated, in the asymptotics ~→ 0, by stationary phase formula, since
the critical points of S are not isolated but rather come in G-orbits (hence the
Hessian of S at a critical point is always degenerate and one cannot construct
Feynman rules in this case). On the other hand the integral in the r.h.s. of (113)
has isolated critical points with non-degenerate Hessians of the extended action
SFP and the stationary phase formula is applicable.

4.1.1. Hessian of SFP in an adapted chart. Let x0 be a critical point of S lying on
a critical G-orbit [x0] ⊂ X and satisfying φ(x0) = 0. Let (y1, . . . , yn−m; z1, . . . , zm)
be an adapted local coordinate chart on X near x0, such that:

(i) x0 is given by y = z = 0.
(ii) [x0] is given by y = 0; moreover, G-orbits are locally given by y = const.
(iii) Locally φ is given by φa = za.

φ−1(0)x0

[x0]

y

z

For instance, G-invariance of S implies that S = S(y) and ∂
∂zaS = 0.

Hessian of S has the form

∂2S|x0
=

(
∂2S
∂yi∂yj

∣∣∣
x0

0

0 0

)
where first (n−m) rows/columns correspond to yi variables and the lastm rows/columns

correspond to za variables. We are assuming that the block ∂2S
∂yi∂yj

∣∣∣
x0

is non-

degenerate, i.e. that all degeneracy of the Hessian of S comes from G-invariance.
In other words, we assume that rank(∂2S|x0

) = n−m.
The Hessian ∂2S|x0

is, obviously, degenerate. However, let us consider

(115) ∂2(S + 〈λ, φ(x)〉)
∣∣
x0,λ=0︸ ︷︷ ︸

∈Sym2(Tx0X⊕g∗)∗

=

 ∂2S
∂yi∂yj

∣∣∣
x0

0 0

0 0 δab
0 δba 0


Here rows correspond to yi, z

a, λa and columns correspond to yj , z
b, λb. Note that

this Hessian is non-degenerate! The z−λ blocks that appeared because of the new
〈λ, φ(x)〉 term make the matrix non-degenerate.

Next, note that assumption (ii) above implies that fundamental vector fields va
locally have the form va =

∑
b f

b
a(y, z) ∂

∂zb
with (f ba)(y, z) a non-degenerate m×m

matrix. Thus, by (109), we have FP (x)ab = fab(y, z). Therefore, the part of the
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Hessian corresponding to the ghost part of Faddeev-Popov action is:

(116) ∂2 〈c̄, FP (x)c〉
∣∣
x0,c=c̄=0

=

(
0 −f ba
fab 0

)
where rows correspond to ca, c̄a and columns correspond to cb, c̄b.

Assembling (115) and (116), we get the full Hessian of Faddeev-Popov action

(117) ∂2SFP
∣∣
x0,λ=c=c̄=0

=


∂2S
∂yi∂yj

∣∣∣
x0

δab
δba

−f ba
fab


with row variables yi, z

a, λa, c
a, c̄a and column variables yj , z

b, λb, c
b, c̄b. All the

non-filled blocks are zero. From this explicit form it is obvious that the full Hessian
of the Faddeev-Popov action is non-degenerate. Lecture 16,

10/24/2016.
4.1.2. Stationary phase evaluation of Faddeev-Popov integral. Critical point (Euler-
Lagrange) equations for Faddeev-Popov action SFP (x, λ, c, c̄) (114) read:

c = c̄ = 0(118)

∂

∂xi
S(x) +

〈
λ,

∂

∂xi
φ

〉
= 0(119)

φ(x) = 0(120)

Here (118) is equivalent to the Euler-Lagrange equations ∂
∂caSFP = 0, ∂

∂c̄a
SFP = 0,

whereas (119) corresponds to ∂
∂xi

SFP = 0 (where we dropped the term bilinear in

c and c̄ which is excluded by (118)); last equation (120) is ∂
∂λa

SFP = 0.

Note that equations (119,120) together correspond to the fact that x is a con-
ditional extremum of S restricted to submanifold σ = φ−1(0) ⊂ X with λ the
Lagrange multiplier. On the other hand, G-invariance of S together with transver-
sality of the local section σ and G-orbits, implies that a conditional extremum of S
on σ is in fact a non-conditional extremum (i.e. dS vanishes on the whole tangent
space TxX, not just on Txσ ⊂ TxX). Therefore, (119) implies λ = 0. Thus, a
critical point of SFP has a form (x0, λ = c = c̄ = 0) with x0 an intersection point
of the critical G-orbit of S(x) with the gauge-fixing submanifold σ = φ−1(0).

The Hessian of SFP at a critical point (written without using the adapted chart
as in (117)), is

(121) ∂2SFP
∣∣
x0,λ=c=c̄=0

=
∂2S
∂x2

∣∣∣
x0

(dφ|x0
)T : g∗ → T ∗x0

X

dφ|x0
: Tx0

X → g 0

−FP (x0)T : g∗ → g∗

FP (x0) : g→ g
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with blocks corresponding to variables x, λ, c, c̄. Its inverse has the following struc-
ture:

(122) (∂2SFP
∣∣
x0

)−1 =


D β
βT 0

FP (x0)−1

−FP (x0)−1T


Here β : g → Tx0

X is the section of the projection dφ|x0
: Tx0

X → g constructed
as

β = d1,x0
γ ◦ FP (x0)−1 : g→ Tx0

X

where d1,x0γ : g→ Tx0X is, as in (108), the infinitesimal action of the Lie algebra
g on X specialized at the point x0. Thus, β and dφ|x0 together give us a splitting

(123) Tx0X ' Tx0φ
−1(0)⊕ g

The block D ∈ Sym2Tx0X in (122) is the image of D̃ ∈ Sym2Tx0φ
−1(0) under the

splitting (123), where D̃ is the inverse of ∂2
x0

(S|φ−1(0)) – the (invertible) Hessian of

S restricted to gauge-fixing submanifold φ−1(x0).
We say that D is the “propagator” or “Green’s function” for ∂2S|x0

in the gauge
φ(x) = 0.

Applying the stationary phase formula to the Faddeev-Popov integral (113), we
obtain the following.

Theorem 4.5 (Stationary phase formula for Faddeev-Popov integral).

(124)

∫
X

e
i
~S(x)µ =

Vol(G)

(2πi)m

∑
crit. G−orbits [x0] of S

(2π~)
n+m

2

(
i

~

)m
e
i
~S(x0)

∣∣∣det ∂2
x0
S
∣∣
φ−1(0)

∣∣∣− 1
2 ·detgFP (x0)·e

πi
4 sign∂2

x0
S|
φ−1(0) ×

×
∑

Γ

~1−χ(Γ)

|Aut(Γ)|
· Φ(Γ)

Here in the r.h.s. we pick, for every critical G-orbit [x0] of S, a single representative
x0 – one intersection point of [x0] with φ−1(0). The Feynman rules for calculating
Φ(Γ) are as follows.
Half-edge field

yi
λa
ca

ca

Edge propagator

iD ∈ Sym2Tx0X
iβ : g→ Tx0X

iFP (x0)−1 : g→ g

Vertex y-valency vertex tensor

k ≥ 3 i∂kS
∣∣
x0
∈ SymkT ∗x0

X

l ≥ 0 i∂lρ
∣∣
x0
∈ SymlT ∗x0

X

j ≥ 2 i∂jφ
∣∣
x0
∈ SymjT ∗x0

X ⊗ g

q ≥ 1 i∂qFP |x0
∈ SymqT ∗x0

X ⊗ End(g)
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Here we assume that local coordinates yi on X are introduced near the critical
point x0. “y-valency” refers to the number of adjacent solid (y-)half-edges. The
second vertex is the marked vertex that should appear in Γ exactly once; ρ is the
density of the volume form µ in the local coordinates yi, i.e. µ = ρ(y)dny.

Remark 4.6. In the special case when the gauge-fixing φ is linear in local coor-
dinates yi,

36 the third vertex above vanishes, and thus λ-half-edges do not appear
in admissible graphs in the r.h.s. of (124) at all. Here is a typical graph Γ in such
situation:

ρ-vertex

Remark 4.7. Assume that, in addition to φ being linear in yi, fundamental vector
fields have constant coefficients in local coordinates yi near x0.37 Then both third
and fourth vertex in the Feynman rules above vanish. In this case one has only
solid y-edges in admissible graphs Γ.

Remark 4.8. In order to define invariantly (cf. Remark 3.17) the determinant of
the restricted Hessian det ∂2

x0
S|φ−1(0) appearing in the r.h.s. of (124), we need a

volume element on Tx0
φ−1(0), i.e. an element in DetT ∗x0

φ−1(0).38 To construct

it, we use the short exact sequence Tx0
φ−1(0) ↪→ Tx0

X
dφ|x0−−−→ g which induces a

canonical isomorphism of determinant lines

DetT ∗x0
X ∼= Det g∗ ⊗DetT ∗x0

φ−1(0)

Using it, we can take the (canonically defined) “ratio” of µ|x0 ∈ DetT ∗x0
X (the

volume form on X evaluated at x0) and µg ∈ Det g∗ – the Lebesgue measure on g,

to obtain ν =
µ|x0

µg
∈ DetT ∗x0

φ−1(0).

Remark 4.9. In Theorem 4.5, instead of choosing the gauge-fixing φ : X → g
globally on X, we can choose individual (local) gauge-fixing φj : Uj → g in a

tubular neighborhood Uj of j-th critical orbit [x
(j)
0 ] of S, with j going over all

critical orbits.

4.1.3. Motivating example: Yang-Mills theory. For M a Riemannian (or pseudo-
Riemannian) manifold, classical Yang-Mills theory on M with structure group G
(a compact group with Lie algebra g) has the space of fields

F = ConnM,G ' Ω1(M)⊗ g

36This is the finite-dimensional model for, e.g., the Lorentz gauge d∗A = 0 in Yang-Mills
theory, see Section 4.1.3 below

37This is the finite-dimensional model for the Lorentz gauge in QED (abelian Yang-Mills
theory) and explains why Faddeev-Popov ghosts do not appear in the Feynman diagrams for

QED (but do appear in non-abelian Yang-Mills theory).
38Recall that, for V a vector space, the determinant line DetV is the top exterior power of V ,

DetV = ∧dimV V .
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– the space of connections in a trivial G-bundle on M .39 The space of fields is
acted on by the group of gauge transformations (principal bundle automorphisms),
GaugeM,G = C∞(M,G) and the action is given by A 7→ Ag = g−1Ag + g−1dg.

Infinitesimally, the Lie algebra of gauge transformations gaugeM,G ' Ω0(M, g) acts
by

(125) A 7→ dAα = dα+ [A,α] ∈ TAF

for α ∈ gaugeM,G the generator of the infinitesimal transformation.
Yang-Mills action is given by

(126) SYM (A) =
1

2

∫
M

trFA ∧ ∗FA

with FA = dA+ 1
2 [A,A] ∈ Ω2(M, g) the curvature of the connection; ∗ is the Hodge

star associated to the metric on M ; tr is the trace in the adjoint representation of
g.

Volume form µ on F (thought of the “Lebesgue measure on the space of con-
nections”) and the Haar measure on GaugeM,G are parts of the functional integral
measure for Yang-Mills theory and are, certainly, problematic. One works around
them by considering perturbative Faddeev-Popov integral, as given by the Feynman
graph expansion in the r.h.s. of (124).

For the gauge-fixing φ : ConnM,G → gauge, one of the possible choices is the
Lorentz gauge, corresponding to

(127) φ(A) = d∗A

In this case, Faddeev-Popov endomorphism of gauge is:

(128) FP (A) = d∗dA : Ω0(M, g)→ Ω0(M, g)

– as follows from (125) and (127).
We are interested in evaluating the perturbative contribution of the gauge or-

bit of zero connection. The fact that the intersection of φ−1(0) and the gauge
orbit through A = 0 is transversal at A = 0 follows from the Hodge decom-
position theorem (which implies Ω1(M, g) = Ω1(M, g)exact ⊕ Ω1(M, g)coclosed =
im(d1,A=0γ)⊕ TA=0φ

−1(0)).
The formal Faddeev-Popov integral for Yang-Mills theory in Lorentz gauge is:

(129) Z =

∫
Conn⊕gauge∗⊕Π(gauge⊕gauge∗)

DADλDcDc̄ e
i
~SFP (A,λ,c,c̄)

with

(130) SFP (A, λ, c, c̄) = SYM (A) +

∫
M

〈λ, d∗A〉+

∫
M

〈c̄, d∗dAc〉

Here λ ∈ Ωtop(M, g∗) where the r.h.s. is our model for the dual of the Lie algebra
of gauge transformations. Likewise, c̄ ∈ Π Ωtop(M, g∗) and c ∈ Π Ω0(M, g).Lecture 17,

10/26/2016.
39We restrict our discussion to the case of a trivial G-bundle for simplicity. This assumption

can be relaxed.
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Feynman rules for perturbative calculation of the Faddev-Popov integral for
Yang-Mills theory (129) in the case M = R3,1 – the flat Lorentzian space with

metric ηµν =


−1

1
1

1

 – are as follows.

Hald-edge field

x a, µ Aaµ(x)

x a ca(x)

x a c̄a(x)

Here Aaµ(x) are the local components of the connection evaluated at a point x,

A =
∑dim g
a=1

∑4
µ=1 TaA

a
µ(x)dxµ, with {Ta} the chosen basis in g (which we assume to

be orthonormal w.r.t. to the Killing form in g). Likewise, ca(x) are the components

of c =
∑dim g
a=1 Tac

a(x) and c̄a(x) are the components of c̄ =
∑dim g
a=1 Tac̄a(x)d4x.

Edge propagator

x ya, µ b, ν

∫
d4k

(2π)4 e
−i(k,x−y) iδabηµν

k2+iε

bx ya

∫
d4k

(2π)4 e
−i(k,x−y) iδab

k2+iε

Here a limit ε→ +0 is implied. This provides a regularization for the propagators
which, in pseudo-Riemannian case, are singular on the light-cone (x−y, x−y) = 0,
as opposed to the Riemannian case, where the singularity is just at x = y.

Vertex vertex tensor

c, ρ
x

a, µ

b, ν

fabcηµν

(
i ∂
∂xρ

( )
− i ∂

∂xρ

( ))
+ cycl. perm. of {(a, µ), (b, ν), (c, ρ)}

x

a, µ

b, ν

c, ρ

d, σ
−i
∑
e f

abef cde(ηµρηνσ − ηµσηνρ) + cycl. perm. of {(a, µ), (b, ν), (c, ρ), (d, σ)}

x

µ, a

b c

ifabc ∂
∂xµ

( )

These vertices correspond to the cubic and quartic terms 1
2

∫
tr [A,A]dA, 1

8

∫
tr [A,A]∧

[A,A],
∫
〈c̄, d∗[A, c]〉 in the Taylor expansion in the fields of the Faddev-Popov ex-

tension of the Yang-Mills action (129).
One can also enhance the Yang-Mills theory by adding a matter term to the

action,

SYM 7→ SYM +

∫
M

dx
〈
ψ̄, (i∂/A +m)ψ

〉
Here the new matter field ψ is an odd complex Dirac fermion field on M – a section
of E ⊗ R with E → M the spinor bundle and R a representation of the structure
group G. Field ψ has local components ψiα(x) with i the index of spanning the basis
of the representation space R and α the spinor index; ∂/A =

∑
µ,α,β,i,j(γ

µ)αβ(δij∂µ+

(Ta)ijA
a
µ(x)) is the Dirac operator, with γµ the Dirac gamma-matrices and (Ta)ij
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the representation matrices of the basis elements Ta of g; 〈, 〉 is the inner product
of Dirac spinors; m is the mass of the fermion.

Adjoining the matter field results in the extension of Feynman rules by new
half-edges

x i, α 7→ ψiα(x), x i, α 7→ ψ̄iα(x)

The new edge is:

j, β
x y

i, α 7→
∫

d4k

(2π)4
e−i(k,x−y)

(
−i

k/+m

)
αβ

δij

where the dash in k/ :=
∑
µ kµ(γµ)αβ stands for contraction with Dirac gamma-

matrices. The new vertex is:

j, β

µ, a

xi, α

7→ i(γµ)αβ(Ta)ij

Remark 4.10. Yang-Mills theory for the group G = SU(3) is the theory of the
strong interaction (quantum chromodynamics). The Yang-Mills field A corresponds
to the gluon – the carrier of the strong interaction and the matter fields ψ correspond
to quarks. Abelian case G = U(1) corresponds to quantum electrodynamics, with
A the photon field and ψ, ψ̄ the electron/positron field. Standard model of particle
physics is the Yang-Mills theory with G = U(1)×SU(2)×SU(3) (with the factors
corresponding to the electromagnetic, weak and strong interactions).

Remark 4.11. Frequently, instead of scaling the Yang-Mills-Faddeev-Popov action
in the path integral with 1

~ , as in (129), one sets ~ = 1 but scales the Yang-Mills

action as SYM 7→ 1
2g2

∫
trFA ∧ ∗FA (instead of (126)) with g the coupling constant

of the strong interaction.40 This normalization can be converted back to ours by
setting ~ = g2 and rescaling the auxiliary fields λ, c, c̄ (and the matter fields ψ, ψ̄,
if present), by appropriate powers of g. Put another way, with the normalization
by the coupling constant g, Feynman graphs are weighed with g−2χ(Γ) instead of
~−χ(Γ).

4.2. Elements of supergeometry. 41

4.2.1. Supermanifolds.

Definition 4.12. An (n|m)-supermanifold M is a sheaf OM, over a smooth n-
manifold M (the body of M), of supercommutative algebras locally isomorphic to
algebras of form C∞(U) ⊗ ∧•V ∗ with U ⊂ M open and V a fixed m-dimensional
vector space. I.e., there is an atlas on M comprised by open subsets Uα ⊂M with
chart maps φα : Uα → W = Rn, with isomorphisms of supercommutative algebras
Φα : OM(Uα)→ C∞(φα(U))⊗ ∧•V ∗ =: Aα.

40Or equivalently, by rescaling A 7→ g · A, one has SYM = 1
2

∫
tr dA ∧ ∗dA + g

2

∫
tr [A,A] ∧

dA+ g2

8

∫
tr [A,A]∧ [A,A]. In the matter term, if present, the quark-gluon interaction term ψ̄Aψ

also gets rescaled by a factor g.
41A reference for the basic definitions on supermanifolds and Z-graded (super)manifolds: Ap-

pendix B in [7].
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Locally a function on M is an element of Aα, i.e., has local form

f |Uα =
∑
k

∑
1≤i1<···<ik≤m

fi1···ik(x) · θi1 · · · θik

with x1, . . . , xn the local even coordinates on M (pullbacks of the standard coor-
dinates on Rn by φα) and θ1, . . . , θm ∈ V ∗ the odd (anti-commuting) coordinates
on V .

Remark 4.13. The augmentation map ∧•V ∗ → R induces a globally well-defined
augmentation map

(131) OM → C∞(M)

Example 4.14. Let V = Veven⊕ΠVodd be a super-vector space. We can define an
associated supermanifold, also denoted V, by OV(U) := C∞(U) ⊗ ∧∗V ∗odd for any
open U ⊂ Veven.

Example 4.15 (Split supermanifolds). Let E → M be a rank m vector bundle
over an n-manifold M . Then we can construct a “split” (n|m)-supermanifold ΠE
with body M and the structure sheaf OΠE = Γ(M,∧•E∗) – the space of smooth
sections, over M , of the bundle of supersommutative algebras ∧•E∗.

E.g., for M an n-manifolds, we have two distinguished (n|n)-supermanifolds,
ΠTM and ΠT ∗M , obtained by applying the construction above to the tangent and
cotangent bundle of M , respectively.

Definition 4.16. A morphism of supermanifolds φ :M→ N consist of the data
of:

• A smooth map between the bodies f : M → N ,
• An extension of f to a morphism of sheaves of supercommutative algebras
φ∗ : ON → OM. In particular, for an open U ⊂ N , we have a morphism
φ∗U : ON (U) → OM(f−1(U)) commuting with the augmentation maps
(131):

ON (U)
φ∗−−−−→ OM(f−1(U))y y

C∞(U)
f∗−−−−→ C∞(f−1(U))

Theorem 4.17 (Batchelor). Every smooth supermanifold with body M is (non-
canonically) isomorphic to a split-supermanifold ΠE for some vector bundle E →
M .

Example 4.18. Let us construct a morphism φ : R1|2 → R1|2 where the source R1|2

has even coordinate x and odd coordinates θ1, θ2 and the target R1|2 has the even
coordinate y and odd coordinates ψ1, ψ2. We define φ by specifying the pullbacks
of the target coordinates:

φ∗ :
y 7→ x+ θ1θ2

ψ1 7→ θ1

ψ2 7→ θ2

Example 4.19. By Remark 4.13, for M any supermanifold the inclusion of the
body M ↪→M is a canonically defined morphism of supermanifolds.
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Example 4.20. A morphism of vector bundles

E
φE−−−−→ E′y y

M
φM−−−−→ M ′

induces a map of the corresponding split supermanifolds ΠE → ΠE′. Warning:
the converse is not true – there are morphisms of ΠE → ΠE′ not coming from
morphisms of vector bundles! (E.g., the morphism constructed in Example 4.18
does not come from a morphism of vector bundles.)

Definition 4.21. A vector field v ∈ X(M) of parity |v| ∈ {0, 1} (with the con-
vention 0=even, 1=odd) is a derivation of OM of parity |v|, i.e., an R-linear map
v : OM → OM satisfying

v(f · g) = v(f) · g + (−1)|v|·|f |f · v(g)(132)

|v(f)| = |v|+ |f | mod 2(133)

Vector fields on M form a Lie superalgebra with Lie bracket

(134) [v, w] := v ◦ w − (−1)|v|·|w|w ◦ v

4.2.2. Z-graded (super)manifolds.

Definition 4.22 (Z-graded supermanifold). Let M be a supermanifold. Assume
that, in terms of Definition 4.12, both V =

⊕
k Vk (the odd fiber) and W =

⊕
kWk

(the target of even coordinate charts) are Z-graded vector spaces (we assume that
only finitely many of Vk, Wk are nonzero). This grading induces a grading on the
polynomial subalgebra Sym W ∗ ⊗ ∧V ∗ in Aα where linear functions xi on Vk are
prescribed degree |xi| = −k and linear functions θα on Wk are prescribed degree
|θα| = −k. If transition maps between the charts Φα ◦ Φ−1

β are compatible with

this grading, we say that we have a (global) Z-grading on M or, equivalently, that
M is a Z-graded supermanifold.

Using the grading of local coordinates, we can introduce, locally, a vector field

(135) E :=
∑
i

|xi| · xi ∂
∂xi

+
∑
α

|θα| · θα ∂

∂θα

The fact that the grading in local charts is compatible with transitions between
charts is equivalent to the local expression (135) gluing to a well-defined vector
field E onM. It has the name Euler vector field and has the property that for f a
function on M of well-defined degree |f |, we have

Ef = |f | · f

Unless stated otherwise, we will be making the following simplifying assumption.

Assumption 4.23 (Compatibility of Z-grading and super-structure). We assume
that Wk can be nonzero only for k even and Vk can be nonzero only for k odd. Then
one says that the Z-grading and the super-structure on M are compatible, or that
the Z2-grading (responsible for the Koszul sign in the multiplication of functions)
is mod 2 reduction of the Z-grading.
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Similarly to the Definition 4.21, we can define a vector field of degree k on a Z-
graded manifold M. The degree condition (133) gets replaced by |v(f)| = k + |f |.

Notation: we denote C∞(M)k or (OM)k the space of functions of degree k on
a Z-graded supermanifold.42 Likewise, we denote X(M)k the space of vector fields
of degree k.

In particular, E ∈ X(M)0 is a vector field of degree 0 and for v ∈ X(M)k a
vector field of degree k, we can probe its degree by looking at its Lie bracket with
E:

[E, v] = k · v Lecture 18,
10/31/2016.Example 4.24. Let E• →M be a graded vector bundle with fibers graded by odd

integers. Then, similarly to the construction of Example 4.15, we can construct a
Z-graded manifold E with body M and with

OE := Γ(M, Sym•grE
∗) = Γ(M,∧•E∗)

Here Sym•gr stands for the graded-symmetric algebra of a graded vector bundle (i.e.
symmetric algebra of the even part tensored with the exterior algebra of the odd
part; the former vanishes in the present example).

Example 4.25. M = T [1]M – the tangent bundle of M with tangent fiber coor-
dinates assigned grading 1. Locally, we have coordinates xi in an open U ⊂ M .43

The corresponding chart on T [1]M has local base coordinates xi of degree 0 and
fiber coordinates θi = “ dxi ” of degree 1. An element of OM locally has the
form

∑n
k=0

∑
1≤i1<···<ik≤n fi1···ik(x)θi1 · · · θik . Globally, we have an identification

of functions on T [1]M with forms on M , OM ∼= Ω•(M) with the form degree
providing the Z-grading.

Example 4.26. M = T ∗[−1]M – the cotangent bundle of M with cotangent fiber
coordinates assigned degree −1. Locally, we have base coordinates xi, deg xi = 0
and fiber coordinates ψi = “ ∂

∂xi ”, degψi = −1. An element of OM locally has the

form
∑n
k=0

∑
1≤i1<···<ik<n f

i1···ikψi1 · · ·ψik . Globally, we have an identification of

function on T [−1]M with polyvectors with reversed grading: (OM)−k ∼= Vk(M) =
Γ(M,∧kTM). I.e., a function on T [−1]M of degree −k is the same as a k-vector
field on M .

4.2.3. Differential graded manifolds (a.k.a. Q-manifolds).

Definition 4.27. For M a Z-graded supermanifold, one calls a vector field Q on
M a cohomological vector field if

• Q has degree 1,
• Q2 = 0 (as a derivation of OM). Or, equivalently, the Lie bracket of Q

with itself vanishes, [Q,Q] = 0.44

Then we say that the pair (M, Q) is a differential graded (dg) manifold or, equiv-
alently, a Q-manifold.

42We use notations C∞(M) and OM for the algebra of functions on M interchangeably.
43We adopt the following (standard) convention for shifts of homological degree: if V • is a

Z-graded vector space, then the degree-shifted vector space V [k] is defined by (V [k])i := V k+i.

In particular, e.g., for V concentrated in degree zero, V 6=0 = 0, V [k] is concentrated in degree −k.
44Note that, by (134), for an odd vector field, we have [Q,Q] = 2Q2. In particular, vanishing

of [Q,Q] is not a tautological property, unlike for a bracket of an even vector field with itself.
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Remark 4.28. Note that Q defines a differential on the algebra of functions,
Q : C∞(Mk)→ C∞(M)k+1, thus endowing C∞(M) with the structure of a com-
mutative differential graded algebra.

Remark 4.29 (Carchedi-Roytenberg?). Vector fields E, Q satisfy the commutation
relations

[E,E] =
tautologically

0 = [Q,Q], [E, Q] = Q

Thus, the pair of vector fields E, Q define an action on M of a Lie superalgebra
of automorphisms of the odd line R0|1. This algebra is generated by infinitesimal
dilatation e = −θ ∂∂θ and an infinitesimal translation q = ∂

∂θ (with θ the odd

coordinate on R0|1), satisfying same super Lie algebra relations as above.

Example 4.30. For

M = T [1]M

the degree-shifted tangent bundle of M , we have a cohomological vector field Q on
M corresponding to the de Rham operator dM on M , so that we have

C∞(M)k
Q−−−−→ C∞(M)k∥∥∥ ∥∥∥

Ωk(M)
dM−−−−→ Ωk+1(M)

Locally, in terms of local coordinates (xi, θi = dxi) (cf. Example 4.25), we have

Q =
∑
i

θi
∂

∂xi

This local formula glues, over coordinate charts on M, to a globally well-defined
vector field Q = dM ∈ X(M)1.

Example 4.31. Let g be a Lie algebra. Consider a graded manifold

M = g[1]

with body a point and C∞(M) = ∧•g∗. Note that functions on M can be iden-
tified with Chevalley-Eilenberg cochains on g, C∞(M) ∼= C•CE(g). We define
the cohomological vector field Q on M to be the Chevalley-Eilenberg differential
dCE : ∧kg∗ → ∧k+1g∗, obtained from the dual of the Lie bracket [, ]∗ : g∗ → ∧2g∗

by extension to ∧•g∗ as a derivation, by Leibniz identity. The property d2
CE = 0

then corresponds to the Jacobi identity in g. Let {Ta} be a basis in g and {ψa} be
the corresponding degree 1 coordinates on M (the dual basis to {Ta}); let also f cab
be the structure constants of g, i.e. [Ta, Tb] =

∑
c f

c
abTc. Then we have

Q = dCE =
1

2

∑
a,b,c

f cabψ
aψb

∂

∂ψc
∈ X(M)1

Definition 4.32. An L∞ algebra is a graded vector space g• endowed with multi-
linear, graded skew-symmetric operations lk : ∧kgrg→ g for each k ≥ 1, such that:

• lk has degree 2− k,
• the following quadratic relations hold for each n ≥ 1:

(136)
∑

n=r+s, r≥0,s≥1

∑
σ∈Sh(r,s)

± lr+1(xσ1
, . . . , xσr , ls(xσr+1

, . . . , xσn)) = 0
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for x1, . . . , xn ∈ g• any n-tuple of vectors. Here Sh(r, s) stands for (r, s)-
shuffles, i.e., permutations of numbers 1, . . . , n = r + s, such that σ1 <
· · · < σr and σr+1 < · · · < σn.

In particular, for small values of n, relations (136) have the following form:

• n = 1: l1(l1(x)) = 0, i.e. l1 =: d is a differential on g•.
• n = 2: l1(l2(x, y)) = l2(l1(x)) + (−1)|x|l2(x, l1(y)) – Leibniz identity, i.e. d

is a derivation of the binary operation l2 =: [, ].
• n = 3: Jacobi identity up to homotopy for l2 = [, ], i.e. the Jacobiator

equals a commutator (in appropriate sense) of a trinary operation l3 with
l1 = d:

[x, [y, z]]−[[x, y], z]−(−1)|x|·|y|[y, [x, z]] = ±dl3(x, y, z)±l3(dx, y, z)±l3(x, dy, z)±l3(x, y, dz)

An alternative definition of an L∞ algebra is as follows.

Definition 4.33. An L∞ algebra is a graded vector space g• together with a
coderivarion45 D of the cofree cocommutative coalgebra generated by g[1], D :
Sym•(g[1])→ Sym•(g[1]), satisfying the following:

• D2 = 0,
• p0 ◦ D = 0 where p0 : Sym•(g[1])→ Sym0(g[1]) = R is the counit,
• D has degree +1.

Remark 4.34. Coderivation D is determined by its projection to (co)generators
in g[1], i.e., by a sequence of maps

(137) p ◦ D(k) : Symk(g[1])→ g[1]

where p : Sym•(g[1]) → Sym1(g[1]) = g[1] is the projection to (co)generators. In
(137) we restricted the input of D to k-th symmetric power of g[1], with k ≥ 1.

One has a tautological décalage isomorphism α : Symk(g[1]) → (∧kg)[k] which
sends α : s(x1) � · · · � s(xk) 7→ ±sk(x1 ∧ · · · ∧ xn) for x1, . . . , xk ∈ g, with s the
suspension symbol. The relation of the L∞ operations lk from Definition 4.32 with
the components of the coderivation (137) is via

lk = p ◦ D(k) ◦ α−1 : ∧kg→ g

The quadratic relations on operations correspond to the equation D2 = 0.

Example 4.35. Let (g•, {lk}) be an L∞ algebra. Then (g•[1], Q = D∗) is a dg
manifold. I.e., we identify the dual of Sym•(g[1]) with a polynomial subalgebra in
C∞(g[1]). The dual of the coderivation D is a derivation of polynomial functions
on g[1] and thus yields a vector field on g[1]. If {Ta} is a basis in g, {T a} the dual
basis in g∗, and θa the corresponding coordinates on g[1], we have

Q =

∞∑
k=1

1

k!

∑
a1,...,ak,b

±
〈
T b, lk(Ta1

, . . . , Tak)
〉
θa1 · · · θak ∂

∂θb

45Recall that a linear map D : C → C is a coderivation of a coalgebra C if the co-Leibniz

identity holds: ∆ ◦ D = (D ⊗ id) ◦ ∆ + (id ⊗ D) ◦ ∆, with ∆ : C → C ⊗ C the coproduct. In
particular, if δ : A → A is a derivation of an algebra A, then the dual map δ∗ : A∗ → A∗ is a

coderivation of the dual coalgebra C = A∗.
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Introducing a “generating function for coordinates on g[1]” (or “superfield”) θ =∑
a θ

aTa ∈ Sym1(g[1])∗ ⊗ g, we can write

Q =

∞∑
k=1

1

k!

〈
lk(θ, . . . , θ),

∂

∂θ

〉
where ∂

∂θ :=
∑
a T

a ∂
∂θa , operations lk act only on elements of g (the T as) and 〈, 〉

pairs g with g∗.
The property Q2 = 0 is equivalent to the quadratic relations (136) on operations

{lk}.

Remark 4.36 (From [1]). If (M, Q) is a dg manifold and x0 ∈ M a point of the
body such that Q vanishes at x0, then the shifted tangent space g := Tx0

[−1]M
inherits the structure of L∞ algebra: Taylor expansion of Q at x0 produces a
sequence of elements

Q(k) ∈ SymkT ∗x0
M⊗ Tx0

M = Symk(g[1])∗ ⊗ g[1]

which, by the décalage isomorphism (cf. Remark 4.34), yield the L∞ operations
lk : ∧kg→ g.46

Definition 4.37. A Lie algebroid is a vector bundle E →M with skew-symmetric
Lie bracket on sections [, ] : Γ(E)×Γ(E)→ Γ(E) satisfying Jacobi identity, endowed
additionally with the anchor map – a bundle map ρ : E → TM (covering the
identity map on M), such that for α, β ∈ Γ(E) and f ∈ C∞(M) the following
version of Leibniz identity holds:

(138) [α, f · β] = f · [α, β] + ρ(α)(f) · β

Example 4.38 (Vaintrob, [33]). Let (E →M ; [, ]; ρ) be a Lie algebroid. Consider
the graded manifold E[1] with body M and functions C∞(E[1]) = Γ(M,∧•E∗).
One can endow E[1] with a cohomological vector fieldQ : Γ(M,∧kE∗)→ Γ(M,∧k+1E∗)
defined as follows: for ψ ∈ Γ(M,∧kE∗) and α0, . . . , αk ∈ Γ(M,E), we set

(139) Qψ(α0, . . . , αk) :=
∑

σ∈Sh(2,k)

(−1)σρ(ασ0
) (ψ(ασ1

, . . . , ασk)) +

+
∑

σ∈Sh(2,k−1)

(−1)σψ ([ασ0
, ασ1

], ασ2
, . . . , ασk)

Locally, let {xi} be local coordinates in a neighborhood U on M and {ea} be a
basis of sections of E over U . In particular, [ea, eb] =

∑
c f

c
ab(x)ec with f cab(x) the

structure constants of the Lie bracket of sections of E. The anchor maps ea to a
vector field

∑
i ρ
i
a(x) ∂

∂xi . On E[1] we have local coordinates xi, deg xi = 0 and θa,
deg θa = 1. The cohomological vector field (139) locally takes the form

(140) Q =
1

2

∑
a,b,c

f cab(x)θaθb
∂

∂θc
+
∑
a,i

θaρia(x)
∂

∂xi

Equation Q2 = 0 is equivalent to the structure relations of a Lie algebroid:

• the Jacobi identity for sections of E,

46The L∞ structure induced this way on the shifted tangent space depends on the choice of a
local chart near x0. Choosing a different chart induces an isomorphism of L∞ algebras.
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• the condition that the anchor ρ : Γ(M,E) → X(M) is a Lie algebra mor-
phism (which follows from (138)).

Example 4.39. A special case of Example 4.38 is as follows. Let G be a group
acting on a manifold M with γ : G×M →M the action. Let d1,xγ : g→ TxM be
the corresponding infinitesimal action, with x ∈M . We can construct the action Lie
algebroid, with E = g×M (as a trivial bundle over M), with the bracket of sections
given by pointwise bracket in g and with the anchor map ρ = d1,−γ : E → TM given
by the Lie algebra action. The corresponding graded manifold is E[1] = M × g[1]
with the algebra of functions

C∞(E[1]) = ∧•g∗ ⊗ C∞(M) = C•CE(g, C∞(M))

– Chevalley-Eilenberg cochains of g with coefficients in the module C∞(M) with
module structure given by Ta ⊗ f 7→ va(f) with va the fundamental vector fields
of g-action and with f ∈ C∞(M) an arbitrary function. The cohomological vector
field is the Chevalley-Eilenberg differential twisted by the module C∞(M). Locally
on M :

Q =
∑
a,b,c

f cabθ
aθb

∂

∂θc
+
∑
a,i

θavia(x)
∂

∂xi

Lecture 19,
11/2/2016.4.2.4. Integration on supermanifolds. Let p : E →M be a vecor bundle of rank m

over an n-manifoldM . LetM = ΠE be the corresponding split (n|m)-supermanifold.
We define the Berezin line bundle of the supermanifoldM as the real line bundle

Ber(M) = ∧nT ∗M ⊗ ∧mE over M = body(M). We call sections of Ber the
Berezinians.

Given a Berezinian µ ∈ Γ(M,Ber(M)), we have an R-linear integration map∫
M
µ · • : C∞c (M)→ R

defined as follows:

(141)

∫
M
µ f =

∫
M

〈µ, (f)m〉

where 〈, 〉 is the fiberwise pairing between line bundles ∧mE and ∧mE∗; (f)m is the
component of f ∈ C∞(ΠE) = Γ(M,∧•E∗) in the top exterior power of E∗. Note
that the integrand on the r.h.s. 〈µ, (f)m〉 is a section of ∧nT ∗M over M , i.e., a top
degree form, and thus can be integrated. One can understand the definition (141)
as doing a standard Berezin integral in odd fibers of ΠE and then integrating the
result over the body in the ordinary (measure-theoretic) sense.

In fact, sections of Ber(M) over M correspond to Berezinians that are constant
in the fiber direction of ΠE → M . More generally, we can consider the super-

vector bundle B̃er(M) = Ber(M) ⊗ ∧•E∗ over M , such that Γ(M, B̃er(M)) =
Γ(M,Ber(M)) ⊗C∞(M) C

∞(M). We denote the space of sections BER(M) :=

Γ(M, B̃er(M)). Its elements are the (general) Berezinians. By construction, BER(M)
is a module over C∞(M). Note that we can alternatively understand BER(M) as
the space of sections of the pullback line bundle p∗Ber(M) over the whole of M
rather than just the body M (where p : ΠE →M is the bundle projection). In the
language of general Berezinians, integration (141) is simply a map∫

M
: BER(M)→ R
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Remark 4.40. The notion of a Berezinian constant in the fiber direction depends
on the splitting of the supermanifold M, i.e. on a particular identification of it
with ΠE for E → M a vector bundle. On the other hand, the general notion of a
Berezian (element of BER(M)) does not depend on the splitting.

Remark 4.41. Parity-shifted tangent bundle M = ΠTM carries a distinguished
Berezinian µΠTM , characterized as follows. For f ∈ C∞(ΠTM) ∼= Ω•(M) denote

f̃ the corresponding differential form on M . Then µΠTM satisfies∫
ΠTM

µΠTM · f =

∫
M

f̃

where on the r.h.s. we have an ordinary integral over M of a differential form. In the
local coordinates (cf. Example 4.25), we have µΠTM =

∏
i(dx

iDθi) ∈ BER(ΠTM).

When one considers integration over Z-graded manifolds, only the underlying
Z2-grading (superstructure) plays role for the integration theory.

4.2.5. Change of variables formula for integration over supermanifolds.

Definition 4.42. Let S be a supermanifold of parameters and J ∈ End(Rn|m) ⊗
C∞(S) an S-dependent endomorphism of Rn|m of block form

J =

(
A B
C D

)
with the blocks

A ∈ [End(Rn)⊗ C∞(S)]even , D ∈ [End(Rm)⊗ C∞(S)]even ,

B ∈ [Hom(Rm,Rn)⊗ C∞(S)]odd , C ∈ [Hom(Rn,Rm)⊗ C∞(S)]odd

Assume that D is invertible. Then the superdeterminant of J is defined as

(142) Sdet

(
A B
C D

)
= det(A−BD−1C) · (detD)−1 ∈ C∞(S)

Remark 4.43. Superdeterminant is characterized by the following two properties:

• Multiplicativity: for J,K ∈ End(Rn|m)⊗ C∞(S), we have

Sdet(JK) = Sdet(J) · Sdet(K)

where JK is the composition of J and K as endomorphisms of Rn|m.

• For j =

(
a b
c d

)
an S-dependent endomorphism of Rn|m, we have

Sdet (id + ε · j) = 1 + ε · Str j +O(ε2)

Here Str j = tr a− tr d is the supertrace of j.

Note that these two properties imply that

Sdet ej = eStr j

Theorem 4.44 (Change of variables formula). Let Rn|mI , Rn|mII be two copies of the
(n|m)-dimesnional vector superspace, endowed with coordinates xi, θa on the first

copy and coordinates yi, ψa on the second copy. Let φ : Rn|mI → Rn|mII be a smooth

map of supermanifolds and f(y, ψ) ∈ C∞c (Rn|mII ) a compactly supported function.

Then the integral of f over Rn|mII against the standard coordinate Berezinian can
be expressed as an integral of the pullback of f by φ as follows:
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(143)∫
Rn|mII

dnyDmψ f(y, ψ) =

∫
Rn|mI

dnxDmθ sign det

(
∂yi(x, 0)

∂xj

)
·Sdet

∂(y, ψ)

∂(x, θ)
·f(y(x, θ), ψ(x, θ))

Here on the r.h.s.

∂(y, ψ)

∂(x, θ)
=

(
∂yi

∂xj
∂yi

∂θb
∂ψa

∂xj
∂ψa

∂θb

)
∈ End(Rn|m)⊗ C∞(Rn|mI )

is the super-matrix of first derivatives of φ. The sign factor in (143) is the sign of
the determinant of the even-even block of the matrix of derivatives.47

4.2.6. Divergence of a vector field.

Definition 4.45. For v ∈ X a vector field on a supermanifoldM and µ ∈ BER(M)
a Berezinian, we define the divergence divµ(v) ∈ C∞(M) of v with respect to µ via
the property

(144)

∫
M
µ v(f) = −

∫
M
µ divµ(v) · f

for any compactly supported test function f ∈ C∞c (M).

Example 4.46. ForM = M an ordinary manifold and µ a volume form, by Stokes’
theorem we have

0 =
Stokes′

∫
M

Lv(µ f) =

∫
M

µ v(f) + (Lvµ)︸ ︷︷ ︸
µ·divµ(v)

·f

where Lv is the Lie derivative along v. Thus, definition (144) is compatible, in the

context of ordinary geometry, with the definition of divergence as divµ(v) = Lvµ
µ .

I.e., roughly speaking, the divergence measures how the flow by v changes volumes
of subsets of M , as measured using µ.

The following is a straightforward consequence of the Definition 4.45.

Lemma 4.47. Let µ, µ0 be two Berezinians onM with µ = ρ·µ0 where ρ ∈ C∞(M)
is a nonvanishing function. Then, for v ∈ X(M) a vector field, divergences with
respect to µ and µ0 are related as follows:

(145) divµ(v) = divµ0
(v) +

1

ρ
· v(ρ)︸ ︷︷ ︸

=v(log ρ)

On a general supermanifold M, using local coordinates xi, θa, assume first that
µ = µcoord = dnxDmθ – the standard coordinate Berezinian. The vector field can
be expressed locally as

v =
∑
i

vi(x, θ)
∂

∂xi
+
∑
a

va(x, θ)
∂

∂θa

Then the divergence of v is given by the local formula:

(146) divµcoord
v =

∑
i

∂

∂xi
vi − (−1)|v|

∑
a

∂

∂θa
va

47It corresponds to the fact that in the change of variables formula for an ordinary integral,
the absolute value of the Jacobian appears.
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Note that, using derivatives acting on the left,48 we can simplify the signs:

divµcoord
(v) =

∑
i

vi
←−
∂

∂xi
−
∑
a

va
←−
∂

∂θa

In a more general case one, when µ is not the coordinate Berezinian, one obtains
the local formula by combining (146) with (145).

4.3. BRST formalism. BRST formalism arose in [4, 32] independently as a co-
homological formalism for treating gauge symmetry.

4.3.1. Classical BRST formalism. We will call a classical BRST theory the follow-
ing supergeometric data:

• A Z-graded supermanifold F (the “space of fields”),

• A cohomological vector field – a vector field Q ∈ X(F)1 satisfying Q2 = 0

– the “BRST operator” (encoding the data of gauge symmetry),

• A function S ∈ C∞(F)0 – the “action” satisfying Q(S) = 0 (gauge-

invariance property).

Example 4.48. Starting from Faddeev-Popov data – action of a group G on a man-
ifold X and an invariant function S ∈ C∞(X)G, we construct the BRST package
as follows: F = X × g[1] with

Q =
1

2

∑
a,b,c

f cabc
acb

∂

∂cc
+
∑
a,i

cavia(x)
∂

∂xi

with xi local coordinates on X, ca the degree 1 coordinates on g[1]; va are the
fundamental vector fields of G-action on X.

In other words, the functions of fields C∞(F) = ∧•g∗⊗C∞(X) = C•CE(g, C∞(X))
are the Chevalley-Eilenberg cochains of g twisted by the module C∞(X) with
Q = dCE the corresponding Chevalley-Eilenberg differential. Equivalently, (F , Q)
is the dg manifold associated to the action Lie algebroid for the action of G on X
(via the construction of Examples 4.38, 4.39).

Note that Q2 = 0 is equivalent to the pair of properties: Jacobi identity for
the bracket in g and the condition that the infinitesimal action g→ X(X) is a Lie
algebra homomorphism. The equation Q(S) = 0 is equivalent to g-invariance of S
(cast as va(S) = 0 with va the fundamental vector fields).

4.3.2. Quantum BRST formalism. We define the quantum (finite-dimensional) BRST
theory as the data of classical BRST theory (F , Q, S) with an additional structure
adjoined: a Berezinian µ on F (the finite-dimensional toy model for the functional
integral measure), such that the following property holds:

(147) divµQ = 0

– compatibility of the integration measure on fields with gauge symmetry.

48For f a function of commuting variables xi and anti-commuting variables θa, let y be one of

xs or θs. One denotes the ordinary derivative as
−→
∂
∂y
f = ∂

∂y
f and sets f

←−
∂
∂y

:= (−1)|y|·(|f |+1) ∂
∂y
f .

In particular y
←−
∂
∂y

= 1. The idea is that, if f is monomial, in order to calculate f
←−
∂
∂y

, if y occurs

in f , one commutes y to the right in the monomial, using Koszul sign rule, and then y gets killed
by the derivative from the right (acting on the left).
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Lemma 4.49. For any f ∈ C∞c (F)

(148)

∫
F
µ Q(f) = 0

(Follows immediately from divergence-free condition (147) and the Definition
4.45.) Lecture 20,

11/7/2016.A BRST integral is an integral of Q-cocycle, I =
∫
F µ f with Q(f) = 0.

By Lemma 4.49, the integral is invariant under shifts of the integrand by a Q-
coboundary. I.e., the integrand can be considered modulo shifts f ∼ f + Q(g) for
any g. In other words, the BRST integral is a map∫

F
µ : HQ(C∞(F))→ R (or C)

assigning numbers to cohomology classes of Q. The relevant case for field theory
is when the Q-cocycles are complex-valued, in which case the BRST integral takes
values in C.

In particular, we are interested in the oscillatory BRST integral

(149) Z =

∫
F
µ e

i
~S =

∫
F
µ e

i
~ (S+Q(Ψ))

Here Ψ ∈ C∞(F)−1 is an arbitrary function generating the shift of the integrand
by a Q-exact term;49 in this context Ψ is known as the gauge-fixing fermion.

Remark 4.50. Observables in BRST formalism are Q-cocycles O ∈ C∞(F). Given
a collection of observables O1, . . . ,ON , one can consider their expectation value
(correlation function):

〈O1 · · · ON 〉 :=
1

Z

∫
F
µ O1 · · · ON e

i
~S =

1

Z

∫
F
µ O1 · · · ON e

i
~ (S+Q(Ψ))

The fact that Oi are Q-cocycles imply that the entire integrand is a Q-cocycle, and
thus one can again shift S by a Q-coboundary.

The idea of gauge-fixing in BRST formalism: L.h.s. of (149) typically
perturbatively ill-defined, i.e., cannot be evaluated (in the aymptotic regime ~→ 0)
by the stationary phase formula, due to the degeneracy of critical points of S arising
from gauge symmetry. On the other hand, the r.h.s. of (149) is perturbatively well-
defined (i.e. critical points are non-degenerate and the stationary phase formula
is applicable), for a good choice of Ψ. So, the r.h.s. of (149) is the gauge-fixed
BRST integral which can be evaluated in terms of Feynman diagrams. By Lemma
4.49, the result is independent on the choice of gauge-fixing fermion Ψ (though the
particular Feynman rules for calculating the r.h.s. of (149) do depend on Ψ; the
result is independent of Ψ once all contributing graphs are summed over).

49The fact that the integrand in the l.h.s. and r.h.s. of (149) differs by a Q-exact term,

i.e., that e
i
~ (S+Q(Ψ)) − e

i
~S = Q(· · · ), follows from a simple computation: eX+Q(Y ) − eX =

eX
∑∞
n=1

1
n!
Q(Y )n = Q

(
eXY Φ(Q(Y ))

)
. Here X (of degree 0) is assumed to be Q-closed and we

denoted Φ(x) := ex−1
x

=
∑∞
n=0

1
(n+1)!

xn. Setting X = i
~S, Y = i

~Ψ, we obtain the statement

above.
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4.3.3. Faddeev-Popov via BRST. We start from Faddeev-Popov data: an n-manifold
X acted on by a compact group G, an invariant function S ∈ C∞(X)G, an invariant
volume form µX ∈ Ωn(X)G and a gauge-fixing function φ : X → g defining a local
section of G-orbits φ−1(0) ⊂ X.

First attempt. Set, as in Example 4.48, F = X × g[1], with the cohomological
vector field locally written as

(150) Q =
1

2

∑
a,b,c

f cabc
acb

∂

∂cc
+
∑
a,i

cavia(x)
∂

∂xi

and the Berezinian µ = µX ·Dmc. Here Dmc =
←−∏
aDca is the coordinate Berezinian

on Πg (invariantly, it is the element of ∧mg compatible with the chosen normaliza-
tion of Haar measure on G).

Note that the divergence of Q is

divµQ =
∑
a

ca

(∑
b

f bab + divµXva

)
The two terms on the r.h.s. vanish individually because:

• µX is G-invariant and thus fundamental vector fields va are divergence-free,
• the contraction of the structure constants in g,

∑
b f

b
ab = tr g[Ta,−] vanishes

due to unimodularity of g,50 which in turn follows from the existence of Haar
measure on G.

Problem:

(1) F has coordinates xi of degree 0 and ca of degree 1, in particular F is
non-negatively graded. Thus, there is no non-zero element Ψ ∈ C∞(F)−1

which we would need for gauge-fixing (149).

(2) The integral
∫
F µ e

i
~S(x) = 0 vanishes because of the integral over g[1] (note

that the integrand is independent of the odd variables ca, hence the Berezin
part of the integral vanishes trivially).

Solution/second attempt. Let us call the quantum BRST package con-
structed in the first attempt the minimal BRST package, (Fmin, Qmin, µmin). We
construct the new, non-minimal BRST package by setting:

• Non-minimal fields: F := Fmin ×Faux where the added auxiliary fields are
Faux := g∗[−1]⊕g∗ with degree −1 coordinates c̄a and degree 0 coordinates
λa. Thus, we have the following local coordinates on F = X×g[1]×g∗[−1]×
g∗:

coordinates degree
xi on X 0
ca on g[1] 1
c̄a on g∗[−1] -1
λa on g∗ 0

• Non-minimal cohomological vector field: Q := Qmin + Qaux with Qaux =∑
a λa

∂
∂c̄a

. The added term can be regarded as a de Rham vector field on

Faux = T [1]g∗[−1].51

50Recall that a Lie algebra g is called unimodular if the matrices of adjoint representation are
traceless, tr g[x,−] = 0 for any x ∈ g.

51Note that the complex C∞(Faux), Qaux has the cohomology of a point. Thus, complexes
C∞(F), Q and C∞(Fmin), Qmin are quasi-isomorphic.
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• The non-minimal Berezinian µ = µX · Dmc · Dmc̄ · dmλ.

The integral

(151)

∫
F
µ e

i
~S

contains a 0 · ∞ indeterminacy: 0 comes from the Berezin integral over the odd
variables c, c̄ of the integrand independent on them;∞ comes from the integral over
the even variable λ of the integrand independent on λ.

However, let us replace the ill-defined integral
∫
F µ e

i
~S by a gauge-fixed integral

(152) I =

∫
F
µ e

i
~ (S+Q(Ψφ))

with the gauge-fixing fermion

(153) Ψφ := 〈c̄, φ(x)〉 ∈ C∞(F)−1

Note that this implies

Q(Ψφ) = 〈λ, φ(x)〉+ 〈c̄, FP (x)c〉

Thus, the gauge-fixed integral (152) is precisely the Faddeev-Popov integral (113).
In particular, the integral (152)

(a) exists (converges) and is equal to (2πi)m

Vol(G)

∫
X
µX e

i
~S ,

(b) is invariant, by Lemma 4.49, under changes of the gauge-fixing fermion Ψφ, and
in particular invariant under changes of φ : X → g.

Remark 4.51. Note that the comparison of the ill-defined integral (151) with the
gauge-fixed integral (152) is outside of the assumptions of the Lemma 4.49: the
difference of the integrands is Q-exact but not compactly supported (in particular,
in the direction of the Lagrange multiplier variables λa). This is why in this case
the gauge-fixing (151)→(152) is simultaneously a regularization of the ill-defined
integral (151), rather than being an equality of two well-defined integrals as in
(149). Change of the gauge-fixing in (b) also leads, generally, to a non-compactly
supportedQ-exact shift of the integrand. However, as long as the integrals converge,
(149) still applies (in particular, we can deform the gauge-fixing φ : X → g in a
1-parameter family φt, t ∈ [0, 1], as long as φ−1

t (0) ⊂ X is a local transversal section
of G-orbits for all t).

Remark 4.52. One can employ more general gauge-fixing fermions than (153).
E.g.

• Ψ = 〈c̄, φ(x)〉 + κ
2 (c̄, λ) with (, ) a non-degenerate pairing on g∗ (e.g.

the dual Killing form) and κ ∈ R a parameter of gauge-fixing. Then
Q(Ψ) = Q(Ψφ) + κ

2 (λ, λ). Then one can take the Gaussian integral over

λ in
∫
F µ e

i
~ (S+Q(Ψ)). The result is a perturbatively well-defined integral

over X × g[1]× g∗[−1].52

52E.g. in the case of Yang-Mills theory in Lorentz gauge, we have (writing only the quadratic

in the fields part of the gauge-fixed action S+Q(Ψ); we do not write the ghost term):
∫
M tr 1

2
dA∧

∗dA+λ∧d∗A+ κ
2
λ∧∗λ. After integrating out the field λ, we obtain

∫
M tr 1

2
A(d∗d− 1

κ dd
∗)A. In

particular, taking κ = −1, we obtain the standard Hodge-de Rham Laplacian as the A− A part
of the Hessian.
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• We can allow Ψ to contain monomials of higher degree in c and c̄. This leads
to new vertices in the Feynman rules for the gauge-fixed integral. E.g., if
Ψ contains a term ∝ c̄c̄c and thus Q(Ψ) contains a term ∝ c̄c̄cc leading to
the new vertex

cc

c̄ c̄

Remark 4.53. Due to freeness of the G-action on X, the BRST cohomology
H•Q
∼= H•Qmin

is concentrated in degree zero and H0
Q
∼= C∞(X)G ∼= C∞(X/G). In

this sense, one may say that (F , Q) is a resolution of the quotient X/G.

Remark 4.54. In the construction of Faddeev-Popov setup cast withing the BRST
framework, one can replace the symmetry given by a group action on X by a sym-
metry given by an (injective) Lie algebroid E → TX. In this case the infinitesimal
symmetry is given by an integrable distribution im(E) ⊂ TX on X and gauge
orbits are replaced by the leaves of the foliation on X induced by this distribu-
tion via Frobenius theorem. In this case Fmin = E[1] with the corresponding
cohomological vector field (see Example 4.38). The full space of BRST fields is
F = E[1]⊕E∗[−1]⊕E∗ (as a Whitney sum of graded vector bundles over X) with
the homologically trivial extension of Q to the auxiliary fields. If the foliation is
globally well-behaved (induces a fibration of X over a smooth quotient X/E), then,
similarly to (a) above, one has a comparison theorem [26] asserting that the BRST
integral equals

(2πi)rk(E))

∫
X

µX
Vol(λx)

e
i
~S

where Vol(λx) is the volume of the leaf of the foliation passing through the point
of integration x ∈ X.

4.3.4. Remark: reducible symmetries and higher ghosts. BRST formalism can be
applied to the case when the G = G1 acts on X with a stabilizer G2 – in this case,
in addition to the ghosts of degree (ghost number) 1 associated to the Lie algebra
g = g1, one introduces higher ghosts for the Lie algebra g2. It may happen that it
is convenient (in order to be compatible with locality structure on the underlying
spacetime manifold) to have G2 over-parameterizing the stabilizer of the G = G1-
action (i.e. different elements of G2 may correspond to the same element in the
stabilizer), then one introduces a second stabilizer G3 and, respectively, new higher
ghosts of degree 3. This process can be iterated further. An example of this
situation is the “p-form electrodynamics” – a field theory on a Riemannian manifold
M with classical fields X = Ωp(M) 3 α and action S = 1

2

∫
M
dα ∧ ∗dα. We have

gauge-symmetry α 7→ α + dβ with β ∈ Ωp−1(M) =: G = G1. Clearly, G1 acts on
X non-freely. In particular β ∼ β + dγ, with γ ∈ Ωp−2 =: G2, correspond to the
same gauge transformation53 etc. We have a tower of (infinitesimal) symmetry

Ω0(M)︸ ︷︷ ︸
gp

→ · · · → Ωp−2(M)︸ ︷︷ ︸
g2

→ Ωp−1(M)︸ ︷︷ ︸
g1

→ Ωp(M)︸ ︷︷ ︸
TαX

53Note that G2 fails to parameterize the entire stabilizer of the G-action, if de Rham coho-

mology Hd−1(M) 6= 0. One solution is to twist the differential forms on M by an acyclic local
system. Another way is to allow this discrepancy. It will result in BRST cohomology not being

concentrated just in degree zero (however, the degree nonzero cohomology will have finite rank).
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– a truncation of de Rham complex. The minimal BRST resolution in this case is
F =

⊕p
k=0 Ωp−k(M)[k] 3 (α, c(1), . . . , c(p)) where field c(k) ∈ Ωp−k(M) is the k-th

ghost (and has ghost number k). Lecture 21,
11/9/2016.

4.4. Odd-symplectic manifolds. (Main reference: [29].)

4.4.1. Differential forms on super (graded) manifolds. Let E → M be a vector
bundle and ΠE the corresponding split supermanifold. Then one defines the space
of p-forms on ΠE as

Ωp(ΠE) = Γ(M,

p⊕
j=0

∧•E∗ ⊗ ∧jT ∗M ⊗ Symp−jE∗)

Here the bundle of p-forms on the r.h.s. is split according to the base/fiber bi-degree
(j, p− j).

More generally, forM a supermanifold, one can define Ω•(M) as functions on the
parity-shifted tangent bundle ΠTM. If (xi, θa) are local even and odd coordinates
on M, then ΠTM has local coordinates xi, θa (on the base of the tangent bundle)
and dxi, dθa (on the fiber). Here xi, dθa are even and θa, dxi are odd. Also, one
prescribes form degree (or de Rham degree) 0 to the base coordinates and form
degree 1 to the fiber coordinates. Transition maps between charts on ΠTM are
written naturally in terms of transition maps between the underlying charts onM.

For M a Z-graded supermanifold, differential forms Ω•(M) have the following
three natural gradings:

(1) Form (de Rham) degree degdR.
(2) Internal degree (also called “grade”) gr, coming from Z-grading of coordi-

nates onM. In particular, grades of xi and dxi are the same, and similarly
for θa and dθa.

(3) Total degree degdR +gr.

By convention, it is the parity of the total degree that governs the signs.
In Z-graded context, we will use notation Ωp(M)k for p-forms of grade k.

Example 4.55. p-forms on the odd line R0|1 are functions f(θ, x) of an odd variable
θ (the coordinate on R0|1) and even variable x = dθ, which are of degree p in x.
I.e., Ωp(R0|1) = {xp(a+ b · θ) | a, b ∈ R}. In particular, unlike forms on an ordinary
n-manifold, whose degree is bounded above by n, there are differential forms of
arbitrarily large degree p ≥ 0 on R0|1!

4.4.2. Odd-symplectic supermanifolds. Let M be a supermanifold.

Definition 4.56. An odd-symplectic structure on M is a 2-form ω on M which
is:

• closed, dω = 0;
• odd, i.e., in local coordinates xi, θa on M (with xi even and θa odd) has

the form
∑
i,a ωia(x, θ)dxi∧dθa, with (ωia(x, θ)) a matrix of local functions

on M;
• is non-degenerate, i.e., the matrix of coefficients (ωia(x, θ)) is invertible.

A supermanifold M endowed with an odd-symplectic structure ω is called an odd-
symplectic supermanifold.
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Note that it follows from non-degeneracy of ω that the dimension of M is (n|n)
for some n.

We survey the main properties of odd-symplectic supermanifolds and Lagrangian
submanifolds in them without giving proofs. For proofs and details, see [29].

Theorem 4.57 (Schwarz, [29]). Let (M, ω) be an odd-symplectic manifold with
body M .

(i) In the neighborhood of any point of M , one can find local coordinates (xi, ξi)
on M, such that ω =

∑
i dx

i ∧ dξi.
(ii) There exists a (global) symplectomorphism54 φ : (M, ω) → (ΠT ∗M,ωstand)

where ωstand is the standard (odd-)symplectic structure on the (odd) cotan-
gent bundle, locally written as ωstand =

∑
i dx

i ∧ dξi.

Here (i) is the analog of Darboux theorem in odd-symplectic case. As in the
ordinary symplectic geometry, one calls local coordinates (xi, ξi) such that ω =∑
i dx

i∧dξi the Darboux coordinates. The global statement (ii) is very much unlike
the situation of ordinary symplectic geometry: it says that, up to symplectomor-
phism, all odd-symplectic manifolds are (odd) cotangent bundles.

Definition 4.58. A submanifold L of an odd-symplectic manifold (M, ω) is called
Lagrangian if it maximally isotropic in M, i.e., if

• L is isotropic: ω|L = 0,
• L is not a proper submanifold of another isotropic submanifold of M.

A Lagrangian L in an (n|n)-dimensional odd-symplectic manifoldM has dimen-
sion (k|n− k) for some 0 ≤ k ≤ n.

Example 4.59 (“Conormal Lagrangian”). Given a k-dimensional submanifold C
in an (ordinary) n-manifold M , we can construct a (k|n−k)-dimensional Lagrangian
LC ⊂ ΠT ∗M (with ΠT ∗M equipped with the standard symplectic structure of the
cotangent bundle). The Lagrangian LC is constructed as the odd conormal bundle
(conormal bundle55 with reversed parity of conormal fibers) of C:

LC = ΠN∗C ⊂ ΠT ∗M

The following theorem is a direct analog, in odd-symplectic context, of Wein-
stein’s tubular neighborhood theorem in the context of ordinary symplectic mani-
folds.

Theorem 4.60 (Tubular neighborhood theorem in odd-symplectic context, [29]).
Given a Lagrangian L in an odd-symplectic manifold M, there exists

• a tubular neighborhood U ⊂ M (with projection p : U → L) of the La-
grangian L ⊂M,
• a tubular neighborhood U0 ⊂ ΠT ∗L (with projection p0 : U0 → L) of the

zero-section L0 ' L of the parity-shifted cotangent bundle ΠT ∗L (endowed
with the standard odd-symplectic structure of the cotangent bundle),

• a symplectomorphism φ : U
∼→ U0,

54I.e. an invertible map of supermanifolds, such that the pullback along it intertwines the
symplectic forms.

55Recall that, for C ⊂ M , the conormal bundle N∗C ⊂ (T ∗M)|C has the fiber N∗xC :=
Ann(TxC) = {α ∈ T ∗xM s.t. 〈α, v〉 = 0 ∀v ∈ TxC} over a point x ∈ C. Here Ann stands for

annihilator (of the subspace TxC ⊂ TxM).
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such that φ sends the Lagrangian L ⊂ M to the zero-section of ΠT ∗L and inter-
twines the projections p, p0.

The tubular neighborhood theorem above states, essentially, that in the neigh-
borhood of a Lagrangian, the ambient odd-symplectic manifold always looks like
(is locally symplectomorphic to) the odd cotangent bundle of the Lagrangian.

Example 4.61 (“Graph Lagrangian”). Let N be a (k|n − k)-supermanifold and
Ψ ∈ C∞(N )odd an odd function. One has a Lagrangian

(154) NΨ := graph(dΨ) ⊂ ΠT ∗N
Note that ΠT ∗N has dimension (n|n). If Xα are the local coordinates on N (some
of Xαs are even and some are odd), we have coordinates (Xα,Ξα) on ΠT ∗N with
parity of the cotangent fiber coordinate Ξα opposite to the parity of Xα. Then the
submanifold NΨ is given by

Ξα(X) =
∂

∂Xα
Ψ(X)

For Ψ = 0, NΨ is the zero-section of ΠT ∗N . For Ψ nonzero, we get a deformation
of the zero-section in the cotangent bundle, given as a graph of the exact 1-form
dΨ on the base.

Theorem 4.62 (Classification of Lagrangians, [29]). (a) Given a Lagrangian L in
an odd-symplectic manifold M with body M , there exists a submanifold C ⊂
M and a symplectomorphism φ : M ∼→ ΠT ∗M such that φ maps L ⊂ M to
LC = ΠN∗C ⊂ ΠT ∗M (cf. Example 4.59).

(b) A Lagrangian L in ΠT ∗M can be obtained from a Lagrangian of the standard
form LC = ΠN∗C for some C ⊂M , as a graph of dΨ for some Ψ ∈ C∞(LC)odd

(cf. Example 4.61). Here we use the tubular neighborhood theorem to identify
ΠT ∗M in the neighborhood of LC with ΠT ∗LC .

4.4.3. Odd-symplectic manifolds with a compatible Berezinian. BV Laplacian.

Definition 4.63. For (M, ω) an (n|n)-dimensional odd-symplectic manifold, a
Berezinian µ on M is called compatible with ω, if there exists an atlas of Darboux
charts (xi, ξi) onM such that locally µ = dnxDnξ is the coordinate Berezinian in all
charts of the atlas. (We will call the Darboux charts with this property the special
Darboux charts.) Note that, in particular, this implies that the transition functions

between charts are unimodular : Sdet
∂(xβ ,ξβ)
∂(xα,ξα) = 1. In the terminology of Schwarz

[29], an odd-symplectic manifold (M, ω) endowed with a compatible Berezinian µ
is called an SP -manifold (where “P -structure” refers to the odd-symplectic form
and “S-structure” refers to the Berezinian).

For (M, ω, µ) an odd-symplectic manifold with a compatible Berezinian, one
introduces the odd second order operator ∆ : C∞(M) → C∞(M), the Batalin-
Vilkovisky Laplacian, defined locally, in the special Darboux charts of the Definition
4.63, as

(155) ∆ =
∑
i

∂

∂xi
∂

∂ξi

Unimodularity of transition functions implies that ∆ is a globally well-defined op-
erator. Also, the BV Laplacian squares to zero,

(156) ∆2 = 0



90 PAVEL MNEV

This follows from a local computation ∆2 =
∑
ij

∂
∂xi

∂
∂xj

∂
∂ξi

∂
∂ξj

. Note that the

summand changes sign under the transposition (i, j) 7→ (j, i), therefore the sum
over i, j vanishes.

Another way to define the BV Laplacian is as follows. Let (M, ω) be an odd-
symplectic manifold and µ – any Berezinian on M. Define the operator ∆µ :
C∞(M)→ C∞(M) by setting

(157) ∆µ(f) :=
1

2
divµXf

where Xf ∈ X(M) is the Hamiltonian vector field generated by the Hamiltonian
f , defined by the equation

ιXfω = df

For f, g ∈ C∞(M), one defines the odd Poisson bracket (also known as the anti-
bracket), similarly to Poisson bracket in ordinary symplectic geometry, as

(158) {f, g} := Xf (g)

Locally, in a Darboux chart (xi, ξi) on M, assuming that the Berezinian has local
form µ = ρ(x, ξ) dnx Dnξ with ρ a local density function, we have:

(159) ∆µ(f) =
∑
i

∂

∂xi
∂

∂ξi
f +

1

2
{log ρ, f}

And the local form of the odd Poisson bracket is:

(160) {f, g} =
∑
i

f

( ←−
∂

∂xi

−→
∂

∂ξi
−
←−
∂

∂ξi

−→
∂

∂xi

)
g

The BV Laplacian ∆µ, as defined by (157), does not automatically square to zero.
Rather, it squares to zero, ∆2

µ = 0 if and only if the Berezinian µ is compatible
with (M, ω), in the sense of Definition 4.63. And in this case, ∆µ coincides with
the BV operator (155) defined in the special Darboux charts.

Remark 4.64. A straightforward local computation shows that the operator (157)
squares to zero iff

∑
i
∂
∂xi

∂
∂ξi

√
ρ = 0. This is also turns out to be the necessary and

sufficient condition for a special local Darboux chart to exist.

4.4.4. BV integrals. Stokes’ theorem for BV integrals. Note that, for M an n-
manifold, the Berezin line bundle of the odd cotangent bundle Ber(ΠT ∗M), as a
line bundle over M , is canonically identified with the tensor square of the bundle
of volume forms on M , i.e.,

(161) Ber(ΠT ∗M) ∼= (∧nT ∗M)⊗2

Similarly, for N a supermanifold, one has

(162) Ber(ΠT ∗N )|N ∼= Ber(N )⊗2

Here we understand Ber(N ) as a line bundle over N and the l.h.s. is a pullback of
a line bundle over ΠT ∗N to N .

In particular, (162) implies that there is a canonical map sending Berezinians

µ on ΠT ∗N to Berezinians “
√
µ|N ” on N . Locally, if Xα are local coordinates

on N (of even and odd parity), and (Xi,Ξi) the respective Darboux coordinates
on ΠT ∗N , a Berezinian µ = ρ(X,Ξ) DX DΞ on ΠT ∗N is mapped to a Berezinian√
µ|N :=

√
ρ(X, 0) DX on N .
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For (M, ω, µ) an odd-symplectic manifold with a compatible Berezinian, a BV
integral is an integral of the form

(163)

∫
L⊂M

f
√
µ|L

with L a Lagrangian submanifold of M and f ∈ C∞(M) a function satisfying
∆µf = 0.

Theorem 4.65 (Stokes’theorem for BV integrals, Batalin-Vilkovisky-Schwarz, [29]).
Let (M, ω, µ) be an odd-symplectic manifold with compact56 body endowed with
a compatible Berezinian.

(i) For any g ∈ C∞(M) and L ⊂M a Lagrangian submanifold, one has

(164)

∫
L

∆µg
√
µ|L = 0

(ii) Let L and L′ be two Lagrangian submanifolds whose bodies are homologous
cycles in the body ofM and let f ∈ C∞(M) be a function satisfying ∆µf = 0.
Then the following holds:

(165)

∫
L
f
√
µ|L =

∫
L′
f
√
µ|L′

Idea of proof. By (ii) of Theorem 4.57, without loss of generality we can assume
M = ΠT ∗M for M an ordinary n-manifold. One introduces the odd (fiberwise)
Fourier transform

OFT : C∞(ΠT ∗M)
∼→ C∞(ΠTM)

In local coordinates (xi, ξi) on ΠT ∗M and (xi, θi) on ΠTM , assuming that the
Berezinian µ has form µ = ρ(x, ξ) dnxDnξ, the odd Fourier transform acts as
follows:

f(x, ξ) 7→ f̃(x, θ) :=

∫
ΠT∗xM

√
ρ(x, ξ) Dnξ e〈θ,ξ〉f(x, ξ)

For example, in the special case when µ = ν⊗2 for ν ∈ Ωn(M) a top form, the
odd Fourier transform simply maps polyvectors α ∈ V•(M) ∼= C∞(ΠT ∗M) to
differential forms ιαν ∈ Ωn−•(M) ∼= C∞(ΠTM) via contraction with the top form
ν.

The odd Fourier transform maps the BV Laplacian ∆µ on C∞(ΠT ∗M) to the
de Rham operator d on Ω•(M) ∼= C∞(ΠTM), i.e., OFT ◦∆µ = d ◦OFT .

Consider L = LC = ΠN∗C the Lagrangian of Example 4.59, for C ⊂M a closed
submanifold. Then the BV integral is∫

LC
f
√
µ|L =

∫
C

f̃

where on the r.h.s. we have an integral of a differential form f̃ = OFT (f) on M
over the submanifold C ⊂M .

Restricting to Lagrangians of form LC , (164) and (165) follow from the usual
Stokes’ theorem on M : ∫

LC
∆µg

√
µ|L =

∫
C

dg̃ = 0

56Compactness condition can be dropped, but then one has to request that the integrals
converge.
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and ∫
LC′

f
√
µ|LC′ −

∫
LC

f
√
µ|LC =

(∫
C′
−
∫
C

)
f̃ =

∫
D

f̃

where D ⊂M is a submanifold with boundary ∂D = C ′−C; to apply Stokes’ theo-

rem here, we used that f̃ is a closed form on M which follows from the assumption
∆µf = 0.

For general Lagrangians in ΠT ∗M , one can reduce to the case of Lagrangians of
form LC using (a) of Theorem 4.62 for (164). For (165), one reduces to Lagrangians
of form LC using (b) of Theorem 4.62 together with the following calculation. Let
Lt be a smooth family of Lagrangians in M with t ∈ [0, 1] a parameter, such that
Lt+ε = graph(ε · dΨt + O(ε2)) (cf. Example 4.61) for Ψt ∈ C∞(Lt). Then, for
f ∈ C∞(M) satisfying ∆µf = 0, one has

d

dt

∫
Lt
f
√
µ|Lt =

∫
Lt

∆(f ·Ψt)
√
µ|Lt = 0

which vanishes by (164). Thus, we can take Lt to be a family connecting a given
Lagrangian L ⊂ ΠT ∗M with a Lagrangian of form LC . Such a family exists by (b)
of Theorem 4.62 and the value of the BV integral is constant along this family by
the calculation above.

�

Remark 4.66. In this Subsection we were focusing on the case of supermanifolds.
In the setting of Z-graded supermanifolds, the convention is that an odd-symplectic
form ω has internal degree (grade) −1, so that the odd Poisson bracket and the BV
Laplacian ∆ have degree +1.

Definition 4.67. We say that two Lagrangians L and L′ in an odd-symplectic
manifold (F , ω) are homotopic as Lagrangians (or Lagrangian-homotopic) if there
exists a smooth family Lt, t ∈ [0, 1], of Lagrangians in (F , ω) (the Lagrangian
homotopy) connecting L and L′. Then we denote L ∼ L′.

Remark 4.68. More generally, since the main reason we are interested in homo-
topic Lagrangians is because they yield same values for the BV integral of a ∆-
cocycle, one can replace notion of homotopy of Lagrangians above by the (weaker)
equivalence relation of (ii) of Theorem 4.65 – the condition of having homologous
bodies.Lecture 22,

11/14/2016. 4.5. Algebraic picture: BV algebras. Master equation and canonical
transformations of its solutions.

4.5.1. BV algebras. BV algebras are an algebraic counterpart of odd-symplectic
manifolds with a compatible Berezinian. (And Gerstenhaber algebras are the coun-
terpart of odd-symplectic manifolds without a distinguished Berezinian.)

Definition 4.69. A BV algebra is a unital commutative graded algebra A•, · over
R (the dot stands for the graded-commutative product) endowed with

• A degree +1 Poisson bracket {−,−} : Aj ⊗Ak → Aj+k+1 satisfying
– skew-symmetry:57 {x, y} = −(−1)(|x|+1) (|y|+1){y, x},

57The mnemonic rule for signs is that the comma in {−,−} carries degree +1, and one accounts
for that via the Koszul sign rule when pulling graded objects to the left/right slot of the Poisson

bracket.
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– Leibniz identity (in first and second slot):
(166)

{x, yz} = {x, y}z+(−1)(|x|+1) |y|y{x, z}, {xy, z} = x{y, z}+(−1)|y| (|z|+1){x, z}y

– Jacobi identity:

{x, {y, z}} = {{x, y}, z}+ (−1)(|x|+1) (|y|+1){y, {x, z}}

• In addition, A• should carry a BV Laplacian – an R-linear map ∆ : Aj →
Aj+1 satisfying

– ∆2 = 0,
– ∆(1) = 0 (with 1 the unit in A•),
– second order Leibniz identity

(167) ∆(xyz)±∆(xy)z ±∆(xz)y ±∆(yz)x±∆(x)yz ±∆(y)xz ±∆(z)xy = 0

– Poisson bracket arises as the “defect” of the first order Leibniz identity
for ∆:

(168) ∆(xy) = ∆x · y + (−1)|x|x ·∆y + (−1)|x|{x, y}

Remark 4.70. (1) The defining relations of a BV algebra given above are
interdependent. E.g., the second order Leibniz identity (167) for ∆ follows
from (168) and the fact that {, } is a bi-derivation of the commutative
product (166).

(2) Forgetting ∆, the structure (A, ·, {, }) is the structure of a Gerstenhaber
algebra (or “degree +1 Poisson algebra”, or “P0 algebra”).

(3) Forgetting the commutative product and shifting the grading on A by 1,
we get a differential graded Lie algebra A[1], {, },∆. The fact that ∆ is a
derivation of {, }, i.e. that

(169) ∆{x, y} = {∆x, y}+ (−1)|x|+1{x,∆y}

is a consequence of the relations of a BV algebra.

Example 4.71. Let M be an n-manifold and ν a volume form on M . We construct

• A−j := Vj(M) = Γ(M,∧jTM) – polyvector fields on M with reverse
grading. The graded-commutative product on A is the wedge product of
polyvectors.

• The Poisson bracket {, } := [, ]NS : Vk ⊗ Vk → Vj+k−1 is the Nijenhuis-
Schouten bracket of polyvectors (the Lie bracket of vector fields extended
to polyvector fields via Leibniz identity).

• The BV Laplacian is the divergence w.r.t. top form ν, ∆ = divν : Vj →
Vj−1. For j = 1 this is the ordinary divergence of a vector field, and one
extends to polyvectors (j > 1) by imposing the relation (168).

Example 4.72 (Main example). Let (M, ω, µ) be an odd-symplectic Z-graded
supermanifold with a compatible Berezinian.

• We set A• := C∞(M)• as a commutative graded algebra.
• We set {, } to be the degree +1 Poisson bracket (158,160) induced by the

odd-symplectic form ω, {f, g} = Xf (g).
• The BV Laplacian is defined to be the standard BV Laplacian (157) on an

odd-symplectic manifold with a compatible Berezinian, ∆µf = 1
2divµXf .
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Note that Example 4.71 is a special case of the Example 4.72, corresponding to
M = T ∗[−1]M with the standard symplectic structure of the cotangent bundle,
and with µ = ν⊗2, cf. (161).

4.5.2. Classical and quantum master equation. Given a BV algebra (A•, ·, {, },∆),
we say that an element S ∈ A0 satisfies classical master equation (CME) if

(170) {S, S} = 0

Note that, unlike in an ordinary Poisson algebra, this equation is not tautological:
{S, S} does not vanish automatically by skew-symmetry of the Poisson bracket {, }.

Given a solution S of classical master equation, one can construct Q := {S, •} ∈
Der1A• – a degree 1 derivation which, as a consequence of (170), satisfies Q2 = 0.
In the case of A• being the algebra of functions on an odd-symplectic manifoldM
(Example 4.72), the derivation Q ∈ X(M)1 is a cohomological vector field on M
arising as the Hamiltonian vector field with Hamiltonian S ∈ C∞(M)0 solving the
classical master equation.

An element S = S(0) +(−i~)S(1) +(−i~)2S(2) + · · · ∈ A0[[−i~]], with ~ a formal
parameter, is said to satisfy the quantum master equation (QME) if the following
holds

(171)
1

2
{S, S} − i~∆S = 0

In the case when ~ can be inverted (e.g. if S as a series in ~ has nonzero
convergence radius and thus ~ can be taken to be finite), quantum master equation
(171) can be equivalently written58 as

(172) ∆ e
i
~S = 0

In terms of the coefficients S(0), S(1), . . . of the expansion of S in powers of −i~,
the quantum master equation (171) is equivalent to a sequence of equations:

{S(0), S(0)} = 0(173)

{S(0), S(1)}+ ∆S(0) = 0(174)

{S(0), S(2)}+
1

2
{S(1), S(1)}+ ∆S(1) = 0(175)

etc. In particular, the leading term S(0) of the ~-expansion of a solution of QME
satisfies the classical master equation.

Given a solution S(0) of CME one may ask whether it can be extended to a
solution of QME by adding terms proportional to powers of ~. Then, to find the
first ~-correction, we need to solve (174). It is solvable iff the class of ∆S(0) in degree
1 cohomology of Q = {S(0), •} vanishes (note that ∆S(0) is automatically Q-closed,
as follows from CME for S(0) and from (169)). If ∆S(0) is indeed Q-exact, we
can choose the primitive −S(1) which solves (174) and gives the first ~-correction.
Next, we look for the second correction, quadratic in ~. Equation (175) is solvable
for S(2) iff the class of 1

2{S
(1), S(1)}+ ∆S(1) in H1

Q vanishes (again, this element is

automatically Q-closed). And this process goes on: at each step we have a possible

58This can be seen, e.g., from the following calculation. For x ∈ A0, we have

∆xn = nxn−1∆x +
n(n−1)

2
xn−2{x, x} (proven by induction in n using (168)). Therefore,

∆ ex = ∆
(∑∞

n=0
xn

n!

)
= (∆x + 1

2
{x, x})ex. Substituting x = i

~S, we obtain ∆ e
i
~S =

(−i~)−2
(

1
2
{S, S} − i~∆S

)
e
i
~S . This proves equivalence of (171) and (172).
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obstruction in H1
Q; if the obstruction vanishes, we can construct the next term

in ~-expansion of the solution of QME. If the obstructions at all steps vanish, we
can construct the full extension of S(0) to a solution of QME by incorporating the
appropriate corrections in powers of ~.

4.5.3. Canonical transformations.

Definition 4.73. Given two solutions of QME, S, S′ ∈ A0[[−i~]], we say that S and
S′ are equivalent (notation: S ∼ S′) if there exists a canonical BV transformation
– a family St ∈ A0[[−i~]], Rt ∈ A−1[[−i~]] parameterized by t ∈ [0, 1], such that
S0 = S and S1 = S′, and the following equation holds:

(176)
d

dt
St = {St, Rt} − i~∆Rt

Rt is called the generator of the canonical BV transformation.

Remark 4.74. Equation (176) together with the fact S = S0 satisfies QME implies
that St satisfies QME

(177)
1

2
{St, St} − i~∆St = 0

Indeed, taking the derivative in t of (177), we get δt(
d
dtSt) = 0 where the t-

dependent differential δt := {St, •} − i~∆ squares to zero due to the QME on
St. On the other hand, (176) reads d

dtSt = δt(Rt) (i.e. improves δt-closedness of
d
dtSt to δt-exactness). In particular, (176) implies that d

dt of the QME (177) van-
ishes at time t if QME is known to hold at time t. Therefore QME for St implies
that QME for St+ε is satisfied up to O(ε2). And this implies (via subdividing shift
t → t + ε into N shifts of length ε/N and taking the limit N → ∞) that, in fact,
if (177) holds at any time t and (176) holds for all times, then (177) holds for all
times.

Remark 4.75. Equations (176,177) together imply that

d

dt
e
i
~St = ∆

(
−i~ e i~StRt

)
Thus, in particular, if S ∼ S′, the difference of the exponentials is ∆-exact:

e
i
~S
′
− e i~S = ∆(· · · )

where · · · = −i~
∫ 1

0
dt Rt e

i
~St .

Remark 4.76. Equation (176,177) together can be packaged as a single “extended
quantum master equation”

(dt ∧ d

dt
− i~∆) e

i
~σ = 0

on an element of total degree zero σ = St + dtRt ∈ Ω•([0, 1]) ⊗ A•[[−i~]] in
non-homogeneous forms on the interval [0, 1] with coefficients in A•[[−i~]].

4.6. Half-densities on odd-symplectic manifolds. Canonical BV Lapla-
cian. Integral forms.
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4.6.1. Half-densities on odd-symplectic manifolds.

Definition 4.77. A density ρ of weight κ ∈ R (or a κ-density) on a supermanifold
M, covered by an atlas of coordinate charts Uα with local coordinates (xi(α), θ

a
α),

is a collection of locally defined functions ρ(α)(x(α), θ(α)) satisfying the following
transformation rule on the overlaps Uα ∩ Uβ :

(178) ρ(α)(x(α), θ(α)) = ρ(β)(x(β), θ(β)) ·
∣∣∣∣Sdet

∂(x(α), θ(α))

∂(x(β), θ(β))

∣∣∣∣κ
We denote the space of (smooth) κ-densities on M by Densκ(M).

We are interested in the case of densities of weight κ = 1/2 (or half-densities) on
an odd-symplectic manifold (M, ω). We assume that the body M ofM is oriented
(and thus the odd fiber of ΠT ∗M 'M is also oriented) and the atlas agrees with
the orientation, and hence the Jacobians of the transition functions are positive.

We write a half-density on (M, ω) locally, in a Darboux chart (xi, ξi) as

ρ = ρ(x, ξ) · d 1
2xD 1

2 ξ

where d
1
2xD 1

2 ξ is a locally defined symbol (coordinate half-density associated to
the local coordinates (xi, ξi)) satisfying the transformation property

d
1
2xD 1

2 ξ =

(
Sdet

∂(x, ξ)

∂(x′, ξ′)

) 1
2

d
1
2x′D 1

2 ξ′

This rule is equivalent to the transformation rule (178) with κ = 1
2 for the coefficient

functions: ρ(x, ξ) 7→ ρ(x′, ξ′) = ρ(x, ξ) ·
(

Sdet ∂(x,ξ)
∂(x′,ξ′)

)− 1
2

.

One can view half-densities as sections of the (tensor) square root of the Berezin
line bundle:

Dens
1
2M = Γ(M,Ber(M)⊗

1
2 )

Remark 4.78 (Manin, [23]). For V an (k|n−k)-dimensional vector superspace, one
can consider the space of constant (coordinate-independent) Berezinians, BERconst(V) =
Det ΠV = ∧nV∗even⊗∧mVodd. For (W, ω) an odd-symplectic (n|n)-dimensional vec-
tor superspace, and V = L ⊂ W a Lagrangian subspace, the space of constant
half-densities on W is canonically isomorphic to the space of constant Berezinians
on L,

(179) Dens
1
2
const(W) ∼= BERconst(L)

via the map

BERconst(L) 3 ν 7→ (ν⊗2)⊗
1
2 ∈ Dens

1
2
const(W) ∼= BER

⊗ 1
2

const(W)

where ν⊗2 ∈ BERconst(W) ∼= BERconst(ΠT
∗L) ∼= BERconst(L)⊗2.59 Thus, one

can understand constant a half-densities on an odd-symplectic space (W, ω) as a
Berezinian on any Lagrangian subspace L ⊂ W, or, since one has isomorphisms
(179), as a coherent system of Berezinians on all Lagrangian subspaces of (W, ω).
Or, equivalently, as an equivalence class of pairs (L, µL) of a Lagrangian L ⊂ W
and a constant Berezinian on L.

59The crucial linear algebra observation here, formulated in terms of determinant lines of vector
superspaces, is that Det(V ⊕ΠV∗) ∼= Det(V)⊗2, cf. (161,162).
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Example 4.79. Consider odd-symplectic (1|1)-superspaceW = ΠT ∗R = R1|1 with

Darboux coordinates x, ξ. The constant half-density ρ = d
1
2xD 1

2 ξ on R1|1 induces
the Berezinian (volume form) dx on the Lagrangian R1 ⊂ R1|1 and the Berezinian
Dξ on the Lagrangian R0|1 ⊂ R1|1.

Remark 4.80 (Ševera, [30]). Given an odd-symplectic (n|n)-supermanifold (M, ω),
one can consider the operator ω∧ : Ωp(M)k → Ωp+2(M)k−1 as a differential on
the space of forms onM (note that it does indeed square to zero since ω ∧ ω = 0).
Then the cohomology H•ω∧(Ω(M)) is canonically isomorphic to the space of half-
densities onM. Locally, in Darboux coordinates (xi, ξi) onM, cohomology classes
in H•ω∧(Ω(M)) have canonical representatives of form

(180) ρ(x, ξ) dx1 ∧ · · · ∧ dxn ∈ Ωn(M)

which correspond to the half-densities ρ(x, ξ)
∏n
i=1 d

1
2xiD 1

2 ξi (with the same coef-
ficient ρ(x, ξ)) via Remark 4.78.

4.6.2. Canonical BV Laplacian on half-densities. Let (M, ω) be an odd-symplectic
manifold. One can define (Khudaverdian, [19]) the canonical BV Laplacian on

half-densities, ∆ : Dens
1
2M→ Dens

1
2M, locally given in a Darboux chart by

(181) ∆ : ρ(x, ξ) d
1
2xD 1

2 ξ 7→

(∑
i

∂

∂xi
∂

∂ξi
ρ(x, ξ)

)
d

1
2xD 1

2 ξ

The nontrivial check [19] is that the formula above defines a globally well-defined
operator on half-densities.

Note that the operator ∆ on half-densities does not rely on a choice of a Berezinian
on M, unlike the Schwarz’s BV Laplacian (157) ∆µ on functions on M.

Given a compatible Berezinian µ on (M, ω), one has the associated “reference”

half-density
√
µ ∈ Dens

1
2 (M), multiplication by which induces an isomorphism

C∞(M)
·√µ
−−→ Dens

1
2 (M)

This isomorphism intertwines the operators ∆µ and ∆. I.e., for f ∈ C∞(M) one
has

∆(
√
µ · f) =

√
µ ·∆µ(f)

Remark 4.81. Note that, for µ an incompatible Berezinian, one can also introduce

an operator ∆̃µ : f 7→ 1√
µ∆(f

√
µ) which will be, generally, different from Schwarz’s

BV Laplacian ∆µ as defined by (157). More precisely, ∆̃µ = ∆µ + 1√
µ∆(
√
µ)· (the

last term is a multiplication operator). Operator ∆̃µ always squares to zero, but

∆̃µ(1) 6= 0 for an incompatible Berezinian, whereas one always has ∆µ(1) = 0 but
∆2
µ 6= 0 for an incompatible Berezinian. For a compatible Berezinian, we have

∆̃µ = ∆µ. Indeed, a Berezinian is compatible iff ∆
√
µ = 0, cf. Remark 4.64.

Remark 4.82 (Ševera, [30]). One can also construct the canonical BV Laplacian ∆
on half-densities by considering the spectral sequence calculating the cohomology
of the total differential d + ω∧ of the bi-complex Ω•(M) with differentials ω∧
and d (de Rham operator on M). Cohomology of ω∧ yields the space of half-
densities on M (cf. Remark 4.80). BV Laplacian arises on the third sheet E3 of
the spectral sequence as the induced differential ∆ = d(ω∧)−1d on H•ω∧(Ω(M)) ∼=
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Dens
1
2M.60 (First sheet E1 is Ω•(M), ω∧ and second sheet E2 is H•ω∧(Ω(M)) with

zero differential.)

For (M, ω) and L ⊂ M a Lagrangian submanifold, there is a well-defined re-
striction operation

Dens
1
2M→ BER(L)

cf. (162) and Remark 4.78. If a (Xα,Ξα) is a Darboux chart on M in which L is

given by Ξ = 0, the map above sends ρ(X,Ξ)D 1
2X D 1

2 Ξ 7→ ρ(X, 0)DX.
Thus, in terms of half-densities, a BV integral is an integral of form∫

L⊂M
α :=

∫
L⊂M

α|L

with L a Lagrangian submanifold and α a ∆-closed half-density. The BV-Stokes’
theorem (Theorem 4.65) in this language states that:

(i)
∫
L∆β = 0, for any β ∈ Dens

1
2 (M)

(ii)
∫
L α =

∫
L′ α for α ∈ Dens

1
2 (M) satisfying ∆α = 0 and L ∼ L′ two Lan-

grangians with homologous bodies.

Remark 4.83 (Canonical transformation as an action of a symplectic flow on half–
densities). In the setting of half-densities, a canonical transformation of solutions of
quantum master equation (Definition 4.73) admits the following interpretation. Let
(M, µ, ω) be an odd-symplectic manifold with a compatible Berezinian. A canon-
ical transformation (176,177) can be viewed as a family of ∆-closed half-densities

on M of form ρt = µ
1
2 e

i
~St (∆ρt = 0 is equivalent to the quantum master equa-

tion (177)), such that for any 0 ≤ t0 < t1 ≤ 1, one has ρt1 = (Φt0,t1)∗ρt0 . Here

Φt0,t1 :M ∼→M is the symplectomorphism arising as the flow, from time t0 to time
t1, of the t-dependent Hamiltonian vector field {Rt, •} ∈ X(M)0; (Φt0,t1)∗ stands
for the pushforward of a half-density by the symplectomorphism. In this sense, the
first term on the r.h.s. of (176) corresponds to the transformation of the function
St by the Hamiltonian vector field {Rt, •}, whereas the second term compensates

for the transformation of the reference half-density µ
1
2 under the infinitesimal flow

by {Rt, •}.

4.6.3. Integral forms.

Definition 4.84 (Manin, [23]). An integral form on a supermanifold N is a a
half-density on ΠT ∗N (with the standard symplectic structure of the cotangent

bundle). We denote the space of integral forms on N by Int(N ) := Dens
1
2 (ΠT ∗N ).

Given an integral form α on N , its integral over a submanifold C ⊂ N is defined
as

(182)

∫
C⊂N

α :=

∫
ΠN∗C⊂ΠT∗N

α̃

– the integral of the corresponding half-density α̃ over the conormal Lagrangian
LC = ΠN∗C (Example 4.59) in the odd cotangent bundle ΠT ∗N .

60In particular, consider the action of the operator d(ω∧)−1d on the cocy-

cle of form (180): ρ(x, ξ)dx1 · · · dxn d−→
∑
i
∂
∂ξi

ρ(x, ξ) dξi dx
1 · · · dxn (ω∧)−1

−−−−−→

(−1)|ρ|+1
∑
i(−1)i−1 ∂

∂ξi
ρ(x, ξ) dx1 · · · d̂xi · · · dxn d−→

(∑
i
∂
∂xi

∂
∂ξi

ρ(x, ξ)
)
dx1 · · · dxn.
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Integral forms on N generalize the notion of Berezinians on N (in particular,
BER(N ) ⊂ Int(N )). Whereas a Berezinian can be integrated over whole of N , an
integral form can be integrated over an arbitrary submanifold C ⊂ N (integrating a
full Berezinian over a proper submanifold yields zero). Whereas BER(N ) is a torsor
over functions C∞(N ), Int(N ) is a torsor over polyvectors V•(N ) = C∞(ΠT ∗N ).
Put another way, one has

Int(N ) = V•(N )⊗C∞(N ) BER(N )

Example 4.85. For N = M an ordinary n-manifold,

(183) Int(M) = V•(M)⊗C∞(M) Ωn(M) = Ωn−•(M)

is the space of differential forms on M , where non-top degree forms arise as con-
tractions of a top form with a polyvector. Integration of integral forms over sub-
manifolds (182) over submanifolds yields in this case an integral of a differential
form over a submanifold C ⊂ M . Canonical BV Laplacian ∆ on integral forms
(viewed as half-densities on ΠT ∗M) under the identification (183) with differential
forms becomes the de Rham operator on M .

Example 4.86 (Integral forms on the odd line). Consider integral forms on the odd
line N = R0|1. Let θ be the odd coordinate on R0|1 and Y the even fiber coordinate
on ΠT ∗R0|1. Then we the general integral forms on R0|1 have the following form:

(184) Int(R0|1) 3 α = f(Y, θ) · µ 1
2 = (f0(Y ) + f1(Y ) θ) · µ 1

2

with f0, f1 functions of Y . Here µ
1
2 = d

1
2Y D 1

2 θ is the standard coordinate half-
density. By Remark 4.78, µ

1
2 is a class represented by equivalent pairs (R0|1 ⊂

ΠT ∗R0|1,Dθ) and (R1 ⊂ ΠT ∗R0|1, dY ). Berezinians or R0|1 correspond to the case
f0(Y ) = 0. An integral form (184) is ∆-closed iff f1(Y ) is a constant function of Y .
An integral form (184) is ∆-exact iff f1 = 0 and

∫
R f0(Y ) dY = 0. Supermanifold

R0|1 has two nonempty submanifolds: {0} ⊂ R0|1 and R0|1 ⊂ R0|1. Integral of an
integral form α over these two submanifolds is, according to the definition (182),
respectively,∫
{0}⊂R0|1

α =

∫
R1⊂ΠT∗R0|1

f0(Y ) dY,

∫
R0|1

α =

∫
R0|1⊂ΠT∗R0|1

f1(0)θDθ = f1(0)

Lecture 23,
11/16/2016.4.7. Fiber BV integrals. 61

Let (F ′, ω′), (F ′′, ω′′) be two odd-symplectic manifolds and

(185) F = F ′ ×F ′′

their direct product with the direct sum symplectic structure ω = ω′⊕ω′′ (or, more
pedantically, ω = ω′ ⊗ 1 + 1⊗ ω′′ ∈ Ω(F ′)⊗ Ω(F ′′) ⊂ Ω(F)). Denote P : F → F ′
the projection to the first factor in (185).

For L ⊂ F ′′ a Lagrangian submanifold, we denote

(186) P
(L)
∗ =

∫
L⊂F ′′

: Dens
1
2F → Dens

1
2F ′

61References: [25, 6, 10].
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the fiber BV integral – the fiber integral, parameterized by points x′ of F ′, over a
Lagrangian Lx′ ⊂ P−1(x′) – a copy of L ⊂ F ′′ placed over x′.
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L

x′ F ′

F

In particular, (186) is an R-linear map which sends φ = φ′ ⊗ φ′′ ∈ Dens
1
2F ′ ⊗

Dens
1
2F ′′ ⊂ Dens

1
2F to P

(L)
∗ φ = φ′ ·

∫
L⊂F ′′ φ

′′. In other words, the map (186) is

the full (ordinary) BV integral on F ′′ tensored with identity on F ′:

P(L)
∗ : Dens

1
2F ∼= Dens

1
2F ′⊗̂Dens

1
2F ′′

idF′⊗
∫
L⊂F′′−−−−−−−−→ Dens

1
2F ′

We also call the map P
(L)
∗ the BV pushforward (of half-densities, along the odd-

symplectic fibration P : F → F ′).

Theorem 4.87 (Stokes’ theorem for fiber BV integrals). (i) P
(L)
∗ is a chain map

intertwining the canonical BV Laplacians ∆ on F and ∆′ on F ′:

(187) ∆′P
(L)
∗ = P

(L)
∗ ∆

(ii) Let L ∼ L̃ be two homotopic Lagrangians (cf. Definition 4.67) in F ′′, and let

φ ∈ Dens
1
2F be a half-density such that ∆φ = 0. Then

(188) P
(L̃)
∗ φ− P (L)

∗ φ = ∆′(· · · )

More precisely, if L̃ = graph(ε · dΨ) is an infinitesimal Lagrangian homotopy
with generator Ψ ∈ C∞(L)−1 (cf. Example 4.61), then one can write the
primitive on the r.h.s. of (188) explicitly in terms of the generator Ψ:

(189) (· · · ) = ε · P (L)
∗ (Ψ · φ)

Next, assume that odd-symplectic manifolds (F ′, ω′), (F ′′, ω′′) are equipped with
compatible Berezinians µ′, µ′′. Then µ = µ′ · µ′′ is a compatible Berezinian on the
direct product F = F ′ ×F ′′.

Definition 4.88. Let S ∈ C∞(F)0[[~]] be a solution of quantum master equation

on F , i.e. ∆µe
i
~S = 0 ⇔ 1

2{S, S} − i~∆µS = 0. Then we call S′ ∈ C∞(F ′)0[[~]]
the effective BV action for S induced on F ′, if

(190) µ′
1
2 e

i
~S
′

= P
(L)
∗

(
µ

1
2 e

i
~S
)

By an abuse of notations, we will write S′ = P∗S for the effective BV action. Or,

if we want to emphasize the role of the Lagrangian, S′ = P
(L)
∗ S.

Definition above is a realization, in the context of BV formalism, of the idea
Wilson’s effective action (99) of Section 3.11.4.

The following is a corollary of Theorem 4.87.
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Corollary 4.89. (i) If S is a solution of QME on F then the effective action S′

induced on F ′ via the fiber BV integral (190) satisfies QME on F ′.
(ii) If S is a solution of QME on F and L ∼ L̃ are two homotopic Lagrangians

in F ′′, the corresponding effective actions S′ = P
(L)
∗ S and S̃′ = P

(L̃)
∗ S are

related by a canonical transformation, S′ ∼ S̃′.
(iii) Assume that S ∼ S̃ are two solutions of QME on F are related by a canonical

transformation. Then the respective effective actions (defined using the same
Lagrangian L ⊂ F ′′) are related by a canonical transformation of F ′.

Therefore, the BV pushforward P∗ defines a map

SolQME(F)/ ∼ P [L]
∗−−−→ SolQME(F ′)/ ∼

sending classes of solutions of QME on F modulo canonical tranformations to
classes of solutions of QME on F ′ modulo canonical tranformations, and the map
depends on a class [L] of Lagrangians in F ′′ modulo Lagrangian homotopy.

4.8. Batalin-Vilkovisky formalism.

4.8.1. Classical BV formalism. We call a classical BV theory the following package
of supergeometric data:

• A Z-graded supermanifold F (the space of BV fields),
• an odd-symplectic structure ω ∈ Ω2(F)−1 (the BV 2-form),
• a function S ∈ C∞(F)0 (the BV action, or master action) satisfying the

classical master equation {S, S} = 0.

Note that the Hamiltonian vector field on F generated by S,

Q := XS = {S, •} ∈ X(F)1

(the BRST operator), squares to zero due to the CME.
Also, note that Q is compatible with the odd-symplectic form:

LQω = 0

(with LQ the Lie derivative along Q), which follows from ιQω = dS (the condition
that Q is a Hamiltonian vector field generated by S).

Definition 4.90. A Hamiltonian dg manifold of degree k is:

• a dg manifold (M, Q),
• a symplectic form of grade (internal degree) k, ω ∈ Ω2(M)k,
• a Hamiltonian H ∈ C∞(M)k+1 satisfying {H,H}ω = 0 with {−,−} the

Poisson bracket of degree −k on C∞(M) associated to ω.

In particular, the Hamiltonian vector field Q = XH ∈ X(M)1 is cohomological.

Case k = −1 of the definition above corresponds to a classical BV theory. Case
k = 0 emerges in the BFV (Batalin-Fradkin-Vilkovisky) formalism – the Hamilton-
ian counterpart of the BV formalism (and also plays an important role in symplec-
tic geometry, in the problem of describing coisotropic reductions, see [28]). Case
k = n − 1 for n ≥ 0 arises as the target structure for n-dimensional AKSZ sigma
models [1].

Example 4.91 (A BRST system in BV formalism, classically). Given a classical
BRST package (FBRST, QBRST, SBRST), we construct the following BV package:
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• The space of BV fields is constructed as a (shifted) cotangent bundle

FBV = T ∗[−1]FBRST

with ωBV the standard symplectic structure of the cotangent bundle.
• The BV action is

(191) SBV = p∗SBRST + Q̃BRST

Here p : FBV → FBRST is the projection to the base of the cotangent

bundle and Q̃BRST is the lifting of the vector field QBRST on the base of
the cotangent bundle to a function on the total space linear in the fibers.62

• The cohomological vector field on the total space has the form

QBV = Xp∗SBRST
+Qcot. lift

BRST

where the first term is the Hamiltonian vector field generated by the first
term in (191) and Qcot. lift

BRST is the cotangent lift of a vector field QBRST on
the base of the cotangent bundle to a vector field on the total space.

If Φα are local coordinates on FBRST, then FBV has corresponding Darboux coor-
dinates (Φα,Φ+

α ), where the fiber coordinates Φ+
α are called anti-fields (as opposed

to Φα which are called fields). The odd-symplectic structure is:

ωBV =
∑
α

dΦα ∧ dΦ+
α

The BV action is:

SBV(Φ,Φ+) = SBRST(Φ) +
∑
α

QαBRST(Φ) · Φ+
α

whereQαBRST = LQBRSTΦα are the components ofQBRST (i.e., QBRST =
∑
αQ

α
BRST(Φ) ∂

∂Φα ).
The BRST operator on the BV fields (the cohomological vector field) is:

QBV =
∑
α

(
SBRST(Φ)

←−
∂

∂Φα

)
∂

∂Φ+
α

+

+
∑
α

Qα(Φ)
∂

∂Φα
+
∑
α,β

±Φ+
α

(
∂

∂Φβ
Qα(Φ)

)
∂

∂Φ+
β

4.8.2. Quantum BV formalism. We define a quantum (finite-dimensional) BV the-
ory as the following package of data.

• A Z-graded manifold F of BV fields,
• an odd-symplectic structure ω ∈ Ω2(F)−1 (the BV 2-form),
• a Berezinian µ ∈ BER(F) compatible with ω (the integration measure on

BV fields),
• a master action S = S(0) − i~S(1) + (−i~)2S(2) + · · · ∈ C∞(F)0[[−i~]]

satisfying the quantum master equation

1

2
{S, S} − i~∆µS = 0 ⇔ ∆µe

i
~S = 0

62Note that, generally, to α ∈ Vp(M) a p-polyvector field, one can associate a function α̃ ∈
C∞(T ∗[−1]M) of degree p in fiber coordinates. Here one can replace M by a general Z-graded

manifold, and in particular by FBRST.
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Remark 4.92. Unlike in the classical case, the vector field XS does not automat-
ically square to zero (since S satisfies QME rather than CME). However, one can
define the second order operator

δS = {S, •} − i~∆ = −i~e− i
~S∆

(
e
i
~S · •

)
which squares to zero due to QME (also note that the second equality above uses
QME) and serves as a quantum replacement for the BRST operator in BV formal-
ism. (We have encountered this operator before, in Remark 4.74.) Note also that
δS mod ~ = XS(0) =: Q is the classical BRST operator associated to the classical
part of the master action S, and it does square to zero.

Idea of gauge-fixing in BV formalism. The partition function, as defined
by a BV integral over a Lagrangian L ⊂ F

Z =

∫
L⊂F

√
µ e

i
~S

does not change under the Lagrangian homotopy L0 ∼ L1 (smooth deformation
staying in the class of Lagrangians, cf. Definition 4.67) by Theorem 4.65, since
the integrand is ∆-closed. If it happens that S has degenerate critical points on
a Lagrangian L0, we use the freedom to deform L0 to another Lagrangian L1 in
such a way that S has non-degenerate critical points on L1 and the integral can be
calculated by the stationary phase formula. Thus, the gauge-fixing in BV formalism
is the choice of the Lagrangian submanifold in F .

One can also study observables in BV formalism. One says that O ∈ C∞(F)[[~]]
is a (quantum) BV observable, if δSO = 0 is satisfied. The expectation value of an
observable is the BV integral of form

〈O〉 =
1

Z

∫
L⊂F

√
µ e

i
~SO

Equation δSO = 0 is a way to express gauge-invariance of the observable in BV
formalism, and guarantees that the integrand above is ∆-closed and hence one can
deform L in the class of Lagrangians, thereby applying the gauge-fixing strategy
as above and converting the integral to the form where it can be calculated by the
stationary phase formula.

Remark 4.93. Note that, since δS is not a derivation, a product of observables
in BV formalism is not necessarily an observable. (Though, one can correct the
naive product to a δS-cocycle using homological perturbation theory.) However, in
the context of local field theory, a product of observables with disjoint support is
indeed an observable (e.g. the product of Wilson loop observables in Chern-Simons
theory for several non-intersecting loops is an observable).

Example 4.94 (A quantum BRST system in BV formalism). Let (FBRST, QBRST, SBRST, µBRST)
be a quantum BRST package (cf. Section 4.3.2). We define FBV, ωBV, SBV as in the
Example 4.91. For the Berezinian on the cotangent bundle we set µBV = µ⊗2

BRST

(using (161)). Note that, since the BV action (191) does not depend on ~, the
quantum master equations splits into two equations: {SBV, SBV} = 0 (the CME)
and ∆µBVSBV = 0. The CME is satisfied due to the classical BRST relations
Q2

BRST = 0, QBRST(SBRST) = 0, while equation ∆µBV
SBV = 0 follows from the

relation divQBRST = 0 for the quantum BRST package.
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Consider the gauge-fixing, within BV framework, for such a system coming from
a BRST package. Denote L0 the zero-section of FBV = T ∗[−1]FBRST and let
LΨ = graph(dΨ) ⊂ T ∗[−1]FBRST be the graph Lagrangian, for Ψ = Ψ(Φ) ∈
C∞(FBRST)−1.
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������������������������
������������������������
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L0

LΨ

T ∗[−1]FBRST

We use Φα for local coordinates on FBRST (and we assume for simplicity that
µBRST = DΦ locally) and Φ+

α for the corresponding fiber coordinates on T ∗[−1]FBRST.
Then gauge-fixing consists in the replacement
(192)∫
L0⊂T∗[−1]FBRST

√
µBV e

i
~SBV(Φ,Φ+) 7→

∫
LΨ⊂T∗[−1]FBRST

√
µBV e

i
~SBV(Φ,Φ+)

Since SBV on the zero-section reduces to SBRST, the l.h.s. of (192) reduces to∫
FBRST

DΦ e
i
~SBRST(Φ). On the other hand, to evaluate the r.h.s. of (192), we note

that SBV restricted to the Lagrangian LΨ is SBV(Φα,Φ+
α = ∂

∂ΦαΨ) = SBRST +

QBRST(Ψ). Therefore, r.h.s. of (192) reads
∫
FBRST

DΦ e
i
~ (SBRST(Φ)+QBRST(Ψ)).

Thus, BV gauge-fixing, performing the Lagrangian homotopy L0 7→ LΨ precisely
corresponds to the gauge-fixing procedure of BRST formalism (149), shifting the
BRST action by a QBRST-coboundary.

Lecture 24,
11/21/2016. 4.8.3. BV for gauge symmetry given by a non-integrable distribution.

4.8.4. Felder-Kazhdan existence-uniqueness result for solutions of the classical mas-
ter equation.
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