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1 The Arnold Conjecture

Let .M;!/ be a 2n-dimensional compact symplectic manifold. Then a time-dependent Hamiltonian
on .M;!/ is a smooth mapH W M�R! R, which we also view as a family ¹Htºt2R of Hamiltonians
parametrized by R. For each t 2 R, we can associate to Ht its Hamiltonian vector field VHt

, which
we will abbreviate as Vt . Recall that this is the vector field characterized by

�Vt
! D dHt :

The collection of these gives rise to a time-dependent vector field V W M � R ! TM . Since M is
assumed to be compact, we have a globally defined time-dependent flow � W M �R �R!M . This
flow in turn gives rise to two families of objects:

� For each p 2M , a smooth curve x.p/ W R!M given by x.p/.t/ D �.p; 0; t/, which satisfies

Px.p/.t/ D Vt B x
.p/.t/: (H)

This is the unique maximal integral curve of V with initial condition x.p/.0/ D p, and the equation
(H) is called Hamilton’s equation. It is a consequence of the theory of time-dependent flows that
the family ¹x.p/ºp2M is a complete set of solutions to (H).

� For each t 2 R, a diffeomorphism xt W M !M given by xt .p/ D �.p; 0; t/. Observe that

d

dt
xt D Vt B xt ; x0 D IdM :

We call the collection ¹xtºt2R the Hamiltonian diffeotopy generated by H . We also know that
xt 2 Symp.M;!/ for all t 2 R by definition, so that each xt is a symplectomorphism.

Now suppose that the Hamiltonian H satisfies Ht D HtC1 for all t 2 R, which is to say it is
1-periodic. We will call a solution x.p/ of (H) 1-periodic if it satisfies x.p/.t C 1/ D x.p/.t/ for all
t 2 R, meaning that it corresponds uniquely to a smooth curve x.p/ W R=Z!M . Let P .H/ be the
set of all 1-periodic solutions of (H).

1.1 Proposition. The set P .H/ is in bijection with the set Fix.x1/ of fixed points of x1 W M !M .

Proof. First suppose that x.p/ 2 P .H/. Then by definition we have x1.p/ D x.p/.1/ D x.p/.0/ D p,
so that p 2 Fix.x1/. Conversely, if p 2 Fix.x1/, then define a smooth curve y.p/ W R ! M by
y.p/.t/ D x.p/.t C 1/ for all t 2 R. Then

Py.p/.t/ D Px.p/.t C 1/ D VtC1.x
.p/.t C 1// D Vt .y

.p/.t//;
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so that y.p/ is a maximal integral curve of V with initial condition y.p/.0/ D x.p/.1/ D x.p/.0/ D p,
and so by uniqueness we must have x.p/.t C 1/ D y.p/.t/ D x.p/.t/ for all t 2 R, so that
x.p/ 2 P .H/. This completes the proof. �

We will call a 1-periodic solution of (H) nondegenerate if

det.I2n � dx1.p// ¤ 0:

We can now formulate the famous conjecture which launched the development of Floer homology.

1.2 Theorem (Arnold Conjecture). Let .M;!/ be a 2n-dimensional compact symplectic manifold
and H W M �R! R be a time-dependent 1-periodic Hamiltonian. Suppose that every x.p/ 2 P .H/

is nondegenerate. Then

jP .H/j �

2nX
iD0

dimHi .M IQ/:

An important observation about the previous discussion is that if the Hamiltonian H is time-
independent, so that it is just given by a smooth function H W M ! R, then all the critical points of
H are constant solutions of (H), and the assumption that all such solutions are nondegenerate can be
shown to imply that H is a Morse function on M . The Arnold conjecture then follows immediately
from the standard Morse inequalities.

This suggests that a plausible approach to the Arnold conjecture in the case of time-dependent
Hamiltonians would be to look for some generalization of Morse theory to the infinite-dimensional
setting. This is exactly the objective which Floer homology accomplishes. In order to understand
exactly how it generalizes Morse homology, we now proceed with a quick review of the latter theory.

2 Morse-Smale Theory

Let .M; g/ be a compact orientable Riemannian manifold and f W M ! R be a smooth function. We
write Crit.f / for the set of critical points of f . For every p 2M , there exists a symmetric covariant
2-tensor on M , called the Hessian of f and denoted by H.f /. In any smooth chart, the Hessian is
represented by the matrix of second partial derivatives of f . We say f is a Morse function if H.f /p
is nondegenerate for all p 2 Crit.f /, and we then define the index of p to be the number of negative
eigenvalues of H.f /p, hereafter denoted by Indf .p/.

Now let � W M � R ! M be the flow of �rf , where rf is the gradient vector field of f ,
uniquely defined by �rf g D df . For every p 2M , the gradient flow line at p is the unique maximal
integral curve � .p/ W M ! R of rf for which � .p/.0/ D p.

2.1 Proposition. All gradient flow lines originate from and terminate at critical points.

In view of the previous proposition, for every p 2 Crit.f /, we define the following two sets:

W s.p/ D ¹q 2M j lim
t!1

� .q/.t/ D pº; W u.p/ D ¹q 2M j lim
t!�1

� .q/.t/ D pº:

We call the above two sets the stable and unstable manifolds of p, respectively. These are in fact
submanifolds of M , and one can also show that we have

dimW u.p/ D Indf .p/:
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We will say the pair .f; g/ satisfies the Morse-Smale condition if for all p; q 2 Crit.f /, we have

W s.p/ t W u.q/;

which is to say that these intersect transversally. In this case, the set

W.q; p/ D W s.p/ \W u.q/

is a smooth manifold whose elements are those x 2M whose gradient flow lines connect q to p, and
we call these gradient flow lines connecting orbits from q to p. By transversality, we also have that

dim W.q; p/ D Indf .q/ � Indf .p/:

Now R acts freely and properly on W.q; p/ by t � x 7! � .x/.t/ for t 2 R. The quotient

M.q; p/ D W.q; p/=R

is a smooth manifold, called the moduli space of flow lines from q to p. We then see that we have

dim M.q; p/ D Indf .q/ � Indf .p/ � 1:

Therefore the Morse-Smale condition implies that Indf .p/ < Indf .q/ whenever there is a connecting
orbit from q to p, so the index of critical points must strictly decrease along flow lines.

One can show that M.q; p/ is a finite set whenever dim M.q; p/ D 0, whose elements represent
connecting orbits from q to p up to time translation. After some appropriate choice of orientations for
the various unstable manifolds, we can assign to  2M.q; p/ a number "./ 2 ¹˙1º. We then define

n.q; p/ D
X

2M.q;p/

"./:

It can then be shown that n.q; p/ is independent of our choice of orientations up to a sign.
For each 0 � k � n, we let Critk.f / be the set of critical points of f of index k. Then we define

Ck.f / D ZhCritk.f /i; C�.f / D

nM
kD0

Ck.f /;

and a homomorphism @ W Ck.f /! Ck�1.f / by

@.q/ D
X

p2Critk.f /

n.q; p/p:

It can be shown that @2 D 0. We call .C�.f /; @/ the Morse-Smale complex of f , and its homology
HMor
� .M IZ/ is called the Morse homology of M . We then have the following result.

2.2 Theorem (Morse Homology). HMor
� .M IZ/ Š H�.M IZ/.

Among other things, this result shows that the Morse homology is independent of the choice of
Morse function. From it we can also deduce the Morse inequalities, which we can in turn use to deduce
the Arnold conjecture in the time-independent case, as mentioned at the end of the previous section.
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Let us summarize this section, so as to make the analogy with the infinite-dimensional case clearer:

i. We started with a Morse function and analyzed its critical points.

ii. We studied gradient flow lines on the manifold and saw that these start and end at critical points.

iii. We imposed the Morse-Smale condition so as to get a nice structure on the moduli space of
connecting orbits between critical points of decreasing index.

iv. We assigned meaningful signs to the connecting orbits which reflect their compatibility with the
orientation of the manifold.

v. We constructed a chain complex from the set of critical points graded by index.

vi. The homology of this complex turned out to be isomorphic to the singular homology, and gave
meaningful topological information.

This procedure will be repeated to the letter in the next section.

3 Symplectic Floer Homology

Let .M;!/ be a compact connected symplectic manifold. For technical reasons we will ask that
�2.M/ D 0 (although strictly speaking it is not necessary). Let H W M � R ! R be a 1-periodic
time-dependent Hamiltonian which is "nice enough", a requirement which among other implications
assures us that all 1-periodic solutions of (H) are nondegenerate.

An almost complex structure on M is a bundle endomorphism J 2 End.TM/ with the property
that J 2 D � IdTM . We say J is compatible with ! if !.JX; J Y / D !.X; Y / for all X; Y 2 X.M/

and if the covariant 2-tensor
g.�;�/ D !.�; J�/

defines a metric on M . The space of compatible structures on M is denoted by J.M;!/.

3.1 Theorem. The space J.M;!/ is nonempty and contractible.

Let LM be the space of smooth contractible loops in M , which are smooth maps x W R=Z!M

for which there is a smooth map Qx W D2 ! M such that QxjS1 D x. This turns out to have the
structure of a Banach manifold, which among other things means that we can carry out many of the
constructions on it that we can for finite-dimensional smooth manifolds. We now define the action
functional on LM as the map aH W LM ! R=Z given by

aH .x/ D �

Z
D2

Qx�! �

Z 1

0

Ht .x.t// dt;

for some smooth extension Qx W D2 ! M of x. One can then show that the critical points of aH are
precisely the elements of P .H/. Therefore the action functional will be our generalization of a Morse
function to infinite dimensions.

Now let ¹Jtºt2R be a 1-periodic family of almost complex structures on M compatible with !,
and let gt be the associated Riemannian metric for each t 2 R. For x 2 LM , the tangent space
TxLM consists of vector fields along x, and therefore for V;W 2 TxLM , we can define a metric by

hV;W i D

Z 1

0

gt .Vx.t/; Wx.t// dt:
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The gradient of the action functional aH with respect to this metric is

raH .x/.t/ D Jt .x.t// Px.t/ � rHt .x.t//;

where rHt is the gradient of Ht with respect to gt . The flow lines of this gradient are exactly the
smooth curves  W R! LM satisfying

@

@s
C Jt ./

@

@t
� rHt ./ D 0; (F)

and .s; t/ D .s; t C 1/ for all t 2 R. Now in the Morse-Smale theory, we saw that the gradient flow
lines originated and terminated at critical points of the Morse function. In the infinite-dimensional
context, this remains true for a flow line  if and only if E./ <1, where

E./ D
1

2

Z 1

0

Z 1
�1

�ˇ̌̌̌
@

@s

ˇ̌̌̌2
C

ˇ̌̌̌
@

@t
� Vt ./

ˇ̌̌̌2�
ds dt:

If this is the case we say  has finite energy, and there exists xC; x� 2 P .H/ such that

lim
s!˙1

.s; t/ D x˙.t/:

Let W.x�; xC/ be the space of all such  . Then because H was chosen to be "nice enough", these all
turn out to be finite-dimensional manifolds and there is a function �H W P .H/! R such that

dim W.x�; xC/ D �H .x
�/ � �H .x

C/:

Intuitively, the map �H is playing the role of the index of critical points in the Morse-Smale theory. The
number �H .x/ is called the Conley-Zehnder index of x. (Its actual definition is quite complicated,
and our description of it here is really only a special case which applies when �2.M/ D 0.)

Let x˙ 2 P .H/ be such that �H .x�/ � �H .xC/ D 1. Then R acts freely and properly on
W.x�; xC/ by a � u.s; t/ D u.s C a; t/ for a 2 R. The quotient manifold

M.x�; xC/ D W.x�; xC/=R

is zero-dimensional, and called the moduli space of connecting orbits from x� to xC.

3.2 Theorem. M.x�; xC/ is finite for any x˙ 2 P .H/ with �H .x�/ � �H .xC/ D 1.

It can then be shown that all such moduli spaces are orientable, and after choosing a system of
appropriate orientations for each, which is done by a rather involved procedure, we can assign to every
 2M.x�; xC/ a well-defined number "./ 2 ¹˙1º.

Let F be a principal ideal domain and CFk.M/ be the free F -module generated by critical points
x 2 P .H/ with �H .x/ D k. Define a homomorphism @ W CFk.M;!;F/! CFk�1.M;!;F/ by

@.y/ D
X

�H .x/Dk�1

X
u2M.y;x/

".u/x:

Then we have the following easy to state, but rather difficult to prove, result.

3.3 Theorem (Floer). @2 D 0.
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We call .CF�.M;!IF/; @/ the Floer complex of M and its homology HF�.M;!IF/ is called
the Floer homology of M . This can all be shown to be independent of the choices of time-dependent
Hamiltonian H and complex structure J . In particular, we can choose them to be time-independent.
In this case an element x 2 P .H/ is just a critical point of H , and furthermore H can be chosen in a
special enough way that the moduli spaces M.x�; xC/ coincide with those defined in the Morse-Smale
theory. We can therefore reduce the computation of Floer homology to that of Morse homology, and
by the main result obtained for that theory, we have the following.

3.4 Theorem (Floer). HF�.M;!IF/ Š H�.M IF/.

This allows us to prove the Arnold conjecture in a rather general setting.

3.5 Corollary (Arnold Conjecture, Special Case). Let .M;!/ be a 2n-dimensional compact con-
nected symplectic manifold with �2.M/ D 0 and H W M �R! R be a time-dependent 1-periodic
Hamiltonian. Suppose that every x.p/ 2 P .H/ is nondegenerate. Then

jP .H/j �

2nX
iD0

dimHi .M IQ/:

Proof. We have jP .H/j D rank.CF�.M;!IF // � rank.H�.M IQ// D
P2n
iD0 dimHi .M IQ/. �
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