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1 The Hamiltonian Framework

Throughout this section we fix a symplectic manifold .M;!/. If f 2 C1.M/, the Hamiltonian
vector field of f , denoted by Xf , is defined by

�Xf
! D df:

In local Darboux coordinates .xi ; yi /, this yields the following coordinate formula:

Xf D
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�
:

1.1 Proposition. If f 2 C1.M/, then f is constant along each integral curve of Xf .

Proof. Let � W D !M be the flow of Xf and p 2M . Then

.f B � .p//0.t/ D dfp. P�
.p/.t// D dfp..Xf /p/ D !p.Xf ; Xf / D 0: �

If f; g 2 C1.M/, we define their Poisson bracket, denoted by ¹f; gº, as ¹f; gº D !.Xf ; Xg/.
The Poisson bracket then makes C1.M/ into a Lie algebra. Now X 2 X.M/ is said to be

� symplectic if ! is invariant under the flow of X , and we then write X 2 XS .M/,

� Hamiltonian if there is some f 2 C1.M/ such that X D Xf , and we then write X 2 XH .M/.

Both XS .M/ and XH .M/ turn out to be Lie algebras under the usual Lie bracket of vector fields. We
also recall Cartan’s magic formula:

LX ! D �Xd! C d.�X!/ D d.�X!/:

We can then easily deduce the following two facts:

i. X 2 XS .M/ if and only if �X! is closed.

ii. X 2 XH .M/ if and only if �X! is exact.

It follows that XH .M/ � XS .M/, and we have the following short exact sequence of Lie algebras:

0 XH .M/ XS .M/ H1dR.M/ 0;

where H1dR.M/ is viewed as a trivial Lie algebra and the map XS .M/ ! H1dR.M/ is X 7! Œ�X!�.
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This map can be seen to be a Lie algebra homomorphism by using the Cartan equations.

1.2 Proposition. If H1dR.M/ D 0, then XS .M/ D XH .M/.

Proof. This is immediate in view of the above short exact sequence. �

For any H 2 C1.M/, we will use the following terminology:

� The triple .M;!;H/ is called a Hamiltonian system.

� The function H is called the Hamiltonian of the system.

� The flow of XH is called the Hamiltonian flow of the system.

� The integral curves of XH are called the trajectories or orbits of the system.

In Darboux coordinates, the coordinate formula for XH implies that a trajectory .t/ D .xi .t/; yi .t//
satisfies the following equations:

Pxi .t/ D
@H

@yi
.x.t/; y.t//;

Pyi .t/ D �
@H

@xi
.x.t/; y.t//:

These are known classically as Hamilton’s equations.
A function f 2 C1.M/ is called a conserved quantity of the system if it is constant on its

trajectories. A vector field V 2 X.M/ is called an infinitesimal symmetry of the system if both !
and H are invariant under the flow of V . We have the following proposition.

1.3 Proposition.

(a) f 2 C1.M/ is a conserved quantity if and only if ¹f;H º D 0.

(b) X 2 X.M/ is an infinitesimal symmetry if and only if X is symplectic and XH D 0.

Proof. These are straightforward to prove and are left as an exercise. �

1.4 Theorem (Noether’s Theorem).

(a) If f 2 C1.M/ is a conserved quantity, then Xf is an infinitesimal symmetry.

(b) If H1dR.M/ D 0, then each infinitesimal symmetry is the Hamiltonian vector field of a conserved
quantity, which is unique up to a locally constant function.

Proof. To prove (a), note that ifXf is Hamiltonian, and hence symplectic. Also, since f is a conserved
quantity, we have 0 D ¹f;H º D ¹H;f º D XfH . Therefore Xf is an infinitesimal symmetry.

To prove (b), assume that X is an infinitesimal symmetry. Then X is symplectic and therefore
Hamiltonian since H1dR.M/ D 0. So there is some f 2 C1.M/ such that X D Xf . Then we also
have ¹f;H º D �¹H;f º D �XfH D 0, by our characterization of infinitesimal symmetries. It g is
any other function which satisfies Xg D X , then d.g � f / D �Xg�Xf

! D 0, so that g � f must be a
locally constant function on M . �

Observe that since ¹H;H º D 0, the Hamiltonian H is itself a conserved quantity of the system.
The corresponding infinitesimal symmetry is just XH . Since H is usually interpreted as an energy
function of a physical system, the fact that it is conserved is classically called conservation of energy.
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2 Lie Theory

If G is a Lie group, the Lie algebra of G , denoted by g, is the Lie algebra of all left-invariant vector
fields on G, and this is canonically isomorphic to TeG via the isomorphism X 7! Xe. If X 2 g, the
maximal integral curve of X starting at the identity (which is necessarily defined for all time since
left-invariant vector fields are complete) is called the one-parameter subgroup generated by X .

The exponential map of G is the map exp W g ! G defined by expX D .1/, where  is the
integral curve of X starting at the identity. It can then be shown that the curve  W R! G given by
.t/ D exp tX is exactly the one-parameter subgroup generated by X .

If M is a smooth manifold, a left G -action on M is a homomorphism ' W G ! Diffeo.M/,
denoted as g 7! 'g . We will then say the action ' is smooth if the map G �M ! M given by
.g; p/ 7! 'g.p/ is smooth. If X 2 g generates the one-parameter subgroup exp tX , we can define a
smooth vector field X] on M by

X]p D
d

dt

ˇ̌̌̌
tD0

'exp tX .p/:

For each g 2 G, we have the conjugation mapping Cg W G ! G defined as Cg.h/ D ghg�1. We
then define the adjoint representation of G to be the homomorphism Ad W G ! GL.g/ given by
g 7! Adg , where

Adg D .dCg/e W g! g:

We then define the coadjoint representation of G to be the homomorphism Ad� W G ! GL.g�/

given by g 7! Ad�g , where
Ad�g D .Adg�1/� W g� ! g�:

3 Moment Maps

Throughout this section we fix a symplectic manifold .M;!/ and a connected Lie group G. We
say a left G-action ' W G ! Diffeo.M/ is symplectic if '.G/ � Symp.M/. This means that the
diffeomorphism 'g W M !M is a symplectomorphism for each g 2 G.

A moment map for G is a smooth map � W M ! g� satisfying the following properties:

i. If ��.X/ W M ! R is the map ��.X/.p/ D �.p/.X/ with X 2 g, then

d��.X/ D �X]!:

ii. � is equivariant with respect to the coadjoint action on g�, so that for all g 2 G, we have

� B 'g D Ad�g B�:

If such a map exists, we say ' is a Hamiltonian group action and call the quadruple .M;!;G;�/ a
Hamiltonian G -space. From the moment map, we can construct the corresponding comoment map,
which is the linear map �� W g! C1.M/ given by

�� W X 7! ��.X/:

It can then be shown that the defining properties of � imply the following two properties for ��:
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i. ��.X/ is a Hamiltonian function for X].

ii. �� is a Lie algebra homomorphism:

��ŒX; Y � D ¹��.X/; ��.Y /º;

In fact, the two pairs of properties are equivalent, which is to say that moment maps and comoment
maps encode the same data. (This relies on our assumption that G is connected.)

Any Hamiltonian group action is symplectic by definition, but we also have the following useful
criterion for determining when the converse is true when M is compact and connected. Suppose that
every symplectic vector field on M was Hamiltonian, and fix a basis ¹X1; : : : ; Xkº of g. Then for
each such Xi , the vector field X]i is symplectic, and by assumption we can find a smooth function
��.Xi / on M for which

�
X

]

i

! D d��.Xi /:

The ��.Xi / are only unique up to a constant, but we can fix said constant by requiring thatZ
M

��.Xi /!
n
D 0:

Extending by linearity, we obtain a linear map �� W g! C1.M/ with

�X]! D d��.X/:

The integration condition above actually shows that �� is a Lie algebra homomorphism.

3.1 Theorem. If H1dR.M/ D 0, then every symplectic G-action on M is Hamiltonian. This is true in
particular when M is simply connected.

3.2 Theorem (Generalized Noether’s Theorem). A function f 2 C1.M/ isG-invariant if and only
if the moment map � is constant on the integral curves of Xf .

Proof. Observe that � being constant on the integral curves of Xf is equivalent to ��.X/ being
constant on the integral curves of Xf for each X 2 g. But then we have

LXf
��.X/ D �Xf

d��.X/

D �Xf
�X]!

D ��X] �Xf
!

D ��X]df

D �LX] f:

Since G is connected, the vanishing of the final expression is equivalent to the G-invariance of f . The
theorem now follows immediately from this equality. �

Observe that a Hamiltonian system .M;!;H/ is a trivial example of a Hamiltonian R-space when
XH is complete. The R-action in this case is just action by the flow of XH , and the moment map is
just H itself. An R-invariant function is then the same as a conserved quantity, and H being constant
on the integral curves of Xf is the same as Xf being an infinitesimal symmetry. So the previous
theorem does indeed generalize Noether’s theorem as presented previously.
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3.3 Example. Consider a particle moving in R3, and let .x; �/ be coordinates on T �R3 D R6, which
is given the standard symplectic form. Suppose we are given a Hamiltonian H W R6 ! R which
describes the dynamics of the particle. We will now look at two group actions on R6:

(a) Consider the action of R3 on R6 by .a; .x; �// 7! .x C a; �/ for a 2 R3. Then one can show
that the corresponding moment map � W R6 ! R3 is given by �.x; �/ D �. Classically, this is
called the linear momentum. If H is invariant under this action, then Noether’s theorem implies
that the linear momentum is invariant under translation in the space variable. This is known as
conservation of linear momentum.

(b) Consider the action of SO.3/ on R6 by .A; .x; �// 7! .Ax;A�/. The corresponding Lie algebra
so.3/ consists of skew-symmetric 3 � 3 the moment map � is given by �.x; �/.A/ D h�; Axi.
Under the identification of so.3/ with R3 with Lie bracket given by the cross product, the moment
map becomes �.x; �/ D x � �. Classically, this is called the angular momentum. If H is
invariant under this action, then Noether’s theorem implies that the angular momentum is invariant
under rotation in space. This is known as conservation of angular momentum.

4 Symplectic Reduction

We let .M;!;G;�/ be a Hamiltonian G-space. For � 2 g�, let G� be the isotropy subgroup of
G under the coadjoint action. Since � is equivariant under the coadjoint action, the quotient space
M� D �

�1.�/=G� is well defined. Denote by �� W ��1.�/!M� and �� W ��1.�/!M the canonical
projection and inclusion maps, respectively. We then have the following result.

4.1 Theorem (Marsden-Weinstein Theorem). Suppose that � 2 g� is a regular value of � and that
G� acts freely and properly on ��1.�/. ThenM� is a smooth manifold of dimension dimM �dimG�

dimG� , and there is a symplectic form !� on M� such that ��
�
! D ��

�
!� . The pair .M� ; !�/ is called

the symplectic reduction of .M;!/ with respect to .G;�/ at the level �.

Note that if G is abelian, then the coadjoint action is trivial and hence G� D G for all � 2 g�.
Therefore if G acts freely and properly on ��1.�/, then M� will have dimension dimM � 2 dimG.

4.2 Example. We have observed that a Hamiltonian system .M;!;H/ for which XH is complete
vector field is a Hamiltonian R-space with moment map H . If p 2 R is any regular value of H , then
H�1.e/=R is a symplectic reduction of dimension dimM � 2. It is called the manifold of solutions
of constant energy.

4.3 Example. If M D T �R3k , say the phase space of a system of k particles in R3, and G D R3

with linear momentum, then for any c 2 R3, the reduction T �R3k=R3 is the process of switching to
the center of mass reference frame, which in effect allows the study of the dynamics of the system of
particles while ignoring the momentum. In this way the degrees of freedom of the system of reduced.

4.4 Example. If M D T �R3 and G D SO.3/ with angular momentum, then for � 2 so.3/ Š R3

with � ¤ 0, we have G� D S1, which correspond to rotations about the axis �. The reduction
��1.�/=S1 is a generalization of a procedure in celestial mechanics called elimination of nodes.

4.5 Theorem. With the assumptions of the Marsden-Weinstein theorem, suppose that H 2 C1.M/ is
a G-invariant Hamiltonian. Then the flow � of XH leaves ��1.�/ invariant and commutes with the
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G� -action, so it descends to a flow � on M� satisfying �� B �t D �t B �� . This flow is the Hamiltonian
flow on M� of a Hamiltonian H� which satisfies H� B �� D H B �� . This is called the reduced
Hamiltonian.

5 Existence and Uniqueness

Assume for this section that:

� .M;!/ is a connected symplectic manifold.

� G is a connected Lie group.

A symplectic action ' W G ! Symp.M/ yields a Lie algebra anti-homomorphism d' W g !

XS .M/ given by X 7! X], since each X] is a symplectic vector field. Now since G is connected, the
action ' is Hamiltonian if and only if there is a Lie algebra homomorphism �� W g! C1.M/ such
that the following diagram commutes:

C1.M/

g XS .M/

˛
��

d'

Of course, �� is nothing but the comoment map. We now digress to talk about Lie algebra cohomology.
Let g be a Lie algebra and let C k D ƒkg�. Then it can be shown that there is a linear operator

ı W C k ! C kC1 such that ı2 D 0. We thus have a cochain complex whose cohomology, denoted by
H�.gIR/, is called the Lie algebra cohomology of g.

5.1 Theorem. If G is compact, then Hk.gIR/ D HkdR.G/.

The commutator ideal of g is

Œg;g� D Span¹ŒX; Y � jX; Y 2 gº:

It can then be shown that H1.gIR/ is the space of those c 2 g� for which cjŒg;g� D 0.
We can now answer the question of uniqueness of moment maps whenG is compact. For if ��1 and

��2 are both comoment maps for the same symplectic action ' W G ! Symp.M/, then by definition,
for every X 2 g the maps ��1.X/ and ��2.X/ are both Hamiltonian functions for the vector field X].
We conclude that

��1.X/ � �
�
2.X/ D C

X

is a constant function on M , and so the mapping X 7! CX defines an element C 2 g�. Therefore,

�1 D �2 C C;

and using the fact that ��1 and ��2 are Lie algebra homomorphisms, it can be shown that C.ŒX; Y �/ D 0
for all X; Y 2 g. Thus C 2 H1.gIR/, and we have therefore proved the following result.

5.2 Theorem. If H1.gIR/ D 0, then moment maps for Hamiltonian G-actions are unique.
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5.3 Theorem. LetG be a connected Lie group with H1.gIR/ D H2.gIR/ D 0. Then every symplectic
G-action is Hamiltonian.

This is realized in case where G is semisimple, that is, compact and g D Œg;g�.

5.4 Proposition. Let G be a compact Lie group. Then G is semisimple if and only if H1.gIR/ D
H2.gIR/ D 0.
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