
The Atiyah-Singer index theorem (Updated talk)

Wern Yeong
Fall 2019 Intermediate Geometry and Topology

November 23, 2019

1 References.

• Levi Lopes de Lima, “The index formula for Dirac operators: an introduction”.

• Friedrich Hirzebruch, Matthias Kreck, “On the concept of genus in topology and complex
analysis”.

• Rafe Mazzeo, “The Atiyah-Singer index theorem: what it is and why you should care”.

• Liviu Nicolaescu, “Notes on the Atiyah-Singer index theorem”.

• John Roe, “Elliptic operators, topology and asymptotic methods”.

2 Introduction.

Consider the following theorems:

1. Riemann-Roch. l(D) − l(K −D) = degD + 1 − g(X), where K is a canonical divisor and
D is any divisor on a Riemann surface X, and l(D) is the dimension of the vector space of
meromorphic functions f on X whose divisor (f) makes (f)+D effective. The LHS contains
analytic information, while the RHS contains topological information in g(X).

2. Hirzebruch signature theorem. sign(M) = L[M ] is the L-genus of M . One can think of the
LHS as containing analytic information via Hodge theory, while the RHS contains topological
information.

3. Chern-Gauss-Bonnet. χ(M) =
∫
M
e(Ω). The LHS contains topological information in the

Euler characteristic of M , and the RHS contains analytic information. (Alternatively, one
can compute the LHS by computing the index of some operator and the RHS topologically,
as we will soon see.)

4. χ(V ) =
∫
V
Tn(V ) is the Todd genus of V , when V is a nonsingular compact complex algebraic

variety of dimension n. The LHS contains analytic information in the holomorphic Euler
number, and the RHS contains topological information.

These theorems relate analytic and topological information. They generalize to the Atiyah-
Singer index theorem.
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3 The Atiyah-Singer index theorem.

The Atiyah-Singer index theorem computes the index of some operator in terms of topological
invariants. The general form of the theorem applies to elliptic pseudodifferential operators. Its
statement and proof involve K-theory, which Connor will talk about. Here we look at the special
case that applies to twisted Dirac operators.

3.1 The set-up.

(See Ch. 8 of de Lima.) Let us consider a spin manifold M of dimension n = 2k. It comes with a
canonical bundle called the spinor bundle S(M) with connection ∇S . There is the Atiyah-Singer-
Dirac operator /∂ on S(M), defined by

/∂ : C∞(S(M))
∇S−−→ C∞(T ∗M ⊗ S(M))→ C∞(S(M)).

In terms of the local frame for TM , the operator is /∂ =
∑n

i=1 ei · ∇Sei , so we see that it is a
first-order linear differential operator. It is formally self-adjoint, hence has index 0. Clearly we
are not computing ind(/∂) in the Atiyah-Singer index theorem.
S(M) has a decomposition S(M) = S+(M) ⊕ S−(M) that respects the metric and ∇S , such

that /∂(C∞(S±(M))) ⊆ C∞(S∓(M)). We denote /∂
±

= /∂ |C∞(S±(M)) . These operators /∂
±

are formal

adjoints, so ind(/∂
+

) = dim ker /∂
+ − dim ker /∂

−
. This is the index we want to compute.

Now we give a slightly more general set-up, involving twisted Dirac operators. Say we have
a hermitian vector bundle G over M with compatible connection ∇G, then the bundle S(M)⊗ G
inherits the decomposition S(M) ⊗ G = S+(M) ⊗ G ⊕ S−(M) ⊗ G. There is the twisted Dirac
operator /∂G defined by

/∂G : C∞(S(M)⊗ G)
∇S(M)⊗G
−−−−−→ C∞(T ∗M ⊗ S(M)⊗ G)→ C∞(S(M)⊗ G).

As above, we can define /∂
±
G , which are adjoints. In this case we compute ind(/∂

+
G ) = dim ker /∂

+
G −

dim ker /∂
−
G .

3.2 The theorem.

Theorem. (Atiyah-Singer for twisted Dirac operators) In the above set-up,

ind(/∂
+
G ) =

∫
M

Â(TM) ∧ ch(G),

where ch(G) denotes the Chern character of G.

The Chern character of a bundle is constructed from its Chern classes, so it is a topological
invariant of the bundle. (More explanation will follow.) So the LHS contains analytic information,
and the RHS is computed by topological invariants.

In particular, if M has dimension n = 4l, and we let G = C, then we get the index of the
Atiyah-Singer-Dirac operator /∂

+
:

Theorem. (Atiyah-Singer for Atiyah-Singer-Dirac operators)

ind(/∂
+

) =

∫
M

Â(TM) = Â-genus of M.
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If M is a 4-dimensional spin manifold, then it follows immediately from the theorem that
Â(M) = − 1

24

∫
M
p1(TM) is an integer, which is not obvious from the definition of the Pontrjagin

classes.

3.3 Chern character.

(See Ch. 7 of de Lima.) The Chern character ch(E) of a vector bundle E is made from the Chern
classes ci(E) of E . By the splitting principle, to compute ch(E), we only need the case when E = L1⊕
. . .⊕Lr is a sum of line bundles. Let xi = c1(Li), then c(E) = c(L1) · · · c(Lr) = (1+x1) · · · (1+xr).
Expanding the expression so that c(E) = c0(E) + c1(E) + . . ., where ck(E) ∈ H2k(M ;Q), we see
that ck(E) = σk(x1, . . . , xr) is the k-th elementary symmetric function in xi.

We define the Chern character to be ch(E) =
∑

i e
xi ∈ H∗(M ;Q). Expanding the expression

so that ch(E) = ch0(E) + ch1(E) + . . ., where chk(E) ∈ H2k(M ;Q), we get

ch(E) = r + x1 + . . .+ xr︸ ︷︷ ︸
c1(E)

+
1

2

(
x2

1 + . . .+ x2
r

)︸ ︷︷ ︸
1
2

(c1(E)2−2c2(E))

+ . . . .

Note that ch(E ⊕ E ′) = ch(E) + ch(E ′) and ch(E ⊗ E ′) = ch(E)ch(E ′), so it is a ring homomor-
phism. Alternatively, we can define ch(E) =

[
tr
(
e−Ω/2πi

)]
∈ H∗(M ;Q) where Ω is the curvature

form of some connection on E . (This follows the Chern-Weil construction that computes topological
invariants from connections and curvatures.)

4 Applications.

4.1 The Chern-Gauss-Bonnet formula.

(See Ch. 10.1 of de Lima.) We use the theorem to prove the special case of the Chern-Gauss-
Bonnet formula when the manifold is spin.

Theorem. (Chern-Gauss-Bonnet) Let M be a spin manifold of dimension n = 2k, then its Euler
characteristic is χ(M) =

∫
M
e(TM), where e(TM) is the Euler class of TM .

To apply Atiyah-Singer, we shall find some twisted Dirac operator whose index is χ(M).
Let Λeven(M) denote the bundle of even-degree complex differential forms over M , and let

Aeven(M) = C∞(Λeven(M)). Define the same things for odd-degree forms.
Consider the operator D = d + d∗ : Aeven(M) → Aodd(M). By Hodge-de Rham theory,

ind(D) = χ(M). However, this operator D is not a twisted Dirac operator with respect to the

grading Λ(M) = Λeven(M)⊕Λodd(M). Instead we consider the twisted Dirac operator /∂
+

(−1)kŜ(M),

where Ŝ(M) = S+(M) − S−(M). It turns out that ind(D) = ind
(
/∂

+

(−1)kŜ(M)

)
. Now we just

compute the two topological invariants appearing on the RHS of the Atiyah-Singer formula:

1. ch(Ŝ(M)) =
∏(

e−yi/2 − e+yi/2
)

= (−1)ky1 · · · yk + h.o.t. = (−1)ke(TM) + h.o.t., where yi
are some Chern classes of S±(M). (See details in Ch. 10.1 of de Lima.)

2. Â(TM) = 1 + h.o.t..

Therefore,

χ(M) = ind
(
/∂

+

(−1)kŜ(M)

)
=

∫
M

Â(TM) ∧ ch((−1)kŜ(M)) =

∫
M

(−1)2ke(TM) =

∫
M

e(TM).
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4.2 Topological obstructions of positive scalar curvature.

Lichnerowicz proved that a compact spin manifold with non-zero Â-genus does not admit any
metric of strictly positive scalar curvature. Here is a sketch of its proof (See Theorem 13.1 in
Roe):

Let /∂ be the Atiyah-Singer-Dirac operator on the spinor bundle. The Weitzenböck
formula says that /∂

2
= ∇∗∇ + 1

4
κ, where κ is scalar curvature. The Bochner vanishing argu-

ment says that if the least eigenvalue of κ is strictly positive, then there are no non-zero solutions
of /∂

2
s = 0. (See Theorem 3.10 in Roe.) If there is κ > 0, then since all eigenvalues are positive, this

argument implies that ker /∂ = ker /∂
2

= 0. Then Atiyah-Singer says that 0 = ind(/∂
+

) = Â-genus,
a contradiction.

Gromov and Lawson proved that any simply-connected closed non-spin manifold of dimension
≥ 5 has a metric of positive scalar curvature. Stolz later proved that any simply-connected closed
spin manifold of dimension ≥ 5 has a metric of positive scalar curvature if and only if some
characteristic number of that manifold is 0.

4.3 Rokhlin’s theorem.

By Atiyah-Singer, the Â-genus of a 4-dimensional spin manifold is the index of the Atiyah-Singer-
Dirac operator /∂. In this case, the kernel and cokernel of /∂ have a quaternionic structure, so they
are even-dimensional as C-vector spaces, hence there is a factor of 2 in the index, and the Â-genus
is even. (See Proposition 13.3 in Roe.)

Rokhlin proved that a closed compact oriented simply-connected smooth 4-fold with even
intersection form has signature that is divisible by 16. This is because Â-genus= −1

8
sign(M).

M. Freedman later showed the existence of a closed compact oriented simply-connected topological
4-fold with even intersection form whose signature is 8. Therefore this manifold has no smooth
structure. (See 3.2.36-38 in Nicolaescu.)

4.4 Etc.

Richard will talk about the Hirzebruch signature theorem and Hirzebruch-Riemann-Roch.
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