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Strategy:

1 Recall that Nd = # degree-d rational plane curves passing through
3d − 1 general points in P2.

2 Define a curve Y ⊆ M0,n(P2, d).

3 Intersect Y with boundary components of M0,n(P2, d).

4 Use linear equivalence (Keel) relations.
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Set-up.

Let n = 3d (not 3d − 1).
Label the marked points by {1, 2, . . . , n − 4, q, r , s, t} .
Recall that we have the forgetful morphism

M0,n(P2, d)→ M0,{q,r ,s,t}.

Pulling back the boundary points of M0,{q,r ,s,t} gives Keel relations in

M0,n(P2, d):∑
d1+d2=d
q,r∈A
s,t∈B

D(A,B; d1, d2) =
∑

d1+d2=d
q,s∈A
r ,t∈B

D(A,B; d1, d2) =
∑

d1+d2=d
q,t∈A
r ,s∈B

D(A,B; d1, d2).
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Define the curve Y .

Let z1, . . . , zn−4, zs , zt be general points and let lq, lr be general lines in
P2. Then

Y = ρ−11 (z1) ∩ · · · ∩ ρ−1n−4(zn−2) ∩ ρ−1q (lq) ∩ ρ−1r (lr ) ∩ ρ−1s (zs) ∩ ρ−1t (zt)

is a curve in M0,n(P2, d).

Sanity check:

dimM0,n(P2, d) = dimP2 +
∫
d [line] c1(TP2) + n − 3 =

2 + 3d + n − 3 = 2n − 1.

codim Y = 2(n − 2) + 1(2) = 2n − 2 because there are n − 2 points
(which have codim 2) and 2 lines (which have codim 1).
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Intersect Y with boundary components of M0,n(P2, d).

Bertini + general position of the points and lines =⇒
Y is a nonsingular curve in the automorphism-free locus.

Y intersects all boundary divisors transversally at general points of
the boundary.

A point in Y ∩D(A,B; d1, d2) with q, r ∈ A and s, t ∈ B is represented by
a pointed map µ : CA ∪ CB → P2.

Now we split into cases to count these pointed maps.
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Intersect Y with boundary components of M0,n(P2, d).

Case I: d1 = 0, d2 = d .

µ maps CA to the point lq ∩ lr .

If there is some point other than q, r in A, then µ maps that point to
lq ∩ lr , which contradicts the assumption that the points and lines lie
in general position.

Thus Y ∩ D(A,B; 0, d) 6= ∅ only when A = {q, r}.
µ takes the 3d − 2 points in B to the 3d − 2 general points in P2.

µ takes CA ∩ CB to lq ∩ lr .

Therefore #Y ∩ D({q, r}, {1, . . . , n − 4, s, t}; 0, d) = Nd .
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Intersect Y with boundary components of M0,n(P2, d).

Case II: 1 ≤ d1 ≤ d − 1.

Y ∩ D(A,B; d1, d2) 6= ∅ only when |A| = 3d1 + 1 due to general
position.

There are
( 3d−4
3d1−1

)
partitions such that q, r ∈ A, s, t ∈ B and

|A| = 3d1 + 1.

For each partition, #Y ∩ D(A,B; d1, d2) = Nd1Nd2d
3
1d2:

# choices of µ(CA) (discounting q, r) = Nd1 .
# choices of µ(CB) = Nd2 .
# choices of µ(q) = #µ(CA) ∩ lq = deg(µ(CA)) = d1.
# choices of µ(r) = #µ(CA) ∩ lr = deg(µ(CA)) = d1.
# choices of CA ∩ CB = #µ(CA) ∩ µ(CB)
= deg(µ(CA)) · deg(µ(CB)) = d1d2.

Case III: d1 = d , d2 = 0. Y ∩ D(A,B; d1, d2) = ∅ due to general position.
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Use linear equivalence (Keel) relations.

Summing all the cases,

#Y ∩ D(q, r |s, t) =
∑

d1+d2=d
q,r∈A
s,t∈B

D(A,B; d1, d2)

= Nd +
∑

d1+d2=d
d1,d2>0

Nd1Nd2d
3
1d2

(
3d − 4

3d1 − 1

)
.

Similar calculation gives

#Y ∩ D(q, s|r , t) =
∑

d1+d2=d
d1,d2>0

Nd1Nd2d
2
1d

2
2

(
3d − 4

3d1 − 2

)
.
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Use linear equivalence (Keel) relations.

By Keel relations, these numbers equal, so we get the recursive formula:

Nd =
∑

d1+d2=d

Nd1Nd2

(
d2
1d

2
2

(
3d − 4

3d1 − 2

)
− d3

1d2

(
3d − 4

3d1 − 1

))
.

Note that this is the same formula obtained from computation using
quantum cohomology.
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Reference

Section 0.6 of “Notes On Stable Maps And Quantum Cohomology” by
Fulton and Pandharipande.
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