BASIC GEOMETRY AND TOPOLOGY HOMEWORK 5, DUE 9/18/2020

I Prove that the fundamental group of an n-dimensional real projective space is

$$\pi_1(\mathbb{RP}^n) = \mathbb{Z}_2$$

for $n \ge 2$. (Hint: use Seifert-van Kampen theorem and induction in n.)

- II Let Γ be a rooted tree (a connected graph with no cycles and a distinguished vertex – the "root"); let us regard Γ as an oriented graph, with edges oriented *toward* the root. Consider the category C_{Γ} where the objects are vertices of Γ and the morphisms from vertex x to vertex y are the directed paths along edges of Γ from x to y (plus the trivial path from x to x as the identity morphism).¹ Does the coproduct in C_{Γ} exist for every pair of objects? If yes, describe it.
- III (a) Prove that the free product is the coproduct in the category of groups. I.e., prove the universal property of the free product of groups: let G_1, G_2 be two groups and $i_1: G_1 \to G_1 * G_2$, $i_2: G_2 \to G_1 * G_2$ the inclusions of $G_{1,2}$ into the free product as 1-letter words. Let H be another group and $f_1: G_1 \to H, f_2: G_2 \to H$ two homomorphisms. Prove that then there exists a unique homomorphism $f: G_1 * G_2 \to H$ such that $f \circ i_1 = f_1$ and $f \circ i_2 = f_2$.
 - (b) Prove that the wedge sum $X_1 \vee X_2$ is the coproduct in the category of pointed topological spaces.
 - (c) Let $X = X_1 \cup X_2$ be a topological space presented as a union of two open subsets. Show that, if $f_1 : X_1 \to Y$ and $f_2 : X_2 \to Y$ are two continuous maps to another topological space Y, agreeing on $X_1 \cap X_2$, then there exists a unique *continuous* map $f : X \to Y$ restricting to f_1 on X_1 and restricting to f_2 on X_2 . In other words, prove that X is the pushout (in the category Top) of the diagram $X_1 \xleftarrow{i_1} X_1 \cap X_2 \xrightarrow{i_2} X_2$ where i_1, i_2 are the inclusions.
- IV Let S^1 be the unit circle in \mathbb{C} and consider the map $f: S^1 \to S^1, z \to z^n$ (for n some integer). Compute the induced map $f_*: \pi_1(S^1, 1) \to \pi_1(S^1, 1)$.²
- V (a) Compute the fundamental group of \mathbb{R}^2 with *n* distinct points removed. (b) Compute the fundamental group of S^2 with *n* distinct points removed.

¹Note that there is at most one path from x to y, since Γ is a tree.

²Recall that $\pi_1(S^1)$ is isomorphic to \mathbb{Z} with the isomorphism given by the winding number of the loop.