INTERMEDIATE GEOMETRY AND TOPOLOGY EXERCISES 12, 12/3/2021.

1. Let (M, ω) be a compact symplectic manifold equipped with a hamiltonian action of a torus $\mathbb{T}^m = \underbrace{S^1 \times \cdots \times S^1}_m$, for some $m \ge 1$, with moment map $\mu \colon M \to \mathbb{R}^n$. Show that μ is automatically equivariant.

2. Consider the two versions of the condition of equivariance of the moment map μ for a hamiltonian group action $G \curvearrowright (M, \omega)$ – "finite" and "infinitesimal" versions:

(i) $\mu(g \cdot p) = \operatorname{Ad}_a^* \mu(p)$ for any $p \in M, g \in G$;

(ii) the common map $\mu^* : \mathfrak{g} \to C^{\infty}(M)$ is a Lie algebra morphism, i.e., $\mu^*([X,Y]) = \{\mu^*(X), \mu^*(Y)\}$ for any $X, Y \in \mathfrak{g}$.

We know (from the lectures) that (i) implies (ii). Show that for G connected, (i) and (ii) are equivalent, but for G disconnected (ii) does not imply (i) (show this by presenting a counterexample).

- 3. Calculate from the definition the Lie algebra cohomology with coefficients in $\mathbb R$ for
 - (a) $\mathfrak{g} = \mathfrak{so}(3)$
 - (b) $\mathfrak{g} = \mathbb{R}^n$ (abelian Lie algebra)
- 4. Let G be a compact Lie group and \mathfrak{g} the corresponding Lie algebra. Let $\Omega_{inv}^{\bullet}(G) = \{ \alpha \in \Omega^{\bullet}(G) | L_g^* \alpha = \alpha \ \forall g \in G \}$ be the space of left-invariant forms on G. Here $L_g : G \to G, h \mapsto gh$ is the left multiplication by g.
 - (a) Show that $\Omega_{inv}^{\bullet}(G)$ is a subcomplex of $\Omega^{\bullet}(G)$ with respect to de Ram operator and a subalgebra with respect to the wedge product.
 - (b) Show that one has an isomorphism (of algebras) of invariant forms with the exterior algebra $\Omega_{inv}^{\bullet}(G) \simeq \wedge^{\bullet} \mathfrak{g}^*$. Show that under this isomorphism, de Rham differential on forms becomes the Chevalley-Eilenberg differential on Lie algebra cochains $C_{CE}^{\bullet}(\mathfrak{g}) = \wedge^{\bullet} \mathfrak{g}^*$.
 - (c) Show that de Rham cohomology of G is isomorphic to the Lie algebra cohomology of \mathfrak{g} .
- 5. Let (M, ω) be a connected symplectic manifold with a Hamiltonian action of a connected Lie group G with a (not necessarily equivariant) moment map μ : $M \to \mathfrak{g}^*$. Show that if the second Lie algebra cohomology vanishes $H^2_{CE}(\mathfrak{g}, \mathbb{R}) =$ 0, then μ can be corrected to an equivariant moment map $\tilde{\mu}$ (for the same group action).

6. Consider the symplectic manifold \mathbb{C}^3 with symplectic structure $\omega_0 = \frac{1}{2\pi i} \sum_{k=0}^2 dz_k \wedge d\bar{z}_k$. Consider the circle action

$$\Psi_1(e^{2\pi i\theta}, (z_0, z_1, z_2)) = (e^{2\pi i\theta} z_0, e^{2\pi i\theta} z_1, e^{2\pi i\theta} z_2)$$

and the 2-torus action

$$\Psi_2((e^{2\pi i\theta_1}, e^{2\pi i\theta_2}), (z_0, z_1, z_2)) = (z_0, e^{2\pi i\theta_1} z_1, e^{2\pi i\theta_2} z_2)$$

(a) Check that the following are moment maps for Ψ_1 and Ψ_2 :

$$\mu_1(z_0, z_1, z_2) = \sum_{k=0}^{2} |z_k|^2 - 1, \qquad \mu_2(z_0, z_1, z_2) = (|z_1|^2, |z_2|^2)$$

- (b) Passing to the symplectic quotient of \mathbb{C}^3 by S^1 (with respect to the action Ψ_1 and moment map μ_1), we obtain $\mu_1^{-1}(0)/S^1 = \mathbb{CP}^2$ as the reduced manifold. Calculate explicitly the symplectic structure ω on \mathbb{CP}^2 arising from the symplectic quotient construction.
- (c) Show that the action Ψ_2 of \mathbb{T}^2 on \mathbb{C}^3 descends to an action Ψ of \mathbb{T}^2 on \mathbb{CP}^2 with moment map

$$\mu(z_0:z_1:z_2) = \left(\frac{|z_1|^2}{||z||^2}, \frac{|z_2|^2}{||z||^2}\right)$$

where $(z_0 : z_1 : z_2)$ are the homogeneous coordinates on \mathbb{CP}^2 and $||z|| = \sqrt{\sum_{k=0}^2 |z_k|^2}$ (note that ||z|| and $|z_k|$ are function on \mathbb{C}^3 , not on \mathbb{CP}^2 , but the ratios do descend to the quotient $\mathbb{CP}^2 = \mathbb{C}^3 - \{0\}/\mathbb{C}^*$).

(d) Show that the image of the moment map $\mu(\mathbb{CP}^2)$ in \mathbb{R}^2 is given by the triangle

 $\{(t_1, t_2) \in \mathbb{R}^2 \mid t_1 \ge 0, t_2 \ge 0, t_1 + t_2 \le 1\}$

(e) Consider a circle $K \subset \mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$ given by $K = \{n_1\theta, n_2\theta\} \in \mathbb{T}^2 \mid \theta \in \mathbb{R}/\mathbb{Z}\}$ where n_1, n_2 are two integers. Action Ψ induces an action Ψ_K of K on \mathbb{CP}^2 . Find the corresponding moment map μ_K . Describe the set of fixed points of the action $K \curvearrowright \mathbb{CP}^2$ – what does it look like depending on the values of n_1, n_2 ?