INTERMEDIATE GEOMETRY AND TOPOLOGY EXERCISES 8, 10/29/2021.

- 1. Show that the manifold $S^2 \times S^4$ does not admit a symplectic structure.
- 2. Let (V, B) be a symplectic vector space of dimension 2n. Let $\Lambda(V, B)$ (the "Lagrangian Grassmannian") be the set of all Lagrangian subspaces of (V, B). Show that $\Lambda(V, B)$ has a natural structure of a compact smooth manifold. Find its dimension.
- 3. Let X_1 and X_2 be two *n*-dimensional manifolds. Prove that for a map $F: T^*X_1 \to T^*X_2$ the following two properties are equivalent:¹
 - (i) $F^*\alpha_2 = \alpha_1$, where $\alpha_{1,2}$ are the tautological 1-forms on $T^*X_{1,2}$. (In particular, F is a symplectomorphism.)
 - (ii) F is the contangent lift of a diffeomorphism between the bases, $f: X_1 \to X_2$.
- 4. Consider $S^3 = \{(z_1, z_2) \mid |z_1|^2 + |z_2|^2 = 1\}$ as unit sphere in \mathbb{C}^2 equipped with standard symplectic structure $\omega = \frac{i}{2} \sum_{k=1}^{2} dz_k \wedge d\bar{z}_k$.
 - (a) Show that S^3 is a coisotropic submanifold of \mathbb{C}^2 .
 - (b) Show that for any point $p \in S^3$, the symplectic orthogonal of T_pS^3 (as a subspace of $T_p\mathbb{C}^2$) satisfies

$$(T_p S^3)^\perp = \operatorname{span}(v_p)$$

where v is the vector field of the U(1)-action on S^3 given by

$$\begin{array}{cccc} U(1) \times S^3 & \to & S^3 \\ (e^{i\theta}, (z_1, z_2)) & \mapsto & (e^{i\theta} z_1, e^{i\theta} z_2) \end{array}$$

- 5. Let (V, B) be a 2*n*-dimensional symplectic vector space. Prove that any 1-dimensional subspace of V is isotropic, while any (2n 1)-dimensional subspace of V is coisotropic.
- 6. Let (V, B) be a symplectic vector space and let C ⊂ V be a coisotropic subspace.
 (a) Show that the quotient space C: = C/C[⊥] inherits a symplectic form from
 - B. I.e., show that the bilinear skew-symmetric form on \underline{C} defined by

$$\underline{B}: \quad \underline{C} \times \underline{C} \quad \to \quad \mathbb{R} \\ ([u], [v]) \quad \mapsto \quad B(u, v)$$

for any $u, v \in C$ (with [u], [v] the classes of u, v in the quotient) is welldefined (independent of the choice of representatives of equivalence classes [u], [v]) and nondegenerate.

(b) Show that the subspace

$$W = \{(u, v) \in C \times C \mid u - v \in C^{\perp}\} \qquad \subset \qquad V \oplus V$$

¹For hints, see Ana Cannas da Silva, "Lectures on symplectic geometry," pp 20-21.

2 INTERMEDIATE GEOMETRY AND TOPOLOGY EXERCISES 8, 10/29/2021.

is a Lagrangian subspace of $V \oplus V$ equipped with symplectic form $(-B) \oplus B$.

- 7. (a) Give an example of a compact Lagrangian submanifold of \mathbb{R}^{2n} equipped with standard symplectic structure, for any $n \geq 1$.
 - (b) Using Darboux theorem, show that any symplectic manifold has a compact Lagrangian submanifold.