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Chapter 1

A long introduction: functorial view
on classical and quantum local field
theories

1.1 Classical local field theory
A classical (Lagrangian) field theory on a cobordism 7, =N Yout 18 determined by the following
data:

(a) The space of fields on X,
F=T(5,E)

— the space of smooth sections of a fiber bundle E over ¥ — the bundle of fields. (For
instance, fields could be maps from ¥ to some target manifold X, or fields could be
differential forms on E.)

(b) The action functional — a real-valued function on the space of fields of the form

Ss(0) = [ L6.00.-) <R L.1)

where ¢ € Fy is a field. Here L (the Lagrangian) is a D-form (or density) on X,
depending on the field ¢ in a local way: the value of L at a point = € ¥ can depend only
on the value of ¢ at x and its derivatives up to a finite order at xE]

Given the data above, at the classical level one is interested in the solutions ¢ € Fy, of
the “equations of motion” — the critical point equation

58 =0 (1.2)

(with 0 the de Rham operator on Fs). One considers the equation (1.2)) (which is the
Euler-Lagrange PDE) with boundary conditions on the field at 7i,, Jous- In a range of cases

! Tt is convenient (see [I] for details) to consider the “variational bicomplex” QV?(3 x Fy) of (p, ¢)-forms

on ¥ x Fy, local in the same sense. In this terms, the Lagrangian L is in Qljz’co(E X Fx).

9
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(Lagangians of second order in derivatives), one can consider the boundary conditions of the
form

¢

out

Yin ¢in7 ¢"Yout = ¢0ut (1.3)

where ¢y, = F,,, and ¢ € F,,,, — fixed sections of the bundle F over the boundaries 7,

and Yous, respectively.

Remark 1.1.1. One can consider more general boundary conditions on v of the form

r(Jet(@)]s) = b, (1.4)
where Jet(¢)|, is the normal oo-jet of ¢ at ~;
7: {normal jets of fields at v} — B,

is some fibration and b, € B, a point in the base. The desired scenario is when the solution

of (1.2)) with boundary condition (1.4)) exists and is locally-unique (non-deformable).

Example 1.1.2 (Classical mechanics of a particle on a Riemannian manifold ). Let D = 1.
Fix a Riemannian manifold (M, g) (target), a positive number m (mass) and a function
V € C(M) (the force potential). Consider as the cobordism the interval > = [0,¢] and set

Fs. = Map([0,t], M) (1.5)

— the space of paths in M parametrized by the interval [0,t¢]. We set the action S: F — R
to be defined by

Ss(6) = | dr (Ga0 (9(0).6(7) = Vio() (16)

for ¢: [0,t] — M a field (a path).ﬂ
Setting for simplicity (M,g) = RY with standard Euclidean metric, the critical point
equation 0.5 = 0 is equivalent to the ODE

me(7) + gradV (¢(1)) =0 (1.7)

— the Newtonian equation of motion of a particle in RY in the force field with potential V.
One can consider this equation with Dirichlet boundary conditions ¢(0) = ¢, O(t) = Gout
where ¢in, Gous — two given points in R"Y. Thus, we are considering parametrized paths in RY
satisfying the equation with fized endpoints. E.g. if V' = 0, there is a unique solution —
the straight interval connecting ¢y, and ¢o, With constant-velocity parametrization by [0, ¢].

If we take a general Riemannian manifold (M, ¢g) and set V' = 0, then 65 = 0 is equivalent
to the geodesic equation. So, solutions of the boundary problem , are the geodesics
in M connecting the two given points.

ZNote that the Riemannian metric on the source cobordism ¥ is implicitly used in ((1.6)): the action (1.6)
is not invariant under reparametrization of a path. One can also write a Diff(X)-invariant version of the

action (1.6[):

Si6(8) = [ dr/Em) (60 S 000 (6(7).6(7)) = V(o()))

Here £(7)d7? is the metric on X. Then for ¢: ¥ — ¥ a diffeomorphism, one has Sx ¢(¢) = Sx (" ).
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For a general Riemannian manifold (M, g) and general potential V', the Euler-Lagrange
equation for the action (1.6)) (the critical point equation 65 = 0) written in local coordinates
on M takes the form

(550

d¢/ (1) do" (1)
dr dr

T (o) ) T BNV (6(r)) = 0 (1.8)

where T, are the Christoffel symbols.

Example 1.1.3 (Scalar field). Let D > 1 be any, fix m > 0 (the mass) and fix some
polynomial function V' on R (interaction potential). Consider a cobordism > equipped with
Riemannian metric and set

Fx = Map(X,R) (1.9)
and
1 m?
Sy, = / §d¢ A *xdo + 7¢ dvol + V(¢)dvol (1.10)
>

with ¢: ¥ — R the scalar field on ¥. The corresponding equation of motion 95 = 0 is
equivalent to the PDE
Ao +m*p+V'(¢) =0 (1.11)

with A the Laplacian on functions on 3. Equation (1.11) is the Laplace equation if m = 0,
V' =0, Helmholtz equation if m # 0, V = 0; for general V', it is a nonlinear PDE. Equation
(1.11) can be considered with Dirichlet boundary conditions (1.3) where ¢, on are fixed

functions on iy out-

1.2 Functorial framework for local quantum field the-
ory

1.2.1 Local Quantum Field Theory as a functor

The key idea behind the functorial approach is locality.

Local design of quantum field theory was inspired by high-energy experiments and by the
idea that all interactions in nature can be explained by point particle interactions between
fundamental fields. This point of view can be found in many classical textbooks [?][QFT-
texbooks].

In classical field theory locality is manifestly present when the action functional is declared
to be an integral over the space time of the

In traditional approaches locality was usually treated at the level observables. First steps
towards global constructions involving time evolution goes back to early works [Schrodinger
picture]. The compatibility of this approach with renormalization theory was first addressed
by K. Symanzik [?].

Our exposition follows Segal [39] who suggested a geometrical global approach to 2D
conformal theories. Atiyah in [3] adopted this approach to topological theories. Some as-
pects of these lecture notes were inspired by lectures [30]. We also benefited from reading
unpublished notes [7]
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We will start with an outline of framework and then will proceed to examples.
Any local quantum field theory requires fixing a space time category. In its simplest
version this is a D-dimensional category of space time cobordims:

1. Topological cobordisms [3]. topological quantum field theories,

2. Smooth cobordisms. In this case D dimensional manifolds are smooth. Their bound-
aries are D — 1 dimensional smooth manifolds with collars.

3. Riemannian cobordisms Riemannian metric on ¥ extended to a metric of a collar of
each component of the boundary. This is the space time category underlying Euclidean
quantum field theory and statistical mechanics, statistical field theories [?]. A germ of
Riemannian bi-collars on v (a germ of Riemannian metrics on v X (—¢, €)).

4. Pseudo-Riemannian cobordims........... When the metric has 3+ 1 signature, this is the
category underlying realistic quantum field theories, like, the Yang-Mills theory, the
electrodynamics, the standard model etc..

5. Conformal structure on ¥ (metric up to rescaling by a positive function). This is the
case relevant to us (especially for D = 2) [39]. A parametrization of a boundary circle

Y.

6. Combinatorial cobordisms.

The relation between geometric data for cobordisms and for boundaries is that one wants
that for a sewn cobordism Y, Geomy is the fiber product Geomy = Geomys X Geom., Geomsy.
L.e., when we sew cobordisms in the sewing axiom, we also sew the geometric data.

A local quantum field theory is the following assignment of the following data to the
category of space time cobordims:

e A closed oriented (D — 1)-manifold + is assigned a vector space H, over C (the “space
of states”).

e An oriented D-manifold » with boundary split into disjoint in- and out-components
such that 0¥ = —vi, U Yous (minus means orientation reversal)ﬂ is assigned a linear
map Zs,: H, — Hoe. (the “evolution operator” or “partition function”).

3We will say that ¥ is a cobordism from i, t0 You; and write Vi, z, Yout and think of 3 as an arrow in
a cobordism category, where objects are oriented closed (D — 1)-manifolds. See also Remark below for
a more careful definition of a cobordism.
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: 0
U

Yin )Y Yout

Figure 1.1: Cobordism.

The assignment of vector spaces to spaces and of linear maps to space time cobordisms
should be a covariant functor from the category of space time cobordims to the category of
vector spaces. This is guaranteed by the following axioms:

1. Multiplicativity:

Disjoint unions are mapped to tensor products.

(a) Given two closed (D — 1)-manifolds vq, 72, one has

H%UW = H% ® H'Y2‘

(b) Given two D-cobordisms vin =L 40U ~in 22 sout one hag
Z21u22 = Zih ® ZEQ

where both sides are linear maps H.im @ H.in — Houe @ H oue.
1 T2 71 Y2

out

M

in

N

ZZI®ZEZ

% H,\/?ut ® H,ygut

Hopn @ Hope

Figure 1.2: Multiplicativity with respect to disjoint unions.
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2. Sewing axiom:

“U— o” (sewing of cobordisms is mapped to composition of linear maps). Given two

1"

cobordisms 7, E/—> Y2 and 2 — 773 one can se the out-boundary of the first one to
the in-boundary of the second one, obtaining a sewn cobordism ¥ = ¥’ U,, ¥".

cutting along 2
0 — 0
—

s 54 sewing along 2

8]

Figure 1.3: Sewing.

Then one has
Zg = ZEN O ZE/ (112)

or, making domains and codomains explicit,

Zx Zisyn

L1
H%‘ H’Yl - /H% 5 /H’m < H’Yl‘

3. Normalization.
(a) For the empty (D — 1)-manifold, one has
?‘[@ - C

(b) For any closed oriented (D — 1) -manifold ~, the partition function for a “very
short” cylinderﬂ v % [0, €] tends to the identity map on the space of states:

11_{% nyx[O,e} =id: ,H,y — ,H»y
4. Action of diffeomorphisms.
For ¢: v — 7 a diffeomorphism, we have a map
p(6): Hy — My (1.13)

which is linear if ¢ is orientation-preserving and is antilinear if ¢ is orientation-reversing.
Moreover, this is an action, i.e., p(¢2 0 ¢1) = p(p2) o p(¢1).

4 In the case of a topological theory (cobordisms are smooth oriented manifolds with boundary, with no
extra geometric structure), one can consider cobordisms modulo diffeomorphisms relative to the boundary,
and then sewing is a well-defined operation. In 2d conformal theory, cobordisms are Riemann surfaces with
parametrized boundary and the sewing operation, identifying two circles along the parametrization, is also
well-defined.

5The precise meaning of “very short” depends on the type of geometric data we put on cobordisms.
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5. Naturality (equivariance under diffeomorphisms).

Given a diffeomorphism between cobordisms, ¢: ¥ — EN], one has a commutative dia-

gram
4583

H'Yin H’Yout
ool | [ e (1.14)
Hﬁin % Hﬁout
28 E=put
Naturality axiom says that diffecomorphisms act on the functor (#, Z) by natural trans-
formations.

Another way to understand diffeomorphisms categorically is as an enhancement of Cob
to a bicategory, where the second type of 1-morphisms is diffeomorphisms of (D — 1)-
manifolds and 2-morphisms are diffeomorphisms of cobordisms. Then naturality says

that (1.18]) extends to a functor of bicategories.

Remark 1.2.1. Tt is very interesting to restrict the naturality axiom to the sub-
group Symy . C Diffy, of diffeomorphisms ¢: 3 — ¥ preserving the chosen geometric
data &, i.e., satisfying ¢,.& = &. Then, yields symmetries of Zy ¢ (the “Ward
identities”):

Zse = p(dlowt) © Zxe 0 p(Blin) (1.15)

6. Naturality as a special case of gluing.

Remark 1.2.2. A careful definition of a D-cobordism is as a quintuple (2, Yin, Youts %in tout )
consisting of the following:

® Yin, Yous two closed oriented (D — 1)-manifolds,
e X an oriented D-manifold with boundary,
e two embeddings i, : Yin <> 9%, fout: Your — 02 with disjoint images, such that

- 0¥ = Zin(’)/in) L Zout(’yout%
— i, is orientation-reversing and ., is orientation-preserving.

With this definition, one can say that the data of the action of a diffeomorphism ¢
on the spaces of states ((1.13) is redundant, as it is already contained in the data of
partition functions assigned to cobordisms, as Z for an infinitesimally short mapping
cylinder

_ iin: v ’yX[O,E] iout: o= VX[QE]
M¢—(7X[0,e],w, T oo (2,0) N (qu),e))' (1.16)

From this viewpoint, the naturality axiom is a special case of the sewing axiom
(when one is attaching two short mapping cylinders to the in-/out-ends of a cobordism). Is  this
. _ . right?

7. Dulaity as an internal morphism One
needs
then to
adjoin
conju-
gation
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Remark 1.2.3. One has a natural identification between H_., and the linear dual of H.,

since the partition function of a short cylinder, seen as a cobordism v U (—) w]—) %]
yields (in € — 0 limit) a bilinear pairing
) Hy,®H_, —C, (1.17)

which is nondegenerate[f]

Remark 1.2.4. Given a cobordism, one can always reassign a connected component of
the in-boundary as a component of the out-boundary with reversed orientation. The
corresponding partition functions are equal:

D D
Z(% Uy, = 73> = Z(% = U (—72)),
using the identification H_,, = HJ, from Remark [1.2.3, In [39] this property is called
the “crossing axiom.”

1.2.2 Summary.

For a closed D-manifold @ = @ , the partition function is Zy: C % Cis the multiplication
by some complex number (. By abuse of notations, we will identify the partition function
Zs, with this number.

The axioms above can be summarized by saying that a local QFT is a functor of sym-
metric monoidal categories from the category of cobordims (possible with extra structures)
to the category of vector spaces (also possibly with extra structure):

Cob H2, Vectc (1.18)

Here on the left one has the category of spacetimes (a.k.a. geometric cobordism category),
where:

e The objects (v,&,) are closed oriented (D — 1)-manifolds v equipped with geometric
structure &, € Geom,.

e The morphisms (3, &x) are D-dimensional oriented cobordisms with geometric struc-
ture & € Geomy.

e Composition is sewing of cobordisms (accompanied by sewing the geometric data).

e Monoidal tensor product is given by disjoint unions. Monoidal unit is the empty
(D — 1)-manifold.

. . . . 0,e
SNondegeneracy is shown by the following argument. One can consider a second short cylinder @ X [0l
(=) U~. Attaching —y from the in-boundary of the first cylinder to the —v from the out-boundary of

0,2 . . . .
the second cylinder, we obtain a cylinder M ~ whose partition function converges to identity. That

implies that the pairing (1.17)) cannot have any kernel vectors.
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e Cob is a non-unital category: it does not have identity morphisms. Instead, it has
“almost identity” morphisms — short cylinders.ﬂ

The right hand side of ([1.18]) is the category of complex vector spaces and linear maps with
obvious monoidal structure given by tensor product.

1.2.3 Unitarity and Reflection Positivity
1.2.3.1 Unitarity

For any ~ (we are suppressing the geometric data in notation) one has the tautological
orientation-reversing mapping r: 7 — —+v mapping each point to itself. By ((1.13)), one has
a corresponding antilinear map p(r): H., — H_,. Combining it with pairing (1.17), one has
a sesquilinear form
r)®id ,
G HyoH, 2%y e, e (1.19)
Unitarity is an optional collection of assumptions on a QFT which it might satisfy (or
not):

(a) (H,(,)) is a Hilbert space for each 7. In particular, the sesquilinear form (, ) is positive
definite.

(b) For a cylinder v x [0,¢], the partition function Z, .oy is a unitary operator H, — H,,.
(c¢) The representation of diffeomorphisms on spaces of states (1.13]) is unitary.

We will be studying 2d CF'Ts in Euclidean signature; they are not unitary theories in the
sense above. In fact, properties and (c)) may hold for them (in which case one talks about
a “unitary CFT”), but (]ED fails. Instead, (]ED gets replaced by its Euclidean counterpart:

(]H’) The partition function of a cobordism ~; 2N v2, and of its orientation-reversed copy

Y2 = ~1 are related by )
7 s = s,

where bar stands for complex conjugation and star is the dual (transpose) mapﬂ

Note also that if dimH = +oo, (]ED is incompatible with the trace-class property that
one wants to have in a CFT.

"An exception is the topological case Geom = & where finite cylinders v x [0, 1] play the role of identity
morphisms on the nose, without having to approximate identity by a family.

8 In Osterwalder-Schrader axioms, this property is called “reflection positivity.” Segal [39] calls it “*-
functor” property.

mention
that it
might

be good
to drop
the com-
pleteness
assum-

tion and
refer to
Remark

b.2.2r
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1.2.3.2 Reflection Positivity

1.3 Quantum observables in the functorial framework
(the idea)

local and quasilocal

compare with local and quasilocal observables in classical filed theory

Fix a Segal’s QFT. For 7, 2N Yout & cobordism, let I' C ¥ be a CW subcomplex disjoint
from GZH Let consider a family of e-thickenings U(I") of I in X, with € € (0, 60).|T_UI

Figure 1.4: e-thickenings.

A quantum observable supported on I' is a family (parametrized by € € (0, €)) of elements
Or. € Houv, (1) (1.20)

I.e. for each € we have a state on the boundary of the e-tube around I'.
The correlator (or VEV — “vacuum expectation value”) of the observable is defined as

<6F>Z3 = ll_rg(l) ZZFUG(F) o 51*76 S HOIH(H%D, H"/out) (1.21)

The idea here is that > with the tube around I' cut out has as its boundaries 7i,, Yout and
a new piece of boundary — the boundary of the tube, where we plug the state given by the
observable. An important case is when X is closed (i.e., Jin = Yout = ). Then the correlator
(1.21]) is a complex number.

The e-dependence in the family is supposed to be such that the limit in the r.h.s.
of exists. One way to arrange it is to require that elements for different € are
related by R R

O[‘,E/ = ZUS/(F)—UG(F) o} Opye (122)

for 0 < € < € < €. In this case the expression under the limit in does not depend on
e € (0,¢9) (as follows from the sewing axiom).

For us, the most important case would be when I is a collection of points (correlators
of point observables). However, in topological and gauge theories it is natural to consider
different I's, e.g., Wilson loop observable in Chern-Simons and Yang-Mills theories corre-
sponds to I' an embedded circle in ¥3; its generalization — Wilson graph — corresponds to I'
an embedded graph in X.

9Tt is very interesting to allow I' to go to intersect the boundary of ¥, but that would lead us into QFTs
with corners (known in the topological case, as extended TQFTs in the sense of Baez-Dolan-Lurie).
0E.g. we can equip ¥ with a metric and define U,(T") as the set of points of distance < € from T'.
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1.4 Functoriality and a path integral quantization

1.4.1 Path integral quantization of classical field theory: a desired
dream and a reality.

Given a classical field theory on ¥, we want to define a corresponding QFT. Consider the
following expression depending on ¢in, @yt — sections of E over vin out:

Ks(Gou din): = / D ¢S5 (1.23)

¢ € Fyx s.t.
Olyin = bins
Plrour = Pout

The right hand side is a formal expression — the integral over the (infinite-dimensional) space
of fields on ¥ subject to boundary conditions; the “measure” D¢ on fields is a formal symbol.

Remark 1.4.1. Depending on the context, there are different normalizations of the exponen-
tial in (|1.23]):

e In unitary (or “relativistic”) quantum field theory on a Lorentzian spacetime manifold,
one writes the integrand of (1.23) as e#5().

e In statistical mechanics one writes the integrand as e #F(®) (the Gibbs measure on
states of the statistical system), with ¢ a state of the system on X, E(¢) the energy of
the state and g = % the inverse temperature. Summarizing the comparison between
QFT and statistical mechanics, we have the following.

QFT ‘ statistical mechanics
field ¢ on X state ¢ of the system on X
action functional S energy functional
path integral [ D¢ e#5(® sum over states [ D¢ e PP
at h — 0: fast oscillating integrand at temperature— 0: integrand is supported near
stationary phase point = classical solution the state with minimal energy

e In Euclidean field theory (which will be our setting for 2d CFT), on a Riemannian (as
opposed to pseudo-Riemannian) spacetime manifold 3, one considers the path integral
with the integrand e=?%(®) where 8 = % and — unless we want to do perturbation theory
yielding a power series in A — we can choose to set = h = 1.

One can transition a unitary QFT on a cobordisms of cylinder type 7 x [0, ] to a Euclidean
field theory on v x [0, Tk by “Wick rotation” — analytical continuation in ¢ to t = —iTgu-

Remark 1.4.2. There are ways to make mathematical sense of the path integral (a.k.a. func-
tional integral or Feynman integral) (1.23)), like e.g.

(a) perturbative approach — expansion in Feynman diagrams (replacing the path integral by
its stationary phase or Laplace approximation), or
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(b) lattice approach — replacing > with a lattice with the field defined at the nodes — then
is replaced by a finite-dimensional integral; after that one needs to take the limit
of the lattice spacing going to zero (one should think of this procedure as an analog of
a Riemannian sum for an ordinary integral).

We define the space of states of the QFT on ~ as
M, = Func(F,) (1.24)

the space of complex-valued functions on F, (the space parametrizing the possible boundary
conditions in 1.3)E

For instance, in Example one would set H,y = Func(M). If we want to have
unitarity, then we should be more specific about regularity of allowed functions and ask that
it is of L? class:

7'[pt = LQ(M)

— the standard Hilbert space in the quantum mechanical system consisting of a particle
moving on M. By extension, it is tempting to write as ", = L*(F,).

We define the partition function of the cobordism ¥ using the path integral as
follows: for U;, € Func(F,,, ), we set

(Z2Vin)(Pout): = i Déin Ks(dout, din)Vin(in) (1.25)

In other words, Zy, is an integral operator, determined by the integral kernel Ky, defined by
the path integral ((1.23]).

Remark 1.4.3 (Dirac’s bra- and ket-notations). One can consider a basis in /. consisting of
vectors {|¢o) }goer,. The vector |¢g) is understood as corresponding to the delta-function on
the space F, centered at ¢ = ¢p. In particular, a vector ¥ € H, can be written tautologically
as
U= | Doy ¥(n)|n)
Fy

Likewise, one has a dual basis in H* consisting of covectors {(¢o|}¢ycr, - In terms of these
notations, it is natural to denote the integral kernel ([1.23]) by

<¢Out|Zz|¢in> L= KE(¢0ut7 gbin) (126)

One also calls this expression the “matrix element” of Zy, (corresponding to “row” ¢u,; and
“column” ¢yy).

HFor more general boundary conditions of the type 1D instead of 1} we should write Func(B,).
Occurrences on F, as integration space throughout this subsection (such as e.g. in ((1.25))) should then also
be swapped for B,.
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1.4.2 Sewing as Fubini theorem for path integrals

Let v LN Yo and 7o ¥, v3 be two cobordisms and = v3 the corresponding sewn
cobordism. Then we have

(03] Zs|¢1) = / D e=5=(@)

¢ € Fx s.t.
By = b1,
¢|'YB = ¢3
_ D DY Do oS5
Fubini / ¢2 / ¢ / gb H//_/ ”
$2€F, & € Fer sit. & € Fsn sit. e~ S5 (@) = Ss (')
¢|’Yl = (],51, ¢‘W2 = ¢2a
Blye = P2 Blys = ¢3
_ / D¢2 / ngl e—SE/((;S') / DQS” 6—SZ//(¢”)
$2€Fq, ¢ € Fsy sit. ¢" € Fen st
Blyy = o1, Blyy = b2,
¢"yz = ¢2 ¢|’Ys =¢3
= [ Dox (0lZsrlon) (02l (120
¢2€]:"/2

This is the convolution property of integral kernels equivalent to the relation
ZZ = ZE” (@) ZE’

between the corresponding integral operators, i.e. the sewing property.
The idea in ([1.27) is to treat the integration over fields on ¥ in the following way:

(i) Fix the value ¢ of the field on the sewing interface 7s.

(ii) Integrate over fields on the two sub-cobordisms >, ¥” with ¢o becoming a boundary
condition — this gives the matrix elements of partition functions for the sub-cobordisms.

(iii) Integrate out the field ¢o on the interface.

adjust
the font
1 o) o3 size
& 0" in the
| ,‘ = picture

,)/1 Z/ 72 E// ,-)/3

Figure 1.5: Sewing: integrating over the field ¢ everywhere is equivalent to integrating over
¢, ¢" and then over ¢s.
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In particular, we think of the space of fields on ¥ (with boundary conditions on 7, 3) as
fibered over fields on 7., and we write this integral using “Fubini theorem for path integrals”
as an intergral over the fiber followed by integral over the base[”]

In the computation we also used additivity of action (which is automatic from the
local ansatz (L.1))): Sx(¢) = Ss/(¢') + S (¢”) if ¢, ¢" are the restrictions of the field ¢ on
Y to X, 3.

1.4.3 Observables in path integral formalism

Suppose we are given a classical field theory on a cobordism ¥ and also given i: — ¥ a
CW complex embedded into ¥ (with the image disjoint from the boundary). We define a
classical observable O supported on  as some function on I'( ,i*Jet F), i.e., a function
of jets of fields on

For instance, if = {x} is a single point, then a classical observable at x is just a function
of the jet of the field at z, O, = f(¢(z), 0o (z), .. .).

The expectation value of O is formally defined in the path integral formalism as

) = /m SO0 (Jetw(d) ) €C (1.28)
PEFS
Here we assumed for simplicity that ¥ is closed.
If ¥ has a boundary, then we should include boundary conditions in the r.h.s., as in

(1.23), thus obtaining the “matrix element,” between states |¢i,) and (@out|, of the theory
on X enriched by the observable O :

(ou| Z5.0 6n) — / Dé e =90 (Jetna(d)] )  €C (1.29)

¢ € Fy s.t.
QS"Yin = ¢in7
Blyous = Pout

In quantization, a classical observable O is mapped to a quantum observable O such
that the expectation value m of O defined withing Segal (quantum) language agrees
with the path integral expression @, d@b This can be arranged by defining 5r to be
the state on the boundary of a thickening U.( ) given by the expression (|1.29)) where instead
of the cobordism ¥ we take the “tube” U, ( ) (seen as a cobordism from @ to OU.( )).

1.5 Examples of local Quantum Field Theories

1.5.1 An example of a TQFT

rewrite

12 This Fubini theorem is heuristically clear if the path integral measure is thought of as a continuum
product of measures d¢(x) over points x of M. However, when one defines path integrals mathematically,
e.g., as perturbative integrals (via Feynman diagrams), this statement requires an independent proof. For
special cases studied in detail, see e.g. [22] (quantum mechanics), [25] (2d scalar theory with polynomial
potential), [§] (topological field theories of AKSZ type), [2I] (2d Yang-Mills).
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A Segal’s QFT with no geometric data on cobordisms and boundaries is a topological
quantum field theory in the sense of Atiyah [3]. A TQFT assigns to a closed oriented D-
manifold a complex number Zy, € C — invariant of a D-manifold up to diffeomorphism,
behaving nicely with respect to cutting/gluing.

There are very interesting examples like e.g. D = 3 Chern-Simons theory.

Data: For any D we can construct a TQFT with H, = C for any v and

Z(%) = eX(E)=x(Yin)

for any cobordism v, 2N Yout . Here yx is the Euler characteristic. It follows from the addi-
tivity of Euler characteristic that Segal’s axioms are satisfied (in particular, multiplicativity
and sewing).

Axioms

Observables

1.5.2 Quantum mechanics as a one-dimensional quantum filed the-
ory

Here objects of the spacetime category (0-manifolds) are collections of points with orientation
+. Fix a vector space H and let the space of states for pt™ be H+: = H. Then H - = H*.

1.5.2.1 Functorial view on a quantum mechanical system

Morphisms of the spacetime category (1-cobordisms) are collections of oriented intervals
and circles equipped with Riemannian metric. Note that naturality axiom implies that the
partition function for a cobordism depends only on metric modulo diffeomorphisms, i.e., only

on lengths of connected components. Denote the partition function for an interval of length

t (thought of as a cobordism pt* o4, ptt) by Z;: H — H.

Sewing intervals of lengths ¢; and t5, we get an interval of length ¢, +%5. Thus, the sewing
axiom implies the semi-group law

Zt1+t2 = Zt2 o Ztl' (130)

Assume that we have an improved normalization property:

Ze ~ id+ Ae+ O(e?) (1.31)
e—0
with A € End(H) some linear operator. In physical normalization, one writes A = —+ H,

then the operator H 6 End(?—[ 1s called the “quantum Hamiltonian” (or “Schrodinger
operator”). Together, and (1.31)) imply

Z, = (Z:)N = lim (id + ALl g O(N2))N — oAl — 1L, (1.32)

t
N N—oo N

13 Slightly more generally, we can set Z(X) = eX(®)=ex(nn)=Bx(vou) where a,  are fixed numbers such

that o + 8 = 1. E.g. one can make a symmetric choice a = § = %
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(Le., the idea is that we cut a finite interval into NV tiny intervals where Z is well-approximated
by , and then reassemble them using the sewing axiom.)

Formula , which we recovered from Segal’s axioms, is the standard expression for
the evolution operator in time ¢ in quantum mechanics with quantum Hamiltonian H. In
quantum mechanics, one recovers from Shrodinger equation

(ih0, + H)y, = 0 (1.33)

for a t-dependent state ¢, € H. Equation (|1.33)) implies ¢, = Z;(1)y), with Z, given by ((1.32)).
One may also say that the Schrodinger equation itself (1.33), seen from Segal’s standpoint,
expresses the sewing axiom for sewing an infinitesimal interval of length dt to a finite interval

of length t.

Remark 1.5.1. Recall that H is automatically equipped with a sesquilinear form ((1.19). The
1D QFT above is unitary if additionally #, (,) is a Hilbert space and if H is a self-adjoint
operator, which implies that the evolution operator ([1.32)) is unitary.

Remark 1.5.2. If we ask H to be self-adjoint, but consider evolution in imaginary time
t = —iTgya with Tgye > 0 (the “Euclidean time”), then becomes a self-adjoint
operator

Z = e el (1.34)

(instead of unitary) and the theory satisfies (bf) of Section instead of ().

1.5.2.2 Point observables for quantum systems

In the setting of Section — quantum mechanics as 1d QFT — consider the cobordism
Y = [tin, tour) and consider an observable supported at a single point I' = {¢} inside ¥. As
the thickening we can take small intervals

U(') =]t —¢,t+€.
The boundary of the thickening is a pair of points of opposite orientation
OU.(T) =pt~ Upt™.
Thus, a quantum observable is an element
O € Hov.(ry = Hpr-pt+ = H* ® H =2 End(H) (1.35)

— an operator on the space of states H.

Figure 1.6: Point observable in quantum mechanics.

Comment
more on
Wick
rotation?
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We can similarly consider several point observables on X, supported at T' = {¢1,...,¢,}
(we assume that t;, < t; <ty < -+ < t, < tou). The picking a state on the boundary of €-
thickening of each point amounts to choosmg a collection of operators Ol, . O € End(H).
The correlator (| - ) then is

i i

<51(t1>"'6n(tn)>226 itow—t) 5 ... o= i Hta=t) ) o= i Ht1—tin)

Figure 1.7: Correlator of several point observables in quantum mechanics.

Remark 1.5.3. Tt follows from the sewing axiom that the partition function for a circle of
length ¢ is given by the trace of the partition function for the interval of length ¢

Z(S}) = tryZ; = trye” it (1.36)

1.5.3 Quantum mechanics of a free one dimensional particle
1.5.3.1 When the space time is an interval

1.5.3.2 When the space time is a circle

Let X be a circle of length L. Free particle on X is described by the quantum Hamiltonian
10
A Ox?
acting on the Hilbert space H = L*(X); x € R/L-Z is the coordinate on the circle X. Here

for simplicity we adopted the units where & = 1 and the mass of the particle is 27 (this
normalization of the Hamiltonian is chosen in order to have simpler formulae below).

H=- (1.37)

The partition function for an interval of length ¢ is a unitary integral operator Z; = it
with integral kernel
e L1 . (m1710+nL)2

Ki(wy,mo) = Y (i) 2e™ ¢ . (1.38)

The partition function for X a circle of length ¢ is then

o) 2
Z(S)) = try 2, = / dv Ky(w,x) = L(it)™2 Y ™ (1.39)
X n=—oo

We note that another way to obtain try Z; is via the eigenvalue spectrum of the Hamiltonian
2mikx
The eigenfunctions of H are Y, = e £ and the corresponding eigenvalues are

Ek:TF(L)2 Thus, one has

o0 o0

Z(S}) = trye Mt = 37 emiBit = N et (1.40)

k=—o00 k=—o0
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One can show directly by Poisson summation formulallﬂ that the right hand sides of
and agree; in Poisson summation, the sum over “winding numbers” n is transformed
into a sum over the dual summation index — the “momentum” k.

We note that one can consider the evolution in Euclidean time t = —tTxyq With Tgrya >
0. Then the operator Z, becomes trace-class and sums (1.39), become absolutely

convergent.
L2

Denoting for convenience \: = T and denoting the partition function for a circle
(1.39), (1.40) by ¢(N), we have an interesting transformation property under A — A~ !:
¢ =A"2¢(A (1.41)

This property can be regarded as a very simple instance of the so-called T-duality (behavior
under inversion of the radius of the target circle). Alternatively, if one fixes L = 1, (1.41))
becomes a toy 1d model of modular invariance in 2d conformal field theory, see (1.46|) below.

1.6 Two dimensional conformal field theory

In the main case of interest for us — two-dimensional conformal field theory — the geometric
structure on cobordisms is conformal structure (Riemannian metric up to rescaling by a
positive function), plus orientation; in two dimensions this data is equivalendf] to complex
structure. Thus, cobordisms are (possibly disconnected) Riemann surfaces with parametrized
boundary circles (when sewing in- and out-circles, one should respect the parametrization
— points with the same angle parameter are identiﬁed).m Parametrization of boundaries is
needed for the sewn surface to have a well-defined complex structure/T]

about Segal

more about space times for CFT: Riemannian, conformal structure, complex
structure

say something. about holomorphic structures and the importance of both
chiral and non-chiral theories

Such a Riemann surface with n in-circles and m out-circles, L7, S* =, L, S !, is assigned
a linear map Z(X): He' — Hal".

14 Recall that Poisson summation formula says that for a function f(z) on R decaying sufficiently fast at
& — Fo0, with f(p) = g f(2)e*™P=dg: its Fourier transform, one has -, ., f(n) =3, o~ f(k). One can see
this as the equality of distributions ), d(z —n) =3, e2™ke integrated against a test function f.

15We will come to this later.

16pParametrization of boundary circles can be seen in terms of Remark as the embeddings iy, tout Of
unions of standard circles into 0X.

1"E.g. sewing the two boundary circles of a cylinder with a twist by angle 6, one obtains non-equivalent
complex tori for different 6.
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@" L ) @ L ©
I

Figure 1.8: (a) a generic cobordism in 2d CFT and some relevand cobordisms embedded in
C — (b) annulus (coformally equivalent to a cylinder) and (c) a 2d equivalent of Figure
(corresponding to several point observables).

The space of states for a circle Hg1 is a Hilbert space carrying a representation of the
group of diffeomorphisms Diff(S1),

p: Diff(S') — End(Hg1). (1.42)

Vacuum vector. The space Hg1 contains a distinguished vector

lvac) € Hgt (1.43)

— “vacuum vector” — the partition function of the diSkE In (b), (¢) of Figure [1.8 pairing
with |vac) for any of the in-boundaries corresponds to removing (or filling in with the disk)
the corresponding hole. N

Self-sewing. If the surface X is obtained from ¥ by gluing i-th in-circle to j-th out-circle,
one has

Z(3) = try Z(3) (1.44)

Here on the right hand side we mean a partial trace — the trace taken in the first factor of

Z(X) € Hom <H5i1n‘ia %Séut,j> ®HOH1 ( ® Hsiln,k’ ® HS(%ut,l) )

1<k<n,k#i 1<I<m,l#£]

Self-sewing formula (|1.44]) is not an extra axiom — it follows from the usual sewing axiom
by attaching an infinitesimally short cylinder to Siln,i and Séut,j'

In particular, traces must exist if we have a full CFT[F] Segal in [39] imposes a
slightly stronger condition that traces exist in the sense of absolute convergence, i.e., that

partition functions are trace-class operators.

18This vector is not invariant under Diff(S'). However, as a consequence of naturality, it is invariant
under the 3-dimensional subgroup (isomorphic, via identifying the disk with upper half-plane, to PSLa(R)
— real Mébius transformations) consisting of diffeomorphisms of S! which can be extended as conformal
transformations over the whole disk.

190ne may consider a partial CFT where partition functions are only defined on genus zero cobordisms.
In that case one can make do with partition function for which traces do not exist. An example of such
a model is massless scalar field with values in R; the variant with values in S (a.k.a. “compactified free
boson”) is a full CFT existing in all genera.
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1.6.1 Genus one partition function, modular invariance

Given a complex number 7 € C with Im7 > 0, one can consider the Riemann surface
T.: =C/(Z®12) (1.45)

— the quotient of C equipped with standard complex structure by a lattice; (1.45]) is the
complex torus with modular parameter 7.
One can evaluate the CFT on T,. Denote

Then since tori T, and T_;; are equivalent as complex manifolds (via the holomorphic map
z v+ z/T), Z; as a function of 7 possesses modular invariance property

2(r) = Z(~2) (1.46)

Also, tori T, and T,, are equivalent for any n € Z (via the tautological map z — z), hence
one also has Z(1 +n) = Z(7).

In particular one can consider the torus with 7 = 4T, T > 0, as obtained from a
cylider ¥ = St x [0, T] (we think of S as having length 1) by sewing the out-end to in-end.
CF'T restricted to cylinders can be regarded as quantum mechanics with partition functions

Z(S* x [0,T)) = e 211 (1.47)

for some self-adjoint operator H € End(Hs1) — the Hamiltonian, cf. Section . Then
by (1.44]) we have R
Z(iT) = try e ™1 (1.48)
As a function of T, (|1.48) has to be invariant under inversion T' <+ %, as a special case of
(1.46)).
The general torus 1} with 7 = % + 4T can be obtained from 1) by identifying
boundary circles with a twist by the angle 6:

St x [0,T]
(0,0) ~ (0 +L£.T), 0 €5

By sewing and naturality axioms, the corresponding partition function is
Z(1) = trq.lee_%Tﬁ“‘”3 (1.49)
where P € End(H) is the infinitesimal generator of the action of the subgroup of rigid

rotations S C Diff(S') on Hg (in particular, Pis a self-adjoint operator with integer
eigenvalues).

20Here we are considering evolution in “Euclidean time” T, cf. (1.34). We also set h = 1. The factor 27
in the exponential is a choice of normalization of the Hamiltonian and is put there for compatibility with
standard CFT conventions.
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1.6.2 Correction to the picture: conformal anomaly

Conformal field theories one constructs in reality satisfy Segal’s axioms in a weakened —
“projective” — sense:

e The representation of Diff(S) on Hg: is projective. Put another way, there is an

honest representation of a central extension Diff(S1) of the group of diffeomorphisms
on Hgr. This central extension is known as the Virasoro group.

e Sewing axiom (1.12)) holds up to a factor in C*. — One says that (1.18)) is a pro-
jective functor. Equivalently, one can say that partition functions are operators in
Hom (Hin, Hous) defined up to scaling by a factor in C*.

As another viewpoint, one can understand a projective functor as a strict functor out of
a central extension of the cobordism category (see [39]). This is equivalent to saying that
Zs, is not a function on Geomsy, but rather a section of a line bundle on it[]

Yet another viewpoint on the projectivity phenomenon is that CF'T partition functions
are well-defined as operators for a given Riemannian metric g on the surface X, but if one
changes the metric within its conformal class, g — € - g, with Weyl factor € = €2, then the
partition function scales by a complex factor:

2(27 e20'9) — eiCSLiouville(Uvg) . Z(Z7g> (150)

Here ¢ is a number (the “strength” of the projectivity effect), known as the central charge
of the CFT;

1
SLiouville(0, §) = / §(da A xdo + 4o R, dvol,)

)
is the “Liouville action,” R, is the scalar curvature.

1.7 The importance of Conformal Field Theory.

Here we list some of the points of motivation, why many people are interested in 2d conformal
field theory.

1.7.1 CFT description of 2d Ising model

more generally the behavior of correlation functions in a disordered phase

This is the historical point of motivation, and it was the point of the seminal paper on
CFT by Belavin-Polyakov-Zamolodchikov [6].

One considers the Ising model — a lattice model of statistical physics. On a graph =, a
state of the system is an assignment of spins +1 (or “spin up/spin down”) to vertices of =.

21 More explicitly, in CFT this line bundle is £8¢ ® £L®¢ as a bundle over the moduli space of complex
structures on X. Thus, Zs € Hom(Hin, Hout) @ L @ LZ¢. Here £ = Det(0) is the Quillen line bundle — the
determinant line bundle of the Dolbeault operator; £ is the complex conjugate one; ¢ and ¢ are numbers —
holomorphic and anti-holomorphic central charges. Usually one has ¢ = ¢ (this is the case assumed in
below).

Q: Nat-
urality —
strict or
projec-
tive? A:
strict.
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In particular, there are 2#V(Z) states in total where V(Z) is the set of vertices of Z. The
energy of a state is defined as

E(s) = — Z SuSy — h Z Sy (1.51)
edges (u,v) vertices v

where h € R is a parameter (“external magnetic field”). Then one has the Gibbs probability
measure on the set of states

1
Probability(s) = 2T h)e_%E(s) (1.52)

where T' > 0 is the temperature and

Z(T,h)y= > e rh) (1.53)

states s

is the partition function (the normalization factor in the Gibbs measure ((1.52)), needed to
normalize it to total mass 1).

Then one considers the continuum (or “thermodynamical”) limit, taking = to be a very
fine square lattice on a large square on R? and sending the spacing of the lattice to zero
(while appropriately rescaling the energy function )

In the continuum limit, the system has a phase transition: the partition function Z (7', h)
and the n-point correlation functions of spins become real-analytic functions of (7',h) on
R-o X R except on the interval (0, 7] with some positive critical temperature Ti;. The
partition function and correlation functions are discontinuous (have a finite jump) across the
interval (0, T..), when going from small negative h to small positive h. Points (0 < T <
Teit, h = 0) are points of first-order phase transition of the system and (T = T, h = 0) is
the point of second order phase transition.

From now on, set h = 0. If T' > T, the two-point correlation function behaves as

_ ==yl

(s(x)s(y)) ~ e reon (1.54)

where 7., is the “correlation radius,” depending on 7. In the limit T — T, the correlation
radius goes to 400 and the system loses the “characteristic scale” — becomes scaling invariant.
In particular, the two-point function ((1.54) at 7' = T3 becomes a power law

1
T 1
|z —yll4

(s(z)s(y)) ~ (1.55)

The power %l here is a result from the explicit solution of 2d Ising model (at any 7') by
Onsager [35].

Thus, at the point (T, h = 0) of second-order phase transition, the system becomes
scaling invariant. Put another way, its symmetry gets enhanced from Euclidean motions
(translations+rotations) to include scaling. At this point it is natural to conjecture the
system on R2, at the point of second-order phase transition, can be described by some model
of conformal field theory (which would also mean that the symmetry is further enhanced
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from rotations+translations+scaling to all conformal transformations). This was proven —
and the corresponding CFT was identified as the free Weyl fermion — in [6].

It turns out that a much wider class of statistical systems exhibiting phase transitions
at the point of phase transition can be described by a CFT, which eventually leads to
explanation of the interesting rational exponents (“critical exponents”) one encounters in

these systems — such as the power i in {}

1.7.2 Bosonic string theory

Classically, bosonic string theory can be though of as a classical field theory of maps from a
surface ¥ (“worldsheet”) to the target RY (“spacetime” in string theory terminology), with
action

N
_ 1 _ _
S(®;b,c,b,¢) = / Z§d<1>,-/\*dd>,-+béc+baa (1.56)
¥ =1

Here ®: ¥ — RY is the bosonic field describing the string in R, ®; are components corre-
sponding to coordinates on RY, so that each ®; can be seen as a scalar field on . The last two
terms in ((1.56) (the “reparametrization ghost system”) are auxiliary anticommuting fields
(“Faddeev-Popov ghosts”) that appear in the action through Faddeev-Popov mechanism,
because one wants to consider the path integral over Map(3, RY)/Diff (X) — they appear in
essence from homological resolution of this quotient. The fields ¢, & are sections of TH0%,
T%'S — holomorphic/antiholomorphic tangent bundle; fields b, b are quadratic differentials —
sections of ((T(H)*x)®2 ((TOD)*£)®2 respectively.

Upon quantization, becomes a particular CEF'T on X — the “sum” of several mutually
non-interacting theories — N free massless scalar fields and the ghost system. The central
charge of this CFT (measuring the “strength” of projectivity effect/conformal anomaly, see

Section [1.6.2)) turns out to be
c=N—2 (1.57)

— each free scalar contributes 1 to the central charge and the ghost system contributes —26.
In particular, the central charge (and thus the conformal anomaly) vanishes iff N = 26.
Which is the reason why dimension 26 of the target is distinguished in bosonic string theory.

1.7.3 Invariants of 3-manifolds

There are interesting connections between 3d topological quantum field theories and 2d
conformal field theories on the boundary of a 3-manifold.

Notably, there is a relation between 3d Chern-Simons theory (which is topological) and
2d Wess-Zumino-Witten theory (which is a CFT). This relation was very fruitfully exploited
in [47] to construct invariants of knots and 3-manifolds.

One relation is that Chern-Simons correlator of a tangle in a 3-ball can be interpreted as
a correlator of point observables in WZW theory on the boundary 2-sphere. This fact was
explained and used in [47] to explain why the correlators of Wilson loop observables in 3d

22Ultimately, i comes from the fact that Ising spin field can be identified with a primary field of conformal

weight (&, 15) in the free fermion field.
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theory have to satisfy certain skein relation (which is ultimately a move performed on the
portion of a knot contained in a small ball).

Put differently, the relation between Chern-Simons theory on a 3-manifold M and 2d
WZW on the boundary ¥ = 0M is that the space of states that Chern-Simons assigns to X
is the “space of conformal blocks” (holomorphic building blocks of correlators) that WZW
assigns to X, see e.g. [17].

1.7.4 A zoo of computable QFTs

Part of motivation to study CFTs is that they give examples quantum field theories with
explicit and nontrivial answers.
For instance in a typical CF'T situation,

e two-point functions are often given by power laws with interesting rational exponents,
e four-point functions can be expressed in terms of the hypergeometric function,

e genus 1 partition function can be expressed in terms of such objects as Jacobi theta
functions and Dedekind eta function.

The zoo of well-known examples of CFTs includes among others:
e Free theories:

— free massless scalar field (or “free boson”),
— free massless scalar with values in S,
— free fermion,

— be-system (and a very similar Sy-system).
e Minimal models M(p, q) of CFT.

e Wess-Zumino-Witten model.

1.7.5 Motivation from representation theory

Representations of loop groups/Lie algebras. CFT is naturally linked to representation
theory of loop groups and loop Lie algebras (or rather their central extensions). E.g., the
space of states Hg1 always carries a representation of the Virasoro algebra. In the case of
WZW models, Hg also carries a representation of a Kac-Moody algebra g (which gives in
a sense a “refinement”] of the Virasoro representation).

Representations of the mapping class group. Additionally, a part of the data of CFT
(the space of conformal blocks) naturally carries a representation of the mapping class group
of the surface.

23In the sense that Virasoro generators act as quadratic expressions in Kac-Moody generators, via the
so-called Sugawara construction.
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1.7.6 Motivation from topology of M,, and enumerative geome-
try

In topological conformal field theories (such as Witten’s A-model), special correlators de-
fine closed differential forms on the moduli space of algebraic curves M, (with Deligne-
Mumford compactification) yielding interesting elements in de Rham cohomology of the
moduli space. Periods of these forms over compactification cycles satisfy certain quadratic
relations (equivalently, the corresponding generating functions satisfy the so-called Witten-
Dijkgraaf-Verlinde-Verlinde equation).

In the A-model, such periods are the Gromov-Witten invariants — counts of holomorphic

curves in the target Kahler manifold X intersecting a given collection of cycles.

1.8 CFT as a system of correlators

CFT is often studied in a simplified setting (as compared to Segal’s picture): instead of
surfaces with boundary, one considers surfaces with punctures (marked points).

Figure 1.9: Surface with punctures decorated by fields.

One can think of punctures as “infinitesimally small circles.” Instead of partition function
on surfaces with boundary, one studies n-point correlation functions

(@1(21) - Bp(z0)) €C (1.58)

depending on a configuration of n distinct ordered points on the Riemann surface ¥ and
on a choice of vectors ®,...,®, in the vector space V (the space of states Hg1 in Segal’s
language). There are different possible names for elements of V:

e Fields (or “composite fields”) at a point 2]
e Point observables.
e Operators.

In the path integral language, ((1.58) corresponds to the expression

/ng e 5OP(21) - Dy (2,) (1.59)

24Not to be confused with the fields of the Lagrangian formulation of the underlying classical field theory.
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where expressions ®; under the path integral are point classical observables — functions of
the jet of the classical field ¢ at z; (in the notations we are blurring the distinction between
classical observables and corresponding quantum observables).

Subtlety: to make sense of a correlator (|1.58) as a number, one needs to fix a complex
coordinate chart around each point zq, ..., 2, ]

For particularly nice elements of V' — so-called “primary” fields (see below), one doesn’t
need the full data of coordinate charts — it is sufficient to have a trivialization of tangent
spaces 13,3, thus the correlators of primary fields can be regarded as a section

(B ®,) € T'(Conf,(X), £) (1.60)

over the open configuration space Conf,(X) = {(z1,...,2,) € C"z # z; if i # j} of n
ordered points on 3, of a certain complex line bundle £ depending of the fields ®;. In ({1.60))
we allow points z1, ..., 2, to move around on a fixed Riemann surface 3 (i.e. the complex
structure is fixed).

We can also allow the complex structure to change (then movement of points is absorbed
into changes of complex structure). Then the correlator of primary fields becomes a section
of certain complex line bundle L over the moduli space of complex structures on ¥ with n
punctures:

(®1---D,) e ' Mgy, L) (1.61)
Remark 1.8.1. For general (possibly non-primary) ®;, one needs to replace My, ,, in ((1.61))

with an enhanced version M§" of the moduli space where each puncture carries a formal

coordinate system. Put another way, when defining M$)" as complex surfaces modulo diffeo-
morphisms, one should only quotient by diffeomorphisms which have the co-jet of identity at

each z;. In this setup the line bundle over M7 is trivial and the general n-point correlator

is a function on M$%" with values in Hom(V®", C), invariant under formal conformal vector

fields at the punctures z; (acting both on V' at z; and on the formal coordinate system):

<‘ . > c O™ (M%O’%r’ HOIH(V(Xm, C))formal c.v.f. at punctures. (162)

1.8.1 The action of conformal vector fields on V

The space V comes equipped with a projective representation of the Lie algebra A“¢ of
conformal vector fields on C* (real parts of meromorphic vector fields with only pole at zero
allowed),

p: A% — End(V) (1.63)

This representation can be thought of as the complexified (in a certain sense) infinitesimal
version of the representation (1.42)) in Segal’s picture, see Section below |

250r at least one needs to fix an oo-jet of complex coordinate charts centered at each z; — a “formal”
complex coordinate chart at z;.

26Remark: representation contains strictly more information (morally, “twice more”) than the action
of diffeomorphisms . For instance, the difference of conformal weights h — h of a field (see Sectionm
below) corresponds to the action of rotation around the origin and is a part of the data of , while b+ h
corresponds to the action of dilation, which infinitesimally is a vector field on S' not tangential to S*, and

it is not a part of the data (1.42)) but is a part of the data (1.63).
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In the common nomenclature, the standard generators of AR° — the complexified Lie
algebra of conformal vector fields on C* — are denoted

0 - 0
l: =—z"tt— . =_z"tl__ Z 1.64
n ¥ azﬂ n ¥ 827 ne ( 6 )

The corresponding operators acting on V' are denoted

Ly: = p(ln), Ln: = p(ln) (1.65)

1.8.2 The “double complexification”

The Lie algebra AX°® = A" @ C conveniently splits into holomorphic and antiholomorphic
copies of complex Witﬂ algebra and its central extension splits similarly into two copies

of complex Virasoro algebras. The Lie algebra AX° can be seen, in a sense, as “double

complexification” of the Lie algebra of diffeomorphisms of a circle:
complexification oc complexification oc
F(S) RO, floo ZmPOTROn Ak
® ~Witt@Witt
T T (1.66)

Diff(S*) > Ann
“complexification”’

Here X(S') is the Lie algebra of real vector fields on a circle, Ann is the Segal’s semi-group
of annuli [39] — the full subcategory of Segal’s cobordism category consisting of cobordisms
gt 2 5 (with conformal structure on ¥ and parametrization of boundary circles). The
vertical arrows are the transitions from a Lie group or semi-group to its Lie algebra. The
first complexification in the top row of allows vector fields on S! that are not necessarily
tangential to S' and then extends them to real conformal vector fields (which are special
sections of the non-complezified tangent bundle TC* of C* seen as a smooth 2-manifold)
on C*. The second complexification allows complex-valued conformal vector fields on C* —
special sections of the complexified tangent bundle TcC*. Explicitly, one has

X(S") = Spang({cosn6 9y }n>0, {sinnb 9 }n>1)

. - ) -
— Spang ({—%(znu_n—zn—z_n)} ,{—E(zn—z_ﬁzn—z_n)} )
n>0 n>1

o = (167

L, +1, I, —1
A s (157 AM5 L)
R 2 nezZ QZ nezZ

AL = Spanc ({ln, l_n}nGZ>~

The bottom horizontal arrow in (1.66|) is explained in [39)].

2TWitt algebra is the Lie algebra of meromorphic vector fields on C with only pole at 0 allowed, see Section

In terms of (1.64), it is Spanc({ln}nez)-

Did not
mention
in the
lecture.
Should
mention
later on.
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1.8.3 Grading on V by conformal weights

The complexified Lie algebra AL° is naturally graded by elements of Z & Z. In particular,
the meromorphic vector field z”“% on C* has degree (n,0) and the antimeromorphic vector
field Z”“% has degree (0,m). Accordingly, V' carries a grading by “conformal weight”

(h,h) € RO R. A field ® € V is said to have conformal weight (h, h) if

p <—z%) od=hd, p (—Z%) od = ho. (1.68)

The grading on the Lie algebra is compatible with the grading on the module: acting by
an element of Ag® of degree (n,n) shifts the conformal weight of a vector in V" as (h, h) —
(h—mn,h— ﬁ) One can split V' into graded components:

V=P ven
(h,h)EA

Here A C R @R is the set of admissible conformal weights (dependent on a particular CFT
model); A is necessarily a Z @& Z-module.

Remark 1.8.2. The condition that the representation p of AL comes from a representation

of the group Diff(S*) implies in particular that rotation by the angle 27 should act on a field
as identity (or, in the notations (1.65)), one should have e27(Fo—Lo) — id). That implies

h—heZ (1.69)
for any element of V

1.8.4 Conformal Ward identity

Conformal Ward identity is the following symmetry property of correlators. Fix a Riemann

surface > with punctures zi,...,z, and fix fields ®¢,..., P, € V. Let v be a conformal
vector field on ¥ with singularities allowed at {z;} — the real part of a meromorphic vector
field with poles allowed at zi,...,z, (we will denote the Lie algebra of such vector fields

As (23). Then we have the Ward identity

n

Z((I)l(zl) .-+ p(Laurent ,, (v)) o @;(z;) - - - D (2,,)) = 0. (1.70)

Lo(®1(21)+Pn(2n))

Here the left hand side can be thought of as the “Lie derivative of the correlator along v;”
Laurent., : As (-} — Alee

is the Laurent expansion of a (real part of the) meromorphic vector field at the point z;.

One can think of (1.70) as a version of naturality (1.15]) in Segal’s setting [

28 We emphasize that in h, 72, the bar does not mean complex conjugation.

290ne can consider models where is violated, but in this case correlators are multivalued. In other
words, correlators are functions (or sections of a line bundle) not on the configuration space of n-points but
rather on its covering space.

30In this version, one passes (a) from finite boundaries to infinitesimal ones (punctures), (b) from Lie
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1.8.5 The “L_; axiom”

Representation ((1.63)) is supposed to satisfy the following natural property:
(@1(1) o (o) o Bilz) () = A(Ba(er) o Bi() o Bale)) (LT
1(%z1 1Y Ow ilZi n\%n = 92, 1?1 i\%Zi n\<n .

<¢1(21)"'P<£U>Oq’i(zi)"'@n(zn» = (;;(‘I’l(zl)""I’i(zi)""bn(zn» (1.72)

for any surface with any collection of punctures and fields; w is a local complex coordinate
centered at z;.

Thus, says that acting by L_; on a field under the correlator is tantamount to
taking the holomorphic derivative in the position of the corresponding puncture (up to a
sign). Similarly, (1.72)) says that acting by L_; is tantamount to taking the antiholomorphic
derivative in the position.

1.8.6 Some special fields

Identity field. The identity field 1 € V(©9 corresponds in Segal’s picture to the vacuum
vector |vac) € Hgi — the partition function of a disk. The field 1 is characterized by the
property that for any fields ®4,...,®, and any points zg, 21, ..., 2, on X, one has

(L(20)®1(21) - - Pn(20)) = (Pa(21) - - Pu(20)) (1.73)

Put another way, putting the field 1 at a puncture effectively forgets that puncture.
Stress-energy tensor. The stress-energy tensor 7' € V9 @ V(02 ig defined as

T: =p (Re (_728)) ol (1.74)

Or in terms of standard notations (|1.65)) introduced above,

T=(Ly+Ly)ol (1.75)

Primary fields. A field ® € V(R s said to be primary if it is a highest weight vector

under the action of AL®, i.e., if

L,®=0, L,®=0 foranyn > 0. (1.76)

Equivalently, field ® is primary if it is annihilated by conformal vector fields which vanish
to second order at the origin (the point of insertion of ®). B
It is natural to assign to a primary field of conformal weight (h, h) a complex line bundle

L= Ko @ K&k (1.77)

group action to the associated Lie algebra action, (¢) one complexifies the Lie algebra, which corresponds to
allowing vector fields not tangential to the boundary.

Did not
explain
this in
the class.
signs?



CHAPTER 1. SEGAL’S PICTURE OF 2D CFT 38

over Y where )
K = (TLO)*Z, K = (TO,I)*E
are the holomorphic and antiholomorphic cotangent bundles of X, respectively.
Then the correlator (1.60) of primary fields ®; € V"% is a section over Conf, (%) of the

line bundle B
L= X, chihi (1.78)

where ¢: Conf, (¥) — X*" is the natural inclusion.

From the standpoint of the moduli space of complex structures, the correlator of primary
fields (1.61]) is a section of the line bundle

n

L= (@ .c?“’”> ® Lanomaly (1.79)

i=1

over the moduli space My, ,,. Here L’?“Bi is the line bundle |D assoicated to i-th puncture
on X;
*Canomaly = (Det 6)@)6 ® (Det 3)®E (180)

is the effect of conformal anomaly, with (c,¢) the central charge (see Section and
footnote [21]).

1.8.7 Operator product expansions

When studying CFT as a system of correlators, instead of sewing along boundaries, one
studies OPEs (“operator product expansions”) governing the singularities of correlators of
fields (1.60]) as the point of insertion of one field approaches another, z; — z;.

Figure 1.10: One puncture approaching another.

An OPE is an expression of the form

1(5)2a(w) ~ Y 2 0, (2, w)B(w) + reg (1.81)

Here on the right hand side:

e The sum is over a basis {®} in V.

o Coeflicient functions f;?l@ ,(z,w) are some real-analytic functions on a neighborhood of
Diag C ¥ x X, singular on 3.
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e reg stands for terms that are continuous (in special cases, even holomorphic) on the
diagonal z = w.

In (|1.81f) we could have chosen instead to express the operator product in terms of fields
® at 2 rather than w (or even, say, at some point between z and w); this choice affects the
coefficients in the OPE.

The expression is understood as a substitution that one can perform under the
correlator of ®;(z), ®o(w), and any collection of other fields away from z and w, in the
asymptotics z — w:

(1)@ (w) @3(25) -+ Pul20)) ~ D Fn, (2, 0)(B(w) B (25) -+ Dy (20)) +reg (1.82)

Vv ~
away from z,w @

Thus, singularities of n-point correlators are governed by (n — 1)-point correlators.

Note: the OPE does not depend on the collection of “test fields” ®3,..., P, in the
correlator ([1.82]).

Modular tensor categories, fusion, braiding, torus axioms

Idea. One wants to recover n-point correlators functions from (n — 1)—point correlators
using the OPEs (1.82), ultimately reducing everything to 3-point correlators. The idea is
similar to recovering a meromorphic function from knowing the principal part of its Laurent
expansion at each pole.

The idea that all correlators can be derived from 3-point correlators is close to the idea
in Segal’s approach, that one can cut any surface into “pairs of pants” (spheres with three
holes).

Another form of that thought: an n-point correlator on a plane can be seen as a sewing
of a collection of annuli with one hole.

Remark 1.8.3. The asymptotic of two punctures on X approaching one another from the
standpoint of the moduli space of curves My ,, corresponds to approaching a nodal curve,
where punctures z, w are in one component, connected by a “neck” to the other component,
where the remaining punctures zs, ..., z, are (where we put the “test fields”).

(D

Figure 1.11: Nodal curve.

1.9 Comments on bibliography

Edit /remove



Chapter 2

Elements of conformal geometry

2.1 Conformal maps

Reference: [3§].
Let (M, g) be a Riemannian (or pseudo-Riemannian) manifold.

Definition 2.1.1. A Weyl transformation is a change of metric on a (pseudo-)Riemannian
manifold (M, g) — (M,¢g = Q- g) consisting in multiplying the metric by an everywhere
positive function Q € CZY(M) (the “Weyl factor”).

Two metrics on M differing by a Weyl transformation are said to be conformally equiv-

alent. A metric on M modulo conformal equivalence is called a conformal structure on
M.

Definition 2.1.2. A smooth map of (pseudo-)Riemannian manifolds ¢: (M, g) — (M’,¢')
is a conformal map if

99 =Q-g (2.1)

for some positive function Q € C(M) (the conformal factor associated to ¢).
One says that two (pseudo-)Riemannian manifolds (M, g) and (M’, ¢') are conformally
equivalent if there exists a conformal diffeomorphism

¢: (M,g) — (M, g). (2.2)
Some immediate properties of conformal maps:

(a) If ¢1: (M,g9) — (M',¢") and ¢o: (M',¢") — (M",g") are two conformal maps with
conformal factors €, Q" then ¢y 0 ¢1: (M,g) — (M”,g”) is a conformal map with
0 = 610, - Q.

(b) If ¢: (M,g9) — (M',¢') is a conformal diffeomorphism with conformal factor €2, then

(M, g") — (M, g) is also a conformal diffeomorphism with conformal factor (¢—1)*Q 1.

(c) If ¢: (M,g) = (M',¢') is a conformal map with conformal factor Q and A € CZ(M),
AN € C(M') are positive functions, then ¢: (M,A-g) — (M’',A’-¢) is also a conformal
map, with conformal factor d’TA/ - Q).

40



CHAPTER 2. ELEMENTS OF CONFORMAL GEOMETRY 41

In particular, the notion of a conformal map between manifolds equipped with just
conformal structure (rather than metric) is well-defined, but the conformal factor of
such a map is not well-defined.

Definition 2.1.3. Conformal automorphisms ¢: (M, g) — (M, g) form a group — the con-
formal group Conf(M,g). By above, this group depends only on the conformal class of

qg.

2.2 Examples of conformal maps

Example 2.2.1. Isometries of (M, g) form a subgroup of Conf(M, g) (characterized by the
property Q = 1).

Example 2.2.2. Translations and O(n)-rotations of Euclidean space R” (with the standard
metric g = (dx')? + -+ + (dz™)?) are conformal automorphisms:

ISO(n) = O(n) x R™ C Conf(R"). (2.3)

(This is a special case of Example 2.2.1])

More generally, one can consider the space RPY with metric g = (dz')? + -+ + (daP)? —
(dzPt1)2 — ... — (dxPT)%. Then one has translations and O(p, q)-rotations as isometries (and
in particular, conformal automorphisms) of RP9.

Example 2.2.3 (Dilations). Fix a nonzero real number A. The dilation (or scaling) map

R* — R"

7o AT (24)
is a conformal map with 2 = A%, (One can replace R" with RP? in this example.)
Example 2.2.4 (Stereographic projection). Let

S ={(2°,...,2") e R" | Z(mi)z =1} (2.5)

be the unit sphere in R"*! with N = (1,0,...,0) the North pole. Consider the stereographic
projection
¢: S™\{N} — R”

(22, ... a") = (2t a2

(2.6)

The map ¢ is a conformal diffecomorphism (w.r.t. the round metric on S™ — induced from

the standard flat metric on the ambient R"*! — and w.r.t. the standard metric on R™). The

conformal factor is 2 = (1_20)2.

Example 2.2.5. Any diffeomorphism ¢: R — R is a a conformal map (w.r.t. the metric
g = (dz)? on the source and the target), with = (%)2.

Lecture
6,
9/5/2022
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Example 2.2.6 (Inversion). The map
o R0} = R\{0}

W (2.7
o7 PR
is an orientation-reversing diffeomorphism. It is a conformal map (w.r.t. the metric induced

from the standard one on R"), with {2 = IIfI\I“'

The following lemma gives a full classification of local holomorphic maps on R?.

Lemma 2.2.7. Let D C R? be an open set. For a smooth map ¢: D — R? the following
statements are equivalent:

(i) ¢ is conformal (w.r.t. the standard metric on source and target)

(ii) ¢ is either holomorphic or antiholomorphic (we are identifying R?* with C) and has no
critical points in D.

Proof. Let x,y be the real coordinates on D and let u,v be the coordinates on the target
R2. Let z = x + iy be the complex coordinate on D and let w = u + iv be the complex
coordinate on the target R? = C. The pullback of the target metric ¢ = du® + dv? = dw dw
is then

¢*g = ¢*(dw dw) = 9,¢ 0,¢9(dz)* + 0:¢ 0:¢(dz)* + (0.¢ 026 + 0-¢ 0,¢)dzdz (2.8)

We are using the standard notations for holmorphic/antiholomorphic derivatives:

o 1 o 1
0, = — ==(0, —10y), 0:=—==(0,+10,). 2.9
o= 20— 0,), 0= = (0. + D)) (2.9
:>: If we know that ¢ is conformal, then
o*g=Qgp = Qdzdz (2.10)

for some positive function €2, thus coefficients of (dz)? and (dz)? must vanish. For this there
are two possibilites:

(a) 9:¢ = 0 (and thus also 9.4 = 0), i.e., ¢ is holomorphic. In this case, comparing the dzdz

term in ([2.8)) with (2.10]), we have
Q = 10.0> (2.11)

(b) 0.¢ = 0 (and thus also ;¢ = 0), i.e., ¢ is antiholomorphic. In this case we have

Q = |0:9)*. (2.12)

Note that in both cases ¢ cannot have critical points, since there 2 would vanish (by (2.11]),
).

(ii) = : Assume ¢ is holomorphic with no critical points. Then 0;¢ = 0.¢ = 0, thus
by (2.8), ¢*g = |0.¢|*dzdz. Hence, ¢ is conformal with © = |0,¢|* which is positive, since ¢
has no critical points. The antiholomorphic case is similar. O
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Example 2.2.8 (Moébius transformations). The Lie group

PSLQ(C):{(Z Z)

where quotient by Z, identifies a matrix and its negative, acts on the Riemann sphere
C = CP! by fractional-linear transformations (or “M&bius transformations”)

a b\ , az+b
(c d)' z»—>z—cz+d (2.14)

a,b,c,d € C, ad—bc:l}/zg, (2.13)

For any element of PSLy(C), (2.14) is a conformal map with conformal factor (w.r.t. the
standard metric on R

d2' |? 1
== = 2.15
dz lcz + d|* (2.15)
For instance, one has the following interesting classes of Mébius transformations:
1 b . .
(a) Element 01 ) with b € C, acts by translation z — 2z + b.
ez . i6
b) 0 it acts by rotation by angle ¢, z — €%z.
AVZ0 . .
(c) 0 -1z with A > 0 acts by dilation z — Az.
d Lo ith ¢ € C yield al It tion (SCT z =1
(d) . 1 ) Withee Cyields a specia conformal transformation ( )2 g = T

In particular, it maps —c¢™! — oo and oo — ¢!,

Note that translations, rotations and dilations are conformal automorphisms of C C C, but
SCTs are not — they have a pole on C.

Example 2.2.9. Consider the exponential map
C/2miz =2 C\{0} (2.16)

from the cylinder to the punctured plane. By Lemmal[2.2.7] it is a conformal diffeomorphism,
with Q = e*7# (w.r.t. to the standard Euclidean metric on the source and target).

! Note that if ¢ # 0, then @ vanishes at the point {oo} € C (and also explodes at z = f%) which
seems to contradict that € should be a positive (and everywhere defined) function. This is to do with the
fact that we chose a metric on C which does not extend to the point {co}. One can choose another metric
in the same conformal class which extends to {oo} (e.g. the round metric on C seen as S2), then  relative
to that metric will be truly everywhere positive and everywhere defined.
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2.3 Conformal vector fields

One can think of conformal vector fields as “infinitesimal conformal maps.”

Definition 2.3.1. A conformal vector field on a (pseudo-)Riemannian manifold (M, g) is a
vector field v € X(M) satisfying
L,g=wyg (2.17)

for some function w € C*(M) (the inifitesimal conformal factor); £, stands for the Lie
derivative along v We denote the set of all conformal vector fields on (M, g) by conf(M, g).

Conformal vector fields form a Lie subalgebra in the Lie algebra of all vector fields w.r.t.
the standard Lie bracket of vector fields:

conf(M, g) C X(M). (2.18)
One has a natural inclusion
¢: Lie (Conf(M, g)) < conf(M, g) (2.19)

of the Lie algebra of the group of conformal automorphisms into the Lie algebra of conformal
vector fields (by taking derivative the at ¢ = 0 of a 1-parametric subgroup). If M is compact,
¢ is an isomorphism (one can construct the flow of a conformal vector field v — Flow,;(v)
yielding a 1-parametric subgroup of Conf(M, g)). However, for M noncompact, conformal
vector fields can fail to be complete, so only a part of elements of conf(M, g) can be expo-
nentiated.

2.4 Conformal symmetry of R"? with p+ ¢ > 2

2.4.1 Conformal vector fields on RP

Consider the space RP with its standard metric g = n;;dz'dz? with the matrix n;; being

-~

p q

We denote n = p + q.

We are looking for conformal vector fields v = v*(x)d, on RP4. (Summation over repeated
indices is implied everywhere in this section.) The defining equation for them takes
the form

&-Uj + 83-@@ = Wnij (221)

with v;: = n;07. (2.21)) is a system of n* (dependent) differential equations on n + 1
unknown functions — components v; of the conformal vector field and w — the infinitesimal
conformal factor. Solving is a well-known exercise [38] 9, [19]; for reader’s convenience,
we reproduce the argument

2Note that there is no positivity constraint on w.
3Part of the value of the explicit argument here is that it gives an explanation (albeit a technical one) of
why the cases n = 1,2 and n > 2 are so vastly different.

locate
the right
reference
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i) Contracting (2.21)) with n%, we get
(i) g U g

2 0;v° = nw.
~—
divwv

(ii) Applying &’ to (2.21)), we get
8l(d1V U) -+ AUi = O;Ww,
where A = 9;07. By ({2.22)), this implies

Av; = (1 — g) oiw.

(iii) Applying 0; to (2.24), symmetrizing in i <+ j and using (2.21)), we get

%mgﬂw = (1 - g) 9;0jw.

(iv) Applying 97 to (2.24), we get

which implies
(n—1)Aw=0

(v) Equations (2.25)) and (2.27)) imply that for n # 1,2 one has

&-@-w =0.
L.e., w is at most linear in coordinates.
(vi) Taking a derivative of (2.21]), we have
&@-vk + 8iakvj = O;W Nk
The equation (2.29) + (2.29) jx)— ik — (2-29) (ijk)— (kij) then reads
2&-8jvk = Jiw Nk + 0jw Nik — Opw Mij
(vii) Equation (2.28]) and (2.30) together imply, for n # 1,2, that
8i6j6kvl =0.

Le., v is at most quadratic in coordinates.
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Now, specializing to the case n > 2, we have an ansatz
vi(1) = a; + ba? + cgpria®,  w(x) = 2u + 4yt (2.32)

with a;, bij, ¢iji, pt, v; some coefficients. Substituting this ansatz into (2.21)), we find that
(2.32) is a conformal vector field and its conformal factor if the coefficients satisfy the fol-
lowing;:

(a) No restriction on a;.

(b) bi; + bji = 2un;; which implies
bij = punij + Bij (2.33)

with some anti-symmetric tensor §;; = —f;;.
(¢) ¢ijk + ¢jik = 2vgn;; which implies, similarly to the derivation of (2.30]) above,
Cijk = ViNik + ViNij — ViNjk- (2.34)

This proves the following.

Theorem 2.4.1 (Liouville). For n = p+ q > 2, the Lie algebra of conformal vector fields
on RP4 splits into the following subspaces:

conf(RP?) = {translations} @ {rotations} @ {dilations} & {SCTs} (2.35)
R

~R" ~s0(p,q) ~ ~R7

where SCTs stands for “special linear transformations.” Fxplicitly, these conformal vector
fields are as follows.

conf. vector field w

translation v'(z) =a' 0

rotation | v'(x) = Bla? with Bi; = —f;i 0

dilation vi(z) = pat 211
SCT vi(x) = 2(Z, P)xt — VY|Z||* | 4(7, 7)

2.4.2 Finite conformal automorphisms of RPY with p + ¢ > 2.

Here are the ﬁniteﬁ conformal maps exponentiating (via constructing the flow in time 1) the
conformal vector fields of Theorem [2.4.11F]

conf. map Q
translation ' a2t +a', dERY 1
rotation tt v O’ 0% € SO(p, q) 1
dilation = At A >0 2

i i 151 r n _o(E = 21121 (2]12) —2

4“Finite” conformal maps are just conformal maps. We use the adjective “finite” to emphasize the
difference from “infinitesimal conformal maps,” i.e., conformal vector fields.

5Under the flow-in-time-one map, the parameters of the finite conformal maps are related to the param-
eters of the conformal vector fields by @ = @, O = exp(8), A =eH, b= 1.
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Definition 2.4.2. Given a manifold M equipped with a conformal structure vy (a choice
of metric modulo Weyl transformations), we say that a compact manifold N equipped with
conformal structure, is a conformal compactification of M, if the following holds:

e One has an embedding M < N with open dense image.
e All conformal vector fields on M extend to N. (And N they can automatically be
integrated to conformal automorphisms.)

Remark 2.4.3 (On finite SCTs). (a) A finite SCT can be written as

=,

(inversion) o (translation by — b) o (inversion). (2.36)

Le., it maps ¥ — 7’ with image and preimage related by

8
11

— —b. (2.37)

(b) A finite SCT is not everywhere defined as a map RP? — RP? (the denominator in the
formula for SCT may vanish). This corresponds to the quadratic vector field describing
the infinitesimal SCT not being complete on RP4.

(¢) In Section we will construct a conformal compactification N7 of RP?, such that
SCTs are everywhere well-defined on NP4,

We also remark that in the exceptional dimensions n = 1,2, the r.h.s. of (2.35) is a
(small) subspace of the Lh.s., while the L.h.s is an co-dimensional Lie algebra.

Theorem 2.4.4. Assume p+ q > 2.

(i) One has an isomorphism of Lie algebras

conf(RP?) = so(p+ 1,9+ 1). (2.38)

(ii) For the group Conf*™8 of almost everywhere defined conformal automorphisms of RP4,
one has:

o If —1 and 1 are in different connected components of SO(p+1,q+ 1), then
Conf3"8(RPY) =2 SOy(p + 1,q + 1) (2.39)

Subscript O on both sides stands for “connected component of 1.7

e Otherwise, .
Confy"(RP) =2 SOy(p+ 1, + 1)/Z, (2.40)

(i1i) The conformal manifold RP? possesses a conformal compactification NP7 in the sense
of Definition [2.].9

For the proof, see [3§].
As a sanity check of ([2.38]), let us check that the dimensions of both sides match:

dim conf (RP) o5 dim{translations} + dim{rotations} + dim{dilations} + dim{SCTs}
-1 1 2
:n—i-m-kl—i-n:(n—{— Jn+2)

5 5 =dimso(p+1,¢g+1) (2.41)
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2.4.3 Sketch of proof of Theorem [2.4.4: action of SO(p+1,q+ 1)
on R”? and the conformal compactification of R

For the following construction, we also follow [3§].

2.4.3.1 Case of R"
. Consider first the case (p,q) = (n,0).

e The group SO(n+1,1) acts on R**1:! by linear isometries and preserves the light cone

LC ={(2° ... 2" y) e R | (2% + .- + (") —¢y* =0} CR"™ (242

e We have two commuting actions

SO(n+1,1) ¢ LC D R* (2.43)

dilations

e In particular, SO(n + 1, 1) acts on LC' — {0} /R*.

e LC'—{0} inherits a degenerate metric from R"*-1. Tts kernel is the fundamental vector
field of the R*-action and thus is killed by quotienting over R*.

e By the previous, LC' — {0} /R* inherits a conformal structure and SO(n + 1,1) acts on
LC — {0}/R* by conformal maps.

e Note: LC —{0}/R* can be identified with the unit sphere S™ C R"*!: intersecting LC'
with the hyperplane y = 1 in R*™%! we are selecting a single point from each R*-orbit.

Figure 2.1: Light cone and its section by y = 1 hyperplane.

e One has a stereographic projection

s*—{(1,0,...,00} - R"
————

North pole
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(which is a conformal diffeomorphism). Thus we identify S™ as a conformal compact-
ification of R™: conformal vector fields on R™ extend to S™ and finite conformal maps
are everywhere defined on S™.

2.4.3.2 Case of general RPY

e We have the light cone
LC = {(:CO, P ) ‘ d @)=Y W)= 0} C RPFLOTL (2.44)
i=0 j=0
e We have two commuting actions
SO(p+1,q+1) G LC—-{0} > R~ (2.45)
lin. isometries dilations

e We have a projection
m: LC — {0} — RP™™. (2.46)

Denote its image
NP9 =im(7m) ~ (LC — {0})/R* (2.47)

Being a submanifold of a compact manifold RP™™ NP is compact.

e Consider the map ¢: RP? — NP4 defined by
L(zlv"' ’mp’yl’.”,yq) =
1 L a. 1 LA . .
= Z(1=20@? 3w et S (14 D@ = Y W)?) syt
i=1 j=1 i=1 j=1
(2.48)
where (— : — .- : —) stands for the homogeneous coordinates on the projective space.

The map ¢ is injective and has open dense image.

Sketch of proof of Theorem[2.4.4).

1. We have constructed a compact manifold NP9 equipped with an inclusion RP? — NP4
(compatible with conformal structures) as an open dense subset.

2. We have constructed an action of SO(p+1,¢+ 1) on NP4 by conformal diffeomorphisms.
The only elements acting trivially are multiples of identity, i.e., 1 and —1 (in the case
when —1 belongs to SO(p+1,q+ 1)).

3. The differential of the action of SO(p + 1,q + 1) gives an injective Lie algebra map
so(p+1,q+ 1) < conf(NP?) (and by restriction to RP, an inclusion so(p+ 1,¢ + 1) —
conf(RP?)). By the dimension count (2.41)), these inclusions are in fact isomorphisms.

This proves and of Theorem m, identifying ([2.47)) as the desired conformal
compactification.
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4. The previous two points imply that the Lie group Conf(N??) contains SO(p, q)/Zs and
both groups have the same Lie algebra. That implies that the connected components of
1 in both groups coincide. That proves of Theorem m

O
Remark 2.4.5. The product of unit spheres

SPx §U={(a. ., a" "y | D) (@) =1, () =1} (2.49)

i=0 §=0

is a submanifold of LC' — {0} and intersect each R*-orbit twice ((z,y) and (—z, —y) are in
the same R*-orbit). Thus, one has a twofold covering map

SP x §9 — NP4 (2.50)

given by the projection (|2.46)) restricted to SP x S¢. In particular, we can identify NP9 with
the quotient
NP9~ SP x S1/Z, (2.51)

where Z, acts by the diagonal antipodal map, (x,y) — (—z, —y).

2.5 Conformal symmetry of R?

A vector field v = vi(z,y)0; (with z = 2!, y = 2?) on R? equipped with the standard
Euclidean metric is conformal if the equation (2.17)) holds:

_ 1
OV = Oyvy = 5w

Dyvy = —Oyv, (2.52)

&vj + aj’l)i = wéij = {

for some function (conformal factor) w. On the right side we can recognize the Cauchy-
Riemann equations. Thus, the vector field v = v;0; is conformal if and only if the function

= v, + v, (2.53)

is holomorphic. Note that the vector field v can be written in terms of the holomorphic
function u and its complex conjugate u as

v =u(2)0, + u(2)0; = 2Re(u(z2)0.) (2.54)

The corresponding conformal factor is w = 0, u + 0zu.

In (2.54) we use the complex coordinate z = x + iy, its conjugate z = x — iy and the
corresponding derivatives 0, = %(89; —10y), 0z = %(&U +10,).

To summarize, we have the following.

Lemma 2.5.1. One has an isomorphism of Lie algebras

1: conf(R?*) = {holomorphic vector fields on C}. (2.55)

It maps a conformal vector field v,0, + v,0, to the holomorphic vector field u(z)0, where
u(z) = vy+iv,. The inverse map =" assigns to a holomorphic vector field u(z)d, a conformal

vector field 2 Re(u(2)0,) = u(2)0, + u(z)0s.
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The fact that ¢ intertwines the Lie brackets on the two sides of (2.55)) is a straightforward
check.

Remark 2.5.2. In the isomorphism ([2.55]), we are thinking of both sides as Lie algebras over
R. However, the right hand side is also a Lie algebra over C. Multiplication by ¢ on the right
side translates in the left side to acting on a conformal vector field by pointwise rotation by
7/2 (in the tangent space at each point of R?).

Lemma [2.5.1| classifies infinitesimal conformal maps; its counterpart for finite conformal
maps is Lemma [2.2.7 above, or its rephrasing:

Lemma 2.5.3. Let D, D’ be two open sets in C. A map ¢: D — D' is a conformal diffeo-
morphism if and only if ¢ is either biholomorphic or biantiholomorphic (i.e., the complex
conjugate map ¢: D — D' is bihomolomorphic).

2.5.1 Conformal vector fields on C*, Witt algebra

Definition 2.5.4. We define the Witt algebra W as the Lie algebra of meromorphic vector
fields on C with a pole (of finite order) allowed only at 0. The Lie algebra W has a standard
basis of meromorphic vector fields

l,=—2"""— nez (2.56)

Thus, the Witt algebra is
W ={ Z Culn | ¢, € C, the sum converges on C*}. (2.57)
n=-—ng

The generators [,, of W satisfy the commutation relations
Ly b)) = (n — M)y (2.58)
Indeed:
[—2"*10,, —2™110,] = "0, 210, — ™10, 2" T.] =

= ((m 4+ 1)2"" — (n+1)2""0, = (m —n)2""110, = (n — M)y (2.59)

There are several relevant variants of the Lie algebra VW, all with the same collection of
generators {[,} but with different asymptotic conditions on the coefficients ¢, as n — +oo:

(i) Holomorphic vector fields on the punctured formal disk:

Cllz,27"0: ={ > culn | ca € C}. (2.60)

n=-—ng

— This is a good model for the local conformal algebra A1°¢ of Section [1.8.1]

Lecture
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(ii) Meromorphic vector fields on CP' with finite-order poles allowed only at 0 and oo:

{ i Cnln | ¢ € C}. (2.61)

n=-—ng

— This model has the benefit that it is symmetric under the involution z — 1/z on
CP'.

We remark that the space of vector fields with coefficients in all formal Laurent power
o0

series { Z cnly} does not form a Lie algebra, since coefficients of the Lie bracket of two

n=—oo

elements involves infinite sums that do not have to converge.

By abuse of notations and terminology, we will call all complex Lie algebras spanned by
{lp}nez with different decay conditions on coefficients, the Witt algebra and denote them
W.

By Lemma[2.5.1] conformal vector fields on C* = C\{0} are the real parts of meromorphic
vector fields on C*:

conf(C*) ~ W = spanc{l, tnez (2.62)

(When we write “span,” we are being noncommittal about the decay conditions on coeffi-
cients.) Thus, one may also write

conf(C*) = spang{l, + ln, i(l, — Ip) nez. (2.63)

Thus, conf(C*) embeds as a real slice into its complexification

conf(C*) @ C= W, & Wﬁ (2.64)
spanc{ln}  spanc{ln}
Here B
l, = —2""0, (2.65)

are the antimeromorphic vector fields on C* complex-conjugate to [,,. They satisfy the
commutation relation similar to ([2.58]),

[l ) = (0 — M)y (2.66)

Also, one has

e, D] = 0. (2.67)

2.5.1.1 Some interesting Lie subalgebras of conf(C*)

Here are some relevant Lie subalgebras of conf(C*):

(a) Conformal vector fields on C:

spang{ly, + ln,i(ly — 1) }n>—1 (2.68)

Indeed, vector fields 1,,,l,, are holomorphic at 0 iff n > —1.
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(b) Conformal vector fields on C vanishing at 0:
spang{l, + ln, i(ln — 1) }nso (2.69)
Indeed, I, 1,, vanish at 0 iff n > 0.
(c) Conformal vector fields on CP'\{0}:
spang{ly, + ln, (L, — 1) }n<1 (2.70)
Indeed in the local coordinate w = z~' on CP'\{0} one has [, = w™"*'- 2. Thus, I, is
regular at the point z = oo (or w = 0) iff —n 4+ 1 > 0. (And similarly for /,,.)

Remark 2.5.5. Naively, the punctured plane C*, the punctured unit disk {z € C|0 < |z]| < 1}
and annulus Ann? = {z € C|r < |z| < R} all have the same Lie algebra conf(—) ~ W =
spanc{l, }necz. But in fact, for all these domains, the decay conditions on the coefficients
C, in are different. In the case of the annulus, the decay conditions depend on the
inner and outer radiiﬁ so that e.g. if one has " < r < R < R/, then one has a proper
inclusion conf(Ann%) < conf(Ann%) (so that the thinner annulus has a bigger Lie algebra
of conformal vector fields).

2.5.2 Conformal symmetry of CP!

Conformal vector fields on CP! are:
conf(CP') = spang{l,, + ln,i(l,, — Zn)}ne{,1,071} (2.71)

This is the subalgebra of conf(C*) comprised of vector fields which are regular at 0 and at oo,

i.e, it is the intersection of (2.68)) and (2.70). The Lie algebra conf(CP') is also isomorphic to
sl5(C) and to s0(3, 1) We can identify the generators of conf(CP') explicitly as infinitesimal
translations, rotation, dilation, and special canonical transformations:

—(l_1 + 1) =0, translation
—i(l_y —1_4) =0, translation
—(lp + 1p) = 20, + Y0, dilation
—i(lo — lp) = —y0, + x0, rotation
—(ly +1y) = (2 — y?)0, + 2xy0, SCT
—i(ly =) = —2zyd, + (2* — y*)9, SCT

The orientation-preserving part of the group of conformal automorphisms of CP* is given
by Mdbius transformations (2.14)):

Conf, (CP') = PSLy(C) ~ SO, (3,1) (2.72)

Where SO4(3,1) is the orthochronous component of SO(3,1), consisting of the elements
preserving the positive (y > 0) half of the light-cone.

6 Explicitly, the decay conditions for the annulus Ann’® are: ¢,p" = O(n~>°) for any 0 < p < R and

n——+oo

enp” = O(n|=%) for any p > r.

n——oo
7 One has an action of s0(3,1) on CP' by conformal vector fields by the construction of Section
Also, in the last isomorphism in (2.72)) we are referring to the finite version of that action.
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Remark 2.5.6. Note that while conf(C) is an infinite-dimensional Lie algebra, passing to the
one-point compactification C — CP! = CU {oo} reduces this algebra to a finite-dimensional
one . In fact, C does not have a conformal compactification (see Definition ,
unlike RP? with p 4 q > 2.

2.5.3 The group of conformal automorphisms of a simply-connected
domain in C
Lemma 2.5.7. 1. The group of conformal automorphisms of the upper half-plane H = {z €
C | Im(z) > 0} is
Conf(H) = PSL(R) (2.73)

where the elements of PSLo(R) are acting by Mobius transformations with a,b,c,d €
R.

2. The group of conformal automorphisms of the unit disk D = {z € C| |z| < 1} is
Conf(D) = PSU(1,1) (2.74)

— the group of Mobius transformations of the form

Zre (2.75)

az —1
where ¢ € R/21Z, a € C with |a| are parameters.

This is proven straightforwardly, by finding the part of the PSLy(C) which preserves the
boundary of the domain (the real line or the unit circle) and does not swap the domain with
its complement in CP?.

Remark 2.5.8. The groups PSLs(R) and PSU(1,1) are conjugate subgroups PSLy(C), with
conjugating element corresponding to the map z — j—;; — a conformal diffeomorphism H —
D.

Recall the key result of complex analysis:

Theorem 2.5.9 (Riemann mapping theorem). For any simply-connected open set U C C,
there exists a bitholomorphic map ¢: U — D with D the open unit disk.

Corollary 2.5.10. For any simply-connected open set U, the group of conformal automor-
phisms s

Conf(U) = ¢*PSLs(R) (2.76)

where ¢: U — D 1is the map from the Riemann mapping theorem.
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2.5.4 Vector fields on S!' vs. Witt algebra

A real vector field tangent to the unit circle S' C C can be written as
v=f(0)0 =Y anc™y (2.77)
nez

with the Fourier coefficients a,, satisfying the reality condition
a_p = Q. (2.78)

Here § € R/27Z is the angle coordinate on S'. We denote the Lie algebra of such vector
fields X(S).
One can express the basis tangent vector fields on S* in terms of Witt generators restricted

to S1H

M0y = —i(l, — 1_,) . (2.79)
Likewise, one has a basis of normal vector fields to S*:
ind _ 7
e, = —(ln+ 1) - (2.80)
We have a map

w — F(Sl, TC]51)
= (2.81)
Z Coly 2Rechln o

In fact, it is an isomorphism, under appropriate decay assumptions on ¢,. The r.h.s. of (2.81])
consist of vector fields on S* that are allowed to have both tangent and normal component.
The part of W that maps to vector fields tangent to S* is the real Lie subalgebra

O enln | ccn ==} CW (2.82)

g

~X(S1)

Thus, one has the following.

Lemma 2.5.11. The Witt algebra VW (with decay conditions on coefficients as above) is a
complexification of X(S*).

One might ask: which vector fields on S* extend into the unit disk D (cobounding S')
as conformal vector fields? The answer depends drastically on whether the vector fields are
required to be tangent to S! or are allowed to have a normal component on S*.

Lemma 2.5.12. (i) The subalgebra of X(S') given by vector fields extending as conformal
vector fields into the unit disk D 1is

1

{Re Y culn | ¢0 = =8} = sb(R) (2.83)

n=-—1

8 A related point: consider the inversion map I: C* — C*, mapping z % The pushforward of [,, by the
inversion is l,l, = —I_,. Vector fields tangent to S! appearing in the r.h.s. of lb are invariant under I,.

Re
2Re?

VS
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(ii) The subalgebra of T'(S', TCl|s1) given by vector fields on S* (with normal component
allowed) extending as conformal vector fields into the unit disk D is

{Re Z Coly | € = —Cpn} (2.84)

n>—1

In particular, we have a finite-dimensional Lie algebra in one case and an infinite-
dimensional one in the other case.

Proof. Tmmediate consequence of (2.81)), (2.82) and the fact that [, is regular at 0 iff n >
—1. [

2.6 Conformal symmetry of R! (trivial case)

Recall from Example 2.2.5|that on R! any diffeomorphism is conformal, Conf(R') = Diff(R").
Likewise, any vector field on R! is conformal, conf(R!) = X(R!).

Also, one can replace R! with S1 (thought of as a one-point compactification of R'). Here
one has as a distinguished subgroup the Mobius transformations of S':

Conf(S") = Diff(S') D PSLy(R) ~ SO,(2,1) (2.85)

“restricted conformal group’”

The action of SO(2,1) on S! by conformal automorphisms is by the construction of Section

2.4.3

2.7 Conformal symmetry of R!!

Consider Minkowski plane R'! with coordinates x,y and metric g = (dx)? — (dy)?. Introduce
the “light-cone coordinates”
T =x+y, 2T =x-—y (2.86)

(they are Minkowski analogs of the complex coordinates z, z in the Euclidean case R?).

~=—x~ = const

Sz = const

Figure 2.2: Light cone coordinates on R,

In terms of the light-cone coordinates, the metric is: ¢ = dxtdz™. Let us write a vector
field on R as
v=ov" (2T, 27)0; +v (2%, 27)0_
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with v* some functions on R™'; we denoted 0, = 1(8, &+ 8,). The condition that v is
conformal (2.17)) becomes
o_vt =0, v =0, 0w +0_v =w (2.87)

Thus, a general conformal vector field on R%! is of the form
v=0v"(z")0; +v (x7)d_ (2.88)

Note that coefficient functions now depend on a single light-cone variable; this is an analog
of holomorphic/antiholomorphic coefficient functions in the R? case. The conformal factor
of v is:

w=04vy + 0_v_ (2.89)

Thus we have the following.

Lemma 2.7.1. The Lie algebra of conformal vector fields on RY! splits into two copies of
the Lie algebra of vector fields on the line:
conf(R") = X(R") ® X(R")
—— =
vy Oy v_0_
One can similarly classify (finite) conformal automorphisms of RV — one has the following
analog of Lemma [2.5.3;

Lemma 2.7.2. A map ¢: RY — RV with components ¢ (T, 27), ¢~ (xT,27) is a confor-
mal automorphism of RV if and only if one of the two following options holds:

1. ¢t =¢T(x"), ¢~ =9 (z7).
Le., ¢ € Diff(R) x Diff(R) — a reparametrization of * and of x=. The conformal factor
in this case is Q = (01¢7)(0_¢7).

2. 9T =0¢"(z7), ¢~ = ¢ (a7).
Le., ¢ is a composition of a reparametrization of x+ and x~ with a reflection (x,y) —
(x,—y). The conformal factor in this case is Q = (0_¢™)(01¢7).

In particular, we have
Conf(R"!) = Diff, (R) x Diff (R) (2.90)

Subscript in Diff ;. stands for orientation-preserving diffeomorphisms. Note that the whole
group Conf(R™') has 8 = 2 x 2 x 2 connected components: one can choose to preserve or
reverse the orientation along x, and x_ and whether or not to compose with the reflection
Ty < T_.

Remark 2.7.3. One can consider Rb1: = S! x S' as a (partial) conformal compactification
of R with respect to a (large) subalgebra of conf(R"!) consisting of pairs of vector fields
on R which extend to S* = RU {oc}. Then, in analogy with (2.85]), one has

Confy(RLY) = Diff, (S*) x Diff  (S*) D PSLy(R) x PSLy(R) ~ SO(2,2) (2.91)
—_— Y S——
Mobius4 Moébius_— restricted conformal group
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2.8 Moduli space of conformal structures

Definition 2.8.1. A (pseudo-)Riemannian manifold (M, g) with metric of signature (p, q)
is said to be conformally flat if one can find an atlas of coordinate neighborhoods U, C M
with local coordinates {x%}, such that in each chart the metric has the form

glv. = Qa(@) - ((dzg)* + -+ + (daf)? — (dah)* — -+ — (dah*?)?) (2.92)

with some positive functions €2,. Coordinate charts in which the metric satisfies the ansatz
(2.92) are called “isothermal coordinates” on (M, g).

Note that being conformally flat is a local property.
The situation with conformal flatness of manifolds depends on the dimension.

e If dim M = 1 any Riemannian manifold admits local coordinates in which g = (dz)?.
[.e. any 1-dimensional Riemannian manifold is flat and, a fortiori, is conformally flat.

e If dimM = 2 (case of main interest for us), any (pseudo-)Riemannian manifold is
conformally flat ]

e If dimM = 3 a (pseudo-)Riemannian manifold is conformally flat if and only if its
Cotton tensor vanishes at every point — this is a certain tensor C € Q?(M,TM)
constructed in terms of derivatives of the Ricci tensor of the metric.

o If dimM > 4, a (pseudo-)Riemannian manifold is conformally flat if and only if
the Weyl curvature tensor vanishes at every point — this is a certain tensor W €
Q*(M, N*T* M) expressed in terms of the Riemann curvature tensor of g.

In particular, (pseudo-)Rimeannian manifolds of dimension > 2 are conformally flat,
while in dimension > 3 there are local obstructions for conformal flatness.

Given a smooth manifold M, one has an action of the Lie group of diffeomorphisms of
M on the space of conformal structures:

Diff(M) ¢ {conformal structures on M} (2.93)

Definition 2.8.2. We call the orbit space M}, of the action ([2.93) the moduli space of
conformal structures.

Note that the action (2.93)) is not free: for  a conformal structure on M there can be a
nontrivial stabilizer subgroup

Stabe = {¢: M — M | ¢*¢ =&} = Conf(M,¢) C Diff(M) (2.94)

— the group of conformal automorphisms of (M, §). Also, if ¢»: M — M is a diffeomorphism,
then Stab, and Staby-¢ are conjugate subgroups of Diff (M).

9This is not a trivial fact. It can be proven from existence of a solution of the Beltrami equation for the
change of coordinates from generic starting coordinates to isothermal coordinates. Originally this statement
was proven by Gauss.
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Remark 2.8.3. In which sense M, is a “space”? There are several ways to understand this
object:

(i) As a topological space, with quotient topology.

(ii) As an orbifold — a manifold with “nice” singularities (of the local form RY /T, with T
a finite group acting on RY properly).

(iii) As a “stack.” This is the correct way to talk about M, but we will be a bit simple-
minded about it and just remember a part of the “stacky data” — that points [{] € M,
come equipped with stabilizers — subgroups Stabe C Diff (M).

Remark 2.8.4. The discussion below Definition suggests that the moduli space of con-
formal structures on a manifold of dimension > 3 is infinite-dimensional, due to the presence
of local moduli (Cotton and Weyl tensors). In dimension 2, there are no local moduli: all
metric are locally conformally equivalent to the standard flat metric, and only global moduli
remain. So, one would expect the M, to be “small” (finite-dimensional) in this case. This
indeed turns out to be the case, as we discuss below.

2.8.1 Reminder: almost complex structures and complex struc-
tures

For details on complex and almost complex manifolds we refer the reader e.g. to [7, Section
15].

Definition 2.8.5. An almost complex structure on a smooth manifold M is smooth family
over M of endomorphisms of (real) tangent spaces that square to —id:

J € T(M,End(TM)), st.J?=—id forallz € M. (2.95)

Consider the matrix of .J, with respect to some basis in T, M. Note that the eigenvalues
of a real matrix with square —id must be +¢ and —i, moreover +¢ and —i must have the
same multiplicity. In particular, if M has an almost complex structure, dim M = 2m must
be even.

Also note that an almost complex structure induces an orientation on M: for (vy, ..., vy)
an m-tuple of generic vectors in T,, M, we say that the (2m)-tuple (vy, Jvy, ve, Jvg, . .., Uy JU)
is positively oriented in T, M (it is a straightforward check that this orientation is indepen-
dent of the choice of the initial m-tuple).

Given an almost complex structure, we have a splitting of the complexified tangent bundle
into “holomorphic” and “antiholomorphic” parts:

TeM =T"M @ T M. (2.96)
<~
CoOTM

On the right, for each x € M, the complex vector spaces T2OM, T*' M are defined as +i-

and —i-eigenspaces of J,, respectively. The splitting (2.96)) induces a dual splitting of the
complexified cotangent bundle
TeM = (TY)*M @ (T M (2.97)

—_——— N——
K K
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we will denote the holomorphic/antiholomorphic cotangent bundles on the right by K, K.
Furthermore, the splitting (2.97)) of k-forms on M (with complex coefficients) as

woen= B o
P20:420.0+4=k 1y p vp cna )

We refer to elements of 9 as (p, ¢)-forms on M.
Note that if the (real) dimension of the manifold M is 2m, then TOM, T*'M have
complex dimension m — then we say that M has complex dimension

1
dimec M =m = édimM.

In particular, one has QP4(M) = 0 if either p > m or ¢ > m.
Consider the differential operators 9,9: Q°(M) — Q*T1(M) defined by

Oa: = mpiy(da), Oa: = mp 401 (da) (2.99)

for « € QP9 Here d is de Rham operator and ,, is the projection of Q(M) onto its
component QP4(M). One calls 9,0 the holomorphic/antiholomorphic Dolbeault operators.
By default, just “Dolbeault operator” is 0.

Definition 2.8.6. An almost complex structure J on a manifold M is integrable if one can
find an atlas of complex coordinates (27, z7) on coordinate neighborhoods U, such that

e JO, =i0,;, JO; = —i0,;,

zl z

.. . . 0 J 67; .=
e the transition functions between charts are holomorphic: =5 —, if = 0 for any j, 7
0z}, 2o

and any two overlapping neighborhoods U,, Ug from the atlas.

An integrable almost complex structure J is called a complex structure (not “almost”). A
manifold M with a complex structure J is called a complex manifold.

Equivalent characterizations of integrability of J are:

(i) An almost complex structure J is integrable if and only if its Nijenhuis tensor N; €
O2(M, T M) vanishes:

Ny(X)Y): = -JX, Y]+ J[JX, Y]+ J[X,JY] - [JX,JY] =0 (2.100)

for X, Y € X(M). An equivalent restatement of (2.100)) is: for X0, Y10 € T'(M, T M)
two sections of the holomorphic tangent bundle, their Lie bracket is also a section of
the holomorphic tangent bundle (the antiholomorphic component vanishes):

Xyl = . (2.101)

(ii) An almost complex structure J is integrable if and only if one has

9> = 0. (2.102)
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(iii) The de Rham operator splits a'

d=0+0. (2.103)

Equivalence of Definition[2.8.6|with the characterizations above is known as the Newlander-
Nirenberg theorem[M]

On a complex manifold (M, J), the Dolbeault operators written locally in terms of com-
plex coordinates are

.0 - =0
— i Y — 50 2
d = ; de' o=, 0= > dz o3 (2.104)
Lemma 2.8.7. Any almost complex structure J on a manifold M of dimension dim M = 2
15 integrable.
Proof. This follows e.g. from (2.102): 8? maps (p, ¢)-forms to (p, ¢ +2)-forms. But there are

no forms of degree (%, > 2) on a 2-manifold. O

2.8.2 2d conformal structures (of Riemannian signature) = com-
plex structures

We will reserve the letter ¥ for 2-dimensional surfaces, while manifolds of general dimension
we denote by M.

Lemma 2.8.8. Fix an oriented 2-dimensional surface 3. One has a natural bijection between
the following two sets:

(1) the set of conformal structures on ¥ of signature (2,0) (i.e. Riemannian metrics modulo
Weyl transformations),

(i1) the set of complex structures J on X, compatible with orientation.

Proof. Given a conformal structure £ = g/ ~ on ¥, we assign to it the complex structure
J: T, — T, which maps a tangent vector u € T.> to the vector v € T,> uniquely
characterized by the following properties:

e v is orthogonal to u (according to any metric g representing &),
e v and u have the same length (according to any metric g representing ),

e (u,v) is a positively oriented pair in T, 3.

0For a non-integrable almost complex structure, d additionally has components of bi-degree (2, —1) and
(=1,2) w.r.t. the (p, ¢)-grading on forms.

HTn particular, the equivalence of Definition and vanishing property of the Nijenhuis tensor
can be viewed as a complex analog of Frobenius theorem. Recall that Frobenius theorem says that a
tangential distribution is involutive if and only if it integrates locally to a foliation. In the case of Newlander-
Nirenberg theorem, the distribution in question is complex, TV°M C TcM. In this analogy, a foliation
corresponds to local complex coordinates and involutivity is the property .
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P e

)

Figure 2.3: Complex structure on a surface.

Here is the inverse construction. Given a complex structure J on ¥, we assign to it
a conformal structure £ on X, defined as follows: Choose some volume form o € Q*(X)
compatible with the orientation. Set g,(u,v): = o(u,Jv). It is a straightforward check
that g, is positive symmetric bilinear form on 7.3, i.e., a metric. The conformal class of
g does not depend on a choice of the volume form o (changing o — Qo with  a positive
function, induces a change of g by a Weyl transformation). This construction J — & inverts
the construction & — J above. O

Remark 2.8.9. Under the correspondence between conformal and complex structure of Lemma
, equivalences of conformal and complex surfaces also go into one another: ¢: (X,§) —
(37, &) is a conformal diffeomorphism of surfaces equipped with conformal structures if and
only if ¢ is a biholomorphic map of the corresponding complex surfaces ¢: (3, J) — (3, J').

In particular, the correspondence of Lemma [2.8.8| gives an equivalence of categories,
between

(a) the category of surfaces equipped with conformal structure, with morphisms being con-
formal diffeomorphisms on one side and

(b) the category of complex surfaces and biholomorphic maps on the other side.

Remark 2.8.10. As a consequence of Lemma in the case of 2d surfaces, the moduli
space of conformal structures (Definition [2.8.2)) and the moduli space of complex structures

(2.116| are the same.

Definition 2.8.11. A smooth manifold ¥ of dimension 2 equipped with a complex struc-
ture is called a Riemann surface. Equivalently, a Riemann surface is a smooth 2-manifold
equipped with orientation and conformal structureE]

Definition 2.8.12. We will call a Riemann surface stable if it does not admit nonzero
conformal vector fields. In the case of a Riemann surface with marked points py,...,p,, we
call it stable if there are no nonzero conformal vector fields which vanish at the points p;.

2.8.3 Deformations of a complex structure. Parametrization of
deformations by Beltrami differentials

Let (M, J) be a complex manifold. A deformation of a complex structure in the class of
almost complex structures can be described as a change of the Dolbeault operator 0:

0—0— 2.105
v ( )

O

12Note that a Riemann surface is not a Riemannian manifold: it does not come with a preferred metric.



CHAPTER 2. ELEMENTS OF CONFORMAL GEOMETRY 63

where the parameter of the deformation
p€ QU M, THOM) (2.106)

is called the Beltrami differential; i € QYO(M, T M) is the complex conjugate object. In
local complex coordinates, i has the form

D
= Z'— 2.1
b= () (2.107)

where the coefficient functions ,ug(z) are arbitrary smooth complex-valued functions on M.
In (2.105)), we understand p as a first-order differential operator 274 — QP4*1 The deformed
Dolbeault operator written locally thus has the form

5 _ (9 _ a9
0, =dz (8zi - uz(z)ay) (2.108)

The deformation ([2.105)) is accompanied by the deformation of the holomorphic Dolbeault
operator

0 —0— i (2.109)

where [1 is the complex conjugate of the Beltrami differential .
Expressed as a deformation of J, ([2.105]) corresponds to the change

Jo = Ty + 201ty — fig) (2.110)

for any x € M (in the first order in p, f1).
In order for the deformation (2.105) to be a complex structure (rather than almost
complex), it must satisfy the integrability condition

@7 =0 & Ou— gl =0 (2.111)

The equation on the right is called the Kodaira-Spencer equation.

Remark 2.8.13. In other words, deformations of a complex structure on a given complex
manifold are governed by Maurer-Cartan elements of the differential graded Lie algebra

QO+ (M, TM), 3, |,] (2.112)

of (0, q)-forms with coefficients in the holomorphic tangent bundle, with differential 0 and
Lie bracket [, ]| coming as the wedge product of forms tensored with the Lie bracket of (1,0)-
vector fields[]

We emphasize that the formula , with p satisfying the Kodaira-Spencer equation
, describes finite deformations of a complex structure, not just infinitesimal (first-
order) deformations.

We also remark that if dim M = 2, then the Kodaira-Spencer equation holds
trivially (as there are no (0,2)-forms on M), cf. Lemma [2.8.7]

13We should mention that there is a natural and very deep generalization of deformations of complex
structures due to Barannikov-Kontsevich [5]. Here one replaces the dg Lie algebra (2.112)) by a bigger one:
Q0P (M, NITHOM), with total grading by p + ¢ — 1, and considers Maurer-Cartan elements there.
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Remark 2.8.14. For dim M = 2, a metric on a surface compatible with the complex structure
deformed by a Beltrami differential y locally has the form

9= p(2)’[dz + i3(2)dzP (2.113)

with p some positive function and z, zZ the non-deformed local complex coordinates (associ-
ated to the reference complex structure). For the metric to be nondegenerate one
needs the Beltrami differential to be sufficiently small: |pZ(z)| < 1 everywhere on M.

The deformed complex coordinate 2’ is a solution of the Beltrami equation:

(0—p)z' =0. (2.114)

2.8.3.1 Tangent space to the space of complex structures.

The discussion above implies that the tangent space to the space of complex structures
on a manifold M at a complex structure .J is the space of d-closed Beltrami differentials
(with 0-closed condition being the first-order approximation of the Kodaira-Spencer equation

@111):

T, (space of complex structures on M) ~ Q%’idosed(M, TYOM). (2.115)
For the moduli space of of complex structures[”]
M = {complex structures on M }/Diff (M), (2.116)

the tangent space at the class of .J is given by the quotient of (2.115)) modulo the action of
(infinitesimal) diffeomorphisms on Beltrami differentials,

po~ A+ ovt? (2.117)
with v the projection to TH? of any vector field on M. Le., one has
TyMy = H" (M, T M) (2.118)

— the cohomology of the complex (2.112)) in degree one.

2.8.3.2 Cotangent space to the space of complex structures (case of surfaces).

In the case of a 2-dimensional surface, the d-closed condition in ([2.115)) is automatic. In this
case, one can describe the cotangent space to the space of complex structures as

Ty (space of complex structures on Z) =QM(%, K) ~ (%, K%?) (2.119)

where K = (T*°)*Y is the holomorphic cotangent bundle. Elements of (2.119)) are quadratic
differentials 7 on 3 — tensors written in a local complex coordinate chart as 7 = f(2)(dz)?.

14 Tn this subsection we use My, for the moduli space of complex (not conformal) structures on M.
Later, when we specialize to surfaces, there will be no difference between moduli of complex and conformal
structures, due to Lemma @

Lecture
10,
9/14/2022



CHAPTER 2. ELEMENTS OF CONFORMAL GEOMETRY 65

The pairing between an element p of (2.115)) (a Beltrami differential) and an element 7 of
(2.119)) is

/Z (11, 7) (2.120)

where (,) is a pairing between vectors T2°% and covectors (T20%)*: thus, (u,7) is a (1,1)-
form on ¥, i.e., a 2-form, which can be integrated.
For the cotangent space of the moduli space of complex structures My, (2.119)) implies

TiMs ~ ng (33, K) = {holomorphic quadratic differentials on 3} (2.121)

—closed

— the space of holomorphic quadratic differentials, locally of the form 7 = f(z)(dz)? with a
holomorphic coefficient function.

The holomorphicity condition in arises because we are looking for the elements
of annihilating all vectors of the form

ov'? € T (space of complex structures),

of. (ITD).

Remark 2.8.15. In 2d conformal field theory, the stress-energy tensor 7' is a holomorphic
quadratic differential, so it can be seen via (2.121]) as a cotangent vector to the moduli space
of complex structures.

2.8.4 Uniformization theorem

The following statement is a key result on Riemann surfaces, known as the Uniformization
Theorem.

Theorem 2.8.16 (Klein-Koebe-Poincaré). Any simply-connected Riemann surface (3,€) is
conformally equivalent to exactly one the following three model surfaces:

(i) CP,
(ii) C,
(111) Open disk D = {z € C | |z| < 1} (“Poincaré disk”) or, equivalently (a conformally
equivalent model), upper half-plane 11y = {z € C | Im(z) > 0}.

Remark 2.8.17. For each of the model surfaces from Theorem [2.8.16| there is a metric of
constant scalar curvature R = +1,0, —1 representing its conformal class:

(i) CP! has a unique metric in its conformal class of scalar curvature R = +1 — the

Fubini-Study metric g = %.

(ii) C has a unique up to scaling flat (i.e. R = 0) metric in its conformal class, g = Cdzdz,
for any C' > 0.

4dzdz
(1—22)2"

(iii) D has a unique metric of scalar curvature R = —1 in its conformal class, g =

dzdz
(Im(2))2

Equivalently, IT, has a unique R = —1 metric g =
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We also remark that for these distinguished metrics, in cases (i) and (iii) the groups of
isometries and all conformal automorphisms coincide (put another way, each conformal au-
tomorphism is an isometry).

For a general Riemann surface ¥ (not necessarily simply-connected), its universal cover
3 inherits a conformal structure from ¥, is simply-connected and corresponds to one of the
model surfaces from Theorem . The group of covering transformations acts on ¥ by
conformal automorphisms. Thus, any Riemann surface ¥ is conformally equivalent to a
surface of the form

yymedel /0 (2.122)

where I' is the image of a group homomorphism
p: m(3) — Conf(xmedel) (2.123)

In particular, we need I' to be a discrete subgroup of Conf(¥™°d¢l)  acting freely on medel
(so that the quotient (2.122]) is a smooth manifold).

Remark 2.8.18. If we change in (2.122)) the subgroup I' to a conjugate subgroup yI'x~!
with y € Conf(X™me%!) a fixed element (or, put another way, we change the homomorphism

(2.123)) to a conjugate one, p — xpx 1), then the quotient (2.122) changes to a conformally

equivalent surface.

This leads to the following classification of connected Riemann surfaces:
(i) CP*

(ii) (a) C
(b) C\{0} or, equivalently, infinite cylinder C/Z.

(c) 2-torus C/A where A = uZ @ vZ € C is a lattice spanned by vectors u,v € C with
u/v & R. Using rotation and scaling['| one can convert the pair (u,v) to (1,7) with
T € H+.

(iii) I /T for some I' C PSLy(R) a “Fuchsian group” — a discrete subgroup of PSLs(R)
isomorphic to 1 (2). This case includes all surfaces of genus g > 0 with n > 0 boundary
circles (the surfaces are considered as open — the boundary circles are not a part of
Y), with x(¥) =2 —2¢g —n < 0, and also includes annulus (or finite cylinder) and
punctured disk (or semi-infinite cylinder).

Surfaces of types (i), (ii), (iii) above are called, respectively, elliptic, parabolic and hyper-
bolic. Elliptic surfaces admit (in their conformal class) a unique metric of scalar curvature
+1, parabolic surfaces — a unique-up-to-scaling flat metric, hyperbolic surfaces — a unique
metric of scalar curvature —1.

15 In this example, p maps 71 (S! x S') to a lattice A seen as a subgroup of {translations} C Conf(C). The
change of the generators of A by translation and scaling corresponds to the conjugation of p, as in Remark

2.8.18] by rotation and scaling.
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Example 2.8.19. A closed Riemann surface of genus g > 2 falls into the type (iii) (hyper-
bolic). Using the standard presentation of the fundamental group of a surface as

g
’/T1<E) = <a17"'aagaﬂla--->ﬁg ‘ HO‘iﬂiai_lﬁi_l == 1>
=1

we see that its image in PSLo(R) under p is a 2g-tuple of elements
al,...,ag,bl,...,bg EPSLQ(R)

subject to a relation
g
Haibiai_lbi_l =1.
i=1

Moreover, by Remark [2.8.18] two 2g-tuples should be considered equivalent if they are
related by conjugation by an element h € PSLs(R):

(a1, ... ag,b1, ... by) ~ (harh™, ... hagh™" hbih™", . . hbyh™). (2.124)

2.8.5 Moduli space M,, of complex structures on a surface with
n marked points
Definition 2.8.20. Fix a smooth closed oriented surface X of genus g. Let py,...,p, € X

be a collection of pairwise distinct points on ». The moduli space of complex structures on
Y with n marked points is the quotient spacd']

M, = {complex structures on X} /Diff . (3, {p;}), (2.125)

where Diff | (3, {p;}) stands for the orientation-preserving diffeomorphisms of ¥ that do not
move each of the marked points p;['"]

There is another version of the moduli space where we quotient by orientation-preserving
diffeomorphisms which are allowed to move a marked point to another marked point:

DIff" (2, {p,}): = {6 € Diff(£) | 6(p:) = pogs) for some o € 5,}.

We denote the quotient of the space of complex structures on ¥ by such diffeomorphisms
Mlg‘f;f’rdered (unordered marked points), whereas (2.125) is the moduli space of complex struc-
tures with n ordered marked points, Mg, =: Mg .

Definition 2.8.21. We call the universal family (of Riemann surfaces) the fiber bundle &,
over M, ,, where the fiber over the point corresponding to a Riemann surface > with marked
points {p;} is that same surface with same marked points.

16 Again, there are different ways to understand the quotient here: as a topological space with quotient
topology (“coarse” moduli space), as an orbifold, as a stack.

17 Other names used for My, include: “moduli space of conformal structures” (since in 2d, conformal
and complex structures correspond to one another), “moduli space of Riemann surfaces” and (in the context
of algebraic geometry) “moduli space of (algebraic) curves.”

18 One has an action of the symmetric group S, on Mgfﬁere‘j by relabeling the marked points. The
unordered moduli space is naturally identified with the orbit space of this action: Mynerdered = pqordered /g

is  this
def/terminol
ok?
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The idea of Teichmiiller theory is to do the quotient (2.125)) in two steps:

1. Take the quotient

{complex structures on X}/Diffo (2, {p;}) =: Tyn (2.126)

)

with respect to the connected component of identity in the group of diffeomorphisms pre-
serving the marked points, Diff; C Diff,. The quotient is called the Teichmiiller
space Enlﬂ In the case y = 2 — 29 —n < 0 (the “stable” case), the Teichmiiller space
is diffeomorphic to R®=62" It carries a natural complex structure and several natural
metrics, see e.g. [30].

2. Take the quotient of (2.126)) by the discrete group of connected components of the diffeo-
morphism group appearing in (2.125)),

moDiff (X, {p:}) =: pMCG,,,. (2.127)

This group is known as the “pure mapping class group” of a surface of genus g with n
marked points. One has a natural action of pMCG, ,, on the Teichmiiller space inherited
from the action of diffeomorphisms on complex structures. Thus, we consider the quotient

Mg = Tgn/PMCG . (2.128)

Remark 2.8.22. If one wants to construct the moduli space with unordered punctures, one
extra step is needed: a quotient by the symmetric group S,, (which acts by permuting the
marked points):

Mpnerdered — M /Sy, (2.129)

Another way to write it is directly as a quotient of the Teichmiiller space
Mpnerdered — 70 IMCGy,, (2.130)
by the full (not “pure”) mapping class group
MCGy,,: = mDiff{"r 4 ed(s, {p;}). (2.131)

Remark 2.8.23. The action of the mapping class group on the Teichmiiller space 7Ty, is free
almost everywhere, except for a discrete set of points where it has a discrete (in fact, finite,
for g, n sufficiently large) stabilizer. These points correspond to orbifold singularities of the
quotient M, .

Remark 2.8.24. The following remark is from [36]. Given a closed surface ¥ of genus g > 2,
by the Uniformization Theorem (see (2.122) and Remark [2.8.18]) one has a map

{conformal structures on ¥} — {subgroups I' C PSLy(R) s.t. I ~ 7 (X)}/PSLy(R)
(2.132)

9The points of Ty.n correspond to equivalence classes of complex structures on 3 (modulo diffeomorphisms
fixing the marked points), equipped with a “marking” — a diffeomorphism ¢: Z;tjlnd — 3 from a “standard”
surface to ¥ (taking marked points to marked points), where ¢ is considered up to isotopy.

reference

OK?

factcheck
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More specifically, one has a map
Ta0 = Hom(m (X)), PSLy(R))/PSLy(R) (2.133)
In fact, p is injective and its image is
im(p) = Hom® (7 (2), PSLy(R))/PSLy(R) (2.134)

where superscript d stands for “discrete” (so that 1 is not an accumulation point of the
image of m), f is for “faithful” (injective). One can also allow marked points — then one
gets bijection

Tom — Hom¥? (7 (2, ), PSLy(R))/PSLy(R) (2.135)

where superscripts d, f are as above and p means “periferal cycles map to parabolic elements
of PSLy(R)” (i.e. elements with trace £2). On the right hand side, ¥, ,, is understood as a
surface of genus g with n points removed. Thus, one has an identification of the Teichmiiller
space with a (part of) the moduli space of PSLy(R)-local systems on ¥. For instance, the
formula for the dimension of the Teichmiiller space

dim 7, = 69 — 6+ 2n (2.136)

follows from ([2.135)) immediately.

2.8.6 Aside: cross-ratio

Definition 2.8.25. Given four pairwise distinct points 21, 20, 23, z4 in CPY, their cross-ratio
is the number
(Zl — Z3)(22 — Z4> Z1 —R3 k92 — 23

21,20 1 23,24]0 = = : e C\{0,1}. 2.137
[1 2 3 4] (21—24)(22—23) 21 — R4 R2 — 24 \{ } ( )

Lemma 2.8.26. The cross-ratio is invariant under Mobius transformations:
[Az1, Azy : Azg, Azg] = [21, 20 ¢ 23 ¢ 24] (2.138)

for any A € PSLy(C). Put another way, the cross-ratio is a function on the open configura-
tion space C4(CP') of 4 points on CP' invariant under the diagonal action of PSLy(C).

Proof. The Mobius group is generated by translations z — z 4+ a with a € C, rotations plus
dilations z — Az with A € C*, and the transformation z — 1/z. The expression ([2.137))
depends only on differences of z’s, so it is invariant under translations. It is a rational
function of total homogeneity degree 0, so it is invariant under z — Az. The only thing left
to check is that the cross-ratio is invariant under z — 1/z. We have

—1y(,—1

—1 —1
2z — %2 25 — Z 23 — 21)(24 — 2
[2;17251 : 237172471] _ ( 1_1 3 ) (2% 1) _ (23 1) (24 2) — (21,2 ¢ 2, 7).

(zrt =z (2 =) (= 21)(2 — 22)
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Definition 2.8.27. A an action of a group on a manifold p: G — Diff(M) is said to be
k-transitive, for some k > 1, if any k-tuple of distinct points in M can be mapped to any
other k-tuple of distinct points by acting with some element g € G. Put another way, the
action p is k-transitive if the corresponding diagonal action on the open configuration space
of k points, p: G — Diff(Cy(M)) is transitive.

Lemma 2.8.28. (a) The action of PSLy(C) on CP* by Mébius transformations is 3-transitive.

(b) The Mébius transformation sending any one given triple of distinct points in CP' to any
other triple is unique.

Proof. For @, it suffices to check that for any triple of distinct points (z1, z, 23) in CP*
there exists a Mébius transformation that moves it to the triple (c0,0,1). We can find it as
the following composition of simple Mobius transformation:

-1 z%zle_l

(21722723) - } (2;172517251) (0,251—2;17251—Z;1> —
-1 z—z—22 2 z—yz- 212518
z—z (OO, 2122’ 2123) 212 (OO, 07 21732 27232 (QQ7 O, 1) (2139)

<12 %13 212713
Here we used a shorthand notation z;;: = 2z; — z;.
For (]ED it suffices to show that the only Mobius transformation mapping (0,00, 1) to
(0,00,1) is the identity map z — z. Indeed, for a general Mobius transformation (2.14)), we
have

b a a+b
0 1 -, = )
(0,00,1) = (d’ c’c—l—d)
For the right hand side to be (0,00,1), one needs b = ¢ = 0 and a = d, thus the transforma-
tion ([2.14)) is the identity. O

Lemma 2.8.29. The cross-ratio has the following meaning: start with a quadruple
of distinct points (21, 2o, 23, 24) in CP'. Find the (unique) Mébius transformation that trans-
forms the quadruple to one of the form (5,1,0,00) with some » € CP\{0,1,00}. Then one
has

(21, 29 ¢ 23, 24] = s (2.140)

Proof. By 3-transitivity of the Mobius transformations, it suffices to check that the cross-
ratio [s,1:0,00] is s, and this is obvious from the definition (2.137)). ]

Remark 2.8.30. The group S, of permutations of zy, 29, 23, 24 acts on the cross-ratio. Its
orbits consists of sextuples of the form

1 P4 1 w—1
o~ — o~ 11—~ ~ ~ : (2.141)
» xw—1 1— 2 »

More precisely, one has a short exact sequence of groups
ZQXZQ—>S4—>S3,

where Zy x Zy (the “Klein four-group”) is the symmetries of the cross-ratio — permutations
of the four points that don’t change it. Explicitly, these symmetries are:

[21,22 : 23,24] = [22721 : 24,23] = [23724 : 21722] = [24723 : 22731]-

Lecture
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2.8.7 Moduli space M,

A sphere 3 = S? equipped with some conformal structure and n (distinct) marked points
is conformally equivalent to the standard CP', by the Uniformization Theorem. Under this
conformal equivalence, the points are mapped to the n-tuple of distinct points z1,...,z, €
CP!. Note that the surfaces (CP', {z;}) and (CP*, {2/}) are conformally equivalent if and only
if one can find a conformal automorphism a € Conf(CP') = PSL,(C) such that z, = a(z),
fori=1,...,n.

Thus, we have the following:

e For n = 3, any three points can be mapped to 0,1, 00 € CP! by a Mébius transforma-
tion (in a unique way). Thus, all surfaces (CP', {21, 22, 23}) are conformally equivalent
to the standard one (CP', {0, 1, 00}). Hence the moduli space M is a single point.

e For n = 4, a quadruple of points can be mapped by unique Mo6bius transformation
to the quadruple of the form (s, 1,0, 00) where s = [21, 29 : 23, z4] — the cross-ratio.
Thus, the surface (CP', {21, 22, 23, z4}) is conformally equivalent the surface of the form
(CP', {5,1,0,00}). So, genus 0 Riemann surfaces with 4 marked points up to confor-
mal equivalence are parametrized by a single complex parameter » € CP'\{0, 1, co}.

Hence, we have
Mo ~ CP\{0,1,00} (2.142)

and the coordinate on the moduli space is provided by the cross-ratio of the four
marked points on ¥ = CP?.

e For n = 5, one can map the last 3 out of 5 marked points to 1,0,00 by a unique
Mobius transformation; this transformation moves the first two points to some s #
s, € CP1\{0, 1, 00}, with

A2 = [21,2723 L 24, 25]

the cross-ratios. Thus, one has
My s =~ Co(CPN\{0, 1, 00}) (2.143)
~ the open configuration space of two distinct points s, 36, in CP*\{0, 1, 00}.
e Similarly, for any n > 3, one has

Mo, =~ Cp_3(CP\{0,1,00}) (2.144)

where the surface (CP', {21, ..., 2,}) corresponds to the point (3¢, = [2.2, 9 : 2,1, 2a])12}

in the configuration space in the r.h.s. of (2.144]).

e (“Unstable case.”) For n < 3, one can fix n marked points to standard positions, but
by a non-unique Mobius transformation. So, the corresponding moduli can be thought
of as a the quotient of a point (the standard CP' with n marked points in standard
positions) by the subgroup G,, C PSLy(C) fixing the marked points:

Mo, ~ pt/G, (2.145)
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— thought of as category with a single object and G, worth of morphisms, or as a stack.
Explicitly, the groups G,, are:

n ‘ G,

0 PSL,(C)

1 | Stab,(PSLy(C) ¢ CP') = {dilations} @ {rotations} @ {translations} ~ C* x C
2 Stabs, N Stabg(PSLy(C) ¢ CP') = {dilations} @ {rotations} ~ C*

2.8.7.1 Deligne-Mumford compactification

. The moduli space My ,, with n > 3 is a smooth noncompact manifold. It admits the so-
called Deligne-Mumford compactification My, — a stratified complex manifold. The main
stratum (of codimension 0) is My ,,. A stratum Dyg, g, of complex codimension 1 corresponds
to a partitioning of the set of marked points 24, ..., 2, into two subsets S, Ss, each containing
> 2 points; the stratum Dg, g, corresponds to “nodal curves/ surfaces”lZ_UI

(CPY, {S1,p}) Uy (CP', {82, p})
with “neck” at a point p. The moduli space of such nodal surfaces is
Dy, .5, ~ Mojsij41 X Mojs)+1 (2.146)

One adds higher-codimension strata by induction, compactifying the r.h.s. of (2.146]).
We refer to all the strata of My, except for the main one (My,,) as compactification

strata. straighten
_ up termi-
Example 2.8.31 (M, 4). The Deligne-Mumford compactification of the moduli space M 4 nology:
glues back in the points » = 0, 1, 00 (as compactification strata of complex codimen- | 1.
sion 1), thus curves
Mo =CP"\{0,1,00} U{0,1,00} = CP". (2.147) us podal
Moa surfaces

E.g., the point 3¢ = 0 corresponds to the asymptotic situation for a surface CP', {21, 29, 23, 24}
where z; approaches z3. Note that such configuration can be mapped by a Mobius trans-
formation to one where z1, 23 stay at finite distance from each other but z, and z; approach
one another. The limiting configuration is described by a nodal surface — two CP'’s, one
containing z1,z3 and p (the “neck”) and the other containing z, z4 and p. This singular
surface is acted on by PSLy(C) x PSLy(C) — independent Mobius transformations of both
CPYs. Thus, on both components of the singular surface, there are no moduli (3 marked
points can be brought into standard position), so the stratum is Mg 3 x M3 = pt.

20There are competing terminologies for complex manifolds of complex dimension 1 — “curves” (mainly, in
algebraic geometry literature) and “surfaces” (differential geometry literature). We will try to be consistent,
sticking with “surfaces.” In particular, instead of “nodal curve” (a standard term in algebraic geometry),
we say “nodal surface.”
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Figure 2.4: Deligne-Mumford compactification of M 4. We are drawing the nodal surfaces
corresponding to the compactification strata s = 0, »x = 1,52 = oco. Put another way,
the universal family (Definition degenerates at these three points and we draw the
degenerate fibers over them.

Example 2.8.32 (Higher-codimension strata). In the Deligne-Mumford compactification of
M5, one can consider the codime = 1 compactification stratum of the form

Moz x Mo, (2.148)

corresponding to partitioning the marked points as {z1, 2o} U {23, 24, 25}, i.e., nodal surfaces
of the form

(CPla{ZbZ?vp}) Up (CP17{p7 23,,2’4,25}) (2149)

(corresponding to either z; approaching zy or, as alternative viewpoint, corresponding to
23, 24, 25 colliding together). The right factor in also should be further compactified,
by adjoining to the product, e.g., the stratum Mg 3 x Mg 3 x M, 3 corresponding to surfaces
with two necks, of the form

(CP, {21, 20, p}) U, (CP* {p, 23,4}) U, (CP' {q, 24, 25}) (2.150)

of complex codimension 2 (as a stratum in Moﬁ; it corresponds to a stratum of complex

codimension 1 in the right factor of (2.148))).
XX
Figure 2.5: Nodal surface with two “necks,” corresponding to a stratum in ﬂoé of complex

codimension two.

Remark 2.8.33. The construction of Deligne-Mumford compactification extends to M, ,, with
nonvanishing genus ¢g. Then one has compactification strata (of complex codimension 1) of
two types:
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1. Strata isomorphic to Mg, ,,, 41 X Mg, no41 With g1 +¢2 = g, n1+ng = n — this is essentially
the same construction as above, where not only marked points but also genus is distributed
between the two components of the nodal surface.

2. Strata isomorphic to M,_; ,, 4o — this corresponds to introducing a neck on handle, thus
trading one handle for two extra marked points.

2.8.8 Moduli space M,

A 2-torus with conformal structure, is, by Uniformization Theorem, conformally equivalent

to
Sa: =C/A (2.151)
with
A = spanz(u,v) (2.152)
a lattice in C spanned by two non—collineaﬂ vectors u, v € C. Since the order of (u,v) does
not matter, we may assume that Im(v/u) > 0. Surfaces (2.151)) are conformally equivalent
for lattices A, A’ if and only if the lattices are related by rotation and scaling. There is a
unique rotation+scaling that transforms v to 1. Thus, the surface (2.151)) is equivalent to a

surface of the form
T.: =C/A, (2.153)

where A;: = spang(7,1) with 7 = * € II,.
Choosing a different basis in A,

(u,v) = (v = au+bv,v' = cu+dv) with < CCL Z ) € SLy(2),

one obtains that tori 7, and T}, are equivalent if and only if

b
S L S -, < ! Z ) € PSLy(Z). (2.154)

Thus, we have the following.

Theorem 2.8.34. The moduli space of complex structures on a 2-torus with no marked
points 1s

My =11, /PSLy(Z). (2.155)

Le. any complex torus is conformally equivalent to a torus of the form T. = C/(Z & 12)
where the modular parameter 7 € 11, /PSLy(C) provides a complex coordinate on My .

Remark 2.8.35. The standard way to choose a fundamental domaz’n@ D C 11, for the action
of PSLy(Z) on I1; is the following:

11
—5igh 1> 1) (2156)
210therwise, the quotient is not diffeomorphic to the 2-torus.
22 T.e. a subset of IT; such that each PSLy(Z)-orbit intersects D and if two points in D are in the same
orbit, then they are boundary points of D.

D={z€C|Re(z) €]
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The action of PSLy(Z) identifies points on the boundary of D as follows:

D
MI,O >~ 1 - 1 - 73 - - 2 (2157)
—5+iy~5+iy fory > %, el ~eiln=0) forf e %, 3]

Points 7 = i and 7 = €™/3 ~ ¢?/3 in D have nontrivial stabilizers (Z, and Zs, respectively)

under the action of PSLy(Z) and correspond to orbifold singularities in M; o.

C D

orbifold points

/
=
| o
' gluing |
_1 1 1
2 2

Figure 2.6: M,

Remark 2.8.36. Each complex torus 7, has a nontrivial group of conformal automorphisms
— translations by vectors in T,
Conf(T;) = T. (2.158)

Remark 2.8.37. The moduli space M ; of complex tori with a single marked point can be
identified with M : one can convert the underlying complex torus to a standard one T
and then move the marked point to the standard position (say, z = 0) by a translation from

2-159).

2.8.9 The mapping class group of a surface

We refer to [12] as an excellent detailed introduction to the subject of mapping class groups
of surfaces. Here we just want to give some simple examples.

Example 2.8.38. The mapping class group of a 2-torus (seen as a smooth manifold R? /Z?
with no marked points) is

MCG o = SLs(Z) (2.159)

— elements of the mapping class group can be represented by linear automorphisms R? — R?
preserving the lattice Z2.



CHAPTER 2. ELEMENTS OF CONFORMAL GEOMETRY 76

Example 2.8.39. The mapping class group of the sphere S? with n marked points is the
“spherical braid group on n strands,” i.e.,

MCGO,n =m C:llon—ordered (52) (2 160)

— the fundamental group of the open configuration space of n non-ordered points on S2.
The version for the pure mapping class group (respectively, pure spherical braid group

on n strands) is:
pMCG,,, = m Ced(S?). (2.161)

Example 2.8.40. The mapping class group of the annulus relative to the boundary (i.e. m
of diffeomorphisms of the annulus not moving the boundary points) is

MCG(Ann, 0Ann) ~ Z (2.162)

This group is generated by the Dehn twist. Thinking of Ann as the domain {z € C | r < |z| < R},
the Dehn twist can be represented a diffeomorphism|

Anmn — Ann
2mi 221 (2.163)

z = TR .z

Figure 2.7: Dehn twist (illustrated by the image of the dashed curve).

For general genus g and number n of marked points, one can write a presentation of the
mapping class group MCG,,, with two types of generators:

e Dehn twists along a finite collection of nonseparating closed simple curves on the
surface P4

e “Dehn half-twists” which permute pairs of marked points.

23 Equivalently, thinking of Ann as a cylinder [0,1] x S!, one can represent the Dehn twist by the diffeo-
morphism (t,0) — (t,0 + 2xt).

24The Dehn twist along a closed simple curve v on a surface ¥ is the diffeomorphism that is identity
everywhere except in in a small tubular neighborhood U, C X of v; in U, (which is diffeomorphic to an
annulus or, equivalently, a cylinder), one performs the standard Dehn twist (Figure .
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Figure 2.8: Dehn half-twist permuting the marked points p and gq.

These generators are subject to a set of relations. We refer to [12] for the details.

For the pure mapping class group pMCG,,,, one can make do with just Dehn twists
(without half-twists). E.g., pMCG,,, can be generated by Dehn twists along curves encircling
pairs of marked points.

Let us also mention the following result, helpful in computing mapping class groups.
Let MCG*(X) = 7mDiff(X) — the group of isotopy classes of diffeomorphisms that either
preserve or reverse the orientation of ¥. Note that there is a natural action of MCG® on the
fundamental group 7 (X) (by pushing loops along the diffeomorphism).

Theorem 2.8.41 (Dehn-Nielsen-Baer).
MCG*(2) ~ Out(m, (%)) (2.164)

where for G a group, Out(G): = Aut(G)/Inn(G) is the group of “outer automorphism” —
the quotient of all automorphisms by inner ones.

Then, the usual mapping class group (classes of orientation preserving diffeomorphisms)

is an index two subgroup of ([2.164)).



Chapter 3

Symmetries in classical field theory,
stress-energy tensor

3.1 Local classical field theory, Euler-Lagrange equa-
tions

3.1.1 Basic setup

An outline of local classical field theory was given in Section . Here we give more details.
The space time category in this section is the category of Riemannian cobordisms. A section
about the pseudo-Riemannian case, and in particular about most important Minkowski space
time can be found in Appendix ........

Let M be a smooth n-dimensional manifold, possibly with a geometric structure such as
a metric, spin structure, an orientation etc.. A classical local field theory on the space time
manifold M is determined by the following data.

(a) A fiber bundle E on M, the field bundle. The space of fields on the space time M is the
space of smooth sections of E[]
Fu=T(M,FE). (3.1)
We denote fields, i.e. sections of E, by ¢. When £ = M x X is a trivial bundle with
fiber X, the space X is called the target space and fields are mappings ¢ : M — X.
Fields can also be connections, etc.

(b) The local action functional
Suald) = [ L0.06,...9) (32)
M

Here L is a density on M. When M is oriented, it is an n-form on M depending locally on
fields and on possible geometric data on M which can be a metric, a spin structure etc.. If the
geometric data on M provide a volume form d"x, we have L = Ld"z where the Langrangian
function L(¢, 09, ...;g) depending locally on fields and possible geometric structures.

IThis is a Fréchet manifold...

78
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In terms of the variational bicomplex (see Section|10.0.1]), the Lagrangian density in ((3.2)
is an element

LeQM(M x Fu). (3.3)

loc

In what follows we will be focusing on wltralocal Lagrangians that depend (up to boundary
terms) only on fields and their first derivatives, or, equivalently on fields and their de Rham
differentials.

We will discuss the case of a pseudo-Riemanian metric on the space time, and in particular
Minkowski metric in Section B.12l

3.1.2 Covariance

We are assuming covariance of the given classical field theory. For a diffeomorphism f: M =
M’ of smooth manifolds, covariance means

Sug(8) = S (-1 ((f )" 0)- (3.4)

3.1.3 Euler-Lagrange equations

Let 7 = {dihe be a path in Fys such that g9 = ¢ and & = %)y € T,Fys be the
corresponding tangent vector. The Fréchet derivative of S at the point ¢ in the direction e
is

d
5.5(6) = o S(6) =< <,05(8) > 3.5
t=0
where 0.5 is the vertical differential of S in the variational bicomplex (see Section [10.0.1])
and < .,.> is the pairing between T3 Fy and Ty Fy.
In local coordinates on fibers of field bundle E we can write ¢ = {¢*}", where € are
coordinate functions and m is the dimension of the fiber of F.

Integrating by parts we can write it as

5.8 = / EL(P)ae® + / e, (3.6)
M oM

Here EL(4), € QU1 (M x Fy) is a local function of fields and their derivatives. We use no-
tations from Section on the variational bicomplex. The integrand «, in the boundary
term of is an element of Qﬁ;l’o(M X Far). After summation over a and integration
over M the boundary term represents the pairing between the restriction of the variational

vector field € to the boundary and the restriction of the form a to OM.

Definition 3.1.1. The integrant o € Qﬁ;l’l(M x Fur) is called the density of Noether
1-form.

Expressed in terms of densities, the equation ([3.6) becomes:
5L = (—1)" (sza(¢)5¢a + dg). (3.7)

where 0 is the vertical differential in the variational bicomplex and d is the horizonal one,
i.e. de Rham differential.
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The Euler-Lagrange equations then are equations which guarantee vanishing of the bulk
term in ((3.6):
ELL(D) =0, (3.8)

with ££,(¢) an expression in the jet of the field appearing in .

Thus solutions to Euler-Lagrange equations are critical points of S, provided that we
impose boundary conditions for which boundary terms in (3.6)) vanish.

Note that equation can be regarded as the splitting of JL into components in the
decomposition Q' = QmIsowee g g (Q"il’l) of the space of local forms in the variational

loc loc loc

bicomplex (see Section [10.0.1]). That is Euler-Lagrange equations can be written as
[6L]source = 07 (39)

where [ -+ Jsource 18 the projection onto the the subspace of space time forms (see .....).

3.2 Examples of classical field theories

3.2.1 Classical mechanics

3.2.2 Free massive scalar field

Let (M, g) be a Riemannian n dimensional manifold. The fields are smooth in the scalar field
theory are real valued functions on M, ¢ € C*°(M) , i.e., the field bundle is £ = M xR — M
is a trivial bundle over M with fiber R. The action is

2
S(¢p) = /M L(¢), L(¢) = %dqb A xdp + m?¢2dvolg (3.10)

Here * the Hodge starﬂ associated with the metric g and dvol, = *1 the metric volume
element. The parameter m > 0 has a physical meaning of a mass. Because the action is
written in terms of natural geometric operations on forms the functional satisfies the
covariance property ({3.4).

For the variation of S, i.e. for the Frechet derivative of S along the variational vector
field € we have

5.5 = / (—1)™1de A *dg + (~1)"m?s g dvol, =
M

—/ dvolg(A+m2)d)Ae+d(*d¢/\5)—/
M

M

dvolg(A+m2)<b/\€+/ xdp Ne. (3.11)

oM

signs in teh first line?
Here we used the identity de A xd¢ = d(e A *d¢) + & A d * d¢ and the Stokes theorem.
Thus, in this model
EL(9) = A +m®0,

and the density of the Noether 1-form is a = *d¢p A\ do we need wedge here?.

2 We recall some basic facts about Riemannian manifolds in Appendix....
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Thus, the Euler-Lagrange equation is the linear PDE
(A+m*p=0 (3.12)

with A = — x d % d the Laplace-Beltrami operator.

3.2.3 Scalar field with self-interaction

Fields in this model are the same as in the previous example. The Lagrangian density
involves a real valued analytic function in ¢:

5(0) = [ (346 7 <o+ V(g)dvol, (3.13)

The function V' is the potential of self interaction. Usually it is assumed that V(¢) =
m?2/2¢? + O(¢*). Higher order terms describe the selfinteraction of ¢.

Repeating the computation from the previous example we see that the Noether 1-form
a, and its density «, are the same as in , but the Euler-Lagrange equation becomes a
nonlinear PDE (if higher order terms are non-zero):

Ad+V'(¢) = 0. (3.14)

3.2.4 Yang-Mills theory

Let G a Lie group with a nondegenerate ad-invariant quadratic form (,) on its Lie algebra
g. From now on we assume that G is compact simple, matrix Lie groupﬁ.

Let (M, g) be a Riemannian n-manifold. The fields of the theory are pairs (P, A) con-
sisting of a principal G-bundle P over M and a connection A in P. The action of Yang-Mills
theory is

S(A) = /M%<FA N xFy), (3.15)

where Fiy € Q*(M, ad(P)) is the curvature 2-form of the connection A; x is again the Hodge
star. In a local trivialization of P, A is represented by a g-valued 1-form on M (or rather
on the trivializing neighborhood U C M) and F} is represented by the g-valued 2-form
dA+ 1[A, A

The corresponding Euler-Lagrange equation is:

with da: Q*(M,ad(P)) — Q*T1 (M, ad(P)) the covariant derivative operator associated with
A. The equation is a nonlinear PDE (for nonabelian G) known as the Yang-Mills
equation in the vacuum.

In the special case G = R, the Yang-Mills theory drastically simplifies (in this case, it is
called electrodynamics or Maxwell theory): fields are global 1-forms A € Q!(M), the action
is S(A) = 3 [,, dA A *dA and the Euler-Lagrange equation becomes the Maxwell equation

2
dxdA=0 (3.17)

3This means that G is a subgroup of SUy for some N and the Killing form is 7r(xy)
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which is a linear PDE.

Let U C M be ab open neighborhood and P|y is the trivialized. Globally, gauge
tranformations are bundle automorphisms of P. Locally over U they are group action of
Maps(U — G). On connections they act as g : A — A9 = g1 Ag + g~ 'dg. They act on the
curvature as they should act on 2-forms, Fas = g~'F4g and the action is gauge invariant

S(A9) = S(A).

3.2.5 Chern-Simons theory

Let G be, as above a compact simple Lie group, and let M be an oriented 3-manifold. The
fields of the theory are connections A in the trivial principal bundle P = M x G over M E|
Since P is trivial, connections can be identified with g-valued 1-forms, A € Q'(M,g). The
action is defined as

S(A) :/M%<AGdA>+é<AG (A, A)). (3.18)

We have

3S(A) = / —%<5A,dA) - %(A,chA) - %(M, A, A]) =
1
5 (A 54) = /

M

:/M—<5A,dA+%[A,A]>+/

oM

C(5A, ) + / %(A,6A>, (3.19)

oM

where Fy = dA + 3[A,A] € Q*(M,g) is the curvature 2-form, and we used the identity
(A, doA) = —d(A,5A) + (dA, 0 A).
Thus, the Euler-Lagrange equation is the zero-curvature, or flatness condition

Fy=0 (3.20)

for the connection field A and the density of the Noether 1-form for the Chern-Simons model
is

1

Note that the action does not depend on a metric on M. It only depends on the
orientation, as no other geometric structure is used. This is an example of a topological field
theory.

Gauge transformations are the same as in the Yang-Mills case. For a closed manifold M
the action is invariant only when taken mod Z. Otherwsie

S(A9) = S(A) + ...

When OM +# () the action is gauge invariant up boundary terms. For details see Section.......

4 In fact, one should allow connections in all principal G-bundles over M. However, for G simply connected
and M 3-dimensional there are no nontrivial G-bundles over M (since BG is 3-connected and hence there is
a unique homotopy class of classifying maps M — BG). This is why we asked G to be simply connected —
to have this simplification. Case of non-simply connected G can be treated but requires more care.
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3.2.6 General ultralocal Lagrangian for fields with the target space
X

Recall that a metric on M induces Levi-Civita connection on 7M. In local coordinates the
covariant derivative corresponding to this connection of a vector field v = v'(x)d; is

Vil = 0! + T "

where |
Iy, = 59”(@'% + Okg1; — O19ir)

are Christoffel symbols.

For a local classical field theory with the target space X the space of fields is Fjy, =
C>(M, X). In local coordinates on X, we have {p?(x)}dimX

Let

Swgl] :/ML(go,ﬁgo)\/ﬁd”x

be a covariant ultralocal action functional. For a moment assume that ¢ is a scalar field and
therefore 0;p* = V. For the variation we have:

oL, o ., .
5ESM79[Q0] = /]\/[ (agoaé‘ + aajgpaaﬁ“ ) \/§d T

oL oL .
a /]\/[ (330“ Vi (3@-@“)) Vot

oL
g% < 0;,\/gd"x >
an 00;p° Vo

+

Here we used local coordinates on M, the integration by parts and the identity Vv' =
vt + \/Lgai(\/g)vwhich follows from the identity I';; = \%8@(\/@) for Christoffel symbols.
The expression < 0, \/gd"z > is the contraction of the vector field d; with the volume form

\/ﬁd”x.

Thus the Euler-Lagrange equations in such models are

oL oL
9ot Voo

0

The density of the Noether 1-form is

oL
00"

5" < 8, \/gd"x >

g:

3.2.7 The nonlinear sigma model

Fix a Riemannian manifold (X, k) as the target space and let (M, g) be a Riemannian n
dimensional space time manifold.

5 Recall that V;v* = 9;v* + Fﬁjvj is the covariant divergence of the vector field v.
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The nonlinear sigma model with the target space X the fields are smooth maps ®: M —
X and has the following action

S(®) = /M %(d@ A 5 d®) g, (3.21)

Here * = x,: Q*(M) — Q" * is the Hodge star associated with the source metric g, d® €
QY (M, ®*TX) is the differential of the map @, (,)g+, is the fiberwise metric on the vector
bundle ®*T'X — M coming from the pullback of the metric on X.

Using local coordinates u® on the target space X and local coordinates 2 on the space
time manifold M, the action can be written as

S(®) = /M %hab(cp)d@amd@b: /M %gij(at)hab(<1>(:1:))@iéa@)@j@b(:v)dvolg. (3.22)

Here h,,0®?0®° is the metric on X and g;;(z)dz'dz? is the metric on M.
For the variation of the action we obtain:

5. = / a i (BB A +d B — By (®)de® A *dcbb)

_/ ( Dl (B)dD® A #d D — d(hab(<1>) * dcbb>) A e +/ (hab(cl)) * d©b> Ae
M oM
_ / (1aahbc(@)dcbbA*d@C—abhac(@)d@bA*dq)C—hab(cp)d*d@b) Aett / (hab(d))*d@b) e
M 2 OM
_ / (hab(CD) 5 ADG® — Ty (P)dD® A *dCDC) Ae + / B () * d(I)”) Ae
M oM
— / dvolyhay(®)(A®Y — TP, (D) (ddC, dd?) 1) A e® + / (ha,,(cb) *d@”) Ae®. (3.23)
M oM

Here I'y, are the Christoffel symbols of the target metric; A = — * d x d is the Laplacian on
(M, g). We used the identity hqp(®)de?Axd®® = d(hay(P)e? AxdD®)+(—1)"d(hap(P)*dD®) Ac.
Thus, the Euler-Lagrange equation is

AP —T¢.()(d®®, dd°),1+ = 0. (3.24)

and
a= <hab(<1>) * d@b)&b“

is the density of the Noether 1-form.

Note that in the special case dim M =1, becomes the equation of geodesic motion
on X.

In the other extreme case, X = R the model becomes the massless free scalar field.

One can also consider a modification of the sigma model action functional by a
potential:

S(®) = /M (%(d@ A 5d®)gep, — V(D) dvol,) (3.25)

with some real analytic function V' describing self-interaction.
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This modification does not change the density of the Noether 1-form:
a= (xd® " §P)pq (3.26)
However it changes the Euler-Lagrange equation (3.24) to

AP —T¢(®)(dD°, dD°) -1 — h™(®)5,V (P) = 0. (3.27)

3.2.8 Matter fields interacting with the Yang-Mills field
3.3 Symmetries and Noether currents

3.3.1 Infinitesimal symmetries

Consider an infinitesimal transformation of fields in an local classical field theory:

o(z) = ¢(x) + ev(d(z), (), ...) + O(e?) (3.28)

given by a local vector field
v E .%10(;(./—"]\4), (329)

where loc means that the v at the point x € M depends only on the jet of the field ¢ at x.

Definition 3.3.1. We say that v is an infinitesimal symmetry of local classical field theory
with Lagrangian density L € Q"(M, Fy) if one has

loc

L,L =dA (3.30)

for some element A € Q"_"°(M, Fy;). Here L, stands for the Lie derivative in the direction
of v[f

Equivalently, v is an infinitesimal symmetry of the theory if for any submanifold N € M
of full dimension
L,Sy = A. (3.31)
ON
where Sy [ L is the action for N C M.
edit

Strengthen

Lemma 3.3.2. Ifv is a symmetry in the sense of , then the corresponding infinitestimal to if and
transformation of fields takes solutions of Euler-Lagrange equation to solutions of only if?

FEuler-Lagrange equations.

6The vector field 1) naturally induces an “evolutionary” (i.e. commuting with derivatives along M)
vertical vector field v°¥° on the jet bundle Jetoo B — M (see [1]). It is that latter vector field that we act
with in (3.30); by an abuse of notation, we still denote it v. Cf. Example 3.3.10[and footnote [ below.

Also:
talk
about
families
of finite
symine-
tries?
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Proof. Consider a path ¢; in Fj; with %gbt supported away from M, as in the beginning
of Section and assume that ¢y = ¢ is a solution of the Euler-Lagrange equation (3.5)).
Then

d d
S(¢¢ + ev(gy)) = 7 t:OEUS(gbt) =

d
dt A(oy) = d €. 32
dt‘tz() 0 /BM (¢r) =0 mode (3.32)

In the last step we used that ¢, (and its jet) vanishes on the boundary. Thus, any fluctuation
away from the boundary of the transformed ¢ (the r.h.s. of (3.28)) preserves the value of
the action in the first order in fluctuation (i.e., first order in ). O]

3.3.1.1 Example: Lie group acting on the target space

finish this example

3.3.1.2 Example: gauge group action

action on matter field and on connections

3.3.2 Conserved currents

We will use Euler-Lagrange equations as an equivalence relation between functionals (includ-
ing local functionals) on the space of field. Two functionals A, B are equivalent if A = B
when restricted to solutions of Euler-Lagrange equations. In this case we will write

A = B mod EL (3.33)

Definition 3.3.3. An element of J € Q'_"°(M x Fy) is called a conserved current if

loc

dJ =0 mod EL. (3.34)

If J € Q"M x Fy) and v € M is a codimension 1 hypersurface, the integral

loc

is called the charge corresponding to the current J of the hypersurface 7.

We introduced a current as a field-dependent (n — 1)-form on M, J € Q" Y(M). Tt is
conserved if it is closed on solutions to Euler-Lagrange equations. For a space time with
a volume form (in particular for Riemannian manifolds), one can consider the associated
field-dependent vector field J € X(M) uniquely determined by t7dvol, = J. Then:

e The conservation property dJ = 0 mod EL corresponds to the following property of
J:
divger,J = 0 mod EL (3.35)

Make

it more
clear?
Write a
second
proof,
within
var
bicom-
plex?
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i.e. the divergence of the vector field J w.r.t. the metric volume form on M vanishes
on solutions to Euler-Lagrange equations[| Equivalently, in in local coordinates, in
terms of covariant derivatives:

Vi(J)" =0 mod EL. (3.36)

e The charge fA/ J is the flux of the vector field J through the hypersurface 7.

Theorem 3.3.4. Let J be a conserved current. Then for two cobordant submanifolds 1, o
m M of codimension 1, one has

/J—/ J mod EL. (3.37)
7 2

Proof. Let N C M be the cobordism between v, and 7, i.e., ON = v — ;. Then we have

/J—/ J:/djzo mod EL. (3.38)
Y2 ot N

Here the first equality is due to Stokes theorem and the second equality due to conservation
property of J. O]

Thus, if J is conserved, the corresponding charge of «y is independent under deformations
of .

Definition 3.3.5. We call two conserved currents J and J' equivalent if one has
J' = J+dK mod EL (3.39)

for some element K € Q'_*°(M x Fy).

loc

In particular, if J is conserved, then any equivalent current J’ is automatically conserved
and the charges for equivalent currents J and J’ are also equivalent:

/ J = / J' mod EL, (3.40)
ol ol

Here ~ is subset M closed codimension 1 submanifold.

3.3.3 Noether currents and Noether charges

Given an infinitesimal symmetry v € Xj,.(Fa) of a local classical field theory, define a field
dependent form J, € Q"_"°(M, Fy;) by the formula

loc

Jp: = (=1)",a+ A. (3.41)

7 Recall that to define the divergence of a vector field u on a manifold M, one needs to specify a volume

form g on M. Then the divergence is defined via [, pu(f) = — [}, ufdiv,(u) for any compactly supported
— Lup

test function f. Equivalent definition: div, (u) m
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Definition 3.3.6. The (n — 1)-form .J, is the Noether current associated with the symmetry
.

Theorem 3.3.7 (Noether theorem). The Noether current J, is closed on M when restricted
to the solutions of the Fuler-Lagrange equation. In other words

dJ, = 0 mod EL. (3.42)

Proof of Theorem[3.3.7]. Applying d to the definition (3.41]), we have
dJ, = (—=1)" " ,da + dA =
=—L, L+ (—1D)"ELV + L, L = (—1)"EL* =0 mod EL. (3.43)

Here we used the identity da = (—1)"6L — £L,d¢* which frollows from (3.7) and (3.30)).
Thus dJ, = 0 mod EL O

Thus, Noether theorem gives a mechanism producing conserved currents and charges
from infinitesimal symmetries.

Corollary 3.3.8. Let v be a symmetry and J, be the associated Noether current. Then for
two cobordant submanifolds vi,vs in M of codimension 1, one has

/ Jy = / J, mod EL. (3.44)
Y1 Y2

This follows immediately from Theorem [3.3.8|

Definition 3.3.9. Let J, be a Noether current. The integral

where v C M a submanifold of codimension 1, is called the Noether charge of .

It is clear from the above that Noether charge does not depend of continuous deformations
of .

Equation expresses the conservation property of the Noether charge on solutions
of the Euler-Lagrange equations, as one slides v in M.

N7

N AT

Figure 3.1: Noether charge is conserved (modulo EL) when changing the hypersurface in its
cobordism class y; — 7».
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3.3.4 Examples

Example 3.3.10. Consider the classical mechanics of a particle moving on a target manifold
R. The spacetime (source cobordism) is M = [ty, 1], fields are maps z: [to,t1] — R and the
action is

i(r)?

su@ﬂ:i/huafun Mmi):<m !

to

- U(CL’(T))) . (3.45)

The differential in fields gives

w:/%mm—wmwwc/ﬁﬂm—wwmmwmwm: (3.46)
to to
Thus Euler-Lagrange equations are:
mi + U'(z) = 0. (3.47)
and the density of the Noether 1-form is
o = midx
Consider the infinitesimal transformation of fields
(1) = a(r —e€) =a(1) — ei(7) + .... (3.48)
The corresponding vector field is v = — til i%. Acting with it on L yields
L,L = dr(—mii+ U'(x)x) = dA, (3.49)

where d = dT% the “horizontal” differential and A = —m%Q + U(z). Thus, the Noether
current 1s
2 i? i(r)? 0,0
J=—,a+A=mi"— m + Ulx) = m—g—+ U(z(r)) € Q" ([to, t1] X Flio.]) (3.50)
This is the energy of the particle.

The conservation law (3.44) says that if vy = {7}, 72 = {m} are two points on the
time interval M = [to, #1], then, if {x(7)};?is a solution to the Euler-Lagrange equation, the
expression ([3.50)) have the same value at time 7, and at time 75. In other words, we the
energy constant in 7 € [to, ta], if {z(7)};? is a solution of EL. Of course, we can
verify this statement directly.

Some time in the literature, this symmetry is interpreted as the energy is the generator
of time translation.

8 When acting on jets of fields at 7, v acts as v°V° = —(xa% + x% + x% + --+) where the superscript
“evo” stands for “evolutionary” (i.e. commuting with d,) prolongation of v.
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Example 3.3.11. Consider the free massless scalar on a Riemannian n-manifold (M, g),
defined by the action

1
5(0) = [ L(6.00). L(6,06) = 36 n+do (3.51)
M
Consider the infinitesimal transformation of fields
¢—o+e (3.52)

which is a shift of the value of the field ¢ by a constant function. The corresponding vector

field on the space of fields is
)
v = € X(Fu). 3.53

The transformation (3.52)) clearly does not change the action S and the Lagrangian L and
clearly takes a solution of the Euler-Lagrange equation

Ag =0 (3.54)

to another solution. Thus, (3.52)) is a symmetry with A = 0 and the associated Noether

current (3.41)) is
J=(—1)"a=(=1)", (-1)""ép A xdp) = —xdp € Q. (M x Fy),  (3.55)

loc

Here we used a, which we obtained before (3.11]). Noether theorem the tells us that J = —xd¢
is conserved (closed) modulo EL. One can check it independently:

dJ = —dxdp = x(A¢) = 0mod EL, (3.56)
cf. the Euler-Lagrange equation (3.54)).

3.4 Stress-energy tensor

3.4.1 Hilbert stress-energy tensor

Here we assume that (M, g) is a smooth Riemannian manifold.

Definition 3.4.1. Given a covariant (see (3.4])) local classical field theory, the Hilbert stress-
energy tensor is the tensor

T=T99;-9; €T (M,Sym*TM) (3.57)
depending locally on fields, defined by the formula
d 1 y
6775]\479(@5) == % tZOSM’g(t) = _5 /Jw dVOlgT]ThJ (358)

Here {g(t) }1—¢ is a path with g(0) = g and n = d‘zl—(tt). In other words 6,54 is the variation

of Sy w.r.t. the variation of the metric with the variation vector field 7. Equivalently, one
defines T" as the variational derivative of Sj;, w.r.t. the metric at a given point:

2 0Su,

- V/det(g) 0gij(z)

T(z): = (3.59)
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From now on when we say the stress-energy tensor we will mean the Hilbert stress-energy
tensor, unless stated otherwise.
Hilbert stress-energy tensor satisfies the following properties.

Lemma 3.4.2. (i) T is a symmetric tensor: T% = T7".
(ii) T is conserved, in the sense thaf)
V,T” = 0mod EL (3.60)
or, in coordinate-free language, (divgye ® id)T = 0 mod EL.

Proof. is obvious by construction.
Proof of (i): Let r € X(M) be a vector field vanishing in a neighborhood of the boundary
of M. Let R, € Diff(M) be the flow along r in time e. Covariance (3.4)) implies

Surg(9) = Sur(rry-o(R)0). (3.61)
Taking the derivative of both sides in € at € = 0, we get

d d —1\*
0= | _Swney(@) + 7| Sug(RT)0) =

1 .
= —5 /]\V/[ dvolgT”(Virj + eri) + ( . ) (362)

Here (...) are terms that vanish on solutions to Euler-Lagrange equations. Integration by
parts in the first integral and taking into account that r vanishes near the boundary of M
we obtain

0=2 / dvol,(V,T7)r; mod EL
M

Since the this identity holds for any r supported away from OM, we get V,7% = 0 mod EL.
]

3.4.2 Space time symmetry

Definition 3.4.3. Given a covariant classical field theory on a Riemannian manifold (M, g),
we say that a vector field r € X(M) is a spacetime symmetry if for any n-dimensional (full
dimensional) submanifold N C M, possibly with boundary, one has

d —1\x*
E CZOSRe(N)zg((Re 1) ¢) = 07 (363>

where R, is the flow of r in time ¢, in a neighborhood of N [9] Equivalently, r is a space time
symmetry if v = £, € Xjoc(F) is a symmetry in the sense of Definition with A = ¢, L.

9Recall that the covariant derivative of a tensor field with respect to Levi-Cevita connection is

V,T9% = 9;19% 4- T3, 7% 4 Tk 79!

ONote that in (3.63) the metric is not pushed forward by the flow in the r.h.s. If it were, the property
would hold automatically for any vector field by covariance (3.4).
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For instance, in Example [10.0.2] constant vector fields on R™ are source symmetries for
the massive scalar field theory.

Lemma 3.4.4. Let r be a vector field on M. Then r is a space time symmetry of the theory
if and only if the expression

J: =Ty, (3.64)
1S5 a conserved current, i.e., '
V,J. =0mod EL (3.65)

or, in coordinate-free language, div g J. = 0 mod EL.

Proof. Assume that r is a source symmetry. Applying covariance relation (3.4)) with m =

R7': R.(N) — N to (3.63)), we have
d

de

Sn,rzg(¢) = 0. (3.66)

e=0

By (3.58)), this means

— / dvol, TV ,r; = 0. (3.67)
N

Here we used the identity T9V,;r; = V;(T%r;) — (V,T%)r;. Since V;T7% = 0 mod EL and
since (3.67)) holds, in particular, for any small disk N C M,

Vi(T"r;) = 0 mod EL (3.68)

everywhere on M.
The converse is proven by reversing the argument. The conservation of J implies (3.66]),
which implies, by covariance, the space time symmetry property of r. O

In particular, (3.65)) can be interpreted as follows: 7" maps space time symmetries of the
theory into conserved currents:
T:r—J.=(T,r). (3.69)

Note that the conserved current (T, r) does not generally coincide with the conserved
current associated with the source symmetry r by the Noether theorem, see Example 3.4.11
below finish.

3.4.3 Space-time symmetry and energy-momentum tensor

Let R, : M — M be a family of diffeomorphisms with Ry = i¢d and

fmZ 2)0:f + 0(a?)

as a — 0, i.e. infinitesimally, near « = 0, R, is represented by the vector field r =

D et 7 (2)0;

The covariance of the action means that for N € M

SRQ(N),g<90) = SN,R;;(g) (RZSD)

I think
they are
always
equiv-
alent
though?
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or
Sha(n)(ratyg(Ba) = Sng(p)

This implies an infinitesimal version of the covariance:

d

0rSng(p) = %SRQ(N),R;(g)(RZ(SD))

a=0

Let us compute the left side on solutions to Euler-Lagrange equations

: L
5TSN79(90)|ELM = / ﬁ?“zbai(\/gdnx)—l—/ 5 0o, (y/9d"T)
oN an 00;p

1 -
——/ 1Y6,gi5+/9d"x
2N
Here A
51‘90(1 — _Tz ispa
0rgij = —817”kgkj - akagik - rkaigij

93

The first term is the result of N moving along the vector field r. The Hilbert stress-energy

tensor 7% is determined with respect to the variation in metric:
def 1 i m
0gSarg(p) = —5 | T 0gij/9d"x
M
For the change of metric along the vector field r we have:

(Srgij = —aﬂ’kgkj — 5’jrkgik — 'r’k&-gij
_Gi(rlglk)gkj — (i J) — Tkakgz’j

= =0 — Oir; — 1(0:(g")gus — (j > 1)) — r*Okgyy
= —aﬂ”]’ — 8j7“i —+ rlgklaigkj + rlgklﬁjgkj — rkakgij

—Vﬂ’j — Vj?“i

Thus

57“SN79[90”ELN = / (,Crl — o T]aj(pa) to,(v/gd"x)

1 .
—5/ T”(Vﬂ“]‘ + VJTZ)\/EanE
N

= / riJijLaj(\/ﬁd"x)— (VT /gd"x
ON

N

- / T7j10,(/9d"x)
ON

Because 6,5y 4[¢] = 0 for any N C M we should have:

T ELy Jkg EL
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\ =0

‘ELM

J = L& — ;"
[ ( 1 aajgpa QO )

Here

ELy

is the standard energy-momentum tensor.

3.4.4 Target symmetry

Definition 3.4.5. We call an infinitesimal symmetry (3.28) a target symmetry if it has the
form

¢(z) = ¢(x) + ev(g(x)), (3.70)
with v not depending on derivatives of the field, and if it is a symmetry in the sense of (3.30)).

For instance, constant shift of the field in Example[3.3.11]is a target symmetry. More gen-
erally, in the sigma model (3.21)), a Killing vector field on the target (infinitesimal isometry)
gives rise to a target symmetry .

Let v = Y v*(¢)0, is a vector field on the target space X written in local coordi-
nates, such that Sy;,(y) is constant along its flow lines. Let N C M be a submanifold of
full dimension. Then the Frechet derivative of the action functional along this vector field
vanishes

duSng(p) =0
for §," = v*(p(x)). For such vector field u, the equation (??7) implies
V;J! =0 mod EL
where

T a‘c a
Jv - 38¢§0“U (()0)

ELy

is the density of the Noether current corresponding to the symmetry wu.
The zero divergence of the Noether current implies that for any v C M of codimension
1 the flux of J, through ~

J(7) = ]é T 10, (/")

depends only on continuous variations of 7.
example: gauge symmetry

3.4.5 Examples of Hilbert stress-energy tensors

Example 3.4.6 (Scalar field). General Lagrangian for a scalar field.

Example 3.4.7 (The free massive scalar field). Consider the free massive scalar field (Ex-
ample [3.2.2]). The variation of the action w.r.t. metric is

09Sa1.9(9) = Sargrag(®) — Sarg(¢) mod (dg)* =
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1 | 2
=5, [ (o000 + 75-6?) Yilgita
M Q N —’

dvoly

L

= [ 5(= ) 0uta ™)) 0 0,0 Aeklaan+
+ L%(gl)kl(sgkl\/ det(g)d"x
- / Viet(g)d"zdgy (90076 — (7)7L) . (3.71)
M ~ _

.

Tis

Thus, the Hilbert stress-energy tensor is:

ij i @A i (L k m?

T = 069 — (g7)7 (500096 + 5567, (3.72)
where the indices are raised using the metric, e.g., 9'¢: = (¢-1)%0,. In a coordinate-free
language, one has

" ! m?
T = (do)* - (d0)* — gt ( 5(do, )y + 567 (373)

where (---)# is the bundle map T*M — TM provided by the metric g (“index-raising”).

We remark that the Hilbert stress-energy tensor we computed coincides (for M = R")
with the canonical stress-energy tensor we found in Example coincides with
(10.17) (upon raising an index). However, in more general classical field theories it does not
happen.

Example 3.4.8. For the sigma model with target potential (Example 3.2.7 (3.25)), the
Hilbert stress-energy tensor is

T=T"0;-0; = (hab(é)a@“aj@b —(gh¥ (%hub(cb)(d@“, d®b) 1 — V(cb))) 9;-0;, (3.74)

by a computation similar to (3.71]).

Example 3.4.9 (T in the Yang-Mills theory). Consider the Yang-Mills theory (Example
3.2.4]). The variation of the action

Suald) =5 [ (Fa i) = [ VARG (a7 Y (Fa (Fa) (375)

2
with respect to the metric. The computation is similar to (3.71]) and yields
. ) . 1 .
T=T90;-0; = ((F’k, F) — Z—l(g—l)wFM, Fkl)> 0 - 0;, (3.76)

where F': = F4 the curvature of the connection.
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Example 3.4.10 (7" in Chern-Simons theory). Consider Chern-Simons theory (Example
[3.2.5). Since the action does not depend on the metric, Hilbert stress-energy tensor
(3.59) automatically vanishes:

T =0. (3.77)

Example 3.4.11 (Noether current for space time symmetries in Chern-Simons theory). In
Chern-Simons theory (and generally, in any metric-independent, i.e. topological field theory)
any vector field r € X(M) is a source symmetry. The corresponding Noether current is
=—,at+ A =
vl

= —%(%@A, A)) + ¢, (%<A,dA> + é(A, [A, A] )

Noeth
Jr oether

~

1 1 1
= —5 (LA A) + 1, (§<A, dA) + (A, [4, A]>>
1 1 1 1
= —§<dLTA + 1, dA A) + §<[’TA7 dA)  —-(AdA) + §<L’”A’ (A, Al)
—
— 1 (1r A, dA)+(1r AdA)
1 1
= d(—§<LTA, A)) + (L, A dA + §[A> Al). (3.78)
0

EL

So, it is a d-exact term plus a term vanishing modulo EL. On the other hand, the conserved
current associated to r by Lemma is identically zero, since the stress-energy tensor
vanishes:

J, =0. (3.79)

Note that although the currents JN°¢*her and J, are different on the nose, they are equivalent
in the sense of Definition [3.3.5

3.5 First order classical field theories

Here we will review the Hamiltonian framework for classical field theory. It is a generaliza-
tion of the variational principle for the Hamiltonian mechanics and generalizes Hamiltonian
mechanics to space time manifolds which are not cylinders.

In most general terms the action of first order theories is linear in derivatives of fields. In
relativistic (covariant) theories the action is linear in covariant derivatives of fields. In local
coordinates on the target space a first order theory has the action functional

Slo] = /M (Z () A dD?(z) + H<<1><x>>>>

where a®(®(z)) is an (n — 1)- form on M which depend on fields ®, not on their derivatives.
Similarly H(®(z)) is an n-form on M which depends on ®(x) but not on its derivatives. It
is the density of the Hamiltonian of the system.
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The variation of the action produces Euler-Lagrange equations and a 1-form on the space
of boundary fields. This one form gives a presymplectic structure on boundary fields F(0M)
and isotropic submanifold Ly, C F(9M) given by boundary values of solutions to Euler-
Lagrange equations. With few exceptions the presymplectic structure on the space of fields
is symplectic, the isotropic submanifold is Lagrangian.

do all the computations in this general setting

components of ® can be forms of various degrees

3.5.1 Scalar field with the target space X.

Let X be a finite dimensional real smooth manifold and L(ip, dp) be an ultralocal Lagrangian
for a classical file theory where fields are maps ¢ : M — X (see Section ??7). Here we assume
that L(p, &) is a smooth strictly convex function of ¢ € T,,X ® V. Here one should think
that ¢ = p(x), V =T;M and { = dp(z) € Ty@) X @ Tr M.

In order to obtain the first order formulation of the model with the action function

Suili) = /M L(p, dp)v/ad"s

consider the fiberwise Legendre transform of the Lagrangian function L € C*(TX @ V)

H(p, ¢) = gegpw%v(p@) — L(vp,€))

Here p e T; X @ V™, p = 7(z) € T @ TuM. where 7(x) is the tangent vector to M at
the point x with value in 77 ) X. Using Riemannian volume form we can convert T(x) to
an n — 1-form 7(z) € A" T, M, T, X.

Define new, extended space of fields, which includes 7 (z), as

FE(M, X) = C®(A"'TM, T*X)

This is the space of bundle maps, such that 2 — () is the map of bases, and &G A+ -A&, 1 €
T,M = (m(x),& A+ ANp1) € T;(x)X is the map of fibers. Here 7(x) is as above and
(m, & A -+ N&,_1) the pairing A" 'T*M @ A" T, M — R

Define the action functional as

Sl o] = /M (n(2) A o)) — /M H(m(2), p(z))v/ad"s

Here (-,-) is the pairing between 77 (z)X and T7(x)X and H(m(z),p(z) is the function
obtained by substitution of 7(x) and ¢(x) instead of (p,y) in the Legendre transform of
the Lagrangian. By analogy with classical mechanics we will call this function H(p, ) the
Hamiltonian density.

In local coordinates {¢?}™ ; on X and {z'}?_, on M for the action we have

S[m, @] = /M Z Z Tasiyin_ 050dx™ A -+ Adx'™ A da’ — /M H(m, ¢)/gd"z

a=1 401 eryin_1
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For the differential of the action we have
IS[m, ] = / (0w N dyp) + (—1)"/ (dm N\ dp)
M M
oH T, n oH T, mn
B RPNy R e N
M om M o
- [ msg)
oM

Here (., .) is the pairing between T, X and T;X and ((., .)) is the pairing between T, X ®
A(T*M)™1 and its dual space.
The bulk term gives Euler-Lagrange equations, which in local coordinates on X ab=nd

M are:
OH(m, )

] 5H (71-7 SO)
82‘ @ _ T 8Z‘_Z = —
Here 7, is a vector field on M defined as ™ = tzvol,.
The boundary term gives the density of the Noether 1-form:
ula = w0p"

Its differential ¢ defines a closed 2-form on any n — 1 dimensional submanifold v C M

Wy = /(57ra A Sp®)
v

It is easy to show that the space L), of boundary values of solutions to the Euler-Lagrange
equations Ly = *(ELys) is an isotropic subspace in (F(OM),wanr)-

3.5.2 Hamiltonian framework and symmetries

Consider a theory of scalar field on a Riemanninan space time in the first order framework.
The space of fields now is Fyy = C®(A"'TM — T*X) with o : M — X, w(z) : T,M —
T (2yar- In local coordinates on X we have ¢®(z) € C°(M), m,(x) € Q" 1(M).
The action functional:

Sulm ) = [ (nidi" — Hix.0))on
M
where vy = (/g d"z and H is an analytical function on 7°X, ¢ € X, m € T7 X..
Because M is Riemannian, we used metric to identify Q" (M) ~ I'(T'M). The image of

an (n — 1)-form 7, with respect to this identification is a vector field 7, = 7 (z)0;.
For the differential of this action we have:

. H - H
55y = / sri (010 — PHN o (—vimi = 2 ) o,
M o, Dy

—I—/ T 5 9,0y
oM
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Euler-Lagrange equations:

. o . OH
SO VT o

oM oM

7" — the normal to OM component of FZ@Z'

0;

Wor = / Om A 0 vans
oM

3.5.3 Nonlinear o-model

In this case the Lagrangian function is

L(e.¢) = 5(6.6) ~ Uly)

In local coordinates ¢ and &7

n m

Lew) =3 30 Gulp)eiely” ~ U(y)

ij=1ab=1

where {G g} is the metric on X, and {¢"} is the inverse matrix to the metric on V.
The corresponding Hamiltonian function is

1 L
Hip. ) =5 > G (@)gupm + U(p)
a,b,i,j

The action functional for the nonlinear o-model in the 1-st order formulation in local coor-
dinates is

St = [ (X m@aieta) =5 Y G pla)as(o)m@m(o) - Ule)) Vads .. do"

Symplectic structure 1-dimensional case

3.5.4 First order reformulation
1

S(p) = 5/2Gab(s0) 970,00,

. 1 L
S, ] = /E T, 0;" d2$—§ /E G (p)mim gij

0SS = /W38i5@a+/57r28i90a
) by
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__/ 8 Gab 5@ 7T ﬂ-b Gij — / Gab(@)”zil(s,n—g 9ij
_ / <—8in — —8CG“b(90)7TZ7Ti 9ij> 0"
5 2
+ / (0" = G™(p)mygi5) O,
3

+/ T §%,(\/g d°)

~
Sos ™R dpds

Fuler-Lagrange equations:
8i90a - Gab( )ngzg =0
ol — 20 LGl g = 0
3.5.5 Yang-Mills
3.5.6 Chern-Simons

3.6 Noether theorem and energy-momentum in the
first order theories

Let (M, g) be a Riemannian manifold.

3.6.1 Target space symmetries are Hamiltonian

Let 0,0% = u®(p) be the vector field of a symmetry, then
ou’(p)

T __
Oy = — -

Op®

Assume Sy/(7, @) is invariant with respect to u =Y u®(¢)0,.
For a first order theory the Noether current for u is:

7 L a _ _i,.a
Ju - 08i90au (QD) = mU (90)

The Noether charge of v C M of codimension 1 is

Ju(v) = /J;Lai’UOZM = /7r;‘ua(g0)vohY

Y Y

The space of fields F, is symplectic with.....

Theorem 3.6.1. The variational vector field 6, corresponding to the target symmetry u =
Yoo U ()0, is Hamiltonian on F., is Hamiltonian with Hamiltonian J,, i.e.:

5, F = {J,, F}
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We have:

0J, OF o0J, OF
W B} = /aM (Mg S 690@6@)%””

_ /W <u ()3 _ 1 00e) 5F) .

dp® a Op® o

If we have two vector fields v and v on X, which are target space symmetries of .S, then

{Ju, Ju} = Ju, v]

3.6.2 Space time symmetries are Hamiltonian

Assume r = Y, r'0; is an infinitesimal diffeomorphism of M, i.e. it is a smooth vector field
on M such that _

oy =0, Vir'=0
where 7 is the tangent component of » on dM and r™ is the normal component, 6, is the

Levi-Civita connection on dM. anything else?

Theorem 3.6.2. Let N C M be a submanifold of full dimension. The vector field d, on the
space of fields induced by r =", r*(a)0; on the space time is Hamiltonian

—6,F = {J,, F}

where

Jo= [ T, (ygd'w)
oN

Proof. For the Noether charge of 0N we have

J,(0N) = / (R = Hr o)) =m0 )

(. F} = <5JT 0F  46J, 5F)
ON

o 6t bl bl

6, OH . = .. onsL
S om0 =
—On"r" — &@afi == i@ari,
;5;; = (—%iﬁ; — g—;{l) P — TNV Vot m Ve
E A VA 61-%;17”' — ﬁg%ir" + WZ%Z»W‘
S

Here we used Stokes theorem to get

gg’;, Euler-Lagrange equations and the assumption

Virt =0,  7algy = 0.

edit the proof O
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{Jr, Js} = Jpr, 8]

3.7 (Gauge symmetry
3.7.1 Yang-Mills

With matter fields.

3.7.2 Chern-Simons

3.8 First order reformulation of two dimensional non-
linear sigma models

3.8.1 In complex coordinates

S(mp) = /(Waazsﬁa — Ta0.0")dz N dzZ — / G“b(go)mﬁb dz N dz,
s

by

5S[m, ¢ = /2(57&1(3%90“ — G™()ms)
4 / 5Fu(~0.6" — G ()my)
+ /E (=070 + 0.0 — DG (p)mcTT) 00"
+ /E 5 (Tadz + Fudl?)

EL equations:

Oz — G(p)T, =0,  0.90" + G™(p)m, = 0,
ﬁb == Gba&z§0a7 Tg = _Gabazsaba
—0:(Gapd-¢°) — 0.(Gap020") — 0aG(9)Glowr (9)D-0° Gy (0) 50" = 0

using

aaGc’b’ = _Gc’c Gb’b aaGCb
we can write EL as

&Z(Gabazsﬁb) + az(GabaE¢b) - aaGcb(QO)azﬁpC&z(pb =0

This agrees with the second order EL equations.
Noether 1 form, symplectic structure etc. In complex coordinates.
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3.8.2 The case of a cylinder

Now assume X is a Fuclidean cylinder

[0,27] x [0,T]
T y

Slm, ¢] = / (720" — T, ")
C

1
——/ G () (reaf 4+ 7V} d .
c

2
2w
ay = (/ Wayécp“dx)
0

— x(pa _Gab((p)ﬂ_l@j =0

T

0
Critical point in 7¥:

)

Ta
Slm, o] = // TaOyp d*x —
c

1
5[ | (€ @mm+ Gl vt
C

Critical value: (7

From here )
1 T
H = 5/ (G“b(go)wam, + Gab(w)axgoaﬁxgpb)dx
0
Poisson brackets:
{mal2), " (2')} = 6(z — )
Hamilton equations:
Oy" = {H, "} = G®(p)m, (3.80)

1
Oyt = {H,m,} = §8QGCb(g0)7rc7rb

1
+§aaGcb<90)axSOC x@b
—0:(Gab(0)020") (3.81)

They agree with EL equations (as it should be): (3.81)) is
1
—0ymy + 0,4 — EaaGCb(go)(mfﬂf + mdm)) = 0.

if we take into account ¥ = —G ()0, 0".
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3.9 Conformally invariant classical field theories

Definition 3.9.1. We say that a classical field theory is “conformally invariant” (or just
“conformal”) if its action is invariant under Weyl transformations of the metric:

Sitg(@) = Sma.6(9) (3.82)

for any positive function Q € CH(M).

Theorem 3.9.2. A classical field theory is conformally invariant if and only if its Hilbert
stress-enerqy tensor is traceless

tr T = 0. (3.83)

Here the trace of the stress-energy tensor is understood as

tr T =tr 7% =T, = g,;T7 € WM x Fu). (3.84)

loc

Proof. Given a Weyl-invariant classical field theory, we have

d 1 y
0= 2| Suren(@) = = [ dvol, T()gy () w(o) (3.85)
€ le=0 M T
trT'(x

for any function w € C*°(M). Hence, trT = 0.

For the “only if” part: given that tr7 = 0 we have by the same computation (read
right-to-left) that S is invariant under infinitesimal Weyl transformations. Since Weyl orbits
are path connected, this implies the full Weyl-invariance property (3.82). O

Weyl-invariance (§3.82)) implies (via covariance) that every conformal vector field r €
conf(M) is a space time symmetry. In particular, by Lemma [3.4.4]

g = (T,r) (3.86)

is a conserved current for any conformal vector field M.

Given a conformally invariant classical field theory, the stress-energy tensor depends on
the metric (in addition to its dependence on fields) and is generally not Weyl-invariant.
However, it is Weyl-equivariant. More precisely, we have

(Tog)™ = Q7'75(T,)™, (3.87)
(Taglee = Q72 (T})e, (3.88)

where we are indicating the background metric as a subscript; n is the dimension of the
spacetime manifold M.
Indeed, to see (3.87)), we compute

1
0g:S0(g) = _5/ Vdet(Qg) d"z T Q0g; (3.89)

Because Sg(g) = Sy, we have

1 .
0gSg = _5/ Vdet(g) d"x T} dg;; (3.90)
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This computatlon together with homogeneity property det(Q g) = Q2 \/det(g), immediately

implies ((3.87 . We get ((3.88 - ) by contracting (3.87)) with tWO copies of (g.
In particular, (3.88) implies that for a Q-dimensional conformally invariant classical field

theory the stress-energy tensor T, is Weyl-invariant — depends only on the conformal class
of the metric g.

Example 3.9.3. Consider agaln the massive scalar field (Examples“ - S = f SdPA
*xdo + 7¢2dvolg. Using (|3 , the trace of the stress-energy tensor is

9 _
tr1l = n

- nm;& (3.91)

The only way this expression can be identically zero is if n = 2 and m = 0. Le., only the
2d massless scalar field theory is conformally invariant (among all scalar field theories in
different dimensions and with different masses).

Another way to see this is to look directly at the action where one performs a Weyl
transformation with the metric:

Suaq(0) = /M 95_1§d¢ A *g4dp 4 €22 m?dvolg. (3.92)

It is independent of © (and coincides with Sy ,(¢)) if and only if n = 2 (which makes the
first term Q-independent) and m = 0 (which makes the second term {2-independent). Here
we made use of the fact that the Hodge star behaves under Weyl transformations as

*g O = Q%*p *g Q1 (393)
where o € QP(M) is any p-form.

Example 3.9.4. Similarly to the previous example, the sigma model (Example [3.2.7] |3.4.8))
is conformally invariant if and only if n = 2 and the potential V(®) is zero.

Example 3.9.5. Consider again the Yang-Mills theory (Examples [3.2.4] [3.4.9). The trace
of the stress-energy tensor (3.76) is
—4

rp=""" ——(Fy, FY), (3.94)

Thus, n-dimensional Yang-Mills theory is conformally invariant if and only if n = 4.
Another way to see this is via a computation similar to (3.92):

SM7Qg / Q FA /,\ X FA> (395)

This expression is independent of €2 (and coincides with Sy 4(A)) if and only if the power of
() in the integrand vanishes, i.e., if n = 4.

Example 3.9.6. 3d Chern-Simons theory (Example|3.2.5)) is conformally invariant a fortiori:
stress-energy tensor vanishes identically, in particular its trace vanishes. Put another way,
the model does not depend on metric, hence it is invariant under Weyl transformations of
metric.
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3.9.1 Noether currents for conformal space time symmetries

in coordinates
The Noether current for a vector field r representing infinitesimally a family of diffeo-
morphisms of M Noether current is defined as

Jo=> Jioi=Y _Jiro,
i ij

For a closed (n — 1)-dimensional submanifold v C M, the flux of J, through C' is

J() = / Ji0,(v/3)

Assume that vector field r is conformal, i.e.
57«gij = Vﬂ"j + Vﬂ"l’ = W4gij

and that our theory is conformally invariant.
Let +" be a continuous deformation of v and ¥(+,+’) contractible cobordism between -y
and +/

C'

The difference between fluxes through v and ~/ is

LR ACO N

(v

= [ v
()

. 1 ..

== / (ViTUTj -+ 5T”<Vﬂ"j -+ VJT’Z»\/E
()

= / T3 9:v/9 = 0.
()

We used V;T% = 0. and T g;; = 0 for conformally invariant theories.
Thus in conformally invariant theories

VJ! = 0.
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3.10 2d classical conformal field theory

Consider a conformal classical field theory on a Riemann surface X.

3.10.1 Stress-energy tensor in local complex coordinates

Let us use local coordinates o' = x, 2% = y in which the conformal structure is represented
by the metric (dz)? + (dy)?. Because g;; = d;; we have T;; = T]Z = T%. Symmetry T% = T
and tracelessness of the stress-energy tensor implies

Tll T12
T, = 3.96
j ( Ty —Th ) (3.96)

Thus, there are two independent components Ty, T12 The conservation property 0'T;; ~ 0

18 tantamount to

81T11 + 82T12 = 0 mod EL, (397)
81T12 — 82T11 = 0O mod EL. (398)
Define holomorphic and antiholomorphic components of T as
T. = Ty —2Z'T127 T. — T —;iT12

Taking into account identities
1 1
dx® — dy* = §(d752 +dz?), 2dvdy = ?(alz2 —dz?)
7
we have:

Tee = Tjjda'da’ = T (dz® — dy?) + Tho2dx dy =
Ty — T
= HTm(dz)Z + Ty + iT12(d2)? = T..(d2)? + Tss(dz)?. (3.99)
Thus, T is a sum of a quadratic differential and its complex conjugate. Note that the the

mixed term 71.:dzdz does not appear because of the conformal invarianceE] implies that 7" is
traceless:

1
I = ;T =0, (3.100)
Conservation property (3.97)), (3.98]) in the complex coordinates reads
0;T,., = 0mod EL, 0.7;; =0 mod EL. (3.101)

So, modulo EL, T, is a holomorphic function and 7% is antiholomorphic. Thus, modulo
EL, the stress-energy tensor (3.99) is a sum of a holomorphic quadratic differential

T..(2)(dz)? (3.102)

and its complex conjugate.

11 Since the metric is g = dz - dz, the inverse metric is g=! = 40, - 9z; the matrix of the latter in z, z-
coordinates is (¢g71)¥ = < (2) (2) > Hence, trT = (¢ )T = (¢71)** ez + (g7 1)** 15, = 2Tz + 215, =
AT,
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Remark 3.10.1. Note that holomorphic quadratic differentials arise

e as a parametrization of the cotangent space to the moduli space of complex structures

on a surface (cf. (2.121)),

e as a component of the stress-energy in a 2d conformal classical field theory.

These two occurrences are related: the variation 6,5y 4(¢) is (for a fixed field ¢) a cotangent
vector to the space of metrics, but due to Weyl-invariance it descends to a cotangent vector
to the space of conformal (or complex) structures on the surface.

Next, if the field ¢ satisfies the Euler-Lagrange equation, then for ¢, € Diff (X) the flow
of some (not necessarily conformal) vector field u on 3, one has

d d

7,z ie(®) Srg((¥r 1)) ~ 0. (3.103)

covariance dt |t=0

Thus, for ¢ satistying EL, 6,55 4(¢) actually gives a cotangent vector to the Teichmiiller
space
Ts. = {conformal structures} /{action by vector fields} (3.104)

and hence to the moduli space of complex structures M.
More explicitly, consider an infinitesimal deformation of the metric

g=dzdz— g+69g=g(1+p+p)(1+w)=(1+w)dzdz+ i2(dz)* + pi(dz)*  (3.105)

with p, i the infinitesimal Beltrami differentials and w the infinitesimal Weyl factor (this is
an infinitesimal version of (2.113))). Then one has

5gs(¢) = —Q/dzz(Tzzlui + Tzzﬂi), (3.106)

as a consequence of (3.58). The r.h.s. of is invariant (modulo EL) under shifts
of the Beltrami differential, due to the conservation property of the stress-energy
tensor ((3.101f).

more about the significance of this

3.10.2 Conserved currents and charges associated to conformal
symmetry

Given a conformal vector field on X
r =u(z)0, + u(z)0; € conf(X) (3.107)

(which is automatically a source symmetry for a conformal field theory), the associated

conserved current (3.86]) is
J. ={(T,r) =uT,.dz + uls:dz (3.108)
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— a field-dependent 1-form on ¥, which is closed modulo EL. Indeed, we see from ([3.101])
that

d(uT,.dz) = O(uT,.dz) = 0;(u(2)T..)dz A dz = u(2)(0:T..)dz A dz ~ 0 (3.109)

and similarly for the second term in (3.108)).
Given a closed loop v C 3, one has the corresponding conserved charge is

Ia) = $ 4 (3.110)

and it is invariant under deformations of v modulo EL — by Stokes’ theorem (as an integral
of a closed 1-form), or equivalently by Cauchy theorem (as an integral of a holomorphic
1-form, plus complex conjugate).

Poisson brackets for J,, Poisson brackets for T and TT

3.10.3 Example: massless scalar field on a Riemann surface

Fields are smooth real-valued functions ¢ € C*°(M). The action written in real local coor-

dinates on X reads )
= / Vdet(g)dz A dy é(g_l)”&qﬁ 0;¢. (3.111)
b

Here g can be any metric withing the given conformal class (the combination \/det(g)(g~!)%
is Weyl-invariant).
Written in local complex coordinates z,z on X, the action reads

S(p) = /Z %dz A dz 20,0 0z¢. (3.112)

To see this, it is sufficient to consider the Lagrangian density in (3.111)) in the standard
real /complex coordinates on the standard R? ~ C, since this locally describes the general
surface. In the standard metric one has dz A dz = (dz + idy) A (dz — idy) = —2idx A dy,

thus dx A dy = %dz A dZ. Also, one has %((@Cgb)z + (0y9)?) = 20.¢0:¢. This proves (3.112).

The Euler-Lagrange equation reads
Ap =0 (3.113)

or equivalently, in complex coordinates,
0,0:¢0 = 0. (3.114)

Le., ¢ satisfies EL if and only if it is a harmonic function on ¥. We remark that although

the Laplacian
e a Vdet(g)(g~1)"0; (3.115)
e

\/d
itself is not a Weyl-invariant operator on a surface (it changes under Weyl transformations
as Ag, = Q7'A, on a 2d manifold), the equation (3.113)) is Weyl-invariant.
The components of the stress-energy tensor in complex coordinates read
T..=( z¢) Tz = (82¢)2- (3.116)
Poisson brackets for ¢(z), for T'(z), J(z) = 0.¢(z) (Noether current for z — w(z).
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3.11 The Principal Chiral Field Theory

3.11.1 Second order action

Here the target space is a compact simple Lie group and
Sslg] = /2 tr(g~'9g A g~'dg)
Here g : ¥ — G. For the variation of the action we have:
58 = / tr(—g 10971999~ 09 +
b

+g '0.99"'0z9 — g~ '0.99 1099 ' O=g
+g 10997 0:09)d’z = =Y tr(D.(g~ " O=g)
>

+0:(97"0.9)) g 'ogd*z + / tr((g7'0.9dz + g ' 0-9dz)g ' g)
ox

This gives FEuler-Lagrange equations:
9.(9~"0zg) + 0z(g~"0=zg) = 0.
The Principal Chiral field theory is G x G invariant
9(x) = hig(z)hs

Such symmetry is called left and right chiral symmetries.
Corresponding Noether currents are

JE=t1(g7 0gea), T, = tr(g " O=ges),
JE=tr(0.997"e), T, = tr(0zgg " ea)
Note that here we assume g € E'Ly;. The conservation laws for left and right currents are
0Ty +0:JE =0
0. TN + 0.0 =0

They follow immediately from the Euler-Lagrange equations.
For nonzero components of the stress-energy tensor we have:

T = tr(g'9.997'0.9)

= Y JLIE=) TRk

The conservation laws
T =0, 0,T% =0

easy follow from Euler-Lagrange equations.
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3.11.2 First order framework for PCFT
G = SU(N) for simplicity

1 _ 7 _ —
S = §/tr(9 10099059 + 90,99 0y9)d’x
¥

1 , . .
- ; / G2 (9)(Drgi0ngk + 0,910, 3F)
>

where G7L(9) = (974 (g™ ")} We used

tr(g'0:99 ' 029) = (97 ")i(g7")10:9.0:9]

First order action:
S(m,g) = /tr(w”C ,g — TY0,9)d*x
c

1
—5/ tr(gn*gr® + gn¥gn?)d*x
c

EL equations for ¢,:

EL(m): 0,9 —gn*g =0, 0,9+ gn’g =0,

7 =g 19,997 1

1
ST 9leLem = 35 /C tr(g™' 9,99~ 9yg + (z ¢ y))

Thus 1st agrees with 2nd order. Using previous computations for o-model:

1 21
H = 5/ tr(grgm + (97 0ng)%)dx
0

{m(z), g2(2")} = Prad(z — 2')

where Pj5 = permutation matrix. In particular:

Oy = {H, g1} = tra(go(w) Praga(z)ma(z)) = 917191

1

= 7 =g '0,99" " agrees with EL.

3.11.3 Noether currents

For target space symmetries:

T a£ a
Jy = ;WU (¢)

EL s

, m=—g"10,g97"

111
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9J. = 0
For PCFT:
™ = hlﬂ'hg
g — haghy
Left vector field:
om = —nX, dg9=Xg,
57r;- = —Wka, 5g§:X,igf,
0 (9
k =
Uy = _ﬂ-kXJaz—i_X i
= —t tr | X
(er8) ()

Corresponding Noether currents:

J* = 90,9 Z.ngf = —tr(nXg),
8/5
JV = —Z_Xig" =tr(7"Xg).
a(ayg]) kg] I'( g)
Easy to check:
0 J" +0,JY =0
(on ELpy).
In the Hamiltonian framework on a cylinder

JY =tr(rXg)
It is easy to check that
{J](x), (@), } = 8(x — &) (I (2)6] — 67 J] ()

3.11.4 The abelian version

Let us first focus on the noncompact case when the target space is the real line. In such
model field are maps ¢ : 3 — R

Ss(p) = /E&M&D
In this case Euler-Lagrange equations are
9.0z =0
and we have

T(2) = (0.9)°, T(2) = (0=p)

Note that here we assume that ¢ is harmonic, i.e. satisfy the EL equations. We will discuss
the Hamiltonian structure of this theory in details in the next section.
compact version
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3.11.5 Classical WZW
3.11.6 Liouville model

3.12 Minkowski space time and Wick rotation



Chapter 4

2d quantum free massless scalar field

In this section our goal is to study the 2d free massless scalar field (a.k.a. free boson) as a
quantum conformal field theory (in Euclidean signature): the space of states for the circle
‘H, correlation functions on the plane and the operator product expansions.

The logic of the approach is as follows:

(i) We start by constructing the quantum theory on a Minkowski cylinder (via canonical
quantization of the classical theory) — along the way we identify the space of states for
the circle. As a warm-up, we start with the quantization of a simple 1d system — the
harmonic oscillator; as we will see, the free scalar field on a cylinder can be represented
(via Fourier transform on S') as a tensor product of a family of harmonic oscillators.

(ii) We switch from Minkowski to Euclidean metric on the cylinder by Wick’s rotation.
Then we identify — via the exponential map — the Euclidean cylinder with the punctured
complex plane C*. At this point we are ready to calculate correlation functions of several
point observables on C.

4.1 A warm-up: harmonic oscillator

4.1.1 Harmonic oscillator as a classical mechanical system

In classical mechanics, in Hamiltonian formalism, the harmonic oscillator is a system with

the phase space
& =T"R (4.1)

seen as a symplectic vector space, with symplectic form
Wsymp = dp N dx (4.2)

where x is the coordinate on R and p — the coordinate on the cotangent fiber. The symplectic
form equips the algebra of smooth functions C*>°(®) with the Poisson bracket

{——-}: x> (4.3)

114
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— a skew-symmetric bilinear (over R) operation which is a derivation in either slot and satisfies
the generating relation

fp.a} = 1. (4.4)
A more geometric definition of the Poisson bracket (valid for any symplectic manifold
(P, Wsymp)) is:

e For each function f € C>(®), there is the corresponding Hamiltonian vector field
Xy € X(®) uniquely characterized by the property

L Weymp = —dJf. (4.5)
e The Poisson bracket is defined by

{f,9}: = Xs(9) (4.6)
for any f,g € C>(®).

Back to the harmonic oscillator: the phase space ® is equipped with the function

2 2
H= % + oﬁ% € O%(d) (4.7)
— the classical Hamiltonian; here w > 0 is a parameter of the system (“frequency”). The

function H generates the Hamiltonian vector field

0 0

Hamilton’s equations of motion of the system is the equation of an integral curve of the
vector field Xy on ®. In the case of the oscillator, they are:

t={H,z} = p, (4.9)
p={Hp} = —w= (4.10)

(4.8)

Solving this system is straightforward: one combines this system to the single equation on x
i+ wr=0 (4.11)

which has general solution z(t) = A cos(wt) + B sin(wt) — oscillatory motion with frequency
w and A, B arbitrary parameters. Then one uses (4.9)) to find p(t).
In Lagrangian mechanics, the same system is described by space of fields

«/T-'[to,tﬂ = M&p([to, tl]? R) (412)

— maps from the source (or “worldline”) interval [to, ;1] to the target R (the base of the
cotangent bundle (4.1])). The action for a function z(7) is

Sla(r)] = /: dr (%2 _ “;:(;2) (4.13)

The corresponding Euler-Lagrange equation is exactly the equation (4.11)). Thus, indeed, the
Euler-Lagrange equations for the action (4.13]) are equivalent to the Hamilton’s equations
corresponding to the Hamiltonian (4.7)).
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4.1.2 Correspondence between Lagrangian and Hamiltonian de-
scriptions of classical mechanics.

Stepping aside from the harmonic oscillator for the moment, consider the general classical
mechanical system in Lagrangian formalism, with fields

f[to,tl] = Ma’p([t(b tl]? X)J (414)

with X some target manifold, and with action functional

Slx(1)] = / 1 dr L(z(1),2(1)), (4.15)

to
where
L(z,v) € C*(TX) (4.16)
is some function on the tangent bundle of the target X; here v € T, X is a tangent vector.
Then the Euler-Lagrange equation is

oL(z,z) d (8L(m,v)

ori  dt

o Ui) =0 (4.17)

—an ODE on the map x: [tg,#;] — X; here we use local coordinates x% on X.
The same system can be described as a Hamiltonian system with the phase space

®=T"X (4.18)

— the cotangent bundle of the target X equipped with the canonical symplectic form of the
cotangent bundle, Weymp = dp; A dz'. The Hamiltonian function H € C*(®) is obtained as
the Legendre transform of the Lagrangian L, trading velocity v for momentum p:

H(z,p): =v'p; — L(z,v), (4.19)
where v = v(x, p) determined implicitly by the equation
OL(z,v
pi = é J )
v

For the Legendre transform to exist and be invertible, one needs L(z,v) to be a convex
function in v (for any z).

The key observation is that the Hamiltonian equations generated by H and Euler-

Lagrange equations determined by the action (4.15)) are equivalent, provided that the Lagr-
nagian L and the Hamiltonian H are linked by the Legendre transform (4.19)), (4.20]). Indeed,

the Hamiltonian equations read

(4.20)

= = v+
dp; EI9) y

o0H ol oL

p ox? pjaxl ozt

oL Oy oL
5 e) = g (42D

~~
L J n <8L
p=const N J 8ZEZ 8ZEZ

Substituting (4.20)) in the second equation above, we get the Euler-Lagrange equation (4.17)).

v=const
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Remark 4.1.1. Legendre transform admits the following geometric description. If [(v) is
convexE] smooth function on a vector space V' 35 v then its Legendre transform h(p) is a
smooth convex function on V* > p with the property that the Lagrangian submanifold
V @ V* that is the graph of di (here we think of V' @& V* as the cotangent bundle T*V with
the standard symplectic form dp; A dv') is also described as the graph of dh (where we think
of V& V* as T*(V*) with symplectic structure dv’ A dp;):

ol Oh
graph(dl) = {(v,p) | pi = aw} = graph(dh) = {(v,p) | v = ap-} cVeV*
(4.22)

Put another way, the Lagrangian submanifold has [ as its generating function on
V and h as its generating function on V*. If [ is given, the property determines h
uniquely up to a possible shift by a constant function.

In ([£.19), (4.20), the Legendre transform is done pointwise on X, with V =T, X, V* =
TrX, l(v) = L(z,v) and h(p) = H(x,p) for any point x € X.

FINISH

4.1.3 Preparing for canonical quantization: Weyl algebra and Heisen-

berg Lie algebra

Definition 4.1.2. Let (V, wsymp) be a (real) symplectic vector space and let Ve = C® V be
its complexification. One defines the Heisenberg Lie algebra associated to (V,wsymp) as the

Lie x-algebra
Heis(V, wsymp) = Ve & C - K (4.23)

where K is a central element and one has the commutators
(U, V] = —iwsymp(u, v) - K (4.24)

for u,v € V. We put a hat on an element of V' when we think of it as an element of Heis.
Elements v and K are understood as self-adjoint.

Thus, Heisenberg Lie algebra is a central extension of Vi seen as an abelian Lie algebra,
C — Heis(V, wsymp) — Ve, (4.25)
with the Lie 2-cocycle of V' defining the central extension being wgymp.

Theorem 4.1.3 (Stone-von Neumann). Assume that V is finite-dimensional. Then there
exists a unique (up to isomorphism) irreducible unitary representation of Heis(V, Wsymp)-

“Unitary” here means that the representation is on a Hilbert space H and for each v € V,
v is represented by a hermitian operator.

Definition 4.1.4. Weyl algebra of the symplectic vector space (V,w) is defined as the
following associative x-algebra over the ring of formal power series C|[[A]]:

Weyl(V, weymp): = C[[A]] @ UHeis(V, weymp)/(K = k) (4.26)

LConvexity implies that the Lagrangian submanifold || is projectable onto both V' and V*.
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— the universal enveloping of the Heiseberg Lie algebra (with scalars extended to formal power
series), with the central element K identified with the scalar h. The involution (hermitian
conjugation) maps the Heisenberg generators v to themselves.

Here we think of the Planck constant A as an infinitesimal formal parameter.

Example 4.1.5 (Main example). Consider V' = T*R" with coordinates x1,...,z, on the
base R™ and dual fiber coordinates p',...,p", with standard symplectic form
Wsymp = Z dp; N dz’. (4.27)

The corresponding Weyl algebra is generated by elements z%,p;, i = 1,...,n, subject to
relations

.29 =0, [pnp;]=0, [pi,7’]=—ihé], VO0<ij<n (4.28)

— the “canonical commutation relations.”

The standard representation of this algebra — the Schrodinger representation — is on
the Hilbert space H = LZ(R™) of complex-valued square-integrable function on R", with
hermitian structure

(i) = [ s Ti@ata)

for 1)1, two square-integrable functions on R™. The generators Z¢, p; of the Weyl algebra
act on ‘H as the following hermitian operators:

T'h(x) = 2'(x), Py (z) — —ih 0

() (4.29)

Le. 7" acts as a multiplication operator (by a coordinate function) and p acts as a derivation.ﬂ
In particular, using this representation, one can identify the Weyl algebra of T*R™ with
the algebra of polynomial differential operators in n variables.

4.1.4 Canonical quantization of the harmonic oscillator

The idea of canonical quantization is to start with a classical system in Hamiltonian formal-
ism with phase space ® = T*R™ and lift (or “quantize”) the Hamiltonian function H (z,p)
to an element H = H (Z,p) of the corresponding Weyl algebra — the quantum Hamiltonian.
By quantizing/lifting a polynomial function f on ® we mean choosing a preimage of f

under the “dequantization map”
7 Weyl(®) 2228 (). (4.30)

poly

where C55) (®) = Sym*®* is the algebra of polynomial functions on ®. Put another way,
we take a polynomial function f(z,p) € C5 (®) and replace ', p; with corresponding
generators of the Weyl algebra 7%, p;, where we are allowed to add any terms proportional to

h* for k > 0. The possibility to add such terms reflects the ordering ambiguity. E.g., zp = px

2These operators are unbounded on LZ(R™).
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as functions on ® = T*R, but zp = px + ih in the Weyl algebra; so both zp and pz should
be considered as legitimate quantizations of the monomial xp, and these quantizations are
different.

A systematic approach to lifting is to choose a “quantization map” (or “operator order-
ing”).
Definition 4.1.6. We call a “quantization map” a C-linear map

q: Cooy (@) — Weyl(®) (4.31)

which satisfies 7 o ¢ = id, where 7 is the map (4.30)).

Note that ¢ is not required to be an algebra morphism; in fact, it cannot be one.

Example 4.1.7 (Weyl quantization map). Consider the map ¢: C35, (®) — Weyl(®) which
sends a monomial in 2", p; to the corresponding monomial in z*, p;, where one averages over
all possible orderings of the factors (i.e. for a monomial of degree d, one averages over the
symmetric group Sy). Then one extends ¢ to general polynomials by linearity. One calls this

map ¢ the Weyl (or “symmetric”) quantization map.

In the case of harmonic oscillator, we lift the coordinate function x, p on the phase space
® = T*R to the generators of the Weyl algebra Z, p satisfying the relation

p, 7] = —ih. (4.32)
We lift the Hamiltonian function to the element
H="+uw" (4.33)

of the Weyl algebra.

Disclaimer. In the discussion below, we will be thinking of & as a small positive real
number (rather than a formal parameter), and formulae involving A should be thought of as
a family over i € Ry.

In the Schrodinger representation, the Weyl algebra is acting on the Hilbert space

H = Li(R), (4.34)

with 5
T=x, p=—ih—. 4.35
T=a, p=—ihg (4.35)

The quantum Hamiltonian (4.33)) is then represented as the differential operator
~ R 9% WP
H=———"-+"21% 4.36
2 0x% 2 (4:36)
To construct the evolution operator of the quantum system

_itH

Ut) =T € UH), (4.37)
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where U(H) is the unitary group, one needs to find the eigenvalues and eigenvectors (as
square-integrable functions) of H. Le., one is looking for all pairs ¢ # 0 € LZ(R), F € R
such that

(_%;7 * %x) () = By(x). (4.38)

This is a well-known instance of a singular Sturm-Liouville problem. The answer is:

Theorem 4.1.8. The operator admits a complete orthonormal system of eigenvectors
{n}nso in L*(H) of the form

where o
H,(z): = (=1)"e" —e* 4.40
(0): = (—1)e e (4.40)

1
are Hermite polynomials; C,, = (%)4 (Q"n!)_% 1s a normalization constant. The eigenvalue
of H corresponding to 1, is
1
E, = hw(n + 5) (4.41)
The first few Hermite polynomials are:

n H,(x)
1
2x
dx? — 2
8x3 — 122
162* — 4822 + 12

=W N = O

The evolution operator (4.37)) is then

Ut): H — | H
D D (TR S L PR RS (442
n>0 n>0

4.1.5 Creation/annihilation operators

Instead of directly looking for eigenvectors and eigenvalues of the operator , one can
obtain the result of Theorem by exploiting the hidden algebraic structure of the operator
H (specific to the harmonic oscillator case).

Let us introduce two new elements of the Weyl algebraﬂ — special complex linear combi-

nations of Z, p:
[ w 1
a = —(z+—p 4.43

3 More pedantically, here we extend the ring of scalars in the Weyl algebra by tensoring it with
C[a/2, n=1/2).
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it = J2@-1p 4.44
a “@-1h. (4.44)

Operators a,a’ are called the “annihilation operator” and “creation operator,” respectively.
The are hermitian conjugates of one another and satisfy the commutation relation

@,at] = 1 (4.45)

as a consequence of the canonical commutation relation (4.32)). The inverse formulae to

R o
= — 4.4
P 5@+, (4.46)
huw

The quantum Hamiltonian (4.36]) expressed in terms of @,a™ is
7 Loy g 1
H:hwﬁ(a a+aa") = hw aa+§ (4.48)

The relation (4.45) implies the commutation relations between H and @, a*:
[H,d) = —hwa (4.49)
[H,at] = hwat (4.50)

This implies that if in a representation of the Weyl algebra on a Hilbert space H, a vector
1 € H is an eigenvector of H with eigenvalue E, then

H(@y) = (B - hw)@y), (4.51)
H@™y) = (E+hw) @), (4.52)

Thus, a, a* take eigenvectors of H to eigenvectors; applying a' raises the eigenvalue of by
hw, while @ lowers the eigenvalue by hw.

We can construct an irreducible unitary representation H¢ of the Weyl algebra as follows:
let |0) € H be the “vacuum vector” — a vector with the property

al0) = 0. (4.53)
We will assume that |0) has norm 1 in H*°. From (4.48)) we infer that

H|0) = %|o>. (4.54)

We then introduce the vectors |n) € H*® with n =1,2,3,... as

n): = an(@)"|o) (4.55)

Lecture
16,
9/28/2022
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where «, is a normalization factor, chosen in such a way that the vectors [n) are of norm 1.

From (4.52)) we infer that
N 1
Hin) = (n+ §>hw|n> (4.56)

The representation space H*¢ of the Weyl algebra is then

H™ = {Zcﬂn) ‘ cn € C, Z len|? < oo}. (4.57)

n>0 n>0

One can calculate the norms/inner products of vectors in H* from the fact that a, a*
are Hermitian conjugate, using the commutation relation (4.45)). E.g., one has

(@ |0y, (0} ) = (lo),a@*10) ) = (0] @, 10) = Ot ao)+ o) =1 (@59)
i 0 oy [P=1

Here we used the Dirac’s notation: a covector in (H°*)* dual to the vector [¢)) € H* is
denoted ([; the inner product <]w1>, |z/12>> of two vectors in H is also denoted (t)1]1)s).
HOSC

More generally, using the same strategy — commuting @ to the right of the word of
creation/annihilition operators — one can show the following.

Lemma 4.1.9. Forn,m =0,1,2,..., one has
(0[a™(@*)™0) = n! dpm. (4.59)

Proof. First note that we have the commutation relation

n

a, (@) = aHk @ at) @) =n@H" .
[a, (@) ]—;( ID A 4 J(@®) @) (4.60)
Using it, we find
a(@)"|o) = [a, (@")"|0) + (@")" alo) = n(@")"'0). (4.61)
~—

0

Thus, for m < n, we have

(@™ @")"0) = @m'a@")"|0) = @ 'n@*)"'0) =
= (@)™ *na(@")""'0) = @™ *n(n — 1)(@")"*0)
=--=nn-1)-(n—m+1)(@")"™0) (4.62)

In particular, for m = n we have
(@)"(@*)"10) = nlj0), (4.63)

which implies (4.59) for m = n.
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If m < n, we have

Ol @10) = (o]0 = 0, (464)

(n—m)

where we use the fact that (0]a* is the covector dual to @|0) and thus vanishes.
Likewise, if m > n, we have

(0[a™(@*)"0) = n!{0| @™ "0) = 0. (4.65)
0
O
In particular, vectors (4.55) with n = 0,1,2,... form an orthonormal basis for H if we
set the normalization factors to be {
oy = ——. (4.66)

Vn!

In this basis, the operators a,a™ act as

aln) = —— a, (ah)" =+nln—
aln) = \/E[ ;i)n)l] 0) = V/n In—1) (4.67)
and
atln) = @H" 0y =vn+1|n+1). (4.68)

13-

(

3

+1

By Stone-von Neumann theorem, there is an isomorphism of representations of the Weyl
algebra
HO ~ LL(R) (4.69)

— the “oscillator representation” and Schrodinger representation. Under this isomorphism
vectors |n) € H* correspond to vectors (4.39). In fact, one can obtain the formula (4.39)
from (4.55)). Indeed: in Schrodinger representation, the operators @, at are

1 0 1 2 0 2
o _ 4+ — — o _7, 470
‘ ﬂ(y ay> N (4.70)
1 19, —1 2 0
~ = )= T ¢~
¢ ﬁ( ay> N T

w

where we denoted y = \/; x. Thus, the vacuum vector |0) in Schrédinger representation is

a function 1)y satisfying the first-order ODE
2

=0 o a%(efww)—o o ly) = Coe s (4.72)

w‘@

e
oS

(4.71)

with Cjy a constant (which can be chosen to normalize )y to unit norm). Vectors |n) in
Schrodinger representation are then
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waw:w%@ﬂﬂm=wm«4wz%éfa"(efwaw)z

— 2*%00%6*% ((—1)”6 Q%e v ) . (4.73)

[ J/

Ha (1)
This is exactly the formula (4.39).
In terms of the basis {|n)} in the Hilbert space H*°, the evolution operator (4.42) acts

as A
Ut) = et Z Caln) Z cne_i(”+%)”t|n). (4.74)

n>0 n>0

Remark 4.1.10. The partition function of the harmonic oscillator on the circle of length ¢
(cf. Example [1.5.3)) is

_twt

) e 2 1 1
Z Sl = tr och t) = B_Z(n—i_%)wt = - = - - = 475
( t) H ( ) nzzg 1_6710_,,5 6% —6_% 2718111&; ( )
The Euclidean version of the partition function is obtained by the Wick rotation t = —iTg,q

with Tgua > 0. In this version, the sum over eigenvalues in (4.75) becomes absolutely
convergent and one has

1

2 sinh “LBua ’
2

(it D
ZEuCl(S%Eucl): = Z(Sl}:—iTEud) = Z € ( +2) TEuCl =

n>0

(4.76)

Remark 4.1.11. The algebra of creation/annihilation operators admits another use-
ful representation (unitarily isomorphic to H*¢ and to the Schrodinger representation), on
the Segal-Bargmann space, constructed as follows. Consider the following hermitian inner
product on the space Hol(C) of holomorphic functions on C:

1 [ 2——
(F)sn =1 [ 5dzndz e Tg(c). (@77
Then the Segal-Bargmann space is defined as

Hsp: = {f € Hol(C) | (f, f)sp < oo} (4.78)
In this representation, creation and annihilation operators act as

a= %, at =z (4.79)
— holomorphic derivative and multiplication operator by the holomorphic coordinate, re-
spectively; these operators are hermitian conjugate of one another w.r.t. the inner product
. The vacuum vector |0) can be identified with the function 1 € Hgp; then the vectors
|n> are identified with T'Z € Hsp. The Hamiltonian H = hw(z£ +3), up to normalization
and a shift, is the Euler vector field and thus counts the monomlal degree of a function in z.
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4.1.5.1 Normal ordering

Normal ordering is an operation acting on linear combination words in the creation-
annihilation operators a@,a’ which reshuffles the letters in each word, putting annihilation
operators @ to the right and creation operators a* to the left. Normal ordering applied to a
word W is denoted : W :. For instance, one has

+

raataat :==a'ataa. (4.80)

We stress that normal ordering is an operation on words — it does not descend to the Weyl
algebra.

An important property of normal ordering is that if O is a sum of words, each containing
at least one creation or annihilation operator (i.e. no constant summand in O), then one has

(0] : O |0y =0. (4.81)

This property is obvious: for each normally ordered word, the expression will contain
a term a|0) and/or a term (0|a™t, both of which vanish.

In particular, if we represent the Hamiltonian of the harmonic oscillator by the combi-
nation of words H = hwi(a@a®™ + a*a), then we have

. H = hwa'a. (4.82)
— which differs from || by %“’ In particular, one has
. H : |n) = hwnl|n). (4.83)

In particular, the vacuum vector |0) is has zero eigenvalue w.r.t. the normally ordered

Hamiltonian : H :, .
:H:|0) =0. (4.84)

4.2 Free massless scalar field on Minkowski cylinder

4.2.1 Lagrangian formalism

Consider the massless scalar field on the cylinder ¥ = R x S! with Minkowski metric g =
(dt)* — (do)?. Here t (time) is the coordinate on R and ¢ € S' = R/27Z is the “spatial
coordinate.”

Figure 4.1: Cylinder.
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Fields of the theory are smooth real functions ¢(¢,0) on ¥ and the action functional is

K

S(6) = 2

[ atdoté? - a1 (4.85)
b
where dot means the derivative in £. We put a normalization factor x in the definition of
the action — we will fix it later.
The space of fields of the theory F = Map(Rx S!, R) can be thought of as Map(R, Map(S*, R)).

Thus, one can think of the field theory on the cylinder ¥ as classical mechanics on the world-
line R with target

X = Map(S*,R) =C>®(S") 3 ¢(0) (4.86)
and Lagrangian
L= 5§ dold* — (0r0)) (4.87)

— a function on TX (cf. (4.16)). We understand ¢(o)ff] as a point in the base of TX and
¢(o) as a tangent vector to X at ¢(o).
The Euler-Lagrange equation of the theory is the wave equation

¢ — 02 =0, (4.88)

Its solution can be though of as a path in X parametrized by ¢t € R.
Let us expand ¢(o) in the Fourier series

B(0) =D Pne™. (4.89)

Since ¢ is real-valued, the Fourier coefficients (or “modes”) ¢, € C must satisfy the reality
condition ¢_, = ¢,,. A path in X is then specified by a collection of Fourier modes ¢,(t) as
functions of ¢t € R.

In terms of Fourier modes, the Lagrangian (4.87)) is

L= gzw 3 (gz;nq's_n - n2¢n¢_n> (4.90)

neZ

4.2.2 Hamiltonian formalism

In Hamiltonian formalism, the phase space of the system is
o =T"X, (4.91)

with X as in (4.86)). Since X is a linear space, we identify T*X with X x T*X — pairs of
a function ¢(o) on S' and a distribution 7(s) on S' (the “momentum”). The canonical
symplectic form on ® is

gy = 7§ dt 57(0) A 66(0). (4.92)

4Here we mean the function on S', not its value at some particular o.
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The corresponding Poisson brackets between ¢(o), w(¢') (thought of as coordinate functions
on ®) are

{qb(O‘), 7T<OJ)} = _6per(g - 0/)7 {¢(U)’ ¢(0/)} =0, {W(U)v W(OJ)} = 07 (493)

where 0y, is the periodic Dirac delta-distibution on S*, dpe () = Z d(0 + 2mn) (where on

neZ
the right § are the usual Dirac delta-distributions on R).

To find the Legendre transform of the Lagrangian (4.87)), we first find the relation between
momenta and velocities:

s :
(o) = 53(0) = ko(0), (4.94)
cf. (4.20). Then we find the Hamiltonian (cf. (4.19)) as
B - B (o) kK
H= : dom(o)p(o) — L = fgl do (7 + 5(80@2) , (4.95)

where in the second step we expresses velocities in terms of momenta using ((4.94)).
The Hamiltonian equations generated by the Hamiltonian H are

¢ = éw, T = k0. (4.96)

In particular, these equations imply the wave equation (4.88)) for ¢.

Remark 4.2.1. The components of the stress-energy tensor of the theory are

Too=Ti = (& +(0:9)). (4.97)
Tn=Tio = KOs (4.98)

We note that integrating Ty over {t} x S! one gets

H = do TOO (499)
g1

— the Hamiltonian (or “total energy”). Integrating Tpy; over {t} x S! one gets

P = ]{ do Ty (4.100)
Sl

— the “total momentum” of the system.

Modulo equations of motion, H and P do not depend on ¢ — the position of the spatial
slice. One can infer this from Lemma translations along R and rotations along S*
are source symmetries and yield conserved currents, Ty and T}y, hence the corresponding
charges (fluxes through a spatial slice {t} x S') are conserved — independent of ¢ modulo
equations of motion.
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Expanding the field ¢(c) and the momentum (o) in Fourier modes on S', we have
o)= ne’, w(o) = — e, 4.101
o) = S one™, 7o) =503 (4.101)

with reality conditions ¢_, = ¢, and 7_, = 7,,. Poisson brackets (4.93)) correspond to the
following brackets between the modes:

{¢n; 7Tm} = _5n,fm7 {Qbm ¢m} =0, {Wm 7Tm} =0. (4-102>

The Hamiltonian (4.95) written in terms of the parametrization of the phase space by
Fourier modes ¢,,, 7, is:

1
H = — T T —p + 527T/€n2¢n¢_n. (4.103)
K

= —. 4.104
K= (4.104)
Then we have
1 1
H= anw_n + ZanbnqS_n = (m)? + 22 (|7Tn|2 + Zn2|¢n|2) . (4.105)
neZ n>0
Similarly, the total momentum (4.100)) is:
P=> " inm_non. (4.106)

neZ

The Hamiltonian equations (4.96) spelled in terms of coordinates ¢,,m, on the phase
space read

. 2

As a consequence, ¢, satisfies the second-order ODE ¢, + n2¢, = 0 (cf. )

Thus the system is a superposition of a collection of non-interacting subsystems: variables
(¢o, ) describe a free particle of mass p = % while variables (¢, m,) for n # 0 describe a
complex harmonic oscillator with frequency w,, = |n|.

4.2.2.1 Real oscillators.

To get a better understanding of how the system breaks up into a collection of harmonic
oscillators (plus a free particle), it useful to rewrite it in the real parametrization. Introduce

(1,2) (1,2)

the real variables ¢y, ", my, '~ with n > 0, related to complex variables ¢,,, 7, by

1
bn =00 +i6?, m=g(ml) +in?)  for n>0. (4.108)

Lecture
17,
9/30/2022

Explain
more /better’
Also:

(P> Tn)

or

(P T—n)?
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Le., ¢£Ll’2) are the real/imaginary parts of ¢, n > 0, and similarly for m,. The real variables
satisfy the Poisson brackets

{00,750} = 6umbas, {6,000} =0, {x{ 70} =0 (4.109)
for n > 0 and «, 5 € {1,2}. The Hamiltonian (4.105)) in these variables reads

2 alenz 2
H=m+> Y <( n2 ) +?(¢1(@a))2)

n>1 a=1

2
+ Z Z Hharrnonic oscillator, wp,=n (4 1 10)

n>1 a=1

= Hfree particle, u:%

The general solution of the Hamiltonian equations (4.96)) is

o(t,0) = } : (Anem(tJro) + Bnem(ftm)) +Ct+ D, (4.111)
~~ S——
n#0 b (t)eine bo(t)
1 in in(t+o) in(—t+o) c
w(t,0) = 2—(§ E(Ane ~ Bye )+ = ). (4.112)
T n#0 -~ ~~

mn (t)eine o (t)
where A,,, B,,, C, D are arbitrary constants subject to the reality constraints
A_,=A,, B_,=B, forn#0, C,D eR. (4.113)

Remark 4.2.2. For the massive scalar field (3.10) on the Minkowski cylinder we can repeat
all the computations above, introducing the same parametrization of the phase space by
modes ¢, m,. The Hamiltonian instead of (4.105)) will then be

1
H=>Y mm_,+ 1¥nPndn (4.114)

neZ
with
wp = Vn? + m? (4.115)

(with m the mass of the scalar field). Thus, the system is a collection of non-interacting
harmonic oscillators, one for each n € Z, with n-th oscillator having frequency (4.115)).

-2-10 1 2 n

Figure 4.2: Frequencies w,, of oscillators comprising the free massive scalar field.

In the massless limit m — 0, the frequencies become w,, — |n|. In particular, the n =0
oscillator in the limit becomes a free particle.
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4.2.3 Aside: free particle

Since the free massless scalar field on a cylinder splits into a family of harmonic oscillators
and a single free particle (cf. ), we stop for a moment to discuss the free particle, as
a classical and as a quantum mechanical system.

The free particle moving on R is the Lagrangian formalism is defined by the space of
fields F = Map([to, t1], R) with action functional

Sle(t)] = / ’ dT’“‘T”bQ, (4.116)
to ~—

L

where p > 0 is a parameter — “mass” of the particle.
In the Hamiltonian formalism, the system is described by the phase space ® = T*R and

the Hamiltonian
P

== 4.11
9 (4117)

(which is in particular the Legendre transform of the Lagrangian L = ”7”2) ~

In canonical quantization, we have the Weyl algebra generated by Z, p subject to [p, 7]
—ih, and the quantum Hamiltonian (using the symmetric Weyl quantization) is
o~
o= (4.118)
24
In Schrodinger representation of the Weyl algebra, the Hamiltonian acts as the differential
operator

H=--9 4119
50 (1119)
on the Hilbert space H = L&(R).
The eigenvectors of H are the vectors
Ip): = er?* (4.120)

with p € R a parameter (momentum). One then has

Hp) = ﬁlp) (4.121)
2

In particular, the operator H has a continuum eigenvalue spectrum [0, 00), where the eigen-
value 0 is nondegenerate and all positive eigenvalues have multiplicity 2. We also note that
eigenvectors are not points of LA(R) (not square-integrable), but rather are limit
points of the space (which is the usual case for a continuum spectrum).
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4.2.4 Canonical quantization

We now proceed to the canonical quantization of the free massless scalar field on the
Minkowski cylinder. R

We promote the modes ¢, m, to generators ¢,, 7, of the Weyl algebra, subject to the
relations

Fons O = =0 s [ Gy O] = 0, [Fn, Trm] = 0. (4.122)

For convenience we set h = 1.
Next, we introduce a system of creation/annihilation operators a,, a,, n # 0, subject to
hermitian conjugation properties

(@) =a_p, (@) =a_, (4.123)

and related to the Weyl generators (/b\n, Tp, With n # 0 b

~ 7 N ~
¢n = _(_a—n + an))
n
~ (4.124)
~ Q—p + Qp
Ty = ————.
2
The commutation relations corresponding to (4.122]) are
(@ns @) = 100y [@ns Qi) = 00—y [Gy @) = 0. (4.125)

In terms of these creation/annihilation operators (and the zero-mode operators (EO, To
which need to be treated separately), the quantum Hamiltonian (obtained by symmetric
Weyl quantization) is:

7 [0S /_\fn/_\n ~ 1 PR ~ o~
i Z a_na —;— a_na + (F0)? = 3 Z (a_nan + a_nan> : (4.126)
n#0 nez

In the second equality we introduced the notation

Go = ag: = . (4.127)
The canonical quantization of the total momentum operator (4.106|), written in terms of
creation/annihilation operators, is

P = 5 Z (a,nan - a,nan> . (4.128)
neZ

Remark 4.2.3 (Heisenberg Lie algebra). One can consider the Lie %-algebra (the Heisenberg

Lie algebra)

Heis: = Spanc({@n fnez, K) (4.129)

5 One can also express the operators @n,ay in terms of the standard creation/annihilation operators
1' 1) for the real oscillators, as in (4.108): for n > 0 one sets @, = \/’g(—i&\g}) —6%2)), a_, =
VE@DT —aPh), @, = E(—iah) + @), an = Elaw T +adh).
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where K is the central element and the commutation relations are
(@, Q| = 10y, — K. (4.130)

with the involution (hermitian conjugation) acting as a,” = a_,, K" = K. It is the special
case of the general Heisenberg Lie algebra (Definition [4.1.2)), for the symplectic vector space

V' of Laurent series on C*
V= { =3 fnz_"} (4.131)

nezZ
with symplectic form
Wsymp (f, ) = i res.—o(fdg) (4.132)

— the residue at z = 0 (i.e. the coefficient of z27*dz) of the meromorphic 1-form fdgﬁ The
basis vectors 2™ in V' correspond to the generators a,, of Heis.

The full Lie algebra of mode operators of the free massless scalar fields can then be
described via two copies Heis, Heis of the algebra above:

~ Heis & Heis ~
Spanc ({¢n; Tntnez, K) = ——= = ®C- o, (4.133)

aozao,K:

where on the right the extra generator ;b\g interacts with the Heisenberg Lie algebras via
[Go, do] = —iK. (4.134)
From (4.126]) and (4.125)) one easily finds the commutators between the Hamiltonian H

and the operators a,, a,:
[H,d,) = —na,, [H, @, =-na,, nez (4.135)

In particular, for n > 0 applying @, or @, to an eigenvector of H decreases the eigenvalue
(total energy of the state) by n, while applying a_,, or a_, increases the eigenvalue by n.
Thus, it is natural to think of @,,a, as annihilation operators and of @_,,a_, as creation
operators.

Next, consider the commutators of @y, a, with the total momentum operator (4.128):

[P,d,]) = —ndy, [P,@,) =+na,  neZ (4.136)

Thus, for n > 0, applying a_,, to a joint eigenvector of H and P increases the energy and
the total momentum of the system (creates — or adjoins to the system — a “left-mover” — a
quantum with positive momentum), while applying @_, increases the energy but decreases
the total momentum (creates a “right-mover”).

To summarize, we have the following table for each n > 0.

‘ annihilation operator creation operator

left-mover a, a_y,
right-mover n, a_p,

6The normalization factor i in (4.132) compensates the factor —i in the general definition of Heisenberg
Lie algebra 1D i.e., one has the commutation relation [f,g] = res,—o(fdg) K.



CHAPTER 4. 2D QUANTUM FREE MASSLESS SCALAR FIELD 133

4.2.4.1 The space of states

. The space of states of the full system (the massless free scalar theory) can be described as
the tensor product of the spaces of states for the constituent subsystems:

H= Hfree particle ® ® Hharmonic oscillator wn,=|n|" (4 137)
n#0

One can choose to represent each factor in by the Schrodinger representation, thereby
obtaining a tensor product of countably many copies of L?(R).

A different (better) description of H is as a “Fock space” — in the vein of the description
of the space of states of harmonic oscillator as spanned by excitations of a vacuum
state given by repeatedly applying creation operators (Verma module description). In the
case of the free massless scalar field, we pick from the first factor of any vector |mo) (cf.
(4.120))), with m9 € R the zero-mode momentum, tensored with vacua |0) in each oscillator
factor — we denote the result by abuse of notations again |m) (this vector is referred to as
“psedovacuum”).m Then we act on |m) by the creation operators corresponding to different
oscillators, creating an excited state; this gives a basis for H:

r s I1<ny<ny <---<mn,
H= P Spanc{ 1@ [Ta-n,Im) ] 1<7) <Tip < -+ <7y, } (4.138)
r>0,5>0 i=1 j=1 T € R

Let us denote the basis vectors spanning H by
mo; {na} A1) = [[an, [ [ @, Imo). (4.139)
i=1 j=1

We think of the basis vector |m; {n;}, {m;}) as a multiparticle state, consisting of
e 7 left-moving quanta carrying energy-momentum 2-vectors (n;,n;), ¢ =1,...,r and
e s right-moving quanta carrying energy-momentum (n;, —n;), j =1,...,s.

We motivate this interpretation more below, after (4.145]). This s

Remark 4.2.4. Thinking of the system a string moving in the target R (for each time t, we , bit
have a map ¢: {t} xS — R), the zero-mode momentum 7, can be understood as the (target) murky,
momentum of the center-of-mass of the string, and has nothing to do with the (source) total [ should
momentum P. explain

An equivalent description of H as a Fock space (a different way to enumerate the basis better
vectors) is as follows:

%—Spanc{H@n>’“”H<6n>kn|wo>( o= } (4.140)

4 finitely many of k,,, kz are nonzero
n>1 n>1

"Note that by construction we have @, |mo) = an|mo) = 0 for any n > 0.
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The numbers k,,, k are the “occupation numbers” for the excitations with energy-momentum
(n,n) and (m, —n), respectively (i.e. k,, kz are the numbers of quanta of these types).

Figure 4.3: Left- and right-movers on a cylinder.

Lecture
Note that applying the Hamiltonian (4.126)) to the pseudovacuum |my) we obtain 18,
10/3/2022
H|mo) = 75 |mo) + = Z (a_n A |T0) +G—_p Gy |T0) )—l—
? A
+z ( Gy, 7o) + @ty o)) = (3 + ))Imo) (4141
Z n |70) |mo) o+ Y (=n) )|mo) (4.141)
n<0 n<0
—n—i—ana n fnJrana_n N——
divergence!
— |mo) multiplied by a divergent factor. By a similar reason, each basis vector |mg; {n;}, {7;})
is an eigenvector of H with a divergent eigenvalue. To deal with this problem, one uses
normal ordering. Uniformize
the con-
4.2.4.2 Normal ordering ventions
(FreeAss

Normal ordering (in the context of the free massless scalar field) is defined as a C-linear map ¢ Weyl)
- : from the free associative algebra generated by the operators {a,, @, }nez to the Weyl with har-
algebra (i.e., to the quotient of the free associative algebra by relations (4.125))). Actmg on a

monic
word, it puts the annihilation operators @, a>0 to the right and creation operators a.q, a<0 oscillator
to the left (and then projects to the Weyl algebra). case.

For example, the normally ordered Hamiltonian (4.126]) and total momentum operators
(4.128]) are

H: = R+ (a,nan + 6,@) , (4.142)
n>0
P = Z (a_n’dn — iﬁn) ) (4.143)
n>0

Acting with these normally ordered operators on basis vectors (4.139)), we don’t encounter
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any divergencies (unlike in (4.141))), and we have
H: |mos {ni}, {n}) = (Wo an Z%) [mo; {ni}, {7 1), (4.144)
P jmoi {ni}, () = (an —Zﬁ]) |mo; {ni}, {1;}). (4.145)

In particular, all states |mo; {n;}, {7;}) are eigenvectors of both : H :and : P :. Interpreting
the joint eigenvalue as the energy-momentum 2-vector, we see that:

e The pseudovacuum |my) has energy-momentum (73, 0).

e Applying a_,, with n > 0 to a state, we increase the energy-momentum by (n,n) (which
we interpret as adjoining a left-moving quantum to the system).

e Applying a_n with n > 0 to a state, we increase the energy-momentum by (72, —71)
(which we interpret as adjoining a right-moving quantum).

Remark 4.2.5. There is a single (up to normalization) null-vector of : H :in H — the vector
lvac): = |my = 0), (4.146)

i.e. the pseudovacuum with 7y = 0. We call this vector the vacuum vector (or vacuum
state). It is a null-vector for both : H : and : P :, which is interpreted as invariance of |0)
under time-translations and rotation along S* ]

Remark 4.2.6. Later — after switching to Euclidean metric — we will see that the partition
function of a torus defined using the normally ordered operators : H :and : P : does not
have the expected modular i 1nvar1ance property (see Sectlon . To restore it, one should

replace : H : with the operator : H: —ﬁ (Whlle pP:=P does not have to be changed),

which can be seen as the original operator H (4.126|) with the divergence regularized by
Riemann zeta-function regularization:

= % > (@it + T i) =

nezZ
1 SN ~ o~ 1 PN ~ o~
= 3 E (a_nan + d_n6n> + 3 5 (—2n +a_,a, + d_nﬁn)

n>0 n<0

~ ~ ~ ~ 1
= H: = - H - i S='H: —1)=H:——. .
+> n H: lim Y 0= H:+((=1) = H: - (4.147)
n>0  geta—regularization n>0
At the moment this zeta-regularization prescription looks entirely ad hoc, and it is not clear
why it should help with modular invariance Note that with respect to this regularized H,
the vacuum state |[vac) has energy —< instead of zero.

8 Time-translation by time ¢ is represented on the space of states by the evolution operator U(t) = eith
Rotation by angle @ along S is similarly represented by R(6) = e~*F.
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The (somewhat surprising) take-home message for the moment is that the normal ordering
breaks conformal invariance (in a mild Wayﬂ) — in fact we will not see any problem with normal
ordering in the genus zero theory (correlators of point observables on a cylinder/plane) —
they do not contradict conformal invariance, but in genus one we have a problem.

4.2.5 Aside: Schrodinger vs Heisenberg picture in quantum me-
chanics

In the Schrodinger picture of quantum mechanics, time-evolution acts on states. l.e., one
has time-dependent families of states linked by the evolution operator:

) = U(t —to)|1), (4.148)

where -
U(t) = et (4.149)

is the unitary evolution operator. Put another way, one has a family of the spaces of states

. . . U(t'— -~ .
‘H; linked by isomorphisms H; ) ‘H. . Observables are operators O acting on H; at
some particular ¢.

The infinitesimal version of (4.148)) is the Schrodinger equation

d .
%W})t = —iH 1)), (4.150)

(we mention it for comparison with the Heisenberg picture).

In the Heisenberg picture, evolution acts on observables instead of states. All states
are thought of as elements of H;, for some fixed reference time ¢,. But an observable is
understood as a family Ot arising as a pullback of some fixed (¢-independent) operator 9)
acting on H;, along the evolution U(t — ty): Hy, — He:

t to)

O, C Hiy —>H D 0 (4.151)
IL.e., one has R R
O, =U(t—1to) " OU(t —ty). (4.152)
The infinitesimal version of this equation is the Heisenberg equation
d ~ PR
dt
Below we will use the notation a(t): = O, for the time-dependent operators of the Heisen-

berg picture.

Consider a correlator in Schrédinger picture (cf. Section [1.5.2.2)) of quantum mechanics
on the source interval (cobordism) [ti,, tout], With in/out states Wm woutuﬂ of observables
O1,...,0, inserted at times t;, < t; < ---t,, < tous.

9 The change of the quantum Hamiltonian by a multiple of identity is a somewhat subtle effect: we
usually need the commutators with H not H itself. _E.g. time-dependence of observables in the Heisenberg
picture (4.153)) only depends on commutators with H.

10We remmd that in Dirac’s notation |---) are vectors in A and (- - -| are vectors in the linear dual H*.
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2%in t] tz tn t‘out

|'7a/1in> 61 62 o On (Yout|
Figure 4.4: Correlator in quantum mechanics.

The correlator is given by

(Yout] Ultous — tn) On -+ 0o Ulty — t1) Oy Uty — tin) |thin) (4.154)

The same quantity can be equivalently written in Heisenberg picture, as
(Pout| Ou(ta) -~ Oalt2) Oa(t1) ) (4.155)
where Oy (ty): = Uty —to)~* O U(ty — to) are the time-dependent observables and
) = Ulto = )i}, [ou) = Ulto = toue) [out) (4.156)

are the in-out states expressed as elements of the reference Hilbert space H;,. Herethe
reference time ¢t is chosen arbitrarily.

~ ~

Remark 4.2.7. We remark that the product of time-dependent observables O,,(t,,) - - - O1(t1)
in is time-ordered — the times satisfy ¢, > --- > t;.

When we later consider field theory in Euclidean signature, this will correspond to setting
t = —z’fEud in the formulae above, with tg, > 0. Then the evolution operator U(Tgya) =
e~ Tewall ig non-invertible and only defined for positive Thye. In this situation, only time-
ordered products of operators are defined. In this setting we should use to define

Trua-dependent observables.

clean it
up a bit?

4.2.6 Back to free massless scalar field on a cylinder: time-dependent

field operator

Back to the quantum field theory on the cylinder, we think of it as a special model of
quantum mechanics, where we understood the space of states (4.138]) and we have a family
of special operators

5(0) = 32 0™ = G+ 30 (A + )™ (4.157)

nezZ n#0

(one operator for each o € S') acting on H and independent of . We can treat these as
special examples of observables in the Schrodinger picture.

The corresponding time-dependent observables in the Heisenberg picture are obtained by
solving the equation (4.153)), which yields

o~

_ iHt —ifHt _
¢(t7 U) - \6 , ¢(U) \6 )
U(t)-1 U(t)
o~ 7 . —~ .
_ o1 M ( o A—n in(t+o) a, m(—t-{—cr)) . (4.158
¢o + 2t + nz;éo ~| —ne +ape ( )
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Note the similarity of this formula with the formula for the general solution of the equations
of motion in the classical theory (4.111)).
Then we can consider, e.g., correlators of the form

in out

/ ‘1 = (Vac|$(tn, Op) - a(tl, o1)|vac) (4.159)

[ ,
t1,01) (E(ti on) {vad]

with ¢, > --- > t; and with o,,...,01 € S'. These correlators can be explicitly computed
using (4.158) and using the commutation relations (4.125]). We will discuss such correlators
below, once we switch to Euclidean signature.

4.3 Free massless scalar field on C

4.3.1 From Minkowski to Euclidean cylinder (via Wick rotation),
and then to C* (via exponential map)

Now let us switch the spacetime manifold of the free massless scalar field from Minkowski
cylinder to the cylinder ¥ = R x S! with Euclidean metric g = (d7)? + (do)?. Here we will
be denoting the FEuclidean time — the coordinate on R — by 7 (instead of Tguq); o is the
coordinate on S! as before.

Introducing a complex coordinate

(=71+1i0, (=71—1o, (4.160)

we can identify 3 with C/2miZ (where ( is the standard coordinate on C).
Another useful model for ¥ for us is the punctured complex plane C* = C\{0} with
complex coordinate z = . This is in fact the model we will be using the most.

C/2miZ C\{0}

Figure 4.5: Three models of Euclidean cylinder.
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The action functional of the classical theory is

K

Suacl0) = 5 [ drdo (0,07 + (0,0

= 25/ %dc A dC D¢ D¢ (4.161)
C/2miZ

- 2/@/ Ydz A dz 0.6 050
c\{o} 2

where kK = ﬁ, as before ‘)

The stress-energy tensor written in the complex coordinates ¢, or z, Z reads

T = 5(0c)*(dC)? + (02¢) (dC)?
N——

——

i fee (4.162)
= r(0.9)°(dz)* + K(929)(dZ).

T2 Tz%

The switch from Minkowski cylinder to Euclidean cylinder is achieved via “Wick rotation”
— by substituting
t = —ir (4.163)

in the formulae for the Minkowski cylinder with 7 > 0 the Euclidean time. In particular,
the evolution operator changes as

et oy oA, (4.164)

The space of states H and the quantum Hamiltonian H are the same in Minkowski and in
Euclidean settingﬂ
The time-dependent (Heisenberg) field operator (4.158) in Euclidean setting becomes

czAﬁ(C) = ng —i7o(¢ 4+ C) + Z% <ane_”< i /E\ne_’@)
n#0

R Z. R (4.165)
= ¢o — imp log(2Z) + Z - (anz—” + anr"> )
n#0
4.3.2 Aside: Wick’s lemma (in the operator formalism)
Let o
A = Spang <{bk, b brer, K) (4.166)

11 Tf we were to retrace our steps and start from the Euclidean action functional, reinterpret it as Lagrangian
mechanics, do the Legendre transform to obtain a Hamiltonian description and then canonically quantize,
we would have obtained a different quantum Hamiltonian. This has to do with the fact that the rule
of canonical quantization is attuned to the unitary evolution; in Euclidean theory the canonical
commutation relations have to be changed accordingly.

Lecture
19,
10/5/2022
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be the Heisenberg Lie algebra spanned by pairs of creation/annihilation operators indexed
by some set I, and the central element K, subject to commutation relationﬂ

Remark 4.3.1. More abstractly, we think of a symplectic vector space (V,w) equipped with
a compatible complex structure J: V — V., J? = —id, with g(z,y) = w(x, Jy) a positive-
definite bilinear form. (Put another way, (V,w, J, g) is a Kéhler vector space.) Then one has
a splitting C® V = U @ U of the complexified space V into the Fi-eigenspaces of J. Then
the Lie algebra is the Heisenberg Lie algebra of (V,w) in the sense of Definition m,
where we have chosen some basis {b;} in U and the dual basis {b;} in U, which corresponds
to creation/annihilation operators {b;, b; } in A.

Let {A,}pey be a collection of “preferred” elements of A which are some linear combi-
nations of creation/annihilation operators,

Ap = Z Cpibi + dpib;_,
el
with ¢,;, d,; complex coefficients. The indexing set Y for the collection {4,} is arbitrary; it
has no a priori relation to the set I indexing the basis in A.
We define the normal ordering : - - - : of an element of the free associative algebra generated
by {ay,a; }rer as a C-linear operation which reorders each word, putting the annihiliation

operators ay, to the right of the word and creation operators @, to the left of the word, and
then projects the reordered word to the Weyl algebra of AH

Weyl(A) =UA/(K=1). (4.168)
For any pair p, g one has the equality
ApA,—  AJA, = gy (4.169)

in the Weyl algebra, with g,, € C some complex numbers; we will (suggestively) refer to the
matrix (gpq)peey as the “propagator.”

The reason for equality , with a multiple of identity on the right, is that it is clearly
true if both A, and A, are creation or annihilation operators, due to the commutation
relations ; by linearity this property extends to A,, A, any linear combinations of
creation/annihilation operators.

Remark 4.3.2. Note that the normally ordered products satisfy the symmetry property

A A = Apm) .

A

Po(n) :

e Apy (4.170)

for o any permutation of the set {1,...,n}. This property is obvious for A,’s being just
creation/annihilation operators, then one extends to general A,’s by C-linearity.

12We call the creation/annihilation operators here 3,3* to avoid confusion with the operators Ziﬁ in
the scalar field theory — which are also creation/annihilation operators, just with a different normalization
convention.

13 Cf. Deﬁnition Unlike the setup of Section here we are not thinking about 7 — 0 asymptotics
(we are in purely quantum theory where we set i = 1), so we don’t consider coefficients in formal power
series in .
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The following is a very useful combinatorial statement allowing one to express any element
of the Weyl algebra (or the subalgebra generated by the elements {A,},cy) in terms of
normally ordered elements.

Lemma 4.3.3 (Wick). Forn > 0 and any sequence py,...,p, € Y, one has the following
equality in the Weyl algebra:

APIAPQ e 'Apn =
= Z 9paipsy " Ipaspss” H Ap, +
{al’ 61} - {as’ /88} C {1’ . 7n} ie{l 7777 n}\uk{akngk}
a matching on {1,...,n}
(4.171)
The sum here goes over matchings on the set {1,...,n} — collections of non-overlapping

2-element subsets considered up to permutation.

Examples:

—

e For n = 2, there are two matchings on the set {1,2}: {1,2} and {1,2}. We indicate by
the bracket the matched elements, so in the first case, the set is completely unmatched,
s = 0. In the second case, both elements are matched, s = 1. So, (4.171]) yields

AaAb = gab+ : AaAb : (4172)

(we are calling the indices a, b instead of pq, py for convenience). In fact, this formula

is just (4.169)).

[ 1 [l
e For n = 3, the possible matchings are {1,2,3}, {1,2,3}, {1,2,3}, {1,2,3}, thus the
Wick’s formula gives

AaAbAC = gabAc + gacAb + gbcAa—l— . AaAbAc [ (4173)

Note that : A, := A, for any p € Y, so we don’t have to write the normal ordering
symbol for linear expressions in A,’s.

e For n = 4, we have the following possible matchings:

1 [ 11 BEE
{1,2,3,4}, {1,2,3,4}, {1,2,3,4},

1 1 1 1 1 1 (4.174)
{1,2,3,4}, {1,2,3,4}, {1,2,3,4}, {1,2,3,4}, {1,2,3,4}, {1,2,3,4},

{1,2,3,4}.

In the first row here we have three perfect matchings (i.e. all of the set is matched).
Wick’s formula in this case gives

AaAbAcAd =
= GabFcd + JacGvd + gadgbc+
+gab : AcAd : +gac : AbAd : +gad : AbAc : +gbc : AaAd : +gbd : AaAc : +gcd : AaAb T+

-+ AaAbAcAd T
(4.175)
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Wick’s lemma is proven by considering A; --- A, to be a word comprised of only the
creation and annihilation operators — in which case it is proven directly, by induction in n.
Then the statement is extended to any A,’s by C-linearity.

4.3.3 Propagator for the free massless scalar field on C*

Going back to the free 2d massless scalar field on Euclidean cylinder (which we can param-
eterize by the complex coordinate z € C*), we are in the setting of Wick’s lemma: we have
the Weyl algebra generated by creation/annihilation operators {anﬁn}n#o U {50,%0} (we
are thinking of 7y as annihilation operator and of ggo as creation operator w.r.t. the normal
ordering) and a family of preferred linear elements

5(z) = o — iFolog(z2) + 3 % (Einz_” + 3, z—") (4.176)
n#0

parametetrized by points z € C*. Ie., in the notations of Section [4.3.2] we have I = Z (the
indexing set for the basis of creation/annihilation operators) and Y = C* (the indexing set
for preferred linear combinations).

Lemma 4.3.4. Assume z,w € C* two points satisfying |z| > |w|, z # w. Then one has

$(2)p(w)— : $(2)p(w) := —2log |z — w]. (4.177)
The right hand side of (4.177)) is the propagator in the sense of (4.169)).
Proof. We compute

~

w)— 1 (2)p(w) =
( T F T (™ B T (G 4 BT ) (A0 B T™) i>+

-~

1

( B0 — 170 log(22)) (o — 17 log(wTm))— : (B — 7 log(22))(Bo — i7o log (WD) : )
(4.178)

3|®§>

(

We note that the expression I vanishes if n # m, since in that case the elements @,z™" +
@,z " and Gpw ™ + G W™ commute. Also, I vanishes if m > 0, because then product
(@pz" +a, zZ7") (apw™ + T w~™) is already normally ordered. That leaves only the terms
with n = —m > 0. So, continuing the computation, we have

$(2)p(w)— : (= )¢(w) =
-3 (an,a_ "wu[an,a_n]z—nw”)—@'[ﬁo,ao]log(zz)

n>0 n n —1

- Z% ((%)n + (g) n) — log(z%) = —log (1 —~ %) —log (1 - g) — log(2%)
" = —2log |z —wl|. (4.179)
O
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Note that the propagator extends to a function on the configuration space of two
points z,w on C (allowing the point 0) and this extension is invariant under translations on
C, (z,w) — (2 + a,w + a).

Note also that the convergence behavior of the sum over n in the computation (4.179) is
as follows:

e it converges absolutely if |z] > |w],
e converges conditionaly if |z| = |w| and z # w,

e diverges if |z| < |w| or if z = w.

4.3.4 Correlators on the plane (in the radial quantization formal-
ism)

One calls the canonical quantization formalismﬂ for the theory on the cylinder mapped to

C* (see Figure the “radial quantization” formalism.

We define the radial ordering of a product of local operators (observables) on C* inserted
at n distinct points zq, ..., z, € C* as follows:

R (61(751) T 671(271)) - = 60(1)(750—(1)) T 5a(n)(zg(n)), (4.180)

where o € 5, is a permutation of indices such that |z,1)| > -+ > |25
Examples of local operators Oy(z) are:

e The field operator (E(z)
e Any derivative of the field operator 9795 (z), with r,s > 0.
e Any normally ordered differential polynomial in g/b\(z), e.g., : 6Z$(z) 82&5(2) .
Remark 4.3.5. Local operators at the same radius commute:
[01(2), Ox(w)] =0 if |2] = |w|, z #w. (4.181)

This can be seen as the spacial locality property. In the example of free scalar field, for local
operators as in the list above, is a consequence of . This remark shows that
the possible ambiguity of radial ordering arising when several of z;’s have the same absolute
value does not affect the right hand side of .

Example 4.3.6. If z;, 2o, 23 are three points on C* with absolute values satisfying |zo| >
|z3] > |21| and O; 3 are some local operators, then one has

-~ ~

R(@l(zgéz(zg)@g(zg)) — 0y(2)04(23)01(21). (4.182)

14We say “formalism” where we should really say “approach to quantization” or “method of constructing
a quantum field theory out of a classical one.”
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In particular, one can consider the vacuum expectation value of this expression
<vac|R(51(z1)62(22)63(z3)> |vac) = <vac|52(22)63(23)61(21)|Vac). (4.183)

Only with this ordering in the right-hand side this is guaranteed to be a well-defined expres-
sion.

(vaclatoo_ - - -~ _ _
- SN 22
.

, —-- [
~ \

// _ N \
! / SO \\
! ! 0 v 'zg |
! [ . [N I
! vtz |vac) £ 05
' o S s
' N 5T»// / /
N \\ 4 /

Figure 4.6: Radial ordering.

Remark 4.3.7. One can see the necessity of radial ordering (for convergence of a product
of local operators O;(z1) - Og(zr) — more precisely, for the matrix element (vac|---|vac)
of such a product to exist) by converting back from Heisenberg to Schrédinger pricture.
O\Iscchrédinger |Zk ‘

are joined by the evolution operators U(log m) and only

Then the operators
for a positive Euclidean time 7 the evolution operator U(7) = e=H is well-defined. More
precisely: for 7 > 0, U(7) is a smoothing operator.

The other way to see that radial ordering is necessary for convergence is to apply Wick’s
lemma to the product of local operators. Then we will have a computation similar to
where the infinite sum will converge if and only if the operators are radially ordered.

A related comment is that the vector [[}_, O;(z;)|vac) (assuming that it exists) is certain
to be in the domain of a local operator O(z) if and only if |z;| < |z| and z # z fori = 1,...,n.

Using this argument inductively in n, one arrives to the necessity of radial ordering.

Definition 4.3.8. In operator formalism, we will understand the correlator of several local
operators (point observables) Oy, ..., O, inserted at pairwise distinct points zy,..., 2, € C*
as the expressio

(O1(21) - Onlz)): = (vac|R (O1(21) -+ Ou(z0) ) Ivac). (4.184)

Example 4.3.9. Lemma |4.3.4] implies
R(3(2)9(w)) = 3(2)3(w) : —2log|z — ] (4.185)
15 Tn the left hand side we think of Oy’s as elements of the abstract vector space V of point observables
in the sense of Section placed at points 21,...,2,. In the r.h.s. these abstract elements are represented

by operators acting on the space of states — we denote these operators by hats.
Also, in the path integral formalism, one can think of the Lh.s. as a product of classical observavles
(functions of jets of classical fields at a point) averaged over the space of classical fields, cf. ((1.28)), (1.59).
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for any z # w € C*. Note that the normally ordered expression in the r.h.s. does is invariant

under swapping z and w (cf. Remark [4.3.2)).

Example 4.3.10. Two-point correlator of ngS From (4.185)) we find

(6(2)0(w)): = (vaclR((2)o(w) ) lvac) = ~2log |2 — w] + C (4.186)

where

C = (vac| : ¢(2)p(w) : [vac) = (vac|d?|vac) (4.187)

Here we expand : g(z)gg(w) : using . All terms in the expansion (except the term (Zﬁ)
contain dxo or aso on the right which yields zero when acting on |vac), and/or contain @,
@0 on the left, which vanishes when paired with (vac].

Note that is an ill-defined expression formally independent of z,w — an “infinite
constant.” This can be seen by examining the Schrodinger representation for the free particle
(the zero-mode) where |vac) = |m) is represented by the Dirac delta-distribution ()
and ¢y = iz>. Thus, the expression <Vac|$(2)|vac) in Schrodinger representation reads “the
evaluation of distribution 0”(mg) at mp = 0.” This evaluation does not exist.

Put differently, ggo is an unbounded operator on H and the vector |vac) is not in its
domain.

Notation. In this section and onward we will be denoting the holomorphic derivative
0. by 0 and the antiholomorphic derivative d; by 0. Thus, symbols @ and 0 no longer stand
for the holomorphic/antiholomorphic Dolbeault operators dz 0,, dz 0.

To summarize, correlators of the field ¢ are ill-defined due to the presence of the zero-
mode qbo However, correlators of the fields 9¢, 0¢ are well-defined!

Note that from one has the following nice expansions of the derivatives of the
field in terms of creation/ annihilation operators:

z@gb Zan —nh z@gb Zan —nh (4.188)

nezZ nezZ

Example 4.3.11. For the two-point correlator of derivatives of the field we have

(96(2)0¢(w)) : :<Vac|7z(a$(z)a$(w))yvac>:<vac\azaw R@(z)q?(w)) [vac) =

—_———
—~21og [2—w|+:3(x)$(w):
1 ~ 1
_ S S : - (41
(vac| G w)? + 1 09(2)0¢(w) : |vac) = w) (4.189)
———

020w (—2log |z—w|)

Here z # w are any two dlstmct points in C\{0}. We used the fact that : 8¢( )0 &5( )
When expanded using , has only terms with > or a>0 on the rlght and/or with a<,
Q<o on the left. Hence the vacuum expectation value (vac| : 96(2)d¢(w) : |vac) is zero.

By similar reasoning one has

(00(2)00(w)) = ————3 (4.190)

Lecture
20,
10/7/2022
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and B
(0p(2)0p(w)) = 0. (4.191)
We stress again that points z and w are assumed be distinct[™

One can proceed to compute several-point correlators of observables d¢, ¢ using Wick’s
lemma.

Example 4.3.12. For the four-point correlator, one finds

(06(21)06(22)I(23)0(20)) : = <vac|7z(aa(zl)a¢3<z2)a$(z3)a$(z4>) [vac) =

(va] (93(21)00(22)00( )00 (1) + 00(21)05(22)90(25) 05 (21) + DG(21)00(2)00(25)0 (24)+

+ 35(21)35@2)%%—1— 5 similar terms + : 6$(z b & 23)0(z4) :) |vac)

1 1 1
= + + . (4.192)
Z%QZ§4 2%3234 Z%42223

Here we denoted z;;: = z; — z;. Note that in this computation only the three terms where
all four operators are matched contribute.
By a similar computation one finds

- - ~ - 1
(00(21)00(22)00(23)00(20)) = (06(21)00(22)00(23)00(24)) = —5—5 (4.193)
12734
— only a single matching contributes.
More generally, by the same logic, the correlator

(06(21) -+ 09(22)0(w1) - + - I (win)) (4.194)

(all points z1, ..., z,, w1, . .., Wy, are assumed to be distinct) vanishes unless both n and m are
even, n = 2v, m = 2u. If they are even, the correlator is given by a sum over pairs (perfect
matching of z;’s, perfect matching of w;’s) — thus, in total there are (2v — 1)!II- (2p — 1)!!
terms. E.g. in the case m = 0, one obtains a meromorphic function on C" with second-order
poles on principal diagonals. For instance,

(#(21) - d(25)) = 55— + 14 similar terms, (4.195)
<12434%56
since one has bH!! =5 -3 -1 perfect matchings on the set of 6 elements.

Examining the terms contributing to the correlator (4.194)) for general m, n, we can notice
that it factorizes into a meromorphic part and an antimeromorphic part:

(0¢(21) -+ 00(20)0(w1) - - - Op(wi)) = (96(21) - - - Dp(22)) - (Op(wr) - -~ Op(wym))  (4.196)

16Tt is possible to sense of the correlator as a distibution on C x C rather than as a function on
the open configuration space C3(C\{0}). Then the correlator becomes (0¢(z)d¢(w)) = 76(z — w) — up to
normalization, the Dirac delta-distribution supported on the diagonal Diag C C x C. This delta-distribution
is an example of so-called “contact term.”
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Example 4.3.13. We have

(O96(2)00(w)) = 5 (96()0(w)) = 0 (4.197)

N
(z—w)?

For the next example we need a slightly enhanced version of Wick’s lemma, rearranging
a product of normally-ordered words in terms of fully normally-ordered expressions.

Lemma 4.3.14. In the notations of Lemma[f.53.5, forn >0, let p1,...,p, €Y and let
{1,...,n}=SU---USn (4.198)

be a partitioning of the set {1,...,n} into nonempty disjoint subsets S;. Then one has the
following equality in the Weyl algebra:

:HAP:"': HAP;:

pESL PESm
S
- Z ngaipﬁi' : H A, . (4.199)
{a, iU~ U{a,, Bt C{1,...,n} = i€{1,...n\Ur {ok B}
a matching on {1,...,n} s.t.

{ai, Bi} & S5 Vi, j

In other words, the right hand side is the sum over matchings, as in , except that
now elements of each subset of S; of labels corresponding to one of the normally-ordered
words in the L.h.s. are not allowed to be matched.

Example:

. AaAb . AC = gacAb -+ gbcAa+ . AaAbAc - (4200)

Here the partitioning (4.198) is {1,2,3} = {1,2} U {3} and the labels are p; = a, p» = b,
p3 = c. Notice that in comparison with (4.173)), the term g, A. corresponds to a prohibited

—
contraction {1,2,3} and doesn’t appear in the r.h.s.

Example 4.3.15. Consider the correlator

(0p(21) (1 06(22)06(23) : )0p(za)): = <vacy7z(a$(z1)(  0(22)00(23) : )a$(z4)) [vac) =

= (vac|0$(zl)( : 8(}5\(22)85(23) : )(99/5(24) + 3(/5(‘2’1)( : 85(‘22)3&29 : )85(24)\\/&@
L oo

2 .2 2 .2
212734  R13724

Here the 2-point observable : 9¢(22)0(z3) : on the Lh.s. is a formal symbol defined by its
correlators with other local fields, like in this example, where this observable is replaced in the
operator language by a normally-ordered product of derivatives of field operators. Notice
in comparison with (4.192) the absence of the term %%i corresponding to a prohibited

2
matching. In particular, (4.201)) is a regular (in fact, holomorphic) function on the diagonal
29 — 23 in C4.
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This example illustrates that one can define a new point observable

1 00(2)00(2): + = i;linz 1 0p(w)0p(2) = ilinz (Ekb(w)@gzﬁ(z) + Flz)Q) . (4.202)

One sometimes calls point observables of this type — constructed as normally-ordered dif-
ferential polynomials in the field — “composite fields.” This definition is understood as an
equality under a correlator with an arbitrary collection of other local observables (“test ob-
servables”) inserted at points # z. In the operator language, we should replace ¢ — g/g
everywhere.

This new observable has well-defined correlators. E.g., taking the limit 2, — 23 in (4.201)),

we obtain
2

(@9(21)(: 00(:3)09(z5) : )06(1)) = 5~ (4.209)
~13%34
Definition 4.3.16. We can define the (quantum) holomorphic/antiholomorphic stress-energy
tensor in the massless scalar field theory as the composite fields

T,.: = —% 1 00(2)00(2) : , Tez: = —% : 0p(2)09(2) : . (4.204)

Note that the conventional normalization factor in (4.204)) is different than what we had
in the classical theory (4.162)). It is useful to also consider a local observable

T% (%) = T,.(dz)? + Tsz(dz)? (4.205)

valued in quadratic differentials — the total (quantum) stress-energy tensor. For instance,
its correlator with, e.g. a collection of fields 0¢(z;) will be a section of the pullback of the
bundle of quadratic differentials K®? @ K 5 % to the space of configurations of points
(2,21, -+, 2,) €5, with K = (T')*Y the canonical line bundle. Here 3 = C\{0}.

Notation. From now on we will denote T,, by T and T%s by T. This is the standard
convention in the literature on CFT.

4.4 Operator product expansions

Recall from Section that the operator product expansions (OPEs) express the product
of two local observables at points z,w as a linear combination (with singular coefficients)
of single local observables at w, in the asymptotics 2 — w. These expressions are to be
substituted in a correlator with an arbitrary collection of “test” local observables at points
Z1,...,%n 7 z,w and control the asymptotics of the correlator as z — w.

Example 4.4.1. From Wick’s lemma we have the equality

R O(2)dp(w) = — 142 06(2)00(w) : (4.206)

1
(2 —w)
for any z # w € C\{0}, as equality of linear operators on H. Here for the moment we make
the identity operator 1 explicit in the notations. Note that the second term is regula (in

17Generally, “regular” for us in the context of OPEs means just “continuous.”

Lecture
21,
10/10/2022
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fact, holomorphic) as z — w. Thus, for any collection of point observables Oy, ..., O, at
points 21, ..., 2z, (distinct among themselves and distinct from w), one has

(96()06 ()01 (1) -~ On(zn)) = (vac R (96(2)05(w)01 (1) - On(zn) ) Ivac)

1 N N R z—w
o —m<vac|7€(l(w)01(zl) e On(Zn)) [vac) + reg.
- —;2<1(w)01(21) - Op(2n)) +reg.  (4.207)

(2 —w)

— this is an asymptotic expression for the correlator as z — w giving the principal part of

its Laurent expansion in z — w; reg. stands for a term with regular behavior as z — r. The

identity operator operator 1 and identity field 1 do not affect the correlators in the r.h.s.
Thus, one has the operator product expansion

00(2)0(w) ~ — + reg. (4.208)

1
(z —w)?
The symbol ~ means that one can trade the l.h.s. with the r.h.s. under a correlator with
test observables, yielding the asymptotics as z — w.

Remark 4.4.2. One can also be more explicit about the regular part: one can write the
rightmost term in (4.206]) as

03(2)00(w) =Y %(z W) G (w) 0 (w) | (4.200)

n>0

The refined version of the OPE (4.208)) is then

IP(2)0p(w) ~ —ﬁ - Z ;' (z —w)": 0" p(w) Op(w) : . (4.210)

reg.

The r.h.s. is now a linear combination of local composite fields at the point w. Under a
correlator with test observables, one has

(00(2)0p(w)O1(21) - - - On(2n)) ~

zZ—w

0N E) O+ T =) M (w)d0(w) : 1)+ Oul)

e (z—w)2< ) >0 !
(4.211)
The sum on the right converges absolutely if and only if |z — w| < min{|z; — w|}}_; and in

this convergence radius is equal to the L.h.s. Thus, the ~ symbol here is actually equality,
for 2 sufficiently close to w (closer than any of the test observables).
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Similarly to (4.206]) (or (4.208))), one finds

~

o 1

RI(2)0p(w) ~ — 5 +reg., R@gg(z)égg(w) ~ Teg. (4.212)

(z — w)
These are again equalities of operators on H; removing the hats and the radial ordering sign,

we have the OPEs in the form similar to (4.208) — in the language of abstract correlators of
observables as elements of V' (of Section [L.8)).

Example 4.4.3. As the next example, consider the OPE between the stress-energy tensor
and 0¢. From Wick’s lemma we find

= 3 00(2)05(2) £ 03(w) + — 5 £ 09(=)00(=) : D(w) + - ~300(=)05(=)05(w) :

[ J/
-~

_96(2)
(z = w)?

This is not quite the desired OPE yet, as the operator in the r.h.s is at z whereas we want to
express the operator productin terms of local operators at w. This is remedied by e>iand1ng

8qz5( ) in Taylor series centered at w: 8¢( )= 6¢>( )+ (z— )82¢( )+ O((z —w)?))'® Thus

one has

+reg. (4.213)

00w~ D0) | Pow)

RT(2)0¢(w) ~ EEe— + reg. (4.214)

Similarly, one obtains

S 5 . 00 P(w)

(2—@)2 Z—w

treg, RT(2)00(w) ~reg., RT(2)00(w) ~ reg.
(4.215)

S

Example 4.4.4 (TT OPE). Let us calculate the OPE of the holomorphic component of the
stress-energy tensor 1" with itself:

RT(2)T(w) = R : ~500(2)00(z) :: ~ 5000 (w) - =,
= %1 ag(z)ag(z)aa(w)aa(w) : +41l ; a$(z)8$(z)35(w)3$(w) -t
+ 71 00(:000(:)00(w)00(w) : +7 : 90(2)05(=)05(w)5(w) : +

~ ~ ~ ~ ~

b 2 00()05(2)08(w)00(w) : +7 : D5(2)00(2)00(w)IF(w) : + : 00(2)I()98(w)0P(w)

18 Here we used the fact that 8(5(2) is holomorphic in z, see (4.188)), thus, e.g., one does not have a term
(Z — w)00¢p(w) in the Taylor expansion.
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11 L 0(2)00(w) :
~ G i o o wy + reg.
_ L 00w)Isw) s Pew)Idw) |
expand 94(z) at w (Z - w)4 (Z - w)2 zZ—w
i 2T (w) 9T (w)
- (ziw)“ + G w)? +—— treg. (4.216)

Note the appearance of the fourth order pole here. As we will see later, it is linked to the
phenomenon of central charge (and thus to projectivity of CFT as a Segal’s functor).
By similar computations, one finds

~

RT(2)T (w) ~ flu_))4 + (ET—@V + ‘ZT_‘:U) treg,  RT()T(w) ~reg.  (4.217)

4.5 Digression: path integral formalism (in the exam-
ple of free scalar field)

4.5.1 Finite-dimensional Gaussian integral

Let ' be an N-dimensional real vector space equipped with Euclidean metric A and with
a positive-definite bilinear form B: Sym?F — R and let B € End(F) be an endomorphism
such that B(u,v) = h(u, Bv). Then one has the following well-known Gaussian integral

/ e 2P0 = (27)
F

Here py, is the Lebesgue measure on F' associated with the metric A and B(u,u) is the
quadratic function on F' — the restriction of B to the diagonal Diag C F' x F.

Sl
[

(det B)~. (4.218)

4.5.2 Wick’s lemma for the moments of Gaussian measure

For f a polynomial function on F', consider its expectation value (average) with respect to
the normalized Gaussian measure,

= <zﬂ>¥<;et B) ! JLme e (4:219)
Note that the normalization factor in the r.h.s. is chosen such that one has
(1) = 1. (4.220)
Lemma 4.5.1 (Wick’s lemma for the moments of Gaussian measure). Let 6y, ..., 0, be some
linear forms on F. Consider the Gaussian expectation value
(6 ---0,) (4.221)

Then one has
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(1) If n is odd, the expectation value (4.221)) is zero.

(ii) If n = 2m is even, one has

(0,0,) = > B™ (0, 05,) -+ B~ 0y 05,)-  (4222)
perfect matchings

{1,...,n} =" {w;, 5}
For example, for n = 2, one has
(0,0,) = B71(01,0,). (4.223)

Here on the r.h.s., B~! is understood as a map B~': F* ® F* — R which is adjoint to the
map F* — F — the inverse of the map B#: F — F*.
For n = 4, one has

(91029304> ZZ13_1(017Q2)13_1(93,04>'+*13_1(01,03)13_1(Q2,94>-+*£3_1(01,84)l3_1(02,03%
(4.224)
where the terms correspond to the three perfect matchings on the set {1,2,3,4}.
Note that the r.h.s. of looks similar to the r.h.s. of if we were to retain only
the contributions of perfect matchings (and identify the propagator g,, with B=1(6,,6,)).

Sketch of proof of Lemma[4.5.1. First note that part (i) of Lemma is obvious, since in this
case the integrand in changes sign under v — —u.

For part (ii), consider the “generating functions for moments” — the following expectation
value depending on the “source” parameter J € F™:

<6<J,u)> _ C’/ m e—%B(u,u)+<J,u> _ C/ n 6—%B(u—B*1J7u—B*1J)—‘r%B*l(J,J) _
F F

_ 1JC/Mh6;B(U,v)+;B—1(J,J) :egB—l(J,J) (4.225)
F

v: =u—B~

where C' = (27)~2 det(B)2. Then we can obtain correlators of monomials by taking
multiple partial derivatives of in J and then setting J = 0.

More explicitly, consider an orthonormal basis in F* w.r.t. the metric g and let {u?} be
the corresponding coordinates on F'. It suffices to prove for 0y =wPr,....0, =u a
collection of coordinate functions; the general result then follows by linearity. We have

0 0 0 0 11
PL ... Pn\ — (Judy — 3B7HIT) —
<u ! > 8Jp1 ajpn J=0 <e > aJpl aJpn J=0 ¢
0 0 1 _ m
B 0Jp,  0Jp J—o 2mm! (B7H(J.)" (4.226)

where in the last step we selected the m-th term from the Taylor series of the exponential,
since only it contributes to the n = 2m-th derivative in J at J = 0 (note that in the last
expression the restriction to J = 0 is irrelevant — the derivative is a constant). At this point
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we see that the answer is the sum over the ways to distribute the 2m derivatives in J over
2m copies of J in (B~1(J,J))™. This results in the sum over perfect matchings in the r.h.s.

of 4.222.@ E.g., for m =1 (i.e. n =2) we have
10 0
PiyP?y = — B~ Y4 J, =
<uu> 28Jplajp2( ) p<q

19 9 R N

537 37 (B Y1 J,J, = (B~1)PP2 - (4.227)
p1 D2

which is (4.222)) specialized to the coordinate monomial §'6? with 6, = uP', 0, = uP2. Here
brackets show which derivatives hit which instances of J. O

4.5.3 Scalar field theory in the path integral formalism

Let ¥ be a surface equipped with Riemannian metric g. In the path integral (or more
appropriately, “functional integral”) approach, the partition function of the scalar field on
Y} is given by a formal Gaussian integral

Z(x) = ¢ Do e~ 5(0) (4.228)
=

over the (infinite-dimesnional) space of functions Fy, = C*°(X). Here

2
S(¢) = /E %(dqﬁ A *de + m?qbZdvolg) = /2 %¢(A +m?)¢ dvol,, (4.229)

Here for the moment we are considering scalar field with mass m > 0; later we will want
to set m = 0 to have a conformal theory. In (4.229)) we assume that either X is closed or
else an appropriate boundary condition is imposed on fields ¢, so that the boundary term

[o 3¢ * do vanishes — then the right equality in (4.229) is valid.

The expression (4.228)) is similar to the L.h.s. of (4.218)) if we make the identifications

F=Fs, u=¢, h(¢,¢2)= [Z%@ dvolg,
(4.230)

B(¢1,§b2) = %/X:Qﬁl(A —|—m2)gz52 dVOlg, E = ﬁ(A + m2).

Understanding the infinite-dimensional integral (4.228)) as a measure-theoretic integral is
problematic and we think of it as defined by the r.h.s. of (4.218]):

(NI

Z(%): = det(c(A +m?)) 2, (4.231)

1

where ¢ = T

19Note that the set of perfect matchings on the set of 2m elements can be seen as a coset of the symmetric
group, Som /(S x Z3).

This is
a bit
rushed..
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Remark 4.5.2. Determinants of differential operators are also nontrivial to make sense of, but
there are viable solutions. One method is “zeta-regularization”: for D a differential operator
with a discrete eigenvalue spectrum, one constructs the zeta-function of D — a function of a
complex variable s defined as

(pls): =) A" (4.232)

The sum is over the eigenvalues of D (in the case of continuum spectrum, the sum should
be replaced by an integral). The sum converges to a holomorphic function for Re(s) > A for
some A and admits a unique meromorphic continuation to C with s = 0 a regular point. Then
the zeta-regularized determinant is defined in terms of the derivative of the meromorphically
continues zeta-function at s = 0 as

det;_reg(D): = e 0O, (4.233)

Note that in (4.218)) we wanted the quadratic form B (and thus the operator B) to
be strictly positive. For the scalar field on a closed surface ¥ that forces m > 0; in the
massless case the operator B = A has a 1-dimensional kernel given by constant functions on
Y. Correspondingly, the determinant det A is not well-defined even with zeta-regularization
due to appearance of the eigenvalue A = 0, which means that the zeta-function is
not defined. For m > 0, the partition function is well-defined via zeta-regularization.

4.5.3.1 Moments of Gaussian measure.

Correlators in the path integral formalism are given as Gaussian averages of products of
fields and so are given by the Wick’s lemma (4.222). For instance for p; # py € ¥ two
points, one has

1

m . D¢ e_ﬁs(fﬁ)gb(pl)ﬁb(]b)” = G(pl,pz) (4234)

(0(p1)d(p2)) = ©

— the Green’s function of the operator ?(A +m?). Here the Green’s function — the integral

kernel of the operator (A+m?)~' = B~ is analogous to the matrix element of B~" appearing
in , . One should think of the r.h.s. of as the mathematical definition
of the L.h.s., motivated by Wick’s lemma in the finite-dimensional case. Put another way, in
the context of infinite-dimensional Gaussian integrals, Wick’s lemma becomes not a lemma
(equality between two well-defined objects), but a definition of the moments of the infinite-
dimensional Gaussian measure.

Likewise, for the four-point correlator one has

(O(p1)(p2) S(ps)b(ps)) = ﬁ [ D6 e E )60 o(p)": =

. = G(p1,p2)G(p3, pa) + G(p1,p3)G(p2, pa) + G(p1,p1)G(p2, p3) (4.235)

We note that formulae (4.234]), (4.235) make sense for any closed surface, for m > 0 (for

m = 0, the operator A is non-invertible and hence the Green’s function does not exist).
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4.5.3.2 Case X =C.

Let us restrict to the case ¥ = C — the complex plane. The Green’s function G(z,w) can be
explicitly found in terms of Bessel’s function KOH

G(z,w) =2Ky(m - |z — w)), (4.236)

In particular for m — 0 and z # w fixed one has the asymptotic behavior

G(z,w) ~, —2log |z — w| + C(m) (4.237)
m—r
where C(m) = —2logm + ¢ is a constant (in z,w) which diverges as m — 0; here ¢ =
2(log 2 — ). Thus, we find that the two-point correlator
(0(2)p(w)) = G(z,w) (4.238)

computed in the path integral formalism does not exist in the conformal limit m — 0. Recall
that its counterpart in the radial quantization picture is also problematic due to the
appearance of an “infinite constant” (Vac|<$g|vac>.

Next, if we consider the two-point correlator of derivatives of the field

(06(2)06(w)) = 0.0,G(z,w) — ——

m—0 _|z—w|2’

(4.239)

we see that it has a well-defined limit m — 0, which also agrees with our earlier result
obtained in the radial quantization picture (4.189)).

One can apply this method to construct similar correlators of derivatives of fields on any
surface — the Green’s function itself does not exist in the limit m — 0 but its derivatives do
have a limit PT]

As an example of a more complicated local observable, we can consider the following
quadratic polynomial on Fy:

1 00(2)00(2) 1+ = 1Luﬁnz (8¢(w)8¢(z) + ;) (4.240)

(w = 2)?

When computing the correlator of this observable with a collection of other other observ-

ables by Wick’s lemma, the correction ﬁ cancels the contribution of Wick contraction
—
0o(w)0¢(z) — so effectively one can say this contraction is prohibited when computing cor-

relators involving : 9¢(2)0¢(z) : [

20 Bessel’s function Ky(r) is a solution of the ODE (d—Q —1d 4 1) y = 0; it has logarithmic asymptotics

dr2 rdr
Ko(r) ~ —logr+ (log2 —v) +o(r) as r — 0 (where v = 0.5772. .. is the Euler’s constant). At r — 400 the
function Ky is exponentially decaying, Ko(r) ~ /5.7 ".

21 Of course, on a general surface we don’t have the radial quantization picture to compare to — that one
is specific to X = C. So on general 3 it makes sense to take the path integral prescription as the definition
of CFT correlators.

22Tn the path integral formalism we cannot talk about normal ordering of operators — since we don’t have
operators — so the limiting process in the r.h.s. of becomes the definition of the “normally-ordered”
differential polynomial in the Lh.s.
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As an illustration, let us compute the correlator of the stress-energy tensor with itself (in
the path integral formalism):

(T(T(w) = {: ~500(2)00(2) :: ~ 506(w)Ib(w) ) =

{ f \ \ { x x \
= (- —506(2)00(2) : : —506(w)00(w) )+ (: ~506(2)00(=) : : —5I6(w)d0(w) 3
2“1 11
4(z—w)? (z—w)?  2(z—w)t

(4.241)

Note that contractions inside : - - - : are prohibited.

4.5.3.3 OPEs.

We remark that one can also find OPEs within the path integral formalism (from Wick’s
lemma). For example, consider the correlator

(06(2)0¢(w) O1(21) -~ On(25)) (4.242)

J

~
test observables

in the asymptotics z — w. The correlator is given by a sum over perfect matchings of
constituent fields, where we should distinguish two subclasses of matchings:

(i) Matchings where 0¢(z) and d¢(w) are paired (Wick-contracted) — these terms sum up
to — =7 (O1(21) - - On(2)).

(ii) Matchings where 0¢(z) and d¢(w) are not paired (rather, each is paired with one of
O;’s.) These terms are regular as z — w.

Thus, one obtains

(06(2)06(w)O1 (1) -+ On(z)) ~ —

2—w (z — w)2

(O1(21) - Op(zn)) + reg. (4.243)

This corresponds to the OPE (4.208)) which we previously obtained from the radial quanti-
zation picture.



CHAPTER 4. 2D QUANTUM FREE MASSLESS SCALAR FIELD 157

singular regular
c ./
0, 99
21 %9
) 0,
02@ Z9

Figure 4.7: An example of a singular and a regular (as z — w) contribution to the correlator
(4.242). In this example, the two test observables are Oy =: 90 : and Oy =: 9?¢0°¢ :; we
depict observables as corollas with the number of prongs being the degree of the differential
monomial in ¢; edges correspond to Wick contractions. Thus each picture is one summand
in the computation of the correlator via Wick’s lemma.

Remark 4.5.3. When studying the theory on C we introduced a small positive mass m in
order to have well-defined Green’s function (and then we let m — 0 in correlators). Another
possibility, instead of introducing a mass, is to have a massless theory, but replace C with
a disk Dr = {2z € C | |z|] < R} of large radius R, where one imposes Dirichlet boundary
condition ¢|sp, = 0. Then one can write an explicit Green’s function

|2 = w]

G(Z,U}) = -2 logm_—@ IS
R

—2log|z —w|+C (4.244)
with C' = 2log R.

4.5.3.4 Summary: path integral vs. radial quantization.

The path integral formalism allows one another way to compute the same quantities as
the radial quantization (or “operator formalism”) does — correlators and OPEs. The two
formalisms should be seen as complementing each other: path integral formalism has the
benefit that it can be applied to general surfaces, not just C. The benefit of the operator
formalism is that it also recovers the space of states (and extra structure it might have, e.g.,
in the case of scalar field, the action of the Heisenberg Lie algebra). So, ultimately, the path
integral formalism is better suited for handling global geometry (nontrivial surfaces) while
the operator formalism gives a good handle of the local picture of CFT near a puncture
(where X can be approximated by C*).



Chapter 5

Conformal Field Theory on C
Belavin-Polyakov-Zamolodchikov
axiomatic picture

In this chapter we will present Belavin-Polyakov-Zamolodchikov [6] picture of a general CFT
on C, sometimes using the scalar field as an illustration.

5.1 Virasoro algebra

Definition 5.1.1. Virasoro algebra is the central extension C — Vir — W of the Witt
algebra W (the Lie algebra of meromorphic vector fields on C with only pole at 0 allowed,
see Section [2.5.1]), defined by the Lie brackets

e I R e OV R Y

. 211

where K is the central element, ¢ € C is a complex number (a parameter of the central
extension) — the “central charge,” +y is a closed simple curve going around 0 counterclockwise.E]

Virasoro algebra has the standard set of generators {L, } ez, K subject to commutation
relations

Loy Ln] = (0 = 1) Lot + 80 -m 75 (n* =m)K, mom € Z (5.2)
and [K, - -] = 0; L, are the lifts of the standard generators [, = —z""19, of the Witt algebra.
Exercise: check that the Lie brackets (5.1]) or equivalently (5.2)) satisfy the Jacobi iden-

tity.
In fact, Virasoro algebra is the unique (up to a choice of the value of the parameter c)
central extension of the Witt algebra, which is the content of the following theorem.

Theorem 5.1.2. One has
HI%ie<W7 C) = C (53)

'The conventional normalization factor % in 1) is chosen in such a way that the central charge of the

free massless scalar field is ¢ = 1.

158

Feigin-
Fuchs?
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— the second Lie algebra (Chevalley-FEilenberg) cohomology of the Witt algebra (with coeffi-
cients in the trivial module) has rank 1. This cohomology is generated by the cohomology
class of the Lie 2-cocycle

NF()0.9(0:) = 15 § 32l (2)al2) (5.4

5.2 Axiomatic CFT on C. Action of Virasoro algebra
on H

We will start setting up general conformal field theory on C as an axiomatic picture, following

6].

In this picture, a CFT is the following collection of data.

(I) Space of states. One has a complex vector space — the space of states H — with a
distinguished vector |vac) € H.

(IT) Space of fields, local operators. One has a complex vector space of local observ-
ables (or “space of composite fields”) V. For z € C we will denote V, a copy of V
placed at zf] we denote a copy of an element ® € V' placed at a point z by ®(z) € V.

For z # 0, ®(z) € V., is represented by a (possibly unbounded) operator ®(z) €
End(H)

(III) Field-state correspondence. One has a linear isomorphism
s: VS5 H (5.5)

mapping a field ® € V to the state lim, ,o ®(z)|vac). (In particular, such a limit is
required to exist for any ® and determine an isomorphism between fields and states.)
See Section [5.3] below for an example.

(IV) Inner product. Both H and V carry real structures and nondegenerate hermitian
forms (,) (intertwined by s). If the hermitian forms are additionally positive-definite,
the CF'T is called unitary. For the hermitian conjugate of a local operator one has

(D)) = 7222 x(1 /7). (5.6)

Here * denotes the complex conjugation in V and (h, k) is the conformal weight of the

field V' (see Definition below).

2I.e. we are thinking of a trivial vector bundle V = V x C over C with typical fiber V and V, the fiber
over a specific point z.

3In other words, there is a map Y: V x C* — End(#H), linear in V and smooth on C*. We denote Y (®, z)
by ®(z).

Lecture
23,
10/14/2022
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(V) Radial ordering, domains of field operators, same-time commutativity. For

any n-tuple of elements ®q,...,®, € V, the vector
By (21) -+ Bz |vac) (5.7)
is assumed to be well-defined if z;’s are radially ordered, |z;] > -+ > |z,|. As a

consequence (using the same axiom for a string of n + 1 local operators) the vector
(5.7) is in the domain of ®(2) if |z| > || and z # 2 fori = 1,...,n. Operators @, (z),

®y(w) are assumed to commute if z # w and |z| = |w|.
(VI) Correlators. For an n-tuple of elements ®q,...,®, € V| the correlator is defined as
(B (21) - Dp(2)): = <vac|7z($1(zl) s 6n(zn)) Ivac). (5.8)
where (vac|: = <|vac>,—>H € H* is the covector dual to the vector |vac). The

correlator (5.8) is a smooth function on C,,(C) — the open configuration space of n
points on C, depending linearly on the fields &4, ..., @nﬁ

(VII) Identity field and stress-energy tensor. V' contains a element 1 acting on H by
identity and special elements T', T' satisfying holomorphicity/antiholomorphicity

07(z) =0, T(z)=0 (5.9)
and the OPEs
RT()T(w) ~ ? Elw)4 (jT_(Z))Q + (Z _<“£ +reg. (5.10)
RT()T(w) ~ G élw)‘l + éT_(Z_’)))Q + azT_(ll‘iU) + reg. (5.11)
RT()T(w) ~ reg. (5.12)

with ¢, ¢ some complex numbers (the holomorphic and antiholomorphic central charges).

Elements 1, T,T € V are real (with respect to the real structure on V).

(VIII) Projective action of conformal vector fields on states. One has a projective
representation p of the Lie algebra of conformal vector fields on C* on H, where the

conformal vector field v = u(2)0, + u(z)d; on C* (with u a meromorphic function on
C with pole allowed only at z = 0) is represented by the operator

p(ud + ud): = L (dz w(z)T(z) — dz u(z)

271 .

%(z)) cEnd(H)  (5.13)

4If one of the points z in the Lh.s. of 1) is zero, one understands the r.h.s. as a limit z; — 0.
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where v € C* is a closed contour going around zero once counterclockwise.ﬂ In par-

ticular the standard generators of the Witt algebra W, [,, = —2""10,, are represented
by
~ 1 ~
Ln: = p(=2""10,) = — %dz 2" (2) € End(H) (5.14)
2mi J,

and likewise for the generators of the antiholomorphic copy W of the Witt algebra:

~

1 ~
L= p(-2"10) = 7{ dz="MT(z) e End(H), (5.15)
Y

We remark that the inverse formulae for ([5.14]) and (5.15)), expressing the stress-energy

tensor in terms of operators L,,, L, are:

T =% 2"2L, T()=3 "L, (5.16)

nezZ nezZ

Le., essentially (and up to a shift in numbering), operators En are the Fourier modes
of the field T'(2) restricted to a circle.

Lemma 5.2.1. (i) As a consequence of the TT OPE , operators L. satisfy the Vi-
rasoro commutation relation with central charge ¢ (the coefficient in the fourth

order pole in ).

(i3) Similarly, as a consequence of TT OPE (5.11), operators L satisfy the Virasoro com-
mutation relation with central charge c.

(i4i) As a consequence of TT OPE , the generators of the holomorphic and antiholo-

morphic copies of the Virasoro algebra commute: [En,fm} = 0.

We will prove this lemma in Section below.

Remark 5.2.2. In the axioms above, it would be more correct to distinguish two versions of
the space of states:

o H = H™ — the one identified with V' by the field-state correspondence (5.5)), con-
taining the vector |vac) and carrying a hermitian inner product.

~

e A completion HP® of H*™all on which the field operators ®(z) act (it should be a
completion containing all vectors of the form ({5.7))).

5 If we combine T(z) and %(z) into a single object — the total stress-energy operator 7%°tl(z) =
f(z)(dz)2 + T(2)(dz)? — a quadratic differential on C* valued in End(#), we can phrase || as

1

p(v) = T ori ’YLU

ftotal

Here the contraction with the vector field v converts the total stress-energy tensor from a quadratic differential
into an (operator-valued) 1-form, which can then be integrated over the 1-cycle .
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E.g. in the scalar field theory, we can define H*™! to be the set of all finite linear
combinations of basis vectors , while H"® is spanned by the same basis but has to
contain certain infinite linear combinations.

We note that even if the hermitian form is positive definite, neither H*! nor H"® is a
Hilbert space: H*™! carries a hermitian form, but is not complete with respect to it, while
HP & contains vectors which generally have infinite L? norm if |z] > 1.

In the case of a positive definite hermitian form, one can also consider the L? completion
HHID of Fsmall - Ag follows from the axioms and , HHI is guaranteed to contain the
vector ((5.7)) only if z;’s are distinct, radially-ordered and are contained in the open unit disk
{zeC||z| < 1}[

Remark 5.2.3. The hermitian conjugate of the Virasoro generator En is readily com-
puted from ([5.6):
~ —1 . o~ B 1 _ ~ ~
Lt=—9¢dzz"" z'T(1/2) = — ¢ dww ""'T(w)=1L_, (5.17)
2mi J, —— w=1/z 27 Jy
T(2)*
Here + is the image of the contour 4 under the inversion map z +— 1/Z, which is again

a contour going once around zero in positive direction. We have used the fact that 7" has
conformal weight (2,0), see Example [5.4.4] Similarly, one proves

>+ =
L, =L_,. (5.18)

The following is also an immediate consequence of (/5.6]).

Lemma 5.2.4. For any fields ®q,...,®, and z1, ..., z, € C\{0} an n-tuple of distinct points
one has

@1(z0)@alz)) = [[ 270 (@1(1/2) - @5(1/7) (5.19)
i=1
where (hi, h;) is the conformal weight of ®;. The bar over the correlator in the Lh.s. stands

for complex conjugation.

Proof. Without loss of generality we may assume that points z; are radially ordered, |z| >
-+« > |z,]. We have

(@1(21) - Pp(z)) = (vac|®y(z1) - - - B (20) |[vac) =
= (vac| (B (=1) - @n(zn))+|vac> — (vac|Bu(z)" - - By (1) vac)

6 Indeed, for the square of the L? norm of the vector (5.7) we have

=~ =~ =~ + ~ +2 =~ " _—2h, —2h,
1P1(21) - Pr(zn)vac)|> = (vac|(Pn(z))" -+ (D1(21)) Pr(21) -+~ Pulza)lvac) =TI,z Moz
(vac|®X(1/Z,) - - ®5(1/21)P1(21) - - - P (2n)|vac). The correlator on the right is certain to exist only if the
insertion points of the operators 1/z,,...,1/z1,21,..., 2z, are distinct and the sequence is radially ordered.

This implies that all z;’s must be in the open unit disk. (Note that if |z1] = 1 then 1/z; = 1/z, thus the
sequence is radially ordered but not all points are distinct.)
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= [z =" (vac|®;(1/z,) -+~ }(1/7)|vac)
X i

H ' O1(1/z1) - @ (1/20))  (5.20)
0

5.2.1 Example: action of Virasoro algebra on H in the scalar field
theory. Abelian Sugawara construction.

In the example of the free scalar field theory we know the stress-energy tensor (4.204)):

T(z) = —% : 8(5(2)8(5(2) = % Z 2R GG (5.21)

J,keZ

where we used the expansion (4.188)) of 8&5\(2) in terms of creation-annihilation operators.
In particular, T'(2) has no dependence on Z, i.e. the holomorphicity axiom (5.9) holds (we
skip the computations for T'(z) — they are similar). OPEs (5.10)), (5.11)), (5.12) hold with the

central Charges ¢ =c =1~ we know this from the explicit computatlon in Example 4.4.4]
From and - we find the operators L to be

= — Z akan k- (522)

and similarly

= 1 ~
Ln = 5 Z D AkQy—f - (523)
keZ

Note that the normal ordering is only relevant for En, L, with n = 0, as for n # 0 the
operators dy, d,_r commute for any k, and likewise for @y, G,_p.

Exercise: Show by a direct computation that the operators satisfy Virasoro
commutation relations with ¢ = 1, from the commutation relations for the cre-
ation/annihilation operators.

Equality expresses the generators of Virasoro algebra with central charge ¢ =1 as
quadratic polynomials in generators of the Heisenberg Lie algebra . Thus, we have
an inclusion

Vire_; < U®Heis, (5.24)

where U® means the subspace of (at most) quadratic elements in the universal enveloping
algebra (of the Heisenberg Lie algebra). This inclusion is the abelian version of the Sugawara
construction, realizing Virasoro algebra (at certain other values of ¢) inside the quadratic
part of the universal enveloping algebra of the affine Lie algebra (a.k.a. Kac-Moody algebra)
g. We will come to the non-abelian Sugawara construction later, when talking about Wess-
Zumino-Witten model.
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Remark 5.2.5. Comparing ((5.22]) and ( - with m m we observe the equalities
Lo—i—Lo H LO—LO P (5.25)

expressing the quantum Hamiltonian and the total momentum operators in terms of Vira-

soro generators Zo, Lo. In a general CFT, formulae (5.25) become the definitions of the
Hamiltonian and the total momentum operators.

Note that due to (5.13)), the operator = EO + Ly represents on H the vector field
—z0, — z0s or, in terms of coordinates 7,0 on the cylinder, the vector field —3,. Likewise,

the operator P= ZO — Ly represents the vector field —z0, + 20 or, in terms of the cylinder,
10,. Ultimately, the operators represent infinitesimal translations along the cylinder and
rotations of the cylinder, as the Hamiltonian and total momentum should, cf. Remark [£.2.1]

5.2.2 Virasoro commutation relations from 777 OPE (contour in-
tegration trick)

Let us prove Lemma [5.2.1, We will focus on the case (i): assuming that the 77 OPE (/5.10))
is known, let us calculate the commutator of operators L,,, L,, using their definition via the

stress-energy tensor (|5.14)):

~

(Lo, L) — L,.L.,

n+ m+1T m+1 n+1j-\v f
j{ 27i %O 2m 7{ 27i %O 2m : (w)T(2)

% 2mi 27m nmeHR (T\(Z)T\(wD . (5.26)

Here we denoted 7, , the circle of radius r centered at z, with counterclockwise orientation;
we assume the two radii to satisfy 0 < r < R; I" is the 1-cycle yg — 7, with R’ > R. We
are exploiting the freedom to deform the integration contour, due to holomorphicity of the
integrand for z # w and z,w # 0 (in particular, the property ) We can then further
deform the contour I' to the circle v, . centered at w, of radius 0 < e < R.

Figure 5.1: Deformation of the integration contour for the integral over z (solid curve). The
dashed circle is the (fixed) integration contour for w.



165

CHAPTER 5. CFT ON C: BPZ AXIOMATIC PICTURE
Replacing the radially ordered product of stress energy tensors with the OPE - we

2T (w) . oT (w) . reg)

have then
_ % f n+1 m+1 gl
Yo.r 2mi o, o (z—w)* (z—w)? z-—
1 1 -1
j{ j{ ( ntl + (n+ 1w a+—(n+ )nw”_lon—l— (n+ Dn(n )oz3—|—---) .
Y —w —|—a 27i o 2i 2 6
expand in «
1 9T oT
™t (2_4 + <2w) + w) + reg.) . (5.27)
« a

Here the integral over a simply computes the residue at o = 0 of the integrand, i.e., the
n+m—1
—w 1>
2

coefficient of a~!. Thus, continuing the computation we have
(n+1)n(n—1)c
6

- d .
T Tl = 7{ 2 (W 20T (w) +2(n+ 1w T (w)
Y0,R -
integrate by parts
_ jf dw (@4 1) = (0 m o+ 2)) 0 T (w) + 5 (0 — 1)
~o.r 278 \ - —~— z 12
— (0 —m) Dy + 1—62(713 — )0 _ml. (5.28)

This is indeed the Virasoro commutation relation (5.2)). This proves case (i) of Lemma[5.2.1]

The other two cases are proved similarly.

5.2.3 Digression: path integral heuristics, variation of a correlator
in metric as an insertion of the stress-energy tensor, trace

anomaly
In the context of path integral quantization on a Riemann surface Y, a correlator is repre-
1 —S(¢)
(5.29)

sented by averaging over the space of classical fields with measure e
DD (z)--- D(2y).

= Dpe®

(D1(21) -~ Pulzn)): .

We denote the classical field ¢. The variation of this expression w.r.t. metric on X is given

by
5g(®1(21) -+ Pr(2n)) =0y | Dpe O P(21) - D(2,)
Fx
‘:ly D¢ e %) <_5gSg(¢)) D(21) -+ P(25)
naive fz
o [y d22(Tu+Th)
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— (g [ BHTEUE) + TERE) Bi2)- Bz). (530)
Here we used the parametrization of a variation of metric by Beltrami differentials
and Weyl factor, and we used formula . Computation tells us that the variation
of a correlator in metric is given by the insertion of an extra field in the correlator — the
stress-energy tensor contracted with the Beltrami differential.
In fact, if the background metric on ¥ is not flat, there is a correction to the result
due to conformal anomaly (1.50):

By(2)
24

w(z)1 ) P1(z1) - Pl2n))

(5.31)
where w is the infinitesimal Weyl factor (cf. (3.105)) and R, is the scalar curvature of the
metric. Heuristically, this correction can be attributed to the dependence of the path integral
measure in on the metric.

The correction term in corresponds to the fact that although classically the stress-
energy tensor is traceless, in the quantum theory on a curved manifold the trace tr' T = 4T
has nonzero expectation value

(1) Bue)) = (5 [ (Tl + TE)() +e

R(z)
5

This phenomenon is known as trace anomaly. For instance, in the free boson theory one can

obtain this result by calculating the variational derivative of the zeta-regularized determinant

of the Laplacian in metric, cf. e.g. [9, Appendix 5.A]. Lecture

24,

10/22/2022

(trT) =c (5.32)

5.3 Field-state correspondence in the example of the
scalar field CFT

Let us examine the field-state correspondence is the map (/5.5)),

s: Vo — H

® — lim ®(2)|vac) (5.33)
z—0
in the case of the scalar field theory. We start with simple examples.
For & = i0¢, we have
. T A IRT —n—1-~
s(i0p): = £1E>rg) i0¢(z)|vac) = il{)lg) Z 27", |vac) (5.34)

neZ

where we used (4.188]) to express the derivative of the field operator in terms of creation/annihilation
operators. Notice that for n > 0 one has @,|vac) = 0, while for n < —2 one has 27! — 0.

z—0
So, the only surviving term in the r.h.s. of (5.34) is n = —1:
s(i0¢) = a_1|vac) (5.35)

— a state with a single left-mover of energy-momentum (1, 1).
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For higher derivatives of the fundamental field ¢ we find

s(i0P¢) = llir(l) i0Pp(z)|vac) = llil(l) Z(—n —1)(—n—2)---(—n —p+ 1)z ""Pa,|vac) (5.36)

nezZ
where p > 1. In the r.h.s. the summand satisfies the following;:
e vanishes for n > 0, since then a,|vac) = 0,

e vanishes as z — 0 for n < —p — 1, since then lim,_,q 277 = 0,

e vanishes forn = —1, -2, ..., —p+1, since then the product (—n — 1)(—n —2)---(—n —p+ 1)
vanishes.
Thus, the only surviving term is n = —p:
s(i0P¢) = (p — 1)l a_p|vac) (5.37)

— a state with a single left-mover of energy-momentum (p, p).
Remark 5.3.1. Note that

s(¢) = lim 6(2)|vac) = lim go|vac) (5.38)

is ill-defined. This absence of the image of ¢ under field-state correspondence (together
with the fact that correlators of ¢ are ill-defined) reinforces the point that ¢ should not be
considered as an element of V' (while derivatives of ¢ are in V).

As a more complicated example, consider the normally ordered differential monomial

b =:10000¢ :,

s(: 100 id¢ :) = lin% : zag/g( )z@gb : [vac) = Z 27T Gy, ¢ [Vac) = a_ja_q|vac)

nme”Z
(5.39)
— the state with two left-moving quanta of energy-momentum (1, 1). Here the only surviving
term in the double sum is n = m = —1, similarly to the situations above.
In particular, since the quantum stress-energy tensor (as an element of V) T = —% :
0p0¢ :, we have
1o .
s(T) = §a_1a_1|vac>. (5.40)
Note that using (5.22), we can write the r.h.s. as L_|vac).
Remark 5.3.2. In fact, in any CFT one has
s(T) = L_y|vac). (5.41)

This, together with properties ZZ_I\va@ = 0 and 5_2_1, = s(ﬁ@pT) for p > 0, is a conse-

quence of (5.16]).
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A generalization of the examples above is the case where ® is a general normally-ordered
differential monomial in ¢:

(- (11524 (1224 ) ) -

j=1 k=1

c)

— a_nl e a_n'r'a_'ﬁl e a_ﬁs va

105 {n:};{n;}) (5.42)
wherel1 <n; <---<n,, 1 <n; <--- <ng, The computation is similar to the computations
above (only a single term in the (r + s)-fold sum survives). Note that we identified all basis
vectors of H with 7y = 0 as images of particular vectors in V' (differential monomials),
under the field-state correspondence.

Since the map is supposed to be an isomorphism, this means that V' should contain
some more elements in addition to differential polynomials in gbm with images of these extra
elements giving the states with my # 0.

5.3.1 Vertex operators (in the scalar field theory)

A vertex operator is defined as

Va(2): = : e o). (5.43)

where a € R is a parameter (“charge”). We emphasize that the vertex operator is a con-

struction specific to the scalar field theory. We understand the operator ((5.43)) as a local

operator acting on H, corresponding to an abstract field V, € V' placed at a point z € C.
Let us find the state corresponding to the vertex operator V:

s(Va) = lir% Va\va@ = liH(l] . glad(2) . [vac) =
= z—>

_ eia Y on<o %(?inz*”—i-ﬁni’")eioa Y >0 %(anz*"+an2*")em¢0M VaC> (544)
(14.176)

Here the last exponential acting on |vac) acts as identity, since 7y|vac) = 0. The next
observation is that in Schrodinger representation of the quantum free particle system (cor-
responding to the zero-mode ¢g, m9), with states being L? functions of 7y, one has Ty = my- a

multiplication operator and ¢g = i%

4.3.10). Thus, the exponential eiado . (o) — 1(my — ) is the shift operator. In particular,

it maps the vacuum |my = 0) represented by the delta-function centered at zero to the delta-

a derivation operator (cf. the discussion in Example

function centered at «, i.e., the vector |my = «). In other words, eiado maps the vacuum
[vac) to the pseudo-vacuum |my = «) with zero-mode momentum «. Thus, continuing the
computation ([5.44]), we have

s(V,) = €' 2n<o (@4 pia Y %(a"zimrg"fn)yﬂo =) (5.45)

7 We mean normally-ordered differential polynomials, where ¢ is not allowed to appear without deriva-

tives, cf. Remark
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Here the right exponential acts by identity, since the annihilation operators in the exponent
kill the pseudovacuum. The left exponential becomes identity as z — 0, thus one has

s(V,) = |m0 = a) (5.46)

So, the image of a vertex operator under the field-state correspondence is a pseudovac-
uum. Combining this computation with the computation with (5.42)), we have

s(: (differential monomial in ¢) - V, 1) = |a; {n;}; {n;}) (5.47)

with differential monomial as in the Lh.s. of (5.42)). Thus are recovering all basis vectors of
‘H as images of elements of V', once we have adjoined the vertex operators. Put another way,
for the field-state correspondence to be an isomorphism, we should set the space of local
fields in the scalar field theory to be

V' = spanc{: (differential polynomials in ¢) -V, : | a € R} (5.48)

where as usual differential polynomials are not allowed to contain ¢ without derivatives.

5.4 Local Virasoro action at a puncture

We continue with the CFT data/axioms list:

(IX) Local projective action of conformal vector fields on fields at a point z.
Similarly to the projective action (5.13) of conformal vector fields on states, one has a
projective action of conformal vector fields with singularities (vector fields of the form
v = u(w)0y, + u(w)dy with u a meromorphic function) on fields at a point z € C\{0},

p): confing (C) — End(V;) (5.49)
given by
P (ud+ ) o®(z): = —% (dw w(w) T(w) ®(2) + dw u(w) T(w) @(z)) . (5.50)

Yz

for any field ®(z) € V,. Here 7, is a contour going around z once in a positive
direction (and small enough so that it does not enclose any poles of u apart from z).
We understand the r.h.s. of as defining a new local field at z. Equality
is understood either (a) as an equality under a correlator with an arbitrary collection
of test field, or (b) as equality of local operators (then we put hats on 7', ® and the
Lh.s., and we radially order the operator product in the r.h.s.).

In particular, the vector fields —(w — 2)"*'d,, (standard meromorphic vector fields gen-
erating the Witt algebra, centered at z instead of the origin) correspond to certain operators

L acting on V,:
LAO®(2): = p@)(—(w — 2)"T1,)P(2) = L% dw (w — 2)" T (w) ®(2) (5.51)

2w

Lecture
25,
10/26/2022
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We will also write the Lh.s. as (L,®)(z). Calculating the integral on the right as a residue,
we observe that the fields L, ® are the coefficients of the OPE T'(w)®(z):

T(w)®(z) ~ Y (w—2)"2(L,D)(2) =

— g;%g;g T ifff)? P B )+ - D))+ (552)

reg.

By an argument similar to Lemma (and the computation of Section|5.2.2)), operators
LZ acting on V, satisfy Virasoro commutation relations.

Similarly to (5.51), one defines operators L,(f)
in the OPE T'(w)®(z2).
(2)

Remark |5.2.3  has an analog for the hermitian conjugates of the operators Ly, ,ff):

acting on V,, corresponding to the terms

T+ =Y. (5.53)

n

(L(z))+ — L(Z)

n —n?

This follows from Remark by field-state correspondence.
Remark 5.4.1. Consider the OPE (j5.52)) for ® = 1 the identity field. One has

T(w)(z) = T(w) = ¥ %(w )T (2) (5.54)

Where on the right we have the Taylor expansion of T'(w) centered at z; the sum is convergent
for w sufficiently close to 2| Comparing the coefficients in (5.54) and in (5.52) with ® = 1,

we obtain
1
e ,Lll == 0, Lol = O, L,11 = O, L,21 = T y L,31 - 8T, L,41 == 582T e (555)

One has similar formulae for L, 1, in particular, one has L_,1 =T.
(X) L_; axiomJ] For any ® € V one has

(La®)(z) = 09(2), (5.56)
(L_.3)(2) = 9D(2). (5.57)

Here one understands that the field O®(z) is defined by its behavior under a corre-
lator with test fields: (0P (z)P1(z1) -+ Pp(2n)) = 0.(P(2)P1(21) - - - P(2,)) (or in the

— ~

language of field operators, 0®(z): = £®(z)). The case of 0P is similar.

8 More precisely, under a correlator with test fields ®1(21),...,®,(z,), the field T'(w) can be replaced
with the r.h.s. of (5.54) — and the sum is convergent — if [w — z| < |2; — 2| for all 4.
9Informally, the axiom can be phrased as “L_; acts by infinitesimally moving the puncture z.”

Explain
more/prove?
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Remark 5.4.2. If v = ud + @0 is a conformal vector field on C without singularities (except
possibly at zero), then the field operator corresponding to ((5.50)) is

P (0) 0 0(2) = [p(v), B()] (5.58)

where the r.h.s. is the commutator of the field operator with the operator representing
the vector field v on the space of states H. Equality is proven by a contour integration
trick similar to one of Section the r.h.s. of is an integral over a cycle I' — the
difference of two circles, one of radius R > |z| and one of radius r < |z[; this contour can be
deformed to a single circle centered at z, which yields the 1.h.s. of .

Definition 5.4.3. We say that a field V' € ® has conformal weight (or conformal dimension)
(h, h) € R? if one has

(Lo®)(2) = h®(2),  (Lo®)(2) = h®(2), (5.59)
i.e., ® is an eigenvector of operators Lg, Lo simultaneously, with eigenvalues h, h.

Example 5.4.4. Consider ([5.52)) for ® = T and compare with the standard 7T OPE (/5.10]).
We obtain

LosT =0, LT = 51, LiT=0, LJI=2T, L.,T=0T (5.60)

Likewise, from TT OPE 1) we have
L> T =0. (5.61)

In particular, we see that T has conformal weight (h, h) = (2,0). Similarly, T has conformal
weight (0, 2).

We will be assuming that Ly, Ly are simultaneously diagonalizable on (this assump-
tion is in fact a part of the highest weight axiom ([5.69)) below), thus the space V' is bi-graded

by conformal weight: i
V= v (5.62)

where A C R? is some set of admissible conformal weights.
The action of a Virasoro generator L_, changes the conformal weight of a field aﬂ

(h,h) — (h+n,h). (5.63)
Similarly, the action of L_,, changes the conformal weight as
(hyh) — (h,h +n). (5.64)

The following is a standard assumption on admissible conformal weights.

10 There are interesting examples of CFTs where this diagonalizability assumption fails. Such CFTs are
called “logarithmic.”

1 This is a consequence of the relation [Lg, L_,] = nL_,, in Virasoro algebra: if Ly® = h®, then one has
Lo(L_p,®) = L_,,(Lo+n)® = (h+n)L_,®. Likewise, [Lg, L_,] = 0 implies that the eigenvalue of Ly does
not change under the action of L_,,.
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Assumption 5.4.5.
(a) A C RZO X RZOB

(b) If (h,h) € A then["]
h—heZ, (5.65)

(c) V%0 = Span(1).

Remark 5.4.6. Assumptions @, above pertain to unitary CFTs. E.g., @ is implied
by unitarity and the highest weight axiom E Assumption does not follow from
unitarity, but is rather an axiom in a unitary CFT — the uniqueness (nondegeneracy) of
vacuum.

There are interesting non-unitary CFTs where assumptions @, fail, e.g., the bc
system, see Section [6.4]["]

Assumption @ holds in “ordinary” CFTs, with single-valued correlators. However, it
is useful to consider (as auxiliary objects) a class of CFTs where (b)) fails — the so-called
chiral CFTs. They arise in the holomorphic factorization of the correlators of ordinary
(single-valued) CFTs, cf. Sections [6.2.1} [6.3.4} [8.3.2]

5.5 Primary fields

Definition 5.5.1. A field V € @ is said to be primary, of conformal weight (h,h) if it
satisfies the OPE

Qi

o
+ 26) e (5.66)

~—

(Zq)_(Z;)Q + i}@_(zz) +reg., T(w)®(z) ~ (Z(I)_(Z))Z

T(w)P(z) ~

I
]

Equivalently, ® € V is primary, with conformal weight (h, h), if

Loo® =0, L.y®=0,

Lo® = h®, Ly® = ho. (5.67)

Put another way, a primary field is a highest weight vector of V' as a module over Virasoro ®
Virasoro, of weight (h, h).

For ® a primary field, fields obtained from it by repeated application of negative Virasoro
generators Lo, Lo, i.e., fields of the form

Loy L gLy - L_,® (5.68)

120therwise the 2-point correlator (®(z)®(w)) can grow as points z and w become farther and farther
apart, which contradicts the physical intuition of local interactions.

13Needed for single-valuedness of correlators, cf. Remark

14 Indeed, for ® a primary field of conformal weight (h, k), one has 0 < |[[L_1®||? = (L_1®,L_1®)y =
(®,L1L_1®)y = (®,(2Lo + L_1L1)®) = 2h||®||?, which implies h > 0. Here we used that L;® = 0, since ®
is assumed to be primary. By a similar argument, A > 0. By Axiom , any field is a descendant of a
primary field (or a linear combination of such). Hence, knowing that conformal weights are nonnegative for
primary fields ensures that they are nonnegative for all fields.

15 In the be system, the ghost field ¢ has conformal weight (—1,0), thus violating @) Also, the field dc
has conformal weight (0,0) and is linearly independent from 1, thus violating .
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with kq,..., k., l1,...,ls > 1, are called “descendants” of ®. If & has conformal Welght
then the descendant (5.68) has conformal weight (h 4 3, ki, h+Y i) (cf. F
The subspace of V' spanned by all descendants of a primary field ® is called the ‘conform
family” of .

(XI) Highest weight axiom. The space of fields V' splits as a direct sum of irreducible
highest weight modules of the Lie algebra Vir & Vir with primary fields being the
highest weight vectors:

V=@ve. (5.69)

Here the sum is over species of primary fields (i.e. over a basis in the subspace of
primary fields in V); V(®) is the conformal family of ®,,.

Remark 5.5.2. There can be linear dependencies between descendants of a given @am More
precisely, one can consider a Verma module Vil (free highest Welght module) of the Lie
algebra Vir® Vir — the span of formal expressions L_ gt L le -L_ L P with 1 <k <

<k, 1 <1l <o < (iee. all ordered descendants are cons1dered to be independent),
With ®, a vector of weig_ht (h,h) and annihilated by Lsq, L+g. Then V(%) is the quotient
of the Verma module V*" by a submodule,

V(@) ~ v /N (5.70)

The submodule N that one quotients out is the kernel of the sesquilinear form (,) on Vh’B,

defined in such a way that one has L} = L_n,f: = L_, and the highest vector has norm 1
(in particular, vectors in N have zero norm). Also, N C V*" is the submodule generated by
“null vectors” y € VM — vectors with with the property L-ox = 0, L-ox = 0. We refer to
Chapter [7] for more details.

5.5.1 Transformation property of a primary field

Let us fix a conformal vector field v = u(w)0d,, + u(w)dy regular at z. For & € V' a primary
of conformal weight (h, h), by (5.50) and (5.66) we have

PP (ud 4 1d)®(2) =
1 - _
=—— ¢ dw u(w) T(w)®(z) +dw u(w) T(w)P(2)
211 ~—— —— =~ H_/
U+ Oul) 4 P O g W (@—2)DuCa) b B L OB ey

(w—z

z)?2
= —u(2)00(2) — u(2)0®(2) — hdu(2)®(z) — hdu(z) ®(z) (5.71)

— a computation of the contour integral as a residue.

6For instance, in any CFT one has L_11 = 0. Also, see ((5.80) below for a nontrivial example in scalar
field theory.

add a
table

of first
descen-
dants?
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5.5.1.1 Finite version, interpretation #1: “active transformations.”

Formula (5.71)) expresses the change of a field under an infinitesimal conformal map. For a
finite conformal (holomorphic) map z — w(z), it implies that the field transforms as

oo i = (20 (92) ey 512

As a check of compatibility with (5.71)), take a map close to identity, w(z) = z +eu(z). Then
in the first order in € we have

0D(z) = 9'(2) — ®(2) = e (r.hs. of (5.71)) (5.73)

In Section below we will see that (5.72)) will become an equivariance property of cor-
relators of primary fields under the diagonal action of a global conformal map on all field
insertion points.

5.5.1.2 Finite version, interpretation #2: “passive transformations”

Instead of moving points on the surface ¥ = C, we can think about z — w(z) as a change of
local coordinate. We will use z, w as names of local coordinate charts and call p (previously
z) the point on 3. Think of the vector bundle V of fields over 3; it has typical fiber V' and
its local trivialization at a point p depends on a choice of local coordinate z or w around p.
Thus there is an isomorphism V' — V], from the standard fiber to the particular fiber over
the point depending on a choice of a local coordinate near p. Fix ® € V a field and denote
its image in V), using the chart z by ®(.)(p). Then we have
ow

Thus, the Jacobian on the right hand side is the transition function of the vector bundle.
Put another way, the combination

) D) (p) (5.74)

®(z) = (2)(dz)"(dz)" (5.75)

is a coordinate-independent object valued in the line bundle

KM = geh g B (5.76)

over ¥. Here K = (T'°)*Y is the line bundle of (1,0)-forms and K = (T%!)*X is the line
bundle of (0, 1)-forms. For instance (see below), a correlation function of primary fields is a
section of the product of several line bundles pulled back to the configuration space
of points on X.



CHAPTER 5. CFT ON C: BPZ AXIOMATIC PICTURE 175

5.5.2 Examples of primary fields in scalar field theory

In the scalar field theory, we have the following.

e The field 9¢(z) is primary, with (h,h) = (1,0). This follows from the OPEs (4.214)),
(4.215). Similarly, 0¢(z) is (0, 1)-primary.

e The stress-energy tensor T is a field of conformal weight (2,0), but it is not primary,
since T'(w)T'(z) OPE contains a fourth-order pole (4.216)).

e The field 9?¢ has conformal weight (2,0) but is not primary: differentiating (4.214)) we

have

200(2) | 20°¢(z)  9¢(2)
T (w)0? ~ ) 5.77
(w)9¢(z) (w—z)3+(w—z)2+ — + reg (5.77)
— contains a third-order pole.
Here is another example.
Lemma 5.5.3. The vertex operator V, =: €'*? :, with o any real number, is primary, of
. T 2 2
conformal weight (h,h) = (%, %).

Note that h, h are (generally) not integers! (Thus, in particular, we really do need real
tensor powers of the line bundles in (5.76))).

Proof. Let us calculate the OPE T'(w)V,(z) in the language of field operators:

Rﬂm%@=R~§%@w&m:2f? $E0E) ) =
! (ia)" o
i ~3008w) 3 Entn ~ D3I ) B+
~05()03w) Y- Y0 (2) 32) - 8e) : +: Twal)
oo (ia)*Va(z) + : 8?5(11})(2’04)6"0‘5(2) : +.reg.
2 (w— 2)? “ w—2z

ETL) O
(w—2)2  w-—
The OPE T'(w)V,(2) is computed similarly. Comparing with (5.66 - ) we see that V, is prlmar

(no cubic or higher poles in the OPE with T, T'), and the conformal weight is h = h = <
as claimed.

Exercise 5.5.4. (a) Show that the field
2(00)* — 3(9%¢)* + 200 9*¢ : (5.79)
is primary, of conformal weight (4,0). Or, equivalently, check that the corresponding by

1' state (2a%, + 32, — 4d_sa_,)|vac) € H is annihilated by operators Lo and has
eigenvalue 4 w.r.t. L.

+reg. (5.78)

DN)
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(b) Show that one has
(2L_5 — 4L _oL_ 1+ L*)0¢ = 0, (5.80)

i.e., this particular Virasoro descendant of the primary field ¢ in free scalar theory
vanishes (in terms of Remark [5.5.2 this descendant belongs to N — the quotiented-out
submodule).

Remark 5.5.5. Classification of all primary fields in scalar field theory is a nontrivial problem;
the answer is known as a corollary of a theorem by Feigin-Fuchs [I3] (Theorem below).
First note that the space of fields (or space of states) of the free scalar theory is

V = PV g Vi (5.81)

a€eR

where V¢ he the Verma module of the Heisenberg Lie algebra, with highest vector of
ag-weight a.

Let M}, be the highest weight irreducible Virasoro module with Ly-highest weight h and
central charge ¢ = 1 and let V)™ be the highest weight Verma module (possibly reducible)
of the Virasoro algebra with Ly-highest weight h and central charge ¢ = 1. One has:

1. fa¢g \%Z then
ViHels ~ Af o = VYR (5.82)
2 2

is a single irreducible representation of Virasoro and contains no null vectors.

2. fa= j:% for some N =0,1,2,..., then one has

VHES ~ Vo @ M nime @ Myiap @ (5.83)
4 4 4

For instance, V{®® contains an infinite sequence of Virasoro-highest weight (primary)
vectors o = 1,x1 = 199, X2, X3, - - ., With x,, having conformal weight h = n?; x, is
given explicitly by (5.79).

In the full scalar field theory, the Verma module Vig®*" = Vil @ VIS of the
two copies of Heisenberg algebra contains a two-parameter family of Virasoro-highest

weight vectors (primary fields) xn with n,n = 0,1,2,..., with conformal weights
(h =n? h =n?).

3. A related point to the above is that the Virasoro Verma module V)™ for h = NTQ is

reducible and contains null vectors at levels M — NTZ with £ = 1,2,.... Vanishing
descendant (5.80) above gives an example of a null vector at level 3 in V)™ : here
N =2, k=1. Also, V)" fits (depending on parity of N) into one of the two sequences

of maps between Virasoro Verma modules

VT e VY e VI o VT

VVirZFVvir2%VVir2<_Vvir2<____

(3) (3) (3) (3)

(5.84)

EDIT
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For each map here, the image of the highest vector or a null vector is a null vector in
the target module (and each null vector arises that way — ultimately comes from the
highest vector of one of the modules to the right in the sequence). Also, one has that
the irreducible Virasoro module

MNT2 = /V\(/Jirrw)? (5'85>

is the quotient of the Verma module by the submodule generated by the first null

vector (all subsequent null vectors are already in that submodule).
Lecture

206,
5.5.3 More on vertex operators 10/28/2022

Here are some other interesting properties of vertex operators in free scalar theory.

e The 2-point correlator of vertex operators is

[ o= i B =,
(Va(w)Vs(2)) = { 0 otherwise (5.86)
More generally, the n-point correlator of vertex operators is
H |Zj—2k|2ajak if oy + -+ ay =0,
(Var(21) -+ Vo, (20)) = § 1<i<hsn (5.87)
0 otherwise
e Vertex operators satisfy the OPE
Va(w)Vs(2) ~ |w — 2>V, 5(2) + (less singular terms). (5.88)
e One has the OPE N
10p(w)Va(z) ~ Va(z) + reg. (5.89)

All these properties follow from the explicit formula for the vertex operator ([5.43)) and Wick’s
lemma. For instance, let us prove (5.86). We apply Wick’s lemma to the product of two
vertex operators (as operators on H: For simplicity, assume |w| > |z|. We have

Al Sam ()(F)r e e

k>0 nom>k

# (k- fold Wick. contractions)
=3 3 T ) 8 (2 logw = 2D ) o)

k>0 n,m>k
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ap)* Q)" (B ~ o~
- Z (2 k'ﬁ) (log |w — z|)* Z (i)™ (@i5)™ L o(w)” ()™

n/lm/!
k>0 n’,m’'>0

— PeBloglwzl , i) iB0G) .||y — 2% . U, (w)Vs(2) :| (5.90)

The normally ordered product of vertex operators on the right can be written as e@ %)% (1 +
-+) where --- are normally ordered terms with zero VEV (vacuum expectation value).

The operator e @)% ghift the vacuum |vac) to a pseudovacuum |my = a + 3), so it has

expectation value zero unless a + 8 = 0, and in the latter case the VEV is 1. Thus,

1 ifa+p=0,

0  otherwise (5.91)

<Vac|17a(w)l7ﬁ(z)|vac> = Jw — 2|28 . {

This finishes the proof of (/5.86]).
Note that the computation ([5.90]) also implies the OPE ((5.88)):

RVa(w)Va(z) = [w =27+ Va(w)  Va(2) =
~——

expand around z

o w— 2)*(w — z)! =153 =~
= |w— 2> > ( L,; ) L POV, (2) Vi(2)
k>0 o

= |lw — 2PV s(2) + O(lw — 2|**PH1), (5.92)

~ ~

where we used the property : Vi(2)Va(z) = Va+p(2), obvious from the definition of the

vertex operator (5.43)).
The correlator ([5.87) is also obtained from Wick’s lemma, see [9, section 9.1.1].

The OPE (5.89) is obtained by a computation similar to ([5.78)) (actually simpler, as there
are only single Wick contractions).

5.6 Conformal Ward identity (via contour integration
trick)

In any CF'T on C one the following.

Theorem 5.6.1 (Conformal Ward identity). Fiz a collection of fields ®1,...,®, € V, a
collection of distinct points z1,...,z, € C, a conformal vector field v = u(w)dy, + u(w)dg
with uw(w)dy, a meromophic vector field on CP! with poles allowed only at the points z1, . . ., 2k
(in particular we are assuming that w = 0o is a reqular point of ud). Then one has

n

N (@1(21) - P (0) 0 Di(2) - B(z)) = 0 (5.93)

where p)(v) o ®y(2:) is the action of the vector field v on the field ®,, defined via )
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We denote the Lh.s. of by 0,(®1(21) -+ @, (2,)) — the action of the vector fields on
the correlator (via acting on individual fields). Thus, the Ward identity says that the action
of a conformal vector field on a correlator vanishes.

Note that (by complexification) we can treat u(w)d,, and u(w)dg in as independent
meromorphic and antimeromorphic vector fields (not complex conjugate to one another).

Proof. Consider the action of a meromorphic vector field u(w)d,, on a correlator. Let I' =
Co.r be a circle centered at the origin of a large radius R (in particular, large enough that it
encloses all z;’s). Then we have

1
- = Fdwu(w)<T(w)<I>1(zl) () ) =
~ 1
deformatio?of contour _% % dw u(w) <T(w>®1(21) o q)n(zn)>
k=1 Yk
= D @i) - p(00) 0 Bir) - Buz) = (@) - Buzn), (599)
— k=1
Here v, = C,, ,, is a circle around zj, of radius r; small enough that 7, does not enclose any
z; with ¢ # k. We used the fact that the correlator with 7'(w) is meromorphic in w, with
possible poles at w = z1,..., 2,, to deform the integration contour I' to vy U --- U 7,.
C r C
N @

Figure 5.2: Deformation of the integration contour I' (large circle) into a collection of small
circles v1,...,7, around punctures zi, ..., 2,.

It remains to show that the Lh.s. of (5.94) vanishes. For that, let us use Lemma m

1
—5 Fdwu(w)<T(w)<I>1(z1) . ..q;n(zn)> _
1 _ " ]
= 5 . dwulw)e T/ )21(1/7) - 24(1/7) H CAl
1 n
o T(y)®i(1/z1)--- Py (1 f2hi

o "Fmi o, WHOT@O/) 2 0/5) - T (6599
where u,(y) = (w)/w2 is regular at y = 0, since the vector field u(w)d,, was required to be

regular at w = oo; I is a circle around zero of small radius 1/R. The integrand in the r.h.s.
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of (5.95) is a meromorphic function in y and I does not enclose any poles (in particular
= 0 is a regular point), hence ([5.95|) vanishes. This proves that the r.h.s. of (5.94]) is zero.
The case of the action of an antimeromorphic vector field on a correlator is similar. [

Informally, the argument is: take the integral in the l.h.s. over a contour around
w = oo in CP'. One the one hand the integral vanishes, since integrand is holomorphic
around w = o0o. On the other hand, the contour can be deformed into a union of small
circles around field insertions z;, which yields 9§, of the correlator.

Figure 5.3: Deformation of the integration contour on CP.

Example 5.6.2. Let u(w)d,, = w_T‘?Z) — a meromorphic vector field with a simple pole at z.

Assume that ®4,...,®, are primary fields with conformal weights (h;, h;). Applying (5.93))
to the correlator (1(z9)®;(21) - - @, (2,)) 7] we obtain

0= (o (w__aio) 0 1(z0) By (1) - -+ Bp(20))+

£ (e (z) - o (2

w — 2o

) 0 Bp(2) - Brlzn))

expand at zj

((L-21)(20)®1(21) - - Pru(2n))+

+ 3 (@i(z1) - p (_Zk i SO+ (;::55281” - ((Z:i’;))3aw 4. > 0 ®p(z) - - D(20))
= ((L-21)(20) 1 (21) - - P (2n))+
T(20)
+ Y (Di(=1) <Zk i o & _1 o) Lo +Mi1—/> o Op(zk) -+ Pn(2n))

v
since ®y, is primary

1"We inserted 1(zg), which does not affect the correlator, since we required that the vector field only has
poles at the points where fields are inserted.
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1 i — L) Dp(z) - Prlzn))-

2k — 20 0z (2k — 20)?

= (T'(20)P1(21) - - - @n(zn)>+2<q>1(zl) e (
- (5.96)

Or, written another way:

(T(Zo)¢’1(21)"'<1>n(zn)>=< e 1 8)@@1(21)“"1%(%))- (5.97)

L (2 —20)°  2n— 20 O

Thus, the correlator of the stress-energy with a collection of primary fields is expressed as a
certain differential operator acting on the correlator of just the primary fields.

Example 5.6.3. If the correlator of primary fields ®4,...,®, is known then any correlator
of their descendants can be recovered as a certain differential operator acting on (®; - - - ®,,).
Such an expression is obtained from Ward identity by repeatedly applying meromorphic
vector fields of the form —(w — 2;) "9, to the correlator of the primary fields.

For instance applying the vector field ud = —(w — z;)"""9, (for some r > 1) to
(P1(21) - - Pp(2p)) we find

0 = (5u3<(1)1(21> L (I)n<zn)> =
= ((L-r®1)(21) Pa(22) - - - Pru(20))+

+ (Z(zk — 21)_7"+182k —(r—1)(z — zl)_’”hk> o(®Dy(21)Pa(22) - - Pp(z,)). (5.98)

k=2

[\

-~

-D
Thus, one has

(Lr®1)(21) P2(z2) -+ Pr(20)) = D{P1(21)P2(22) - - - Pr(20)) (5.99)
with D the differential operator appearing in . Here we were assuming that ®,,..., o,

are primary.

5.6.1 Constraints on correlators from global conformal symmetry

Let us explore the consequences of the Ward identity with v a conformal vector field
on CP! without singularities.

For ®,...,®, € V primary and v = ud + @0 a conformal vector field without singulari-
ties, the Ward identity reads

= @iz) (= )0, — ule)0s, — hedu(z) = Dulzg) ) Oz -+ @ulz0)

(5.100)
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The “finite” (or “integrated”) version is then as follows: for z — w(z) a holomorphic map
CP! — CP! (i.e., a Mobius transformation) one has

@) ) =11 (26)  (26) e Gao

=1

Put another way, one has an equality
(®1(21)(dz1)" (d2)" -+ By (20) (d2n) "™ (dZ,) ") =
= (@1 (wn)(dw))"™ (dy)" - - @y (wy) (dw,) "™ (i) ™) (5.102)
Using the notation (}5.75)),
®(2): =(2)(d2)"(dz)" €V KM, (5.103)

the n-point correlator of primary fields is a section of a certain line bundle on the open
configuration space of points on CP', invariant under the Mobius group (the latter being the
statement of the Ward identity):

n PSLy(C)
(@Amy~¢%@@>er(CACW%QQﬁ%%W) (5.104)

i=1
where m;: C,(CP') — CP! is the map selecting the i-th point of the n-tuple; Khihi i the
line bundle (5.76) on CP'.
Remark 5.6.4. If the vector field v is at most linear in coordinates, then (5.100]) holds without
assuming that fields ®q,...,®, are primary. At the level of “finite” conformal maps, the
identity (5.101)) holds for z +— w(z) translations, rotations and dilations, without assuming
that the fields are primary.
Lemma 5.6.5. If the OPFE of fields ®1, Py € V' contains the term
C
(w—z)*(w — 2)

with some field ® € V and C a constant, then the exponents in satisfy

h(®1) +h(Ps) = a+ h(D),  h(P1) + 1(P2) = & + h(D), (5.106)
where h, h are the conformal weights of the fields involved.

Proof. This is a consequence of and Remark : one considers the correlator
(D1 (w)Po(2)Ps(23) - - - Pp(2n)), with ®s,..., P, € V arbitrary test fields, and acts on it with
rotation and dilation around z. For simplicity, set z = 0 and consider the map z — Az with
A € C*. Then we have, in the asymptotics w — 0,

<<I>1()\w)<I>2(0)<I>3()\23) ce <I>n()\zn)>

D(2) (5.105)

[Ty A (D1 (w) D2 (0) 3 (23) - - P (20))

1=

OPE’ OPEH
o (R(0)5(Azy) - @ (Az) 4 - o Iy AP AP @(0) 3 25) - (2 + -
5.101 H H

OO LA T A h A (B(0) B3 (25) - -~ B (20)) + - O Ty A AP (D(0) Dy (25) - - By (20)) + - -

(5.107)
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Here - - - stands for the other terms in the OPE. Equality in the last row implies the claimed
relation on the OPE exponents ([5.1006)). O

5.6.1.1 One-point correlators.

Lemma 5.6.6. Let ® € V be a field (not necessarily primary) of conformal weight (h,h).

Then B
Cy ifh=h=0,

<¢>(2>>_{ 0  otherwise

where Cg is a constant function. (the value of the constant depends on ®).

(5.108)

Proof. Using the Ward identity with v a constant vector field ad, + a0y (with arbitrary
coefficients a,a € C), we find that the one-point correlator satisfies (a0, + ad;)(®(z)) = 0,
i.e., the correlator is a constant function. Applying the vector field v = b(w—2)0,,+b(w—2)dy
to the correlator, we see that it satisfies

(bh + bh)(®(2)) =0 (5.109)

for any b,b € C. Thus, the one-point correlator must vanish unless h = h = 0. O

5.6.1.2 Two-point correlators.
Lemma 5.6.7. Let ®,,®, € V be two fields of conformal weights (hi, h;), i = 1,2.

(a) One has
1
(21 — 22)h1+h2 (21 — 22)B1+7LQ

with Ce,e, Some constant depending on @, .

(P1(21)P2(22)) = Ca,0, (5.110)

(b) If &1, Py are primary, then the constant Cy, o, in vanishes unless one has
hi = hy, hy = hs. (5.111)
(c) For ®1,®y two fields satisfying condition on conformal weights, the constant
Co o, 10 is related to the hermitian inner product on'V (cf. Aziom (IV])) by
Co,3, = (T, Po)v. (5.112)
Proof. Part @ follows from for translations, rotations and dilations (we exploit

Remark [5.6.4)).
For (]ED, let us fix the two points at z; = 0 and 25 = 1 and act on the correlator with the

vector field ud,, = w(1 — w)d, — a holomorphic vector field on the entire CP'. The Ward
identity ([5.100]) in this case reads

0 = (=R @y (21)Bs(22)) + (®1(21)haBa(20)) = (ha — by ) (P (21)Bo(22)). (5.113)

Thus unless hy = hy, the 2-point correlator vanishes. Likewise, acting with the vector field
w(1 — w)0g, we find that unless hy = hy, the correlator also has to vanish.
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For (), we calculate the r.h.s. of (5.112)) exploiting the state-field correspondence:
(P71, Do)y = lim <§>T(w)|vac),</152(z)|vac)> = lim (vac|®}(w)" ®y(2)|vac)
w,z—0 H w,z—0

_ l ——2h1 72;1,1 (/ﬁ 1 _ &\)
(6Ks) wado W (vac|®1(1/w)Ps(z)|vac)

o Coree lim @™ (Lo — ) (1w — 2) e

= Cp,0,. (5.114)

Here in the last step we used the condition (5.111)). m
Example 5.6.8. In scalar field theory, the correlators
(06(w)00(2)) = —— WValw)Va(e)y = { o @20 (5.115)
w z)) = (w— 2 a(w)Vs(2)) = 0. o+ B .

(cf. (4.189), (5.86))) are examples of two-point correlators of primary fields (of weight (1,0)
in the first case and of weight (%, <) in the second case). They are clearly consistent with

202
the general ansatz (5.110)).

Example 5.6.9. The TT OPE (5.10) and the ansatz (5.110) imply that the two-point
correlator of the stress-energy tensor is

(T(w)T(2)) = (wcz—iy (5.116)
With this implies
(T,T)y = g (5.117)

Recall that for a unitary CFT the inner product on V is assumed to be positive definite.
This means that the central charge ¢ must be a positive numberﬁ

5.6.1.3 Three-point correlators of primary fields.
Lemma 5.6.10. For any three primary fields ®1,®2, @3 € V, with ®; of conformal weights
(hi, hi), one has

(®1(21)Pa(22)P3(23)) = Conay || (

1<i<j<3

1

2 — 2j)7%i (2 — ;)%

(5.118)

where Cy, 0,0, 05 a constant (depending on the fields but not on the points z1, 2, 23) and the
exponents are expressed in terms of conformal weights of the fields:

1 1 1

Qg = §(h1 +hy — h3), a3 = §(h1 +hy — ha), agy = §(h2 +hs — ha),
2 ) ) L . ) 1. ) B (5.119)

@12:§(h1+h2_h3)7 @13:§(h‘1+h3_h2)7 @23:§(h2+h3—h1)-

18 There are interesting examples of non-unitary CFTs (e.g. the so-called ghost system or bc system, see
Section [6.4) where the central charge can be negative. For instance, in the bc system one has ¢ = —26.

Lecture
27,
10/31/2022
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Proof #1 (idea). Take the unique Mdbius transformation f: CP' — CP! that maps points
21, 29,23 t0 0,1, 2. Then the Ward identity (5.101]) allows one to write the 3-point correlator

as
3

(@1(21) D (22)P3(25)) = [ [ (O (2))" (OF ()" - (@1(0)®1(1)P3(2) (5.120)
i=1 )4
with C' some constant. Computing explicitly the derivatives in the r.h.s., one obtains ((5.118)).
O
Let us introduce the notation

dzy Nd
= ﬁ € T(Cy(CPY), 11K ® mK) C Q2(Cy(CPY). (5.121)

1= 22

with 7; as in ((5.104]). We will call u the Szego kemel.ﬂ

Lemma 5.6.11. The Szegi kernel defined by (5.121) is the unique (up to normalization)
nowhere vanishing Mobius-invariant holomorphic 2-form on the configuration space of two
points on CP?.

Proof. To check that p is Mobius-invariant, we observe that it is invariant under (a) trans-

lations z + z + a, (b) rotation and dilation z — Az (since p is homogeneous of degree zero),
—dz) —dzg

(c) the map i: z — 1/z (indeed, i*u = (Zj_i)Q = p). These transformation generate all
Mobius transformations, thus pu is Mébius-invariant. The fact that [ 1s nowhere vanishing
is obvious if 21,29 # o0o. For z; = oo we switch for the point z; to the coordinate chart
w; = 1/2 near the point co € CP'. We have then p = —% — it is nonvanishing at
w; = 0. The case z9 = 0o is similar.

If v is some other Mdbius-invariant section of the line bundle 73 K ® w3 K over Cy(CP'),
we must have v = fu for some Mobius-invariant function f on Co(C'P'). Such a function has
to be constant, since any two points on CP! can be moved to 0, 1 by a Mdbius transformation
(and thus f(z1,29) = f(0,1) for any 2; # 2o € CP'). This proves uniqueness of y up to a
multiplicative constant. O]

2
%2

In terms of the Szego kernel, the three-point function of primary fields ([5.118)) admits an
equivalent expression:

(@1 (21)Po(22)P3(23)) = Co, 0,0, H (70550) % (7075 )9 (5.122)
1<i<5<3

where 7;;: C3(CP') — Co(CP') maps (21, 22, 23) — (2i, 2;) and we used the notation ([5.103).
The exponents are chosen in such a way that the r.h.s. of is the section of
the same line bundle over C3(CP") as the Lh.s., i.e., so that the power of dz; is the same on
both sides for i = 1,2, 3:

hi = g + a3, he = g + a3, hs = a3 + aos, (5.123)

and similarly for powers of dz;.

9Tn the standard terminology, it is the square root of u that is called the Szego kernel.
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Proof #2 of Lemma[5.0.10, Denote the r.h.s. of (5.122)) without the factor Cy, 4,5, by A.
The Lh.s. of (5.122) and A both are sections of the line bundle Q?_, 7 K" over C(CP?).

=1 "1
Moreover, both are Mobius invariant (the 11.h.s by Ward identity and A by Mobius-invariance
of Szego kernel) and A is nonvanishing. Therefore, one has

(Lhus. of (5.122)) = f- A (5.124)

where f is a Mdbius-invariant function on C3(CP'). Since Mobius group acts 3-transitively
on CP!, such a function has to be constant. O

5.6.1.4 Correlators of n > 4 primary fields

Lemma 5.6.12. For ®1,...,9, €V a collection of n > 4 primary fields, with ®; of confor-
mal dimension (h;, h;), one has

@1z Bu(z)) =[] @ @0 Faa, O hs). (5125)
1<i<j<n
where (1 is the Szegd kernel (5.121), \; = |21, 22 © 23, zix3] fori=1,...,n—23 are cross-ratios,
the exponents oj, tuj are

n

1 1 ) 1T -
aij:n—Q(hi+hj_n—1;hk)’ aij_m(hi+hj_

1
n—1

zn:hk) (5.126)

and Fy,..s, is some smooth function on C,_3(CP'\{0,1,00}) (it cannot be determined from
the global conformal symmetry).

Put another way, the result is that any Mobius-invariant section of the line bundle in
the r.h.s. of (5.104)) is built out of two types of “building blocks” — cross-ratios and Szego
kernels.

Proof. The proof is similar to the proof #2 of Lemma |5.6.10| above: the lL.h.s. of (5.125

and B: =[], <, (1) (m};/1)*9 are both M&bius-invariant sections of the line bundl

QR K hihi gver C,(CP!) and B is nonvanishing, therefore one has

(Lh.s. of (5.125) =g - B (5.127)

with ¢ a Mobius-invariant function on C,(CP'). Choosing a Mé&bius transformation that
maps (z1,...,2,) to (1,0,00,A1,..., Ay_3), we obtain

g(Zl, c ,Zn) = g(l,0,00,)\l, .. '7)\7173) =: .F()\l, .. .,)\n,g,). (5128)

]

20 Note that the exponents (5.126) are chosen in such a way that one has a;; = a;; and > i Qi = Ny
(and similarly for &;;), which implies that both sides of ((5.125) are sections of the same line bundle.
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5.7 Holomorphic fields, mode operators

5.7.1 Holomorphic fields

Definition 5.7.1. We call a (not necessarily primary) field ® € V' “holomorphic” if it satis-
fies 9® = 0. Then in particular, correlation functions of the form (®(z)®;(z;) - - ®,(z,)) are
holomorphic in z (for z distinct from zy, ..., z,). Similarly, we call ® € V' “antiholomorphic”
if it satisfies 0® = 0.

Lemma 5.7.2. Then if a field ® € V' in a unitary CFT has conformal weight of the form
(h,0) (i.e. h =0), then it is holomorphic. Similarly, if ® has conformal weight (0, h) then
it 1s antiholomorphic.

Proof. Consider a field ® € V' of conformal weight (h, h = 0). Computing the square of the
norm of L_;® we find

<Z,1<I>,Z,1<I>> - <<I>,Ilf,1<1>> - <<1>, (2L +Z,lfl)<1>> —2R(®,®) =0.  (5.129)

15.53))

Here we used that L;® = 0, since if it were nonzero it would be a field of conformal weight
(h,—1), and by Assumption () (implied by unitarity) negative conformal weights are
inadmissible. Since the hermitian form on V is positive definite (again by unitarity), this
implies

L 1®=0®=0, (5.130)
i.e., ® is a holomorphic field. O

For example, in any CFT, the stress-energy tensor T is a (2,0)-field and therefore is
holomorphic ] In the scalar field theory, d¢ is a (1,0)-field and thus is holomorphic.

5.7.2 Mode operators

Definition 5.7.3. Let = € V be a holomorphic field of conformal weight (h,0), with h € Z.
One defines the “mode operators” associated with = as the operators Z¢,) € End(V), with
n € Z, defined by

1
E®(2) = — jf duw(w — )" 1E () D (2) (5.131)
2 ).,
for any test field ® € V', with 7, the contour going around z. Put another way, operators
E(n) yield terms in the OPE of = with the test field:
- Em®(2)
neZ

For instance, the mode operators for the stress-energy tensor 7' are the Virasoro gen-
erators L,, cf. (5.51). Another example: mode operators for the identity field 1 are
1) = dpoidy.

The shift by A in the definition ([5.131)) is designed in such a way that the operator =,
shifts the conformal weight by (n,0).

21We already included holomorphicity of T as a part of axiomatics in (5.9)). Lemma m provides another
explanation why 7" should be holomorphic.
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5.7.3 The Lie algebra of mode operators.

Lemma 5.7.4. Assume that the CFT contains a collection of holomorphic fields {®;}icr
(with I an indexing set) of conformal weights (h;, 0) satisfying the OPFEs

k(%)
wak ) h+h —— + reg. (5.133)

kel

with fijx some constants (note that the exponents in the OPE are fixed by Lemma .
Then the mode operators of fields ®; satisfy the commutation relations

The proof is similar to the proof of Virasoro commutation relations from 7T OPE in

Section (.2.2

Remark 5.7.5. Similarly to Definition [5.7.3] one also has the “centered-at-zero version” of
mode operators: for Z € V' a holomorphic field, one has mode operators Z(,) acting on the
space of states ‘H defined by

1

n) = 3 dw w

n+h—1=
= 5.135
o (1) (5.135)

with vy a contour around zero, or equlvalently:

A~
—

(w) =3 ;ﬁ)h. (5.136)

neZ

(11

For example, in the scalar field theory, for the holomorphic field = = i0¢, the correspond-
ing mode operators acting on states are the creation/annihilation operators:

(100) (n) = G, (5.137)
as follows from (4.188]).

5.7.4 Ward identity associated with a holomorphic field.

Lemma 5.7.6. Assume that the CF'T contains a holomorphic = of conformal weight (h,0).
Then one has the corresponding Ward identity: for any collection of fields ®4,...,®, €
V' and meromorphic section f = f(w)(0,)"" of the line bundle K1~ over CP' with
singularities allowed at z1, ..., z,, one has

Y (@) pEO () 0 i) -+ Bu(20)) = 0 (5.138)

k=1

where the action of f on V, is given by the contour integral around z,

P2 (f)od(z): = dw f(w)E(w) &(2). (5.139)
\_\,_/

Ly (E(w) (dw)h)

27TZ
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The proof is completely analogous to the proof of the conformal Ward identity (5.93)).

Example 5.7.7. In the scalar field theory, take = = i0¢ and &1 =V,,,..., P, =V, vertex
operators, and set f = 1. Then the Ward identity ([5.138)) reads

(a1 4+ an) (Vo (21) - Vo, (20)) =0 (5.140)
where we used the OPE ((5.89)). This implies the result that the correlator of vertex operators
can be nonzero only if the sum of their charges a; vanishes (cf. (5.87)).

5.8 Transformation law for the stress-energy tensor

The action of a holomorphic vector field u(w)d,, on the stress-energy tensor is given by

z B 1 —_
PIWOIT() =~ 7{ duwu(w)T (w)T(2) =
1

=—— ¢ dw(u(z)+ (w— 2)ou(z) + %(w — 2)20%u(2) + é(w — 2)*Pu(z) + -+ )

2mi J, < c/2 N 27 (2) +8T<ZZ) >

(w—2)t " (w—2)

— —u(2)AT(2) — 20u(2)T(2) — 1—623%(2) (5.141)

If not for the last term, this would have been the transformation law of a (2, 0)-primary field
(cf. ) The last term in ([5.141)) is a certain correction due to the projective property of
CFT (a manifestation of conformal anomaly). We note that the action of an antiholomorphic
vector field on T is zero,
P (ad)T(z) =0, (5.142)
since TT OPE is regular.
The calculation expresses the infinitesimal transformation of 7" under a conformal

vector field (seen as an infinitesimal conformal map). Its counterpart for a “finite” conformal
(holomorphic) transformation z — w(z) is:

ow\ > c
T(:) = Ton(w) = (52 (o) = 5500, (5.143)
where , L <o
dw 3 (0w
S(w, z): = 9w 2 (@w) (5.144)

is the so-called Schwarzian derivative of the holomorphic map f: z +— w(z) (we will also use
the notation S(f) for the Schwarzian derivative).
Here are some properties of the Schwarzian derivative:

(a) S vanishes on Mébius transformations,



CHAPTER 5. CFT ON C: BPZ AXIOMATIC PICTURE 190

(b) S satisfies a chain-like rule

S(fog)=(S(f)og)-(g")*+S(g). (5.145)

In particular, combining with @, we have that for f a Mobius transformation and g
any holomorphic map, S(f o g) = S(g).

(c) S can be restricted to smooth maps S' — S*. This restriction can be understood as a
degree 1 group cocycle of diffeomorphisms of the circle with coefficients in the module
of densities of weight 2:

S € H'(Diff(S"), Dens®(S%)). (5.146)
This is ultimately a consequence of the “chain rule” ((5.145)).

As in Section (5.5.1)), the transformation law ([5.143)) can either be understood in “active
way” (moving points on the surface ) or “passive way” (action of a coordinate transforma-
tion).

Example 5.8.1. Consider w = log(z) as a holomorphic map from the punctured plane to

the cylinder
C\{0} — C/2miz

z = w=log(z) (5.147)
From ([5.144)) one finds
1
In particular, (5.143)) becomes
c
Ty (2) = Ty (w) = 2T (2) — YR (5.149)

In particular, on C one has (T'(z))plane = 0 (this is a consequence of e.g. Lemma [5.6.6)).
Therefore, on the cylinder one has

C

(T'(w))eytinder = o1 (5.150)

Thus, the vacuum energy on the cylinder should be —45¢ instead of zero. In physics this

effect is known as the Casimir energy associated with periodic boundary conditions.
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More free CFT's

6.1 Free scalar field with values in S!

An important deficiency of the free scalar field, our main (and only) example of a CFT so far,
is that the evolution operator it assigns to a cylinder (or annulus) is not trace-class, which
leads to the genus one partition function being ill-defined. This is remedied if we consider
free scalar field with values in a circle (instead of values in R). This model is also known as
“free boson compactified on S'” (compactification refers to the target) or “compactified free
boson.”

6.1.1 Classical theory

We will introduce the model and quickly retrace our steps in Sections [4.2] [4.3.1], pointing
out where the change of target from R to S! changes the story.
Classically, the model on a Minkowski cylinder ¥ = R x S! is defined by the action

functional
~faf dog«atqs)? - (0,67) (6.1

(the same formula as ) where ¢ now is a smooth map ¥ — Sf, ., where S . =
R/2mrZ is a circle of a fixed radius r. Such a maps ¢ fall into homotopy classes, classified
by a winding number m € Z: a map with winding m satisfies ¢(t, o + 27) = ¢(t, 0) + 27rm.
We included the conventional normalization k = ﬁ in ‘)

Thus, the space of fields splits as a disjoint union of spaces of maps to Stlarget with a given
winding number:

F = Map E Stlarget |_| Mapm(z Stlarget) (62)

maps with wmdlng number m

One can then consider this model as classical mechanics with target

X = |_| Mapm Sl Stlarget) (63)

meZ

191
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with Lagrangian L as in (6.1). A field ¢ € X,,, with winding m can be expanded in Fourier
modes, plus a shift linear in ¥, accounting for the winding;:

$(o) =mro+ 3 g™ (6.4)

Transitioning to the Hamiltonian formalism (by Legendre transform), we have the phase
space

o=T"X=| | T°X, (6.5)
meZ q)m

parameterized in m-th sector by the field ¢(o) and the Darboux-conjugate “momentum”
m(0) = 5= > ez ™€ . The modes satisfy the standard Poisson brackets (4.102). The
Hamiltonian on ®,, in terms of Fourier modes is

=t () 4 Y + ianbnqﬁn). (6.6)
n#0

Note that this differs from the Hamiltonian (4.105)) by a shift (%)2 which arises from the
o-linear term in ([6.4)).

6.1.2 Canonical quantization

We proceed with canonical quantization of the theory. The splitting (6.5]) of the phase space
means that the space of states splits as a direct sum

H =D Hm, (6.7)

meZ

where H ., consists of states with winding number m.
Let m be the operator on H which has eigenvalue m on H,,. The quantum hamiltonian
is

2
1 i
H =75+ (%) + %%(%% + 1 0u0n). (6.8)
Similarly to Section [£.2.4] the Hamiltonian splits into

e A collection of harmonic oscillators (one for each n # 0, with frequency w,, = |n|). For
the oscillators we introduce creation/annihilation operators @, @,, n # 0, exactly as

before (4.124]); they satisfy the usual commutation relations (4.125|).

e A free particle of mass j = 1 with values in S} (described by g/go, To)-

2 target

e A shift by a constant depending on winding, (%)2

For a free quantum particle on S} the space of states in Schrodinger representation is

target
L?(SE14er) (the space of 27r-periodic L? functions ¥(¢o)) with ¢g acting by multiplication
o) — dot(do) and Ty = —i-2 the derivation. Two important points here (in comparison
V(o) = Pt (o) 300 p p p

with Section [4.2.3)):
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e The eigenvectors of 7y are functions ¥e(¢y) = e % with e € Z, the corresponding
eigenvalue is . In particular, the eigenvalue spectrum of 7 is discrete:

{S}eez B %Z’ (6.9)

unlike the case of a free particle on R where the spectrum of momentum operator is R.

e “Operator” qAﬁg is multi-valued (defined modulo 27rZ-1d). In particular it is not a well-

defined operator in the usual sense, though exponentials v": = e’r 260 are well-defined
operators for n € Z.E| They satisfy the commutation relation

(7o, 0"] = gﬁﬂ (6.10)

Retracing our steps with the scalar field, we proceed with the canonical quantization,
construct the Heisenberg field operator, switch to Euclidean cylinder by Wick rotation and
map to C\{0} by the exponential map, arriving at the Heisenberg field operator

$(2) = g — Z% 108; — —implog(2z) + Z 4G, ") (6.11)
n#O
As we discussed above, Ty has eigenvalue spectrum %Z. So, we introduce the operator
e: = rmy which has integer eigenvalues. In terms of this new notation, the field operator
(6.11) is
6(2) = do — z— log e z— € og(z2) + Z 4T (6.12)
n#O

The derivatives of the field operator are

i06(2) = Guz "' i0p(z) =Y @z " (6.13)

neZ nez

(same formulae as (4.188])), where we defined
~ e m ~ e m
do: =, ap: _ £ (6.14)
The stress-energy tensor is given by the same formula as for the scalar field valued in R,
—%Gqﬁ@gb : (the normal ordering is defined as usual, putting the operator a>g, a>o to the

right). Thus, the Virasoro generators are again given by (/5.22)), (5.23) and the Hamiltonian
and total momentum operators are given by (/5.25):

- (6.15)
P:LO—LOZ—Z:ana_n—ana_n:

In 7™, the superscript can be read either as index or as a power (of the operator v = v!).

Lecture
28,
11/2/2022
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6.1.3 Space of states

The space of states of the scalar field with values in SL ... (the Fock space) is

target
1<m <o <y,
H = Spanc{a_m G T T e, m>‘ 1<y < <, } (6.16)
(e,m) € Z?

The vector |e,m) € H (“pseudovacuum”) is annihilated by the annihilation operators @,
a0 and is an eigenvector of @y, ay:

~ € mr ~ e mr
Gole, m) = (; + 7) le,m),  Tole,m) = (; - 7) e, m) (6.17)
—_——— —
Ole,m Qem

where we introduced the notations aem, @em for the respective eigenvalues.

Another way to express the the space of states is as a direct sum of Verma modules of the
Lie algebra Heis @ Heis (the direct sum of two Heisenberg Lie algebras ) with highest
weights (eigenvalues of @, @) given by pairs (ae.m, Ge,m):

H — @ VHeis@ﬁ (618)

(ae,m7ae,m)
(e,m)eZ?

e,m

Note that the main distinction from the case of the usual free scalar theory is
the structure of pseudovacua: previously we had a continuum family of pseudovacua |m)
characterized by the value of the zero-mode momentum 7y € R, whereas now we have a
lattice of pseudovacua |e, m) characterized by the (integer) zero-mode momentum e and the
winding number mE|

The energy and total momentum of pseudovacua are found from :

Alem) = (a2 +aZulecm = ( (5) "+ ()7 e,

2
D 1 2 —2
Ple,m) = 5 (acm — Gem)le, m) = emle, m)

(6.19)

Note that while the eigenvalue of His a non-negative real number, the eigenvalue of Pis
always an integer. Also note that the only pseudovacuum with zero energy (eigenvalue of
H ) is [e = 0,m = 0). It also has zero total momentum and we identify this particular state
as the “true” (as opposed to “pseudo-") vacuum, |vac): = |0,0)

As in the ordinary free scalar theory, we have that

e applying a_, to a state changes energy-momentum by (n,n) (creates a “left-mover”),

e applying a_, to a state changes energy-momentum by (n, —n) (creates a “right-mover”),

where we assume n > 0. R
The pseudovacuum |e, m) is also an eigenvector of the Virasoro generators Lo, Lo with

~ 1 = 1
Lole,m) = Eaim le,m), Lole,m) = Edim le, m). (6.20)
e o
e,m he,m

2 The notations e, m correspond to “electric” and “magnetic” number.
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6.1.4 Vertex operators

The counterpart of pseudovacua |e, m) via the field-state correspondence are the vertex op-
erators Ve m € V, constructed somewhat differently than in the non-compactified scalar field

theory.
Let us introduce an “operator” 1 on H, defined modulo 27Z-1d (similarly to the operator
gbo) satisfying (i, m] = ¢ and commuting with @, a;,,go, e. gzﬁo Then for k € Z the exponential
e’ is a well-defined operator on H satisfying
[, e*F] = ke*®, (6.21)
cf. (6.10), i.e., the operator
ik . —
L o Jtem _ o Hemei (6.22)
Ay Aoy G, - Aoy l€,M) = Ay - Ay G g, - Gp, |6, m + k)

shifts the magnetic (or winding) number m by k]| Similarly, due to (6.10)), the operator
el®o/™ ghifts the electric number e by [:

ilo /7 .
61/ ¢O/T . He’m _> He—l—l,m

~

G G Ton, - Fomile,m) = G o Gom@om, - G |e + 1m)

(6.23)

Further, let us introduce the following two multivalued operators (the “holomorphic/antiholomorphic
parts of ¢”):
X(z) = §¢0 + g —iag log z + Z i/oz\nz_", X(z) = —Qf)o R iag log z + Z %Ené_”. (6.24)

n r
n#£0 n#0

In particular, one has 5(2) = X(2) + X(2).

Definition 6.1.1. The vertex operator V., in the compactified free scalar field CFT is
defined by

XA/e’m(z): — ; ¢itemX(2) pidemX(2) (6.25)

Here the parameters e, m are integers and cem, Qe m are as in ((6.17)).

The normal ordering puts operators 620,320 to the right and operators g, a<o, ggg, 11 to
the left. Written more explicitly, the vertex operator is

‘Zm(z) _ eieao/reimﬁef S co L(aem@nz "t aemanz ™).

e =Y ns0 2 (0emnz” "+ Qemanz ") ,0e,mdo log z+aemao log Z. (6.26)

3Instead of introducing the operator fi, one can treat (6.22)) as the definition of a family of operators
on H, formally denoted e**#. From this viewpoint, i is a purely notational device, only meaningful in the
combination e*#.
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Somewhat non-obviously, this is a single-valued operator: the multi-valued operators &5\0, m
are only present in single-valued exponential expressions; the last exponential is single valued
when acting on He n since one has

Qe mOle! m' — Ole mQle/ m! = em’ + me' € Z. (627)

Performing computations similar to those of Section [5.3.1], [5.5.2] [5.5.3 one proves the
following properties of vertex operators:

e V. m is a primary field of conformal weight

hem:l<g+ﬂ>2a Be,m:

~+ (-7 (6.28)

— same hem, hem as in ([6.20)).

e One has

ll_rf(l) Ve7m(z)lvac) = |e> m>7 (629)

i.e., as claimed in the beginning of this section, the state corresponding to the vertex
operator Ve, by the field-state correspondence is the pseudovacuum |e,m). More
generally, one has

18”1 gb 28"’“ gb R =~

em(2) 1 |vac) =@y, -G, 0_pn, - - - Gn, e, m), (6.30)

i.e., the fields corresponding to basis states of H are the vertex operators multiplied
by differential polynomials in ¢.

e The correlator of n vertex operators is

[T (z = z)osomessmi(z — z)%msm it Y0 e =30 m =0,
ek,mk Zk:
k=1

1<i<j<n

::]:

0, otherwise
(6.31)
Despite the real exponents appearing here, the entire expression on the right is in fact
a single-valued function on C,(CP'), due to . For instance, for n = 2 one has

w—z

Vi (0)V-m(2)) = w — 2 2()+(%)) (w - f) (6.32)

— note that the first exponent on the right is real while the second is an integer, making
the expression single-valued.
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6.1.5 Torus partition function in a general CFT

Consider the torus T obtained from the annulus {z € C | i, < |2| < 7out} by identifying
the inner and outer circles via the identification ri,e’” ~ rqe”. Equivalently, we map the
annulus by the map z — ¢ = log z to the cylinder

cyl={C=t+ioceC/2miZ | logry, <t <logrou} (6.33)

and identify the boundary circles by log ry, + i0 ~ log 7oyt + 70. This yields a complex torus
with modular parameter

r= T (6.34)
2m

with T' = log e

.~ glue boundaries

cylinder
log _ |27
.7 1 T \
annulus ( T /;
N ~ . _ glue boundaries - - -~ ’

Figure 6.1: Torus obtained from annulus or cylinder by identifying the boundary circles.

The evolution operator for the cylinder of Euclidean length T is
Z(cyly) = e TH = ¢~T(Lo+Lo) (6.35)

The partition function for the torus is the trace of this evolution operator over the space of
states,

Z(T,) = trye T = try e2mim(LotLo) (6.36)
with 7 the modular parameter (6.34)).

6.1.5.1 Gluing with a twist by angle 6.

More generally, one can glue the inner and outer boundary circles of the annulus with a twist
by angle 0: 7i,e ~ roue’®t?, or equivalently identify the boundary circles of the cylinder
as log 7y + i0 ~ log roy + i(0 + 0). Denote cyly, the mapping cylinder of length T
(understood as a cobordism S — S1), associated with mapping p,: S* — ST rotating the
circle by angle 6. Then one has

Z(Cle70> — efTﬁfiQﬁ — eQwiTzof%ri?fo — qLOq—LQ (637)

Lecture
29,
11/4/2022
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with P the total momentum operator. In ([6.37) we denoted
q=ermr (6.38)

and ¢ is its complex conjugate; note that since Im(7) > 0, one has |g| < 1. We used the

expressions ([5.25]) for the total energy /momentum as EO + L.
This yields a complex torus with modular parameter 7 = 5-(7+if)) and the corresponding
partition function is

Z(T,) = traZ(cylyy) = tragg™ (6.39)

6.1.5.2 Correction due to central charge.

In fact, one needs to introduce a correction in ((6.39)):

Z(T;) = truZ(cylyy) = trygto gl (6.40)

with (¢, ¢) the holomorphic/antiholomorphic central charge of the CFT (one also needs sim-
ilar correction in (6.37))). The reason for this correction can be explained in several ways:

(i) The correction in ([6.40]) arises from the Schwarzian derivative correction in the trans-
formation law of the stress-energy tensor (5.143)), (5.149)), which implies
~ 1 A c+c¢ ~ = c+c
b g (N0 + Ted0) = Fipne— " = Tyt o~ S5 (6.41)

cyl —
27 t=const

and similarly for the total momentum operator; Virasoro generators Zo, L are under-
stood as pertaining to the plane and to the radial quantization picture (thus, when
mapping to the cylinder by the map z — (¢ = log(z) they receive the Schwarzian
correction).

(ii) Expression (6.40) is the partition function for a torus with flat metric (obtained from
the flat metric on the cylinder), whereas is the partition function for the torus
with a singular metric obtained by taking the flat annulus and identifying the two
boundary circles (the glued surface has a metric which is flat almost everywhere, except
at the circle where the gluing was performed — there the metric is singular, since
e.g. the identified circles had different lengths). Conformal anomaly means that the
partition function has a dependence on the metric within the conformal class (1.50]).
Thus, the factor ¢~ 2ig 21 in is the explonential of the Liouville action in
corresponding to the change from the singular metric on T coming from the annulus to
the flat metric.

(iii) Pragmatic viewpoint: the partition function for the torus is expected to be modular
invariant, in particular, it should be invariant under 7 —l. As we will see in the
example of the free scalar field with values in S* expressmn - has this property,
while ) does not. This is connected with 1tem above: flat tori with modular
parameters 7 and —1/7 are connected by a constant Weyl transformation, for which
the Liouville action in ([1.50)) is zero. For the singular metric coming from the annulus,
this is not true: the metric tori T, T_;,; have “scars” — singular loci of the metric —

and they are not intertwined by the conformal map T, — T_;/;.
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6.1.6 Torus partition function for the free scalar field with values
in S?

In our case the central charge is ¢ = ¢ = 1 and the formula (6.40|) becomes

Z(r) = tryg™ i gh i =

= > > Jremt i ghen Mg (6.42)

(e,m)ez2 1<n1 <+ <nypy 1<A1 <<

For brevity we denote the partition function of the torus with modular parameter 7 simply as

Z(1). Here we used that the operators Zo, Ly are diagonal in the basis (6.16)); the exponents
in the r.h.s. of 1} are the corresponding eigenvalues shifted by —i; hem, hem are the
conformal weights of the pseudovacua (6.20)), (6.28]). Continuing the computation, we have

Z(r)= > ¢ q@)= Y Pk)P()¢"T, (6.43)

(e,m)ez2 k>0

where P(k) is the number of partitions of k, i.e., the number of nondecreasing sequences
1 <ny <---n, such that k = ny +--- + n,, for some r > 1. For instance, one has

A=1+1+1+1
=14+1+2

— 242 (6.44)
—1+3

:4’

thus, P(4) = 5. In , the left factor is the sum over pseudovacua, the middle factor is the
central charge correction, and the right factor accounts for the contributions of Heis & Heis-
descendants of the pseudovacuum (and P(k)P(l) is the count of descendants of conformal
weight (hem + &, hem + 1))

The generating function for the numbers of partitions is a well-studied object of combi-
natorics,

k_ 1 _ g7
2O o o (0:8)

where

n(r)=q= [J(1—q) (6.46)

n>1

is the Dedekind eta-function which satisfies the modular equivariance propertiesﬂ

nir+1) = ™2y(r), (6.47)
oL
n(=1/7) = (=ir)>n(r) (6.48)
4Property is obvious from the definition . Property follows from the Euler’s identity

352—j

[I,5:(1=¢") =3 ;c2(~=1)7¢" > by applying Poisson summation formula (cf. footnote .
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Finally, the partition function ([6.43]) can be written in the form
1 1(e mr\2 1(e_ mr\2
Z(7) = _ qi(#T) qi(?‘?) (6.49)
GG

When we are interested in the dependence of the partition function on the radius of the
target circle, we will write it as a function of two arguments Z (1, 7).

Lemma 6.1.2 (Properties of Z(7)). The torus partition function satisfies the follow-
g properties.

(a) Modular invariance:

Z(t+1) = Z(1), (6.50
Z(=1/1) = Z(7) (6.51)
(b) “T-duality”:
Z(r,r)=Z(1,2/r) (6.52)
(¢) Large-radius asymptotics
Z(r,r) ~ r ! (6.53)

ree o /Im(7) n(7)n(7)

Modular invariance , means that the genus one partition function belongs
to C(I1 )P SL2(2) je.. descends to a smooth function on the moduli space of complex tori
M — which is the general feature expected in any CFT, cf. Section [1.6.1]

“T-duality” (or “target-space duality”) is a term originating in string theory. T-duality
means that there is an equivalence of sigma-models with target a circle of radius r and target
a circle of radius 2/r.

Property means in particular that if we think of the scalar field with target R as
a limit of the scalar field with target S* of radius r, as r — 0o, we are seeing explicitly
how the partition function diverges (as the volume of the target). This gives us a better
understanding of the claim made in the very beginning of Section that the genus one
partition function of the R-valued free scalar theory diverges.

Proof. Ttem @) is proven by Poisson summation in e, m.
For the item @, we notice that the exponents in ((6.49)) satisfy

Pom(T) = hime(2/7), hem(T) = hme(2/7) (6.54)

where we indicate explicitly the dependence of the exponents (conformal weights of the pseu-
dovacuum |e, m)) on r. From this observation, the equality is obvious. (Interestingly,
the inversion of the target radius r — 2/r is compensated by the interchange of the electric
and magnetic numbers (e, m) — (m,e).)

add the
detailed
compu-
tation?
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For the item one applies Poisson summation just in the variable e to (6.49): one has

1 _x2 2 (ptmRe(r)? | 2
Z(rr) = o Y e (i) (6.55)
n(r)n(7) o<, \/Im(r)

where we denoted p the dual variable to e (w.r.t. Poisson summation). In the sum (6.55)),
the asymptotics as r — oo is given by the term p = m = 0 (and it is the r.h.s. of (6.53)),
while the sum of all other terms is exponentially suppressed — it behaves as O(re~4"") with

some constant A > 0.
O

As mentioned above, T-duality extends to an equivalence of free boson CFTs
corresponding to target radii r and 2/r. In particular, one has an isomorphism of the
respective spaces of states:

Hr = 7-[2/7'
Wle,m), — W|m, e)y,

where W is any word in creation operators.

(6.56)

6.1.7 Path integral approach to the torus partition of the free
scalar field with values in S*
In this part we follow K. Gawedzki [16], we refer the reader to this source for more details.

In the path integral approach, the partition function of the torus ¥ = T, is represented
by the integral over smooth maps ¢: ¥ — S|,

arget:
ZP(%) = / D e 59 (6.57)
Map(X,S1)
with S(¢) the classical (Euclidean) action of the model,
1 1
56) = = [ donsdo = o [ dudol(00 + (0.0 (6.59)
8 D) 8 N

Note that we have moMap(%, S%,,,) =~ Z*. More specifically, maps ¢ fall into classes
of homotopy equivalent maps, according to the pair of winding numbers (ny,ny) € Z? of ¢

around two closed curves ;5 C 3 — the generators of m(3).

t

27Im() ==

Figure 6.2: Torus with modular parameter 7 with two generators of .
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Thus, the mapping space breaks into connected components

Map(z Starget) = |_| Ma’pn1 ng(E Starget) (659)

(n1,n2)€22
where Map,,, ,,, consists of maps with prescribed winding numbers n, ny. Therefore, we can

rewrite (6.57)) as
()= ) / D¢ e 5@ (6.60)
M

1
n1 n2 622 a‘pnl ”2 2 S

Notice that for each pair (nj,ny) € Z there exists a unique (up to a constant shift)
solution of the Euler-Lagrange equation A¢ = 0 with winding numbers (ny, ny). Explicitly
it can be represented by the function

6 (o) =1 <n10 + %ETR)G(T):S) . (6.61)

Note that it is a linear function in coordinates o, t on the torus. The classical action evaluated
on the classical solution (6.61]) is

7r? |ng — Ty |2

S(¢5 n,) = 6.62
( nl,ng) 2 Im(T) ( )

A general smooth map ¢ € Map,, ,,, (%, Stlarget) can be uniquely decomposed as
b= o+ P, + ¢, (6.63)

where

e ¢ is a constant function valued in S the constant shift of a classical solution),

arget (

o ¢f ., is the “standard” classical solution with given winding numbers (6.61)),

e the “fluctuation” 5 is a smooth function with no winding (i.e. lifting to a function
¥, — R) and satisfying the condition

/ dtdod =0 (6.64)
Y

(this condition is imposed to have uniqueness of the decomposition (6.63))). We denote
the space of maps ¢: ¥ — R satisfying (6.64) by Map'(2,R) (it is the orthogonal
complement of constant maps).

Note that the first two terms in (6.63)) together give the general classical solution with given
winding numbers. Substituting the decomposition ([6.63)) into the action (6.58)), we obtain

S(6) = S5, ,) + S(0). (6.65)
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Thus, the path integral is

ZP(%) = Z doo / Do o 5(9) . o=5(85% ny) (6.66)
(n1,n2)€z2” Stlarget N Map’ (2,R) )
2 (det’ Ax)~2

The integral over ¢y € S{,,,., here is the integral over the space of classical solutions. The
Gaussian functional integral in the middle is formally evaluated to the determinant-prime
(i.e. excluding the zero eigenvalue) of the Laplacian on ¥ raised to the power —%, cf.
Section [£.5.3] This determinant can be calculated explicitly in the sense of zeta-function
regularization (this is a rather nontrivial computation for which we refer the reader again to
Gawedzki [16]), yielding

det’ Ay, = (2m)*Im(7) [n(7)|*, (6.67)
where the Dedekind eta-function makes an appearance. Thus, continuing , we have

_ w2 Ing—7nq ‘2

2 Im(7) (668)

1
ZP(%) = 27r e
B= 2 A T
This expression coincides with result of the operator formalism in the form (6.55))!

To see this coincidence, we identify n; with m (which is not surprising, since m was the
winding number along the fixed-time circle) and ny with p (i.e., the second winding number
gets identified with the Poisson-dual variable to e — the zero-mode momentum).

Ultimately, we obtained a check that the operator formalism of CFT (relying on the
study of the space of states) and the path integral formalism yield the same answer for the
genus one partition function.

We remark that in the path integral formalism, the modular invariance of the torus parti-
tion function is manifest (unlike the operator formalism where it is a nontrivial consequence
of Poisson summation). Indeed, the values of the action evaluated on classical solutions
on the tori ¥ = T, and ¥’ = T_;,; are the same (if one identifies the winding numbers
as (ny,n2) <> (ng,—ny)). Likewise, the eigenvalue spectra of Laplacians on on X, ¥’ are
the same, and hence the determinants are the same. Put another way, in the path inte-
gral formalism modular invariance is manifest, because the classical (Lagrangian) theory is
conformally invariant

6.2 Aside: conformal blocks

In a general CFT on a surface ¥ (e.g. ¥ = C or CP'), for a collection of fields ®1,...,®, € V
one is interested in writing the correlator as a sum of products of holomorphic and antiholo-
morphic functions

(®1(21) - Pulzn)) = D Fplz,o z)Fy(7, . 2). (6.69)
pEI(®1,...,D,)

Here

5In this form this argument is a bit formal and implicitly assumes conformal invariance of the path integral
measure.

Lecture
30,
11/7/2022
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e The correlator in the L.h.s. is a smooth single-valued function on the open configuration
space C, ().

e In the r.h.s. the index p ranges over some set I(®q,...,P,) depending on the input
fields (in nice cases it is a finite set, but generally does not have to be).

o [, F/; are respectively holomorphic and antiholomorphic (possibly multivalued@ func-
tions on C,(X); they are called the “conformal blocks” for the correlator in the Lh.s.

of (6.69).

Similarly, the genus one partition function can be written as

Z(r) = Y xo(M)x)(7) (6.70)

p€l0

with x,, X/, — the “conformal blocks for the torus partition function” — respectively holomor-
phic and antiholomorphic multivalued functions on the moduli space M .

6.2.1 Chiral (holomorphic) free boson with values in S!

Consider the version of the compactified free boson theory where one only considers one copy
of the Heisenberg algebra (generated by a,, but not a,), and the space of states is the sum
of Verma modules for this single Heisenberg algebra:

gychiral _ @ Vgﬁis _ Span{a,kT c e O_g, |e, m) ‘ (e,m)€Z? 1<k < - < kr} (6.71)

(e,m)eZ?
In this model, one can consider the chiral vertex operator
‘A/eflrﬁral(z) —: gi%emX(2) . (6.72)

with X(z) as in (6.24])) — the “holomorphic part” of the field operator (E(z) The expression
(6.72) should be thought of as the “holomorphic half” of the vertex operator (6.25) of the
full (non-chiral) theory.
From Wick’s lemma one obtains correlators
n chiral_ \\ _ H1§i<j§n(zi — zj>aeimiae]‘mj7 if Z e, = Z m; = 0,
<11 Veum: (1)) { 0, otherwise (6.73)
This expression is holomorphic and multivalued (has monodromies) on C,,(C). If the radius
of the target circle satisfies 72> € Q, then the monodromies are rational and the correlator
lifts to as a single-valued function on a finite-degree covering space of C,(C).

We remark that multivaluedness 9f correlators is linked to the fact that the conformal
weights of chiral vertex operators (h, h) = (302 ,,0) fail the assumption (5.65)). In the chiral

2%em>

6 In particular, F 0, I f; are allowed to have monodromy as one puncture goes around another one. Put
another way, Fj,F/ l') are single-valued holomorphic/antiholomorphic functions on some covering space of
Cn(2).
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theory the antiholomorphic stress-energy tensor vanishes identically 7 = 0 and any field has
h =0, so V and H are graded just by the holomorphic conformal weight h.

The correlator of vertex operators in the full compactified free boson theory fac-
torizes as the correlator of holomorphic chiral vertex operators times the correlator of
(analogous) antiholomorphic chiral vertex operators{|

(T vasm =) = QL vem ) - QT Vem ) (6.74)
i=1 i=1 j
Comparing with , we can say that correlators of holomorphic/antiholmorphic chiral
vertex operators in the respective chiral compactified free boson theories yield the conformal
blocks for the correlator of vertex operators in the full (non-chiral) compactified free boson
theory. In particular, in this example the indexing set I of is a single-element set.
The genus one partition function of the compactified free boson admits the repre-
sentation (6.70) with I7 ¢ a finite set if and only if the target radius satisfies 7? € Q.
For example, for r = v/2 (the so-called self-dual radius, since it is a stationary point of

T-duality (6.52)), one has
Z(r) = (L ;q’“> (%;ql) + (% Zl q’“2> (L > q”) (6.75)

n(r) i n(7) =

2 2

Le., here I o is a 2-element set: one has two holomorphic and two antiholomorphic conformal

blocks.

6.3 Free fermion

6.3.1 Classical Lagrangian theory on a surface

As a Lagrangian field theory, 2d free fermion on a Riemannian surface Y is defined by the
classical action

7 _ - 1 _ _
5= /E R /E P () + FOD) (6.76)

Here 8 = dz 0, 8 = dzd are the holomorphic/antiholomorphic Dolbeault differentials, z, z
refers to a local complex coordinate on ¥ and d?z = %dz A dZz is the coordinate area element.
The fields of the model are fermions (spinors)f]

P =(d2)? e T(S,K92), o =(dz)? e TS, K?). (6.77)
Here K, K are the line bundles (T%°)*Y, (T%1)*Y. Two important points:

e To define the square root of these line bundles, one needs to choose the sign of the root
of the transition function. This choice of sign is known as the spin structure on -

"In the antiholomorphic chiral theory, one only retains the creation/annihilation operators 571, all fields
have conformal weight of the form (0, ) and T'= 0. Correlators are antiholomorphic and multivalued.

80ne understands 1,1 as two independent fields.

9Put another way, it is a choice of a consistent set of periodicity /antiperiodicity conditions for the fermion
field 1,1, as one traverses a closed curve v on X.
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e One treats the values of the fields 1,4 as anticommuting (or “odd” or “Grassmann”)
variables.

Thus, the space of fields of the model is (purely odd) vector superspace

1 —— Ll
Fs =PI 0K o IK,?)) (6.78)

where the sum is over the spin structures s on X{//II is the parity reversal symbol, implying
that Fy is the space of sections of a supervector bundle with purely odd fiber.
The Euler-Lagrange equation for the action reads

oY =0, 8P =0, (6.79)
or equivalently, in a local complex coordinate,
oY =0, OY=0. (6.80)

Remark 6.3.1. The system described by the action functional , with fields v, v is called
the free Majorana fermion One can also consider the system with only field ¢ (or only ),
with the action Sera = 5= [y, d*z 10t (respectively, 5= [i. d?2¢0v) — it is called the chiral
or Weyl fermion. When one wants to distinguish between the chiral fermion 1 and the chiral
fermion 1), they are called respectively left- and right-chiral fermions.

6.3.2 Hamiltonian picture

As a Hamiltonian theory on a cylinder, the model has phase space — the purely odd vector
superspace
o= || cr(shec® (6.81)

se{P,A}

where C%? is another notation for the odd two-dimensional complex space IIC?; s € {P, A}
is a choice of spin structure on the cylinder — a choice of either periodic (P) or antiperi-
odic (A) boundary conditon. Elements of ® are pairs (¢,1) of functions on S! satisfying
simultaneously either P or A condition,

V(o +27) = ep(0), (o +2m) = e(o) (6.82)

withe=+1iss=Pand e = —1if s = A.
One has the symplectic form on the phase space,

we-"d¢ do (w A S+ 0 A 51/3) c Q*(d). (6.83)

47 g1

10Generally, spin structures form a torsor over H'(X,Zy), thus there are 251 spin structures on a surface
with first Betti number Bj.

Majorana fermion is “uncharged” as opposed to Dirac fermion, which is “charged” — possesses an extra
U(1)-symmetry @ — e4. Majorana and Dirac fermions are also referred to as “real” and “complex”
fermions, respectively.

refer to
Cimasoni-

Reshetikhin?
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The corresponding Poisson (anti-)bracket{™?] are
{¥(0),9(0")} = 2mid(0 — 0'), {1(0),¥(0")} = 2mid(0 — '), {¥(0), (")} =0. (6.84)

The Hamiltonian of the model is

H= o § do (00,0~ 00.0). (6.85)
47 g1
It is obtained by writing the action functional on the Minkowski cylinder
i -
Suine = [ dt 1= f do(w00 — 60,0 + 0 + 00,0) (6:56)
‘I_, g

and performing the Legendre transform. Since the Lagrangian L is linear in velocities 1}(0),
the corresponding momenta m(o) = %L = — (o) are not independent and drop out of
the Legendre transform.

One can expand the fields in Fourier modes,

Y(o) =D e b, dlo)=> e "D, (6.87)

n n

where n ranges over integers if s = P and over half-integers (n € Z + 1) if s = A. Poisson
brackets (6.84]) imply to following Poisson brackets for the Fourier modes:

(b, b} =00 —m,  {bn,bm} = i0n—m; {bn, by} = 0. (6.88)

6.3.3 Canonical quantization

Proceeding to canonical quantization, one replaces coordinates by, b, on the phase space with

operators Zn, b, acting on some space of states H (to be described), subject to the following
anticommutation relations (obtained from ([6.88)) by the canonical quantization prescription):

A~ o~ o ~

[bm bm]-i— = 5n,—m/ia [bna Bm]—i— = 5n,—m1\7 [bnazm]—&- = 07 (689)

where [A, B].: = AB + BA is the anticommutator.

Remark 6.3.2. Generally, given a vector space W with an inner product g, one can form the
Clifford algebra CI(W, g) — the associative unital algebra generated by the elements of W
subject to the relation

uwv 4+ vu = g(u,v)l (6.90)

for any u,v € W. Then, the algebra spanned by the operators /b\n above (with n € Z for
s =Pandn € Z+1 for s = A) is the Clifford algebra for the vector space W = C2°(S') with
inner product g(u,v) = ¢ dau(a)v(a).m Thus, the Clifford algebra for W plays a similar

2Instead of being skew-symmetric, they are symmetric

1
13 Or, more invariantly, one should set W = I'(S?, (T*Sl);®2) — the space of half-densities on S! with
periodicity condition s € {P, A}. Then one has g(u,v) = § uv for u,v € W two half-densities.

Expand
on
canon-
ical
quanti-
zation
prescrip-
tion?
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role in the free fermion theory to the role of the Weyl algebra in the free boson theory. We
will denote these two Clifford algebras Cl; with s € {P, A}:

A~ o~ ~

Clp = C{....,b_1,b0, b, .. .>/(bnbm 4 Db = O

A~ o~ ~ o~

Cly =C(... ,/5\73/2,/571/2,/17\1/27/53/2 .. ->/(bnbm + Omby = 5n,—m1\)

=

(6.91)

The Heisenberg field operator on the cylinder is

WO =3 e™b, b)) = e, (6.92)

nGZs TLGZS

where ( = t+10, with t the Euclidean time, and where we denoted Zp: =2, Z,: = Z+%.
Mapping from the cylinder to the punctured plane by exp: C/2miZ — C\{0}, ¢ — z = €S,
we have Yipame(2)(d2)2 = 1hen(¢)(d¢)? and thus
_1
Vplane (2) = & 2 Yen(() (6.93)
(%)
where the power of derivative is minus the power of K in (6.77)), cf. also (5.72). Similarly,
one has

&‘m
A~
S

&plane(z) = Ziéﬁcyl(é)' (694)

By this reasoning, Heisenberg field operators on the cylinder ([6.92)) mapped to the punc-
tured plane become

D)= barh () =Y b (6.95)

TLEZS TLEZS

where the —1 shift in the exponent comes from (6.93)), (6.94)).

Periodic boundary condition (P) on the cylinder (¢cy(0 + 27) = tep(0)) maps to the
antiperiodic condition on the plane,

Yptane(€2™2) = €25 1ane(2) = —Vplane(2), (6.96)

i.e., when travelling along a closed simple contour around zero, the field tpjane(2) changes
sign. This spin structure on C\{0} (or “sector” of the phase space/space of states) is called
“Ramond sector.” Thus, in P or Ramond sector one has @/Z)\ (2) =>"
for (2).

Similarly, antiperiodic condition (A) on the cylinder becomes periodic condition on
the plane, Yplane(€*™2) = +¥plane(2). This is the so-called “Neveu-Schwarz spin struc-

~ 1 o
nez bnz”" 72 and similarly

-~ 1
10,2772 and

ture/sector.” Thus, in A or Neveu-Schwarz sector one has gZ(z) = D nezil
2

similarly for z/z(z) :

Lecture
31,
11/9/2022
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6.3.4 Space of states for the chiral fermion

Let us restrict our attention to the chiral fermion v, c¢f. Remark
The space of states splits into P- and A-sectors:

H="Hp®Ha (6.97)

with Hp a highest weight Clp-module (cf. (6.91])) generated by the highest vector |vacp)
satisfying bo|vacp) = 0. Similarly, H 4 a highest weight Cl4-module generated by the highest
vector |vac,) satisfying bsg|vacs) = 0. Thus, one has

— .. 7p2 71 2P0 Do, DP1,D2,--- € {071}7 }
e = Span{ Db [vace) ‘ finitely many p,, are nonzero (6.98)

Fermionic occupation numbers pyg, p1, ... are in {0, 1} since from the anticommutation rela-

tions 1} one has (b,)2 = 0 for n # 0 and (by)? = 17, Similarly, one has

o L PP/ P2 TP P12, P3/2: P52, - - - € {0, 1}, }
Ha= Span{ b 5/2b 3/2 1/2 [vaca) ‘ finitely many p,, are nonzero (6.99)

6.3.5 2-point function (Y1)

Tu understand which of the Clifford highest vectors |vacp), |vacs) is the true vacuum of
the system, let us calculate the correlation function (¢ (w)i(z)) in the operator formalism.
Assume for simplicity |w| > |z| > 0.

In the P-sector we have

(W(w)(2))p: = (vacpih(w)p(z)lvacp) = Y (vacp[bybm|vacp)w ™" 22772 (6.100)

nme”Z

From the fact that Z>0\va(:p) =0, <Van‘/b\<g = 0 and from the anticommutation relation
(6.89) we see that the only surviving terms are n = m =0 and n = —m > 0, i.e., one has

(W(w)(z))p = (Van|b0b0|Van Wiy %—f—z (vacp|byb_ n|vacp) wTE e =

Y n=1 1
2
S () + ()
11 1(2)2 4+ (2
(5 =_-~2r_wl (6101
Gt ; ( ) 5 w_.  (6101)
By a similar computation, in the A-sector we have
W(U’W(Z‘»A = Z (vacA|3ng_n|vacA> w_”_%z”‘% =
n€Z+%,n>O T
L (6.102)
Cw o w? 3 Cw—z
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Note that the expression is translation-invariant as expected of a 2-point correlator
in any CFT (cf. Lemma , while is not translation-invariant. This suggests
that we should identify |vac): = |vacy) as the true vacuum vector in H, while |vacp) is a
pseudovacuum (similar to the states |my) with o # 0 in the scalar field theory). In particular,
should be understood as the actual 2-point correlator

(Y(w)e(z)) = — 1_ (6.103)

z

On the other hand, the computation should be understood as a 4-point correlator
on CP1
(o (00)¥(w)ip(2)a(0))cpr (6.104)

with a certain field o (so-called “twist field,” to be discussed later), corresponding by field-
state correspondence to |vacp), inserted at the points 0 and oo. This explains why we
don’t see translation invariance in — because “secretly” it is a 4-point function and a
translation would displace the field o away from the origin.

In the free fermion model, the space of states H and the space of fields V' are Z,-graded
and we understand that when the radial ordering is applied, we have a sign when we have
to permute field operators:

~ o~ d; (w)Ps(2), if |w| > |2|
e { (~1)#HPIB, () (w), i 2] 2 (6109

Here |®| € Z, is the parity of the field. With this prescription, for instance, the computation
(6.102) extends to the case |w| < |z|, yielding the same formula:

(B(w)ih(2)): = (vaca|R(w)i(2)[vaca) =

with any w # z € C\{0}.
Note that the 2-point function satisfies
(Y(w)p(2)) = = (W (2)¥(w)) (6.107)

— the correlation function is antisymmetric under swapping the positions of fermions (as
expected in Fermi statistics).

1

w—z

(6.106)

6.3.6 Stress-energy tensor

Classically, the stress-energy tensor (computed as a variation of the action w.r.t. metric) for
the chiral fermion is

T(2) =~ 50(:)00() (6.108)

for the holomorphic component and T(z) = 0 for the antiholomorphic component.
For the corresponding quantum object — an operator on H, we consider separately T'(z)
as an operator on H 4 and on Hp.

“The field o(c0) here is with respect to the coordinate chart at oo € CP'. Writing this correlator in terms
of C, and using the result from further along this section that o has conformal weight (:i,0), one should

16°
write limy, o0 y& (0 (y)Y(w)(2)a(0))c.
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6.3.6.1 A-sector.

Set
1

T(z): = —5 D(2)00(z) : (6.109)

where the normal ordering puts fermion annihilation operators b>0 to the right and fermion
creation operators b<0 to the left; we understand that when we interchange two b s, the sign
of the expression is flipped.

From Wick’s lemma (or rather its obvious adaptation to the Clifford algebra) we find the

standard OPE

RT(w)T(z) = —2° 21(2) 0f<22—|—reg. (6.110)

(w—2)* (w—2)?% w-—

(cf. (5.10)) with holomorphic central charge ¢ = % Since T = 0, the TT and TT OPEs are
satisfied trivially, with antiholomorphic central charge ¢ = 0.

6.3.6.2 P-sector.

Set

Tave(z): = —% L 0(2)00(z) : (6.111)

with the same definition of normal ordering as above. Interestingly, it does not satisfy the
expected OPE (5.10)), thus it fails a basic axiom of a CFT (in particular its modes do not
satisfy the Virasoro algebra relations). It turns out that a good definition is as follows:

- , 1~ o~ 11
— we split the two points in the definition of the stress—energy tensor ((6.108)) and subtract
the (translation-invariant) singular part of OPE, —1(w)dy(z) — [— 31 (w)d(2)]sing. Then
one hadl

o~

A~

T(z) _ j—\vnaive(z) +

= (6.113)

— with this % shift included, T does satisfy the desired OPE (6.110)), again with ¢ = %

In particular, we have nonzero expectation value of the stress-energy tensor in P-sector

1
1622

We remark that in A-sector, prescription (6.112)) is compatible with the construction via

normal ordering (6.109]). Thus, (6.112)) can be taken as a universal recipe for the fermion
stress-energy tensor (applies to both A- and P-sector).

(T(2))p: = (vacp|T(z)|vacp) =

(6.114)

15 Indeed, repeatirllg thelcomputation (6.100), (6.101)), without pairing to |vacp), we have R{b\( )12)\( )—:
~ w)2 4 (2)2 ~
i) = $EHERT = (L 4 h(w - 2) + O((w — 9?1 Hence, —3RI)II(:) = —4 -
1/)(10)81/)( )+ (— %ﬁ—i—ﬁ—l—O(w—z))l, or equivalently — 1 Re(w)d(z)+ %2)2 = 1 (w)d(z) :
+@ + O(w — z). Taking the limit w — z, we obtain 1}
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6.3.6.3 Virasoro generators.

Virasoro generators can be obtained from the stress-energy tensor f(z) =D nez z_”_2fn.

Thus, from (6.109)) and (6.113)) one obtains:

~ 1\ ~ ~
A-sector: L, = Z (m + —) S by b

\2 4
mez+1 1 7 (6.115)
~ m ~ ~
P-sector: L, = — 4+ =) bbb FOno0—.
sector Z<2+4> + 76
meZ
All operators L,, vanish identically.
In particular, one has
~ ~ 1
Ly|vaca) =0, Ly|vacp) = 1—6|Va(3p) (6.116)

In particular, the true vacuum |vac,) has zero energy and total momentum, while |vacp)
has both energy and total momentum -1

16
One also has L R
[Lo,b_,,] = nb, (6.117)

in both A- and P-sectors. l.e., applying E_n, one increases the Eo—eigenvalue (conformal

weight) by n.

6.3.7 Back to the space of states

Let us list the states in A- and P-sectors with small conformal weights h (i.e., Zo-eigenvalues).

h | state

0 LV30A> h state

% b_%|vacA> 1—16 [vacp), bo|vacp)

; 2 1+ & g,l\va(:p), 3,130|Va(:p>

2 /b:%/\\vacA> 2+ %6 3_2|Va0p), 3_230|vacP)

2 | b_sb_il|vac 11 Db
L s S
2 | bgh 2b_1|vacp), b_ob_1bo|vacp
3 bfgbfélvac@

Here we have states in A-sector on the left and states in P-sector on the right.

States R R
lvaca), b_%|vacA>, |vacp), bo|vacp) (6.118)

are Virasoro-primary (annihilated by Z>0) — and they are the only Virasoro-primary states
in H. We will also denote these four states according to their conformal weight by [0), |3),
|1i6>+, |1—16>_. Their Zy-grading is, respectively, even, odd, even, odd

6The logic with Z, grading is that vectors |vaca), |vacp) are even, while action by any single Clifford

generator b changes the parity of the vector.
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Thus, the space of states of the chiral fermion splits into four conformal families (irre-
ducible representations of Virasoro algebra):

'HZMO@HM%@M%G@HM (6.119)

v~ v~

Ha Hp

L
16
/

where M}, is the irreducible Virasoro highest weight module with central charge % and highest
weight h; II is the parity reversal symbol (i.e. M), is an even vector space and IIM), is an
odd (super)vector space).

By the field-state correspondence, the four primary states correspond to four
primary fields

1, ¢(2)7 o(z), p(z) (6.120)
with conformal weight A being 0, 5> 16, 16, respectively (and h = 0 for all fields in the chiral
theory). Fields o, 1 are the so-called “twist fields.” One has for instance the OPE

Y(w)o(z) ~ (w— z)_%u(z) + reg. (6.121)

In particular, the insertion of the twist field o(z) creates a monodromy —1 around z for the
fermion ¥ (w).

6.3.8 Non-chiral (Majorana) fermion

We pair the left- and right- (or holomorphic/antiholomorphic) chiral fermion CFTs, with
the following conventions:

e We require that the P/A boundary condition is the same for ¢ and ).

e We impose by :30 (cf. (4.127)).

The space of states splits as a sum of irreducible highest weight modules of Vir @ Vir

with central charge ¢ = ¢ = %:

F{ron— chiral Moo@HMlo@HMol@M%%@M%%@HM%% (6.122)
Hrgor?rchual g h H;’ol?—rchlral g

where the two indices of M are the highest weight (conformal weight) (h, h) of the highest
vector. The highest weight vectors themselves and the corresponding primary fields are,
respectively:

highest vector | |vaca) 37%|vacA) 37%|Vac,4) 37%37%|vac14) |vacp) ZQ|Van>
primary field 1 @ﬁ(z) ?ﬁ(zl) €(z :1¢(12)7/J(2) ) (22 . (32

(ha h‘) (070) (570) (075) (575) (Eaﬁ) (Eaﬁ)
Zy-parity even odd odd even even odd

Remark 6.3.3. Free Majorana fermion is the CFT model corresponding to the Ising model

at critical temperature, see [6] and [9] for a detailed discussion. In particular, correlation

functions of the spin field in Ising model can be recovered as correlation functions of the field
in the free fermion CFT.

Lecture
32,
11/11/2022
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6.3.9 Examples of correlators
From the computation (6.102)) we know the 2-point correlator

(WY(w)p(z)) = ! (6.123)

w—2z

The correlator of any number of fields 1, 1) can be computed by Wick’s lemma, as a sum
over perfect matchings (where one needs to be careful with signs incurred when moving @
over other T/A}?S.) For the correlator of several 1 fields, this sum over perfect matchings can
written as a Pfaffian formula

Pf ( if n is even
. n)) = 2;—2j ) 124
Wa) 9] { (O ) if n is odd (6.124)
For example, for n = 4 one has
(Y (20)(22)1(23)1(24)) = Lot 1 (6.125)

)
212734 213724 214723

where z;; = 2z, — 2;.
The 2-point correlator ( (w) (z)) cannot be found from Wick’s lemma (we don’t have

~

an explicit description of the field in terms of Clifford generators En, b, at our disposal),
however we have an ansatz for it from global conformal symmetry, c¢f. Lemma [5.6.7}

((w) (2))=C ! : ! o1 (6.126)

(w—2)i6716  (0— 26t |w— 2|3

with C' some constant. By choosing a convenient normalization for the field o, we can assume
C=1[

The exponent }1 in is exactly the one appearing in the spin-spin correlator in Ising
model at critical temperature (as known from the explicit solution of 2d Ising model), thus
corroborating the free fermion-Ising correspondence.

6.3.9.1 4-point correlator of fields.

As the next example, consider the 4-point function of fields. From global conformal

invariance (cf. Lemma|5.6.12)) one has

Jun

213724

((2) (22) () (20)) = "FO, (6.127)

2127223734741

where F'()) is some smooth function of the cross-ratio A = 2224 ¢ CP\{0,1,00}. To fix

the function F', we need some other idea than just global conformal invariance.

17This normalization agrees with the convention that the state corresponding to , [vacp), has unit norm
(vacp|vacp) = 1, cf. (5.112).



CHAPTER 6. MORE FREE CFTS 215
In the free fermion theory one has a vanishing descendant of the state |vacp) at level 2:

~ 4 ~9
(L_g — gL_1)|vacP) =0 (6.128)

— this can be verified by using the expressions (6.115)) for Virasoro generators in terms of
Clifford generators.ﬂ Thus, the corresponding primary field also has a vanishing descendant:

(L_y — gLQ_l) () =0. (6.129)

Thus, by Ward identity (cf. Example |5.6.3)) one has

4

0={(La—3I%) (1) (22) () (20)) =D{ (21) () (29) (20) (6.130)

with D some differential operator in z;’s. Substituting the ansatz (6.127)), we obtain a
differential equation on the function F(\) — the hypergeometric equation

(A(l—A)%Jr(% —)\)%+1—16> F(X\) = 0. (6.131)

This equation has two independent solutions
fra(\) = (1 £ VI =) (6.132)

and the general solution has the form fi(\)g1(A)+ f2(A)ga()\) with g » some antiholomorphic
functions. Using the conditions that F' should be a real, single valued function, fixes the
solution to the form

FQ) = a(fi(N L) + fa(N) fa(V)) (6.133)
with a a constant. Using additionally the OPE (w) (z) ~ —" + -+ (where the nor-

malization follows from C' = 1 in (6.126])), one obtains a = % Thus, putting everything
together, one has

1
213224 4

( (1) (22) (23) (24)) = % (T+vV1I=A+]1-V1I=A]). (6.134)

212723734241

6.3.10 Torus partition function for the Majorana fermion

Denote (—1)* the operator on the space of states with eigenvalue +1 on even vectors and
—1 on odd vectors.

18 In fact, it is true generally that in the Verma module V. j, for the Virasoro algebra at central charge ¢ with
highest weight h one has a singular vector at level 2 (cf. Remark , of the form |x) = (L_a + aL%,)|h),
3 4h + 2

£+ 4h 6h
2
the pair ¢ = £, h = {5 satisfies the determinant condition and gives & = —3, i.e., (L_o — 2L2,)| %) is a

singular vector in the Verma module. Thus, in the irreducible Virasoro module it has to be set to zero.

3

— 13- In particular,

if and only if one has = 0 and then |y) is a singular vector if o =
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The partition function of the free Majorana fermion on a torus is given by (6.40) with
the following correction: try(---) should be replaced by

1+ (=1)F

: L brpg( ) + Strag(- ), (6.135)

(...):2

trHeven(‘ .. ) — trH

where Str is the supertrac and (--+) = qZO’TZq_ZO’%. Recall that for the Majorana fermion,

1+(—1)F

the central charge is ¢ = ¢ = % The operator ——

space of states.

Averaging over trace and supertrace in corresponds to averaging over spin struc-
tures (boundary conditions for the fermions) in the “time direction” on the torus. In fact, the
supertrace is the more natural extension of the notion of trace to Zs-graded vector spaces
(it satisfies the natural cyclicity property with Koszul sign). As we will see below, from
comparison with the path integral approach, the supertrace term in the r.h.s. of (6.135))
corresponds to periodic boundary condition for the fermions in the time direction, whereas
the trace term corresponds to the antiperiodic boundary condition.

In view of , the torus partition function of the Majorana fermion is

is the projector to the even part of the

~ = 1 ~ =
Z(r) = (qq)_flstr’].[evenqLOQ_Lo = —(qq)—ﬁ try, + Stry, + try, + Stry, | ¢  (6.136)
2 ——

=0

Here the splitting of the space of states into A- and P-parts is as in (6.122). The supertrace
over Hp vanishes, since for each eigenstate a € Hp of conformal weight (h,h) there is

a second state gooz € Hp with the same conformal weight but opposite parity. In the
supertrace Stry,, The contributions of o and by cancel out. On the other hand, in try,
such contributions enter with the same sign.

From the description of H4, Hp as Verma modules over Clifford algebras Cl4 ® Cl, and
Clp ® Clp (cf. ), we can write explicit formulae for the terms of :

Z(T):%(QCD“IS (H(1+q )1—|—q 2—|—H 1—q" 1—q) %4_

n>1 n>1

+2(q) e [0+ M1+ q”)) . (6.137)
n>1
In the last term, the factor 2 comes from the doubling mechanism described above (con-

tributions of a and gooz); the exponent 1—16 is the eigenvalue of EO,ZO for the highest vector
|vacp).

19 Generally, for a Zy-graded vector space W = Wever@Wodd and A: W — W a linear map, the supertrace
is defined as tryyeven A — trypoaa A = tr AcVemeven _ gy goddodd “Where in the last form we are referring to the
diagonal blocks of A seen as a 2 x 2 block matrix.
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6.3.10.1 Aside: Jacobi triple product identity
Theorem 6.3.4 (Jacobi). For any q,t € C with |q| <1 and t # 0 one has the equality

[e.e] [ee]

[Ta-ga+tga+g2) = > tq's (6.138)

n=1 k=—00

The r.h.s. of (6.138)) is denoted

O3(w; T), (6.139)
where . '
t = e27rzw’ q= 627”7- (6140)
One also defines ]
O1(w;T): = —if3(w + 3 + %;T) . q%t%,
Oo(w;T): = O3(w + %; T) - qét%, (6.141)
1
O,(w;T): = 03(w + 5;7’).
The function 6;, © = 1,...,4 are known as Jacobi theta functions. Of importance to us are
their values at w = 0. We denote them
Oi(m): =6;(0;7), i=1,...4. (6.142)
One has the following important special cases of the Jacobi triple product identity (6.138]):
1 2
t=1: Jla-¢)a+q¢72)? = Y ¢~ = 3(7),
n>1 kezZ ,
n n—2 ko
t=—1: JJA—g@=¢"2)* = Y (-1)fqgz = 0647), (6.143)
n>1 kez
1 n n k(k+1 1
t=q7: 2]JA-¢)0+q") = D> q > = 0s(7) ¢,
n>1 keZ

6.3.10.2 Back to torus partition function

Evaluating the terms of (6.137) using the identities (6.143)), we arrive to the following ex-
pression for the torus partition function of the free Majorana fermion:

1
Z(1) = ()| (103()] + 162(7)[ + 102(T)]) , (6.144)

where 7(7) is the Dedekind eta function. The function (/6.144)) satisfies modular invariance:
1

Z(r+1)=2Z(1), Z(—=)=Z(1). (6.145)
T

This can be shown directly, from modular transformation properties of Jacobi theta functions
(which in turn are proven by Poisson summation).
Remark 6.3.5. One can also write the expression in terms of just the Dedekind eta
function (without theta functions):

2

> (6.146)
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6.3.10.3 Path integral formalism

In the path integral formalism, the torus partition function is given by a sum over the four
spin-structures on the torus:

Z(r)= > / Dip Dy e~ 5

e1==%1, ea==1

(¢ + 2mi) = e1p(C),
(¢ + 2mi) = e19((),
Y(C +2miT) = e2(C),
(¢ 4+ 2miT) = ea1)(Q)

= Pf44(9)PEan(8) + PEap(8)PEap() + Ptpa(9)PEpa(d) + Ppp(D)Pfpp(d)
= |det 44(9)| + |detap(d)| + |detpa()| + | detpp(d)]. (6.147)
0

This is a fermionic Gaussian integral (the quadratic action S is (6.76])), which can be ex-

pressed in terms of zeta-regularized Pfaffians of the operators 0 ¢ I'(X, K%), oG F(Z,K%)
acting on spinors on the torus with chosen spin structure. E.g., subscript AP means that
we consider spinors antiperiodic in the “space” direction (¢(¢ + 27i) = —1(()) and periodic
in the “time” direction (¢(¢ + 2mit) = +1(¢)). Products of complex conjugate Pfaffians
in turn become determinants. The determinant for the PP spin structure vanishes, since in
that case the operator d has a zero mode given by constant spinors.

The four terms in the r.h.s. of correspond in the operator language to the four

terms in the r.h.s. of (6.136|).

Remark 6.3.6. The mapping class group of the torus (the modular group) PSLy(Z) acts
on the spin structures on the torus. This action has two orbits: {PP} and {AA, AP, PA}.
More explicitly, in terms of the standard generators T': 7+ 741, S: 7 — —1/7 of PSLs(Z),
one has the following action on spin structures:

SCAACS AP PAD T,  SCPPDOT. (6.148)

Symbolically denoting the contributions of the four spin structures to the path integral
(6.147) by Zaa, Zap, Zpa, Zpp we have that the general modular invariant linear combination
is

Cl(ZAA+ZAp+ZpA)+CQZPP, (6.149)

with C o arbitrary constants. The actual partition function we are computing has C; =
Cy =1 (and Cy is in fact irrelevant, since Zpp = 0).

6.3.11 Bosonization and Dirac fermion

Bosonization is a mechanism allowing one to compute correlators of the free real (Majorana)
fermion by reducing the problem to correlators in the free boson theory. This is particularly
useful, since not all correlators can be computed from Wick’s lemma (e.g. the correlators of
the twist fields), whereas in the free boson theory all correlators are computable via Wick’s
lemma.
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Roughly, the idea is that the system of two Majorana fermions (with ¢ = I each) is

2
equivalent to a single ¢ = 1 free boson.

6.3.11.1 Dirac fermion

The system of two Majorana fermions {14, %4 }a=12 is equivalent to a single Dirac (or “com-
plex,” or “charged”) fermion:

| S S T AT | ; ' ;
SPR(hy hy) = - /2 @z (Y- Opy +p_0y) = S (4 gy ) 4 SMUIR (g 4hy),

(6.150)
where SMajorana g the action (6.76)) and the Dirac field is

:¢1:|IW2 1; :7;1:“'1;2
N V2 o

We understand that ¢4 (dz)2 are odd sections of K2 (left Weyl spinors) and 1. (dz)z are

odd sections of K? (right Weyl spinors). We are assuming that the spin structures for v »
are synchronized (thus, the field 1) satisfies either periodic or antiperiodic condition around
a puncture).

The space of states of Dirac fermion is

(o (6.151)

%Dirac _ Hf\q/lajorana ® HlXIajorana D Hl\;ajorana ® /;L[1]\:,/IEJLJ'01"ana7 (6152)

where the factors in each summand correspond to 1,1, cf. (6.122]).

6.3.11.2 U(1)-current
Dirac fermion CFT contains “Dirac U(1)-current”’| - the holomorphic (1,0)-field

3(2) = i (2)-(2) i= =i (2)¢2(2) (6.153)

satisfying the OPE

Jw)j(z) ~ (w—2)? + reg. (6.154)
similar to the OPE satisfied by the field i0¢ in the free boson theory. By Lemma [5.7.4]
modes operators of the field j satisfy the Heisenberg Lie algebra relations. Similarly, one has
a complex conjugate field j =: ¢ o_ :.

Jointly, modes of j and j endow the space of states of Dirac fermion with the structure
of a Heis @ Heis-module (again, similarly to the free boson theory).

The stress-energy tensor of the model is

1 1
T(2) = 5 :5(2)i(2) = 5t ep-pstp = =5 a0y + 9020, - (6.155)

20 At the level of classical field theory, it is the Noether current associated with the U (1)-symmetry of the
theory ¥+ (z) — eT)o(2), with €'® a constant phase (in fact, it is also a symmetry for a a holomorphic
function).
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where all fields are at z. Note that the formal substitution j — i9¢ converts this expression
into the stress-energy tensor of the free boson CFT. This implies that the Virasoro action
on the space of states is expressed in terms of the Heisenberg action by the usual formula
(5.22)), where operators a,, should be understood as the mode operators of j.

6.3.11.3 Torus partition function for Dirac fermion

The partition function of the Dirac fermion on a torus is computed by the technique of

Section [6.3.10k

. 1 B N -
ZDlraC(T) = §(tr'HA®HA + StrHA@)HA + ter@Hp + Str'Hp@Hp)q 24+L0q 2 tlo —
——_———

) % <(q(j)_214 [Ta+a 220 +7 2 + (@)= [[(1 - ¢ 21— g"2)*+

n>1 n>1

S (aFa7 + (-1 g+
(k,1)ez?2

+pEr )’ L ()R () ey )

J/

1
Jacobi triple I;Oduct 7’](7‘)’)7(77') ‘ 5

~
=0 as it changes sign under k——k—1

ST HEGEE (6.156)

(e,m)ez2

B 1
n(7)n(7)
In the last expression we recognize the torus partition function of the free boson with values
in a circle of radius r = 2, (6.49){]
ZDirac(T) — Z?":2 free boson(,r)‘ (6157)

6.3.11.4 Correspondence between Dirac fermion states and boson states

The lattice o o
A:{(-+m,——m)} c R? (6.158)
2 2 e,mecZ2

appearing in the r.h.s. of (6.156)) can be split as a union of two lattices:
e A, with e even and any m,
e Ay, with e odd and any m.

One has the following refinement of the observation (6.157)).

21 Equivalently, we could talk about the free boson on a circle of radius 7 = 1: by T-duality (6.52)), r = 1
and r = 2 theories are equivalent.
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Theorem 6.3.7 (Bosonization COESpOHdenCG). One has an isomorphism of Heis @& Heis-
modules (and, a fortiori, of Vir & Vir-modules):

(HDirac)even ~ HT‘=2 free boson' (6159)

More specifically, restricting to the summands in the r.h.s. of , one has isomorphisms

1

(r)LlMaJorana ®7_[Majorana> eve ~ @ VHGIS@HGIS,

(o,@)
(a, @)A1

(HMaJorana ® HMaJorana) @ VHelS@HGIS

(e, @)

(6.160)

(a,@)EA2

where the terms in the r.h.s. are the Verma modules of Heis @ Heis with highest weight (o, &)
(w.r.t. the operators g, ag).

Sketch of proof. Both sides of (6.159)) can be split as a sum of Verma modules over Heisé®Heis,
with highest weights in the lattice A for the r.h.s. of (6.159) and in some set S C R? for the

Lh.s. of (6.159)):
(HDirac>even: @ VHelS@HelS (6161)

(@)
(a,@)€S

It suffices to show that S = A (since a splitting of a Heis ® Heis-module as a sum of Verma
modules is unique). We decompose the set S into two subsets S = S; LI Sy according to the
contributions of A- and P-sector into (6.161)).

The splitting implies that the torus partition function of the Dirac fermion is

ZDiI‘aC<7_> == t (HDlrac)evenq 24+L0q 24+L0 == ; Z q%Qq_g (6162)
a2
Comparing with ({6.156)), we find that the respective sets of exponents coincide
1 1_ 1 1_
{(5042, §a2)}(a,c‘v)es = {(5042a 5042)}(a,a)eA' (6.163)

Consider the map , ,
f+ R — R
(@) — (a2 la?) (6.164)
Note that f is four-to-one on A; and is two-to-one on Ay. To infer S = A from f(S5) = f(A),
we need to explain this quadruple/double degeneracy on the side of the Dirac fermion.

Dirac fermion theory has the following two discrete symmetries: (left/right charge con-
jugation):

CLZ w+ — ’(,D, CR: ¢+ — w, (6165)
More precisely, the A-sector of HP¥2¢ is invariant under C},, C'r separately, while the P-sector
is invariant only under the composition C7,Cg.

The involutions Cp,, Cg act on the A-part of the space of states — and in particular on
the set S; — as (o, @) ¢ (—a,—@) and (o, @) <> (@, «). Thus, each highest weight (o, @)
appears in S as a part of the quadruplet (+«, +@&). Similarly, due to the action of C,Cg, in
Sy each highest weight appears as a part of a doublet («, @), (—a, —@). This together with
(6.163|) proves that S; = Ay, Sy = As. O
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We proceed to give some examples of the correspondence (6.159) at the level of fields
(rather than states).

e Informally, the odd fields 1/ (z) correspond to the chiral vertex operators : e¥X() : in

the free boson theory, cf. (6.24]), (6.25)):
Yo (2) ¢ eEXE Ly (2) e XD (6.166)

The right hand sides here are not in fact elements of the space of fields of the com-
pactified free boson with = 2 (and the elements in the L.h.s. are odd, so this example
is outside of the correspondence ) However even composites of 1., 1, are
mapped to legitimate fields of the » = 2 boson theory.

e The U(1)-current of the Dirac fermion CFT is mapped to the Heisenberg current of
the free boson CFT:

=1 ) 000, § = h_ > i0. (6.167)

The stress-energy tensor is mapped to the stress-energy tensor:

. 1 1 - 1 -
One also has ) ) ) )
JJ = h11hathe «— —0¢ 06. (6.169)

e Consider the pair of fields

1 .
0+(2) = E( 1(2) 2(2) i 1(2) 2(2)) (6.170)

in the Dirac fermion theory. They satisfy the OPEs

j(w)os(z) = jl_/i +reg., jw)os(z) = jl_/i + reg. (6.171)

Hence, o4 are highest vectors w.r.t. Heis ® Heis with weights (o = £, @ = £1) (note
that these two points belong to the lattice Ay). In the r = 2 free boson theory these
fields correspond to particular vertex operators:

+ ip(z)

o4(2) «—em 2 =V, 1(2). (6.172)

[
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Figure 6.3: Lattice A of Heis & Heis highest weights in the bosonization correspondence
(6.159). Dots and circles correspond to sublattices A; and A, respectively. Four little boxes

do not belong to the lattice A but correspond to the fundamental (odd) fields 4,1+ in the
Dirac fermion CFT.

6.3.11.5 Correlators of Majorana fermion theory via bosonization

The basic idea of using the bosonization correspondence (6.159: to compute correlators in
the free Majorana fermion theory is as follows. Let ®(z) € VMaiorana he some field. We can
consider product of two copies of this field (a tensor square) as a field in the Dirac fermion

CFT, ®,(2)®y(2) € VPrac which corresponds by (6.159) to some field X € V"% in the
free boson theory,

(I)l(Z)(I)Q(Z) — X(Z) (6173)
This leads to relations between correlators of the form
(<(I)(1) (Zl) o (I)(n) (Zn)>Majorana) = <X(1)(21) T X(n) (Zn)>boson7 (6174)

with ®(;) some fields in the Majorana fermion theory and X(,) the corresponding fields in
the free boson theory.

Example 6.3.8. For ® = 1) the fermion field itself, the corresponding (in the sense of (6.173))
field in the boson theory is —0¢. The relation (6.174)) becomes

{u(2) - 'w2n<z2n)>12\/lajoranaju = (0¢(z1) - - - 0 (220) ) boson =

-~

2
:Pf(zgz.)
1 J

2

1 - —
22ny)| Z (2x(1) = 2r(@) 2+ (Zn(2n-1) = Zn(2m)) > (6.175)

TESan

Wick

In this case we know the fermion correlator and the boson correlator separately from Wick’s
lemma and we obtain an interesting equality of rational functions on the configuration space.
E.g. for n = 2 this equality is
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(= 1+1)Z<¢<>w<>>2
— — z z —
212734 213724 214723 ! !

1 1 1

22,22 22,22 + 22,22 (6.176)
12734 13224 14723

= (0¢(21) - -- 0(z4)) =

where z;;: = 2z — z;.
Example 6.3.9. For ® = the twist field, the corresponding field in the boson theory is

1
S+ V() (6.177)

cf. (6.170]), (6.172)). Thus, the equality (6.174) becomes

< (21) T (Zn)>12\/lajorana =27 7%(21)) T (V% (Zn) + Vfé('zn)»boson -

— 9275 Z H |zi—zjykiT]”. (6.178)

ki,yeery k:nE{-i-l,—l}, s.t. ki++k,=0 1<i<j<n

N3
—~
—~

=~
—~
N

-

~—
_|_
<

Here in the last step we used the fact that we know the correlator of a collection of vertex

operators, cf. (5.87)).
For example, for n =2 (6.178]) yields

< (Zl) (Z2)>Majorana = ‘Zl - 22’_%7 (6179)

cf. (6.126]).

For n = 4, (6.178) yields an equivalent form of the result (6.134) — but obtained from
a completely different idea (bosonization vs. differential equation on the correlator arising
from a null descendant).

Generally, bosonization allows one to determine (up to sign) any correlator in the Ma-
jorana fermion CFT via (6.174]), reducing it to a computation by Wick’s lemma of the
corresponding correlator in the free boson theory.

6.4 bc system

The be system (or “reparametrization ghost system”) is a CFT classically defined on a
Riemannian surface ¥ by the action functional

: - ] -
Spe = — | —bdc + bde = — / 2z (bdc + bok), (6.180)
21 s T Js
where the fields are a (1,0)-vector field and a quadratic differential

c=cl, c(S, K1), b=0bdz)?cI(Z, K%) (6.181)

71,0
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and their antiholomorphic counterparts

c=c0. (S, K ), b=>b(d2)?el(X, K. (6.182)

70,1

Fields b,c, b, ¢ are understood as odd (anticommuting). Since no fractional powers of K
appear in the definition of the fields, there is no choice of a spin structure/boundary condition
involved.

It is easier to analyze the model in the path integral formalism. One finds the 2-point

function .
(b(w)e(z)) = (6.183)

w—z

as the Green’s function for the operator %5. Similarly, by the method of Section one
finds the OPE

b(w)e(z) ~ ﬁ + reg. (6.184)

The stress-energy tensor is
T(z) =:20c(2) b(2) + c(2)0b(2) : . (6.185)

and similarly for 7. The normal ordering here means that inside a correlator Wick con-
tractions of fields inside : --- : are prohibited. Using Wick’s lemma as in Section [4.5.3], one
computes the OPEs of b(2), ¢(z), T(z) with T'(w) or T'(w) and finds that:

e ¢ is a primary field of conformal weight (—1,0) (similarly, ¢ is (0, —1)-primary),

e b is a primary field of conformal weight (2,0) (similarly, b is (0,2)-primary),

e one has the standard OPE of the stress-energy with itself (5.10), (5.12), (5.11]) with
central charge

c=¢=—26. (6.186)

Remark 6.4.1. One can consider a modified ghost system, with fields as above and with
modified stress-energy tensor

T(z) =: 0c(2)b(z) + jO(c(2)b(2)) : (6.187)

with j € R a parameter of the system (the case of reparametrization ghosts corresponds to
j = 1). Then one obtains by similar computations to the above that ¢ is (—7, 0)-primary, b
is (j + 1,0)-primary and the central charge is

c=—125%-125 — 2. (6.188)

The case j = 0 in the terminology of [9] is called the “simple ghost system.” By the
formula above, this system has central charge ¢ = —2.
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6.4.1 Correlators on CP!, soaking field, ghost number anomaly

Note that the correlator seems to contradict Lemma @: we have a nonvanishing
correlator of two primary fields of different conformal weight (2 and —1). The answer to
this seeming paradox is that the field ¢ on CP! has zero-modes: there is a 3-dimensional
space of holomorphic vector fields on CP'. When we wrote the Green’s function (6.183)), we
implicitly imposed the condition that the vector field ¢(2)0, vanishes together with its first
and second derivatives at the point co € CP'. This is tantamount to inserting a certain
field s (“zero-mode soaking field”) of conformal weight (h,h) = (0,0) at z = oo. So, the
correlator is “secretly” a 3-point function

(s(00)b(w)e(2))pr - (6.189)

From this standpoint, there is no contradiction in the fact that the correlator is nonzero. For
three arbitrary points on CP!, the correlator (6.189) becomes a Mdbius-invariant expression

(b(21)(d21)? e(22)0z; 8(23)) = Viarisvis (6.190)
where L
vy = LA (6.191)
Zi — Zj

is (the square root of) the Szegd kernel (5.121]). The soaking field s can be written as
1 _
s = Z(C dcd*c)(cocd%e). (6.192)

We refer to [50, Section 10] and [33, Section 2.4] for details on soaking fields.
The presence of zero-modes also means that for instance one has

(1)epr = (vac|vac) =0 (6.193)

(which means that the theory does not satisfy the usual BPZ axiomatics). On the other
hand,
(s(00))epr = (s|vac) = 1. (6.194)

One can assign the “left ghost number” +1 to the field ¢ and —1 to b and likewise “right
ghost number” +1 to é and —1 to b. Then for a correlator on CP! of some collection of
differential monomials inserted at points z1, ..., z, € CP' to be possibly nonzero, one needs
the following selection rule to hold: the total left ghost number and the total right ghost
number (of the entire expression under the correlator) should both be +3:

He—H#b=3, #c—#b=3 (6.195)
This phenomenon is known as the “ghost number anomaly.” For example, one has
<C(21)C(2’2)C(Z3)>Cchpiﬁal = Z12213%23 (6.196)

Here for brevity we wrote the correlator in the chiral be system (ignoring the fields b, ).
Taking };che limit lim,, ,,, i( -+ ) in (6.196)), replacing c¢(z2) with its Taylor expansion around
21, we have

((cOc)(z1)c(z3))aml = —27,. (6.197)
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Taking here the limit lim,, ., Z% -+, replacing c(z3) with its expansion around z;, we obtain
13

-1 .
((7000 9%c)(z))dn = 1, (6.198)

which is the chiral counterpart of .

For a surface X of genus ¢, the ghost number anomaly is given by Riemann-Roch
theorem, as the dimension of the space of holomorphic vector fields minus the dimension of
the space of holomorphic quadratic differentials:

dim H3(X, K1) — dim Hy(%, K¥%) = 3 — 3g. (6.199)

6.4.2 Operator formalism for the bc system

One can develop the canonical quantization picture for the bc system, similarly to how we
did it for the other free field models before. Then one obtains the Heisenberg fields on C\{0},

Ax) =Y ™, b(z) =Y bpr (6.200)

neZ nezZ

with operators 8,“/5” subject to the anticommutation relations

A~ o~ o~

Bn, Gl = Onml,  [Bo,bm) =0,  [GnyGnls = 0. (6.201)

One has similar mode expansions and anticommutation relations for b,é. Here the the
splitting of the mode operators into creation and annihilation operators is as follows:

...,C_1,Cp,C1,C2,C3, ..., ...,b_3,b_2,b_1,b0,b1,... (6202)
—_— — ~ ~~ 7 ~~
creation annihilation creation annihilation

and similarly for l_)n,/é\n The vacuum vector |vac) is killed by annihilation operators,
while creation operators produce nonzero vectors out of |vac). The hermitian conjugates
are (b,)" = b_,, (¢,)T = ¢_,. The special vector |s) corresponding to the soaking field

(6.192) is

|S> = /0\_1/0\0/0\1/5_1/6\0/50|Va0>. (6203)

The space of states H is generated freely by acting on the vector |vac) repeatedly with
creation operators (i.e., H is a Verma module for the Clifford algebra (6.201]), tensored with
the conjugate one).

Reproducing the 2-point correlation function in the language of operator quanti-
zation, we have (assuming |w| > |z| for simplicity):

(b(w)e(2)) = (s[b(w)(z)[vac) = > (s[bytm|vac)w 227"+, (6.204)

mneZ

Here we notice that the expression (s|/b\n/c\m|vac> has the following properties:

22 This nontrivial splitting of modes into creation and annihilation operators is forced by the field-state
correspondence: one wants limits lim,_,o ®(z)|vac) to be well-defined and nonzero for ® = b, ¢, b, c.
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Vanishes for ¢, an annihilation operator (since then ¢,|vac) = 0), i.e., for m > 2.

Vanishes for n # —m and En an annihilation operator (since Zn commutes past ¢, and
acts on |vac)), i.e., for n # —m, n > —1.

Vanishes for b, a creation operator (in this case (s[b, = 0), i.e., for n < —2.

Vanishes for ¢, a creation operator if n # —m (in this case, ¢,, commutes to the left
past b, and annihilates (h|), i.e., for n # —m, m < 1.

Thus, the only surviving terms in (6.204]) are n = —m > —1, i.e., we have

(b(w)e(z)) = Z (s @ [vac)w " 22"t = Z w2 —

n>—1 . ~ n>—1
1

1 2 1
:_(1+3+(3> +...): (6.205)
w w w w—=z

6.5 Bosonic string

We start with outlining the heuristic idea of bosonic string theory. One wants to integrate
over maps ¢ of a smooth surface ¥ (worldsheet) to the target R” (for some dimension D > 1):

Zstring(Z;RD> :/ ’Dg/ nge_SPolyakov(gv‘z)) (6.206)
Met () Map(32,RD)
where
Solyakov (9 Z / dvolydg® A xdg* (6.207)
is the action for D non-interacting free bosons ¢, ..., ¢" on X; the action depends on a

choice of Riemannian metric g on the surface, and this choice is averaged over in (6.206]).
The integrand in is invariant under diffeomorphisms of Y2, and one wants to switch to
integration over the quotient Met(X) x Map(%, RP)/Diff(X) | Next, one writes the metric
as

g=¢e" g (6.208)

where g is the canonical “uniformization” metric of constant scalar curvature K € {0, £1}
representing the conformal class of g — the metric arising from uniformization theorem;
Q = €27 with 0 € C*(X) is the Weyl factor, transforming g, into g; one calls o the Liouville
field. With this in mind, the path integral becomes the integral over

{conformal structures on ¥} x {Weyl factors Q = ¢**} x Map(X2, RP)/Diff(X) ~
{conformal structures on 3}

1f Q = *} x Map(Z,R”)/Diff(2) (6.2
D (D) x {Weyl factors e”} x Map(X%,R”)/Diff () (6.209)

23Heuristically, transitioning to integration over the quotient rescales the result by an “infinite constant”
— the volume of Diff (X).
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where in the first factor on the r.h.s. we recognize the moduli space of conformal structures
M. For the integral over the quotient by diffeomorphisms, one employs the Faddeev-Popov
gauge-fixing mechanism, which results in the path integral

/ D¢ Do / DcDEDYDbe ™5 / e~ SPalvakov (6,210
Ms, C>=(%) X(2) <IN (S, K©2a K 2%) Map(Z,RP)

where the auxiliary fields cd, + ¢d; (an odd vector field) and b(dz)? + b(dz)? (an odd
quadratic differential) appear as Faddeev-Popov ghosts corresponding to the quotient by
diffeomorphisms (or “reparametrizations,” hence the name “reparametrization ghosts”); the
action Sy is as in (6.180). The Gaussian integral over ghosts is an integral representa-
tion of a Jacobian, canceling the dependence of the integral over a section of the quotient
{conf. structures}/Diff (X) on the choice of the section.

Exploiting the result , we have that the bosonic string path integral is

D free bosons S
D DO- Z , ezc L1011v1lle(0) 6211
/./Vlz 3 C%(x) CFT ( ~+bc system f) ( )
where
c=D—26 (6.212)

is the central charge of the CFT comprised of D free bosons and a single bc system. The
case D = 26 is special and corresponds to the so-called “critical” bosonic string — in this
case the central charge vanishes and the integrand is independent of the Liouville field o.

In summary, bosonic string is the conformal field theory comprised of D free bosons and
a bc system, with classical action

D
— 1 2 1 kA .k Y 19=
Sstrlng - T /;d Z( kg_l 2a¢ a¢ ‘|‘b(30 —i—tbﬁc> (6213)
= c system

D free bosons

where to get the full string path integral one needs to integrate the CFT partition function
(or correlator) over the moduli space My, (and if D # 26, also factor in the Liouville path

integral) ]

6.5.1 The BRST differential () in bosonic string
Fix D = 26. Consider the fields

D

_ . 1 3 2. . 1 ko 1k 3 2.

J = Tyosons + chbc+ 28 c:=: ; 208¢ 0¢" 4+ cOchb + 28 c:,
1 ; b ; (6.214)

F_ .7 1= OS2 . _ . Loakak | =A-7 , 032=.

J—.chosons+20TbC+200. kz:; 208gb 0¢ +c@cb+28c.

They satisfy the following properties.

24 In a jargon, one couples the CFT (6.213]) on ¥ with “2d gravity on 3.”

Lecture
33,
11/14/2022
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e J is a holomorphic (1, 0)-primary field, .J is an antiholomorphic (0, 1)-primary field.

e The OPE J(w)J(z) does not contain a first-order pold™| (but contains second and
third-order poles) and similarly for J(w).J(z). The mixed OPE J(w)J(z) is regular.

e One can introduce an operator Q): V, — V, given by

Q: B(2) 2L J(I{Z(dwj(w) () D(=), (6.215)

)
with v, a contour around z. This operator satisfies
Q* =0, (6.216)

as a consequence of (6.215)) (proven by the contour integration technique of Section
5.2.2). One can equip V with Z-grading by (total) ghost number, by prescribing the
ghost numbers to elementary fields as follows:

field ‘c b ¢ b o¢F
ghostnumber‘l -1 1 -1 0

— This is the sum of the left and right ghost numbers of Section According
to this Z-grading, V' is a cochain complex, with differential ) (known as the “BRST
operator”), increasing the ghost number by +1.

e The stress-energy tensor satisfies
T=Q®), T=Q0) (6.217)
— the stress-energy tensor is QQ-exact.

Remark 6.5.1. If one omits the %826 term in J and likewise in J then the residue of the
first-order pole in JJ OPE will be nonzero, but it will be exact, so the operator ¢ would
not change. Also, with this modification J, J would not be primary.

Remark 6.5.2. Fields J, J are also Q-exact:
J=Q(Gbc:), J=Q(bc:). (6.218)

We also note that in the computation of the r.h.s. it is the double Wick contractions that
result in %620 term in J in the L.h.s.; in this sense, the term %820 should be regarded as a
quantum (“I1-loop” in the language of Feynman diagrams) correction to .J E

25 This property relies on D = 26. More explicitly, if one defines J, =: ¢Thosons + 3 ¢The + @d?c :, then one
has the OPE

B-L2+4a)coc  (3-L+2a)cd% (2L +a)cdPc+ (-2 + a)dcd’c

(w—2)? ( -

Ja(w)Ja(z) ~ 2)2 W — 2

+ reg.

g

Here all fields on the right are at the point z. In particular, for D = 26 and a = 2 one has J(w)J(z) ~

_ - 2ed%c
(w—2z)3 (w—2)2 +reg.
26Tn a bit more detail: in the classical field theory defined by the action functional (6.213|) one has an odd
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6.6 Topological conformal field theories

Definition 6.6.1. A CFT is called topological (or TCFTF7) is the space of fields V' (and the
space of states H) is endowed with the structure a cochain complex with differential @) of
degree +1, such that the stress-energy tensor is ()-exact,

with G, G some fields of cohomological degree —1, such that

(a) One has regular OPEs

G(w)G(z), Gw)G(2), Gw)G(2). (6.220)

(b) G is a holomorphic (2, 0)-primary field, G is an antiholomorphic (0, 2)-primary field.
(c) There exist fields J, J € V of degree +1 and conformal weights (1, 0) for .J and (0, 1) for

J, such that:

e The 1-form-valued field
J2)=dzJ+dzJ €V, QTS (6.221)
is d-closed under the correlator, or equivalently
0J —0J = 0. (6.222)

e The differential () is given by

Qb(z) = - f I(w)d(2). (6.223)

271 o

o J satisfies

7{ J(w)I(2) = 0. (6.224)

Yz

This property implies Q? = 0.
(d) The field 1 is not Q-exact (note that it is automatically @Q-closed).

In particular, bosonic string with D = 26 is an example of a TCFT.

symmetry Q. € X(Fx) acting on the space of classical fields and squaring to zero. For this symmetry one has
an associated Noether current dzJ.+dzJ.;, where J,, Jo; are given by the formulae without the %820,
%526 terms and without normal ordering. Thus, the quantum fields are the “naive” quantization of
Jel, Jor (replacing a differential polynomial in free classical fields by a normally ordered expression), plus a
“quantum correction” £0%¢, 39%¢.

2TWe refer the reader to the introductory part of [43] for an introduction to topological conformal field
theories.
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Remark 6.6.2. In some TCFTs a stronger version of property (6.222)) holds: d.J and d.J vanish
separately. This means that ) splits into two commuting differentials Q) = Q)1 + Qg which
square to zero separately. We will call such TCFTs “chirally split.” This extra symmetry is
present, e.g., in bosonic string theory and in A-model (Section , but fails in some other
examples, see e.g. [33]. More generally, all so-called twisted N' = (2,2) supersymmetric
CFTs are chirally split — the A-model belongs to this class, cf. Section [9.4.5] The converse
is not true, e.g., bosonic string is not a twisted supersymmetric theory@.

One can introduce mode operators for G, G, defined similarly to (5.51):

1 — 1 —
160} _ _ A\n+l P P - (7 _ \nt1 d
Gn®(2) v 7{2 dw (w — 2)""G(w)P(z), G,P(2) 57 742 dw(w — z)""G(w)P(z)
(6.225)
Then the property (6.219) implies that one hag™)|
L,=1[Q.G,), L,=[Q,G,] (6.226)

for n € Z, i.e., Virasoro generators are (J-exact. In turn this implies that the central charge
of the CFT must vanish (because the coefficient of the fourth-order pole in 7T OPE must
be Q-exact; since it is proportional to identity, it must vanish@:

c=c=0. (6.227)
Property ((6.220]) implies
[GryG] =0, [Gn,Gp] =0, [Gn, G =0. (6.228)

From the OPEs between T, T and G, G, which are encoded in the axiom (]EI) above:

2G(z) N 0G(z)
(w—2)2 w-—z
2G(z) N 0G(2) ¢ reg (6.229)
(w—2)? w-—2% K
T(w)G(2) ~reg., T(w)G(z) ~ reg.,

T(w)G(z) ~ +reg.,

T(w)G(z) ~

one has the commutation relations
[Ln, Gl = (0 = m)Grim,  [Ln, Gl = (0 —m)Grgm, [Ln,Gm] = [Ln, G] = 0. (6.230)

Lemma 6.6.3. In a TCFT, assume that ®1,...,®, € V are Q-closed elements. Then:

28 Twisted supersymmetric theories have an extra symmetry between J and G — the so-called R-symmetry.
Also, in a twisted supersymmetric theory, J(w)J(z) OPE is purely regular (unlike in the case of bosonic
string, see footnote .

29 We write [A, B] = AB — (—1)I4BIBA for the supercommutator of two operators A, B. It is the usual
commutator if either A or B (or both) are even and it is the anticommutator if A and B are odd.

30 An equivalent argument: the commutator [L,,, L,,] = [@, [Gy, [@, G:»]]] has the form [Q, —], so it cannot
contain a nonzero term proportional to identity/central element (with is not of the form [Q, —]).
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(i) The correlator on CP?
(®1(21) -+ P(20)) (6.231)

is a constant function on the configuration space C,(CP').

(i) For any W € V', one has

(QU(z0) P1(21) -+~ Pp(zn)) =0 (6.232)
— the correlator of a QQ-exact field with several (Q-closed fields vanishes.

Proof. For, consider the derivative of the correlator (6.231)) in z;, 2 =1,...,n. We have

02 (P1(21) - Pu(2n)) = (P1(21) -+ - Loa®i(zi) - Pu(20)) =

— (I (z1) Gy Bi(z) - Dp(z)) (6.233)

where 7., is a contour going around z; and not enclosing any other z;’s. One then deforms
7., into a collection of contours going around z;’s for j # i: 7., ~ Uiz; — 72, (cf. Section

. Thus, one has

0. (®1(21) - Bul20)) = > (B1(21) - QPy() - G () =0 (6234
i ~

So, we obtain that all holomorphic derivatives of the correlator vanish; by a similar argument,
the antiholomorphic derivatives vanish too. Hence, the correlator is constant.

The proof of is similar: one represents () acting on ¥ by a contour integral around z
and then deform the contour to a collection of contours going around z;, 5 # 0; those give
correlators containing Q®; = 0. O]

Remark 6.6.4. The statement and proof of Lemma [6.6.3| actually extends to correlators on
Riemannian surfaces ¥ of any genus g, since on any 3 the 1-cycle v, is homologous (though
not homotopic for g > 0) to L;x; —1.,. Since one has dJ = 0 (under a correlator, away from
the punctures z;), this homology statement is sufficient to justify the switch of contours in

(6233).

Lemma 6.6.5. If a field ® € V is Q-closed and has conformal weight h # 0, then ® is
Q-exact.

Proof. Since ® has conformal weight h, we have

h® = Ly® = (QGy + Ge@Q)P = QG P. (6.235)
Thus, we have
1
P = Q(EGO(I)). (6.236)

edit? (or
maybe
it’s ok al-
ready..)
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Similarly, one shows that if a Q-closed field has h # 0, then it is Q-exact. Therefore, a
nontrivial Q-cocycle (homogeneous w.r.t. grading by conformal weight) must have (h, h) = 0.
By “nontrivial” we mean “not ()-exact” or equivalently defining a nonzero element in the
cohomology of @, Hgo(V).

Example 6.6.6. Here is an example of a ()-cocycle in bosonic string: fix a unit “momentum”
vector p € (RP)*, ||p|| = 1. Then the field

O =: cg eV2TiLipkd" (6.237)

is a nontrivial Q-cocycle. (In string theory, in Lorentzian signature on RP it is called the
“tachyon field.”) Note that the condition ||p|| = 1 guarantees that ® has confromal weight
(0,0).

Example 6.6.7. In any TCFT one has QJ = QJ = 0, as a consequence of (6.224). Thus,
using homotopy (6.236]) one has

J=Q(Gol(J)), J=Q(Go(J])), (6.238)

i.e., fields J, J are always Q-exact. This generalizes the observation (6.218)) in bosonic string
theory.

Remark 6.6.8 (1d version: topological quantum mechanics). Two-dimensional TCFTs have
a one-dimensional analog: topological quantum mechanics (TQM). Topological quantum
mechanics is defined by a Z-graded vector space H (the space of states of a point) equipped
with a differential @ of degree +1 and a second differential G of degree —1 (both differentials
are assumed to square to zero). The Hamiltonian is defined as the anticommutator

H=10Q,0). (6.239)

An example of this structure is: H = Q°*(X), Q = dx — the de Rham complex of a target
manifold X. For G one can choose:

(a) The Hodge-de Rham codifferential G = d* = + * d* (assuming that X is Riemannian).
In this case, the Hamiltonian H = A is the Laplace-Beltrami operator on X.

(b) Contraction with a vector a field v € X(X), G = tx. In this case, the Hamiltonian H =
L, is the Lie derivative and the quantum-mechanical evolution operator U(t) = e~**" is
the flow along v on X in a given time.

(¢) One can interpolate between cases (f]) and (b)) for v = —grad(f) the gradient vector field
of a Morse function f € C*°(X) by setting

G=ctder (6.240)

with € an interpolation parameter. This is the setting of the seminal example of TQM
[44).

Topological quantum mechanics is also known as N’ = 2 supersymmetric quantum mechan-
ics | We refer to [31] for details on topological quantum mechanics.

31A small caveat: in A/ = 2 supersymmetric quantum mechanics, one only requires a Z,-grading on H
instead of Z-grading. Then one just requires that @, G are odd operators, and hence H is an even operator.
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6.6.1 W.itten’s descent equation

Witten’s descent equation is a sequence of equations on a tower of p-form valued fields ®(©),
oM d® wherd™

P (2) e VP =V, @ APTY (6.241)
(we denoted V4P the space of p-form-valued fields at z). Descent equation reads
de®P—Y = Qo  p=0,1,2. (6.242)
Here we understand that ®(-1): = 0. Thus, explicitly, the equations are:
QdY = 0 (6.243)
Qe = do® (6.244)
Qe?» = oW (6.245)

One can think of this sequence as follows: one fixed a Q-cocycle ®(© — a “0-observable,”
then one wants to solve (6.244)) for the “l-observable” ®() and subsequently solve (6.245)
for the 2-observable ®(%).

Remark 6.6.9. Descent equations ([6.242)) are meaningful not just in dimension 2 (then p goes
up to the dimension of the manifold). Originally, they appeared in the work of Witten on
4-dimensional Donaldson theory [46].

From Lemma , correlators of (Q-closed 0-observables <c1>§°’(z1) e @%0)(zn)> are con-
stant functions of positions z1, ..., z, (as long as points are distinct).

Equation implies that one can construct an “extended observable” (localized on
a 1-cycle rather than at a point)

f{ oW (6.246)
ol

with v some closed contour. Then (|6.244) implies by Stokes’ theorem that ((6.246)) is Q-
closed 7]

Qj{@m =0 (6.247)

By repeating the argument of Lemma , we have that, given Q-cocycles ®(©), <I>§°), ceey CIDfIO),
the correlator
( % M (2. .. 5" (2,)) (6.248)
v

does not change when one moves points z; or deforms the contour 7 (as long as the points
and the contxour keep disjoint), however it can change when some point z; crosses 7.

The correlator (6.248)) is an example of a “topological correlator” — one invariant under
small deformations insertion points of fields (and the contour over which the 1-observable is
integrated).

32Recall that we already encountered a situation where it is convenient to consider form-valued observables,
— transformation of primary fields and Ward identity for primary fields, cf. (5.75)), (5.104).

33 We understand (6.246|) as an element of V' — in that sense it is clear what acting by @ means. Equiva-

lently, the action of @ on (6.246) can be understood as 7= [, S J(w) ﬁraz &™) (z), with the integral being
over the boundary of a thickening U, of the contour ~.

Edit,
think
through
more
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A 2-observable ®®) gives rise to a Q-closed extended observable

/ o> (6.249)
%

and can be understood as defining an infinitesimal deformation of a TCFT, deforming the
correlators as

(Pr(z1) - Pu(2n)) =

s (D1 (21) - Dr(20)) + e< (/E_m_ . q><2>> ®,(21)- ~-<bn(zn)> (6.250)

Here D; is a small disk centered at z;; € is the infinitesimal deformation parameter. This defor- 7
mation should be accompanied by a deformation of the rest of TCFT data, Q,J,G,G, T, T,
so that the relations of TCFT hold (up to O(€?)) for the deformed package.

The deformation (6.250]) in the path integral language can be interpreted as the defor-
mation of the action functional,

S S — e/ o2, (6.251)
%

6.6.1.1 Total descendant

Given a solution ®©@ &M @ of the descent equation (6.242)), one can consider the “total
descendant” B
d: =0 4 oM 4 p® (6.252)

— a field valued in nonhomogenous forms. The descent equation can be written in terms of

the total descendant as B
(d—Q)®=0. (6.253)

6.6.1.2 Closed forms on the configuration space from correlators of total de-
scendants

Lemma 6.6.10. Given a collection of QQ-cocycles CIDSO), e ,<I>£10), the correlator of their total

descendants 1s a closed form on the open configuration space:

<c§1(z1) o Cbn(zn» € chosed(Cn(Cpl))- (6254)
Proof. Indeed, one has
d(D1(21) - Dp(2)) = Z(&Sl(zl) o (d = Q)D;(z) - P(za)) = 0. (6.255)
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In fact, the form is PSLy(C)-basic and thus descends to a closed form on the
moduli space My, ~ C,,(CP')/PSLy(C).

We remark also that if in the correlator we replace one of the fields CT)j by a (d—Q)-
eract form-valued field (d — Q)Z®, with some =* € V ® A*T*X, the resulting correlator will
be an exact form on the configuration space (rather than just a closed one):

(@1(21) -+ (d = QF(25) -+ Pul20)) = d(@1(21) -+ E°(25) -+ - Pul20))- (6.256)

This is proven by an argument similar to (|6.255)).
In the example of bosonic string theory the degree of the form ((6.254]) is

> gh(@(”) -6 (6.257)
j=1

— the sum of the ghost numbers of the fields <I>§-0) minus the total (left plus right) ghost
number anomaly.

By Remark , the correlator ((6.254]) can be considered on a surface ¥ of any genus,
yielding again a closed form on the configuration space.

6.6.2 Canonical solution of descent equations using the G-field

In a TCFT, one can find a canonical solution of the equation (6.242)) starting from any
Q-cocycle O,
Consider the operator

I=—-d:G_, —dzG_,: VP vt (6.258)

where G_1, G_; are particular mode operators of the fields G, G, cf. (6.225). We will refer to
I' as the descent operator. Note that the commutator of I' with () is the de Rham operator:

[Q,T] =dz[Q,G_1] +dz[Q,G 1] = dzL_y +dzL_; = dz0, + dz0; = d. (6.259)

Note also that one has
[d,T] =0, (6.260)

since operators L_q, L_; commute with G_;, G_1, cf. (6.230).

Lemma 6.6.11. Given a Q-cocycle ®©), the sequence

3O, oM. —Te® . — lp2g0 (6.261)
, P =3 :

solves the descent equation .
Proof. The equation (6.243) is given, since ®©) is a Q-cocycle. For (6.244) we have

QroWw = (d+TQ)d" = dd©. (6.262)
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For ([6.245) we have

1
Q§FP¢<O> = _(d+TQ)dW

1
- = (oW +1adV) =
2

N | —

1
o= 5(d(;p(l) +dl'd©) = ddM . (6.263)

[]

Example 6.6.12. In bosonic string, starting with the Q-cocycle (6.237)) and applying the
canonical descent construction (6.261)), we obtain the descent sequence

O = eV, :, W = (=dzc+dze)V,:, ®F = dzdzV, ., (6.264)
where we denoted V, = ¢?V2ZxP¢" | with the momentum satisfying ||p|| = 1.

For ® = ®© a Q-cocycle, one can assemble the descendants (6.261) into the canonical

total descendant .
O: =e'd=0+ T+ 5r2<1> (6.265)

satisfying the equation ((6.253]). More generally, for ® not necessarily ()-closed, one has an
easily proven identity
(d—Q)e"® = —e"(QD). (6.266)

6.6.3 BYV algebra structure on ()-cohomology

Definition 6.6.13. A Batalin-Vilkovisky algebra (or “BV algebra”) is a Z-graded super-
commutative unital algebra (W, -, 1) equipped additionally with:

o A degree —1 Poisson bracket@ (or “BV bracket,” or “antibracket”)
L) WeW ->W (6.267)
which is a derivation in both slots and satisfies (graded) Jacobi identity.

o A degree —1 operator A: W — W (the “BV Laplacian”) satisfying the Leibniz identity
for a second-order differential operator

Azyz) £ Alzy)z £ A(z2)y £ A(yz)r £ 2yA(z2) £ 22A(y) £ yzA(x) =0 (6.268)

and the properties

A(1) =0, (6.269)
A(zy) = Alx)y + (=) zA®y) + (=1)"(z, y). (6.270)
In particular, the BV bracket arises as the defect of the first order Leibniz identity for

A.

34 The grading convention that we use here, with (,) and A of degree —1, is adapted to BV algebras arising
from 2d TCFT. In the setting where BV algebras originally appeared — Batalin-Vilkovisky quantization of
gauge theories — the natural convention is to assign degree +1 to (,) and A (the same degree as the operator
Q, whereas in TCFT the degrees are opposite to the degree of Q).
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In the setting of TCFT, we consider the graded vector space W = Hg(V') — the coho-
mology of @) (with grading by the “ghost number”), the unit element is 1 — the cohomology
class of the identity field.

The supercommutative product on W is given by OPEs. Notice that if ®,, 5 are two
nontrivial Q-cocycles, the OPE has the form

By (w)Ds(2) ~ D (w — 2)" P (0 — 2)" V() (6.271)

where we used that ®; must have conformal weight (0,0) and used Lemma . Terms
in the right hand side of the OPE must also be @)-closed, and the ones containing nontrivial
Q-cocycles ® have to contribute with exponents h(®) = h(®) = 0. Therefore, for ®;, ®, two
@-cocycles one has an OPE of the form

Oy (w)Py(z) ~ (Py - Py)(2) modulo Q-exact terms. (6.272)

with ®; - &5 some )-cocycle. Thus, in ()-cohomology OPE, is always constant and induces
a supercommutative product.

The BV bracket is given by the following construction: for &, = <I>§0), b, = <I>§") two
Q-cocycles, we set

(@1, @) (z) = - 7{<I>§”<w><1>§°><z>, (6.273)

271 5

where 7, is a contour around z and CDgl) = F@go) is the first descent of ®;.
The BV Laplacian is constructed as the operator

A: =Gy — Gy, (6.274)

also denoted Gy _, where Gy, Gy are particular mode operators of G, cf. (6.225).
We refer to [32] for an example of a TCFT with explicitly computed BV algebra structure
on (J-cohomology.

6.6.4 Action of the operad of framed little disks on V'

The BV algebra structure on @-cohomology Hg(V') has a “lift” to the full space of fields V,
as an “algebra over the operad of framed little 2-disks.”

Definition 6.6.14. The operad of framed little 2-disks E¥ is a sequence of manifolds (EY),,,
where (EIT),, is the space of configurations of n > 0 disjoint disks inside a unit disk in R* ~ C,
each disk is equipped with a “framing” — a marked point on the boundary circleE] The
marked point on the unit circle is fixed at (1,0).

One has composition maps

051 (By)n X (EY)m = (B )ngm-1 (6.275)

35In particular, (EY), is a manifold of real dimension 4n, parameterized by positions of centers of the n
disks, n radii and n angles (of the marked point).
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fori =1,...,n, defined as follows. A configuration of disks 0, € (EL),, is scaled and rotated
so that its outer disk fits with i-th disk in the configuration o; € (EI), (and the marked
points should coincide). Then the new configuration oy o; 02 consists of the rescaled/rotated
configuration oy and all disks of 0; except the i-th disk.

It is convenient to think of a configuration of disks as “holes” in the unit disk. Then the
composition map fits one m-holed inside the i-th hole of another n-holed disk.

01

Figure 6.4: Composition in the operad of framed little 2-disks.

Given a TCFT, one can construct a sequence of differential forms w, on (EY), valued in
Hom(V®™ V), for n > 1, defined by

wn<q)1’ e (I)n) — H 6CkLO+EkZO+d<kGO+d§kéOer(pk(Zk). (6276)
k=1

Here z; are positions of the centers of disks, (, = logry + 6y, with r; the radii and 6 the
angles; I' is the descent operator (6.258]). The expression in the r.h.s. of is to be
understood under a correlator with an arbitrary collection of test fields inserted outside the
unit disk. Thus, the r.h.s. of is a “multi-OPE.”
One has the property
(d—adg)w, =0 (6.277)

where adg means the sum of terms where ) on an input or the output field of w,. More
explicitly,
(d—adg)wn(Py,...,P,): =

= dw,(P1,...,Py) = Qi (1, .., D) + > Fw(Pr,. .., QP ..., D,) =0 (6.278)
k=1

This property is a consequence of ((6.266]).
The property (6.277) implies that one has a map of cochain complexes, from singular

chains of the framed little disk operad to multilinear operators on V:

C_.((EM,) — Hom(V®™ V)

chain (@1 D@y [, (... ,<I>n)> (6.279)
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Note that we put the reverse grading on chains, so that singular chains are seen as a cochain
complex. This map is a representation of the operad, i.e., is compatible with compositions.

In particular, passing to cohomology, we obtain a map from homology of (EL), to
Hom(W®™ W), where W = Hg(V).

Here is a known fact (see [I8]): homology of the operad E¥ is the operad of BV algebras,
with generators 1, - (,), A (subject to the relations as in Definition m

More explicitly, the homology of E¥ is generated (using compositions o;) by four homol-
ogy classes:

(i) The tautological O-class in Hy((EL)).

(ii) The O-class in Ho((EL)q), represented by any configuration of two disjoint disks in the
unit disk.

(iii) The 1-class in H,((E),), represented by one disk moving a full circle around the other
disk.

(iv) The 1-class in H;((ELT);), represented by rotating the disk (or equivalently rotating the
marked point on the boundary) a full circle.

LA X

unit product BV bracket BV Laplacian

Figure 6.5: Generators of homology of E.

These classes correspond to the elements 1, -, (, ), A of the BV operad and are represented
on W by the corresponding operations: cohomology class of the unit field, (6.272)), (6.273]),
, and one can see that those formulae follow from integrating the form (|6.276)) over
the respective cycles. Thus, indeed, the BV algebra structure on ()-cohomology that we
constructed in Section is induced from the Ef-algebra structure on V via passing to
cohomology.

For details on the operadic viewpoint on TCFTs, we refer the reader to [I8]. For an
explicit example, we refer to [32].

36We think of the unit as an operation of “arity zero,” 1 € Hom(V®°, V) ~ V.

What is
the origi-
nal refer-
ence?



Chapter 7

Elements of representation theory of
Virasoro algebra

7.1 Verma modules of Virasoro algebra, null vectors

Let V. be the Verma moduleE] of Virasoro algebra with central charge ¢ € C and highest
weight h € C, i.e., it is generated by the highest weight vector which we denote |h) which

satisfies
L-olh) =0, Lo|lh) = h|h) (7.1)

— is killed by the positive part of the Virasoro algebra and is an eigenvector for L, with
eigenvalue h. The Verma module is then

Ven=Spanc{L_, - L_plh) |1 <n; <---<mn,, r>0} (7.2)

The descendant
Lo, -+ Lo |h) (7.3)

has conformal weight (Lg-eigenvalue) h + N where N = n; + - -+ 4+ n,. One says that (7.3
is a “level-N” vector in V. ;. One has a splitting of V. by level:

Ven = @ Vi, (7.4)

N>0

where VCA}[L is the subspace of the Verma module spanned by level-N vectors (i.e., it is the
(h + N)-eigenspace of Lg). Note that the dimension of VJ} is

dim V., = P(N) (7.5)

— the number of partitions of N (cf. Section [6.1.6)).
There is a unique sesquilinear form (,) on V. characterized by the properties

(h|h) = 1 (7.6)

! Given any Z-graded Lie algebra A = A,, one defines the Verma module as follows. Let W be a module
over A>o where A5 acts by zero. Then the Verma module is the U(A)-module induced from W, i.e.,
U(A) ®u(as,) W, where U(---) is the enveloping algebra.

242
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(L))t = L.,, neZ (7.7)
Generally, (,) is not positive-definite and may be degenerate.

Definition 7.1.1. A vector |x) # |h) in V., is called a “singular vector” or “null vector” if
it satisfies

Note that a null vector is automatically orthogonal to the entire V., since one has
<L7nr oo Ly, |R), ‘X>> = (h|Lpn,--- Lnlx) =0. (7.9)
——

=0 since n,>0

In particular, a null vector has zero norm:

(xIx) = 0. (7.10)

Assume that there exists a null vector |x) at level N in V, j,. Then Virasoro descendants
of |x) form a submodule of V., isomorphic to the Verma module V_ . n:

Span{L_, ---L_p|x)} C Ven (7.11)

-~

=~ c,h+N

In fact, this entire submodule is orthogonal to V., by an argument similar to (7.9)).
Let us consider when null vectors can appear at small levels N (the full answer for general
N is given by Kac determinant formula in Section below).

Example 7.1.2. Assume that V_.j, contains a null vector at level N = 1. That means
|xX) = L_1|h) (ignoring a possible normalization factor). Note that Lxs|y) is a vector at level
—1, so it automatically vanishes. The only case of (7.8 that needs checking is Li|x) :

Lilx) = LiL_1|h) = (2Lo — L_; Ly)|h) = 2h|h). (7.12)
——

0
Thus, |x) = L_1]h) is a null vector if and only if A = 0.

Example 7.1.3. Assume that V_j contains a null vector at level N = 2. This means
X) = (aL_5 + BL%,)|h) (7.13)

with «, f € C not simultaneously zero. By the same argument as above, Ls3|x) vanishes
automatically, so we only need to check L;|x) and Lo|x). We have

Li(aL_y+ BL*)|h) = (a3(L_1 + L_oLy) + B(2LoL_1 + L_1L1L_4))|h) =
= (a3L_1 + B(2L_1 +2L_1Lo+2L_1Lo+ L*,Ly))|h) = (3a + (4h + 2)B)|h), (7.14)

C
Lo(aL_o + BL*))|h) = (a(4Lo + 5+ L_9Ly) + B(BLyL_y + L_1LyL_1))|h) =
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— ((4h+ 5)+ B(6Lo + 3L Ly + 3Ly Ly + L2, L)) B} = (4h + S)a + GhA) ). (7.15)

So, the equations on a null vector Li|x) = 0, Ls|x) are equivalent to a homogeneous system
of two linear equations on two coefficients «, 3,

Sa+ (4h+2)3=0, (4h+ g)a +6hS =0, (7.16)

which has a nonzero solution if and only if the determinant of the coefficient matrix vanishes,

3 4h + 2

. = 0. (7.17)
¢+ 4h  6h

This is a nontrivial quadratic relation on ¢ and h, and as we just showed, V. j contains a null
vector at level N = 2 if and only if this relation is satisfied.

For instance, this relation is satisfied for ¢ = %, h = 1—16, which is what allowed us to find
a hypergeometric equation on the four-point correlator of fields in the free fermion CFT

in Section [6.3.9

7.2 Kac determinant formula

Consider the “Gram matrix” — the matrix of inner products of level-N descendants of the
highest vector |h) in V_p:
M® = ((il5))i; (7.18)

where 7, 7 run over the basis of vectors 1} in V.. In particular, M (N) i a matrix of size
P(N) x P(N).

Theorem 7.2.1 (Kac [23], Feigin-Fuchs [13]). The determinant of the Gram matriz
18

det M) = ay IT (= hpgle)) 9. (7.19)
p,q > 1s.t.
pg < N
Here
ay = H ((Qp)qq])P(N—pq)—P(N—p(q+1)) (7.20)
p,q > 1s.t.
pg < N

is a numerical factor and

(m+1)p—mq)* -1

h = 21

where m s related to the central charge ¢ by

1 25 —c¢
== 7.22
mE TV = (7.22)
or equivalently
6

c=1— —— (7.23)
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The importance of Kac determinant formula ((7.19)) is that says for which ¢, h the Gram
matrix at level NV vanishes, which means that V_ ;, contains a null vector at level < N. More
precisely, Kac formula implies the following:

Corollary 7.2.2. If h = h,, (as defined by ) for some integers p,q > 1 then V.,
contains a null vector at level N = pq.

In fact, null, vectors at other levels may also appear (i.e. this is not an “if and only
if” statement), however every null vector in V,, is either covered by Corollary oris a
descendant of one.

Example 7.2.3. For any c from ([7.21f) we have h;; = 0. This corresponds to the fact that
Veo has a null vector at level N =1 for any ¢, cf. Example|7.1.2}

Example 7.2.4. Consider the case of central charge ¢ = 1. By ([7.22)), (7.23) it corresponds
to the limiting case m — oo. In this limit, ((7.21)) becomes
p—q)

_
g = (7.24)

This implies that for c =1, h = %, with n = 0,1,2,3,..., the Verma module V; ;, contains

an infinite sequence of null vectors at levels N = p(n + p), with p =1,2,3, ..., since h = Z—Z
——
equals h,, for an infinite sequence of pairs (p, q) of ch} form (p,n + p).
The following is (a part of) a theorem of Feigin-Fuchs [13].
Theorem 7.2.5 (Feigin-Fuchs). o V.; is irreducible if and only if it contains no null

vectors and is reducible if and only if h = hy 4 for some integers p,q > 1.
o Proper submodules of V., are generated by null vectors.

o The wrreducible highest weight module M., for Virasoro algebra at central charge ¢ and
with highest weight h has the form

M. =V.u/N (7.25)

where N C V., ts the mazimal proper submodule. It can also be realized as the kernel
of the sesquilinear form (,) on V.5 or equivalently the orthogonal complement of V.p:

N =ker(,) = V. (7.26)

In Section [7.3| we recall the second part of Feigin-Fuchs theorem giving the full classifi-
cation of maps (inclusions) between Verma modules at a given ¢, which in particular yields
formulae for characters of M, and therefore formulae for torus partition functions in a CFT,
see Section [7.3.1| and (|7.56)).
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Example 7.2.6. For ¢ = 1, V} , is reducible ift h = ”72 for somen =0,1,2,.... In particular,

for h # "72, one has M, = Vi;. Reducible Verma modules for ¢ = 1 arrange into two
sequences connected by inclusions of modules:

VipVig < VigVig--- 7 97
ViiéeVioVias Vs - (7.27)
74 74 b 4 b 4
Irreducible modules for these values of h are obtained by taking the corresponding Verma
module and quotienting out the module mapping into it. E.g., M; ¢ = V}/V11. Null vectors
in V7 5, are images of highest vectors of Verma modules to the right in the respective sequence,
i.e., mapping into V; 4, possibly via a sequence of inclusions.

Example 7.2.7. Consider the case ¢ = %, which corresponds to m = 3. One has

(4p —3¢)* -1
By = 5 . (7.28)

The values of h, , for small p, ¢ are the following.

hp’q ‘pzl p=2
qg=1 0 %

1 1
=2 1 6
q=3| 3 0

We recognize these numbers hy; = 0, hgy = %, hig = %6 as precisely the conformal
weights h of primary field 1, ¢, ¢ in the free fermion CFT. Thus, the corresponding conformal
families M 1, are the ones coming from Verma modules V1 ;, containing a null vector, which
allows one to write differential equations on correlators of the corresponding primary fields,

as we did in Section [6.3.9]

7.3 Maps between Verma modules

In this section we follow Feigin-Fuchs [13].

Fix the central charge ¢, h € R. Equation h,, = h with h, , defined by (7.21)) determines
two parallel lines on the (p, ¢)-plane related to one another by reflection (p, q) <+ (—p, —¢q).
Pick one of those lines and denote it I.j,. The slope of I, is ™+ in particular:

e If ¢ <1, the line is real, with positive slope. For ¢ = 1 the slope is 1.
o If ¢ > 25, the line is real, with negative slope. For ¢ = 25, the slope is —1.
e If 1 < ¢ < 25, the slope (and the line) is complex.

One is interested in integer points on [, ,. The relevant cases (with nomenclature taken
from [13)]) is:

I I, has no integer points.
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I I.; has a single integer point (a’,a”) € Z2. One distinguishes the following subcases:

II, d'd" >0,
Iy d'ad” =0,
II_ da” <O.
IIT I} contains infinitely many integer points. In this case m € Q and one has either ¢ <1

(subcase III_) or ¢ > 25 (subcase III; ). We further distinguish between the subcases
according to whether [, , intersects the coordinate axes at integer points.

HIgE’O l., intersects both coordinate axes ¢ = 0 and p = 0 at integer points. Denote P
the middle point of the interval connecting these two intersection points. Enu-
merate the integer points of the upper half of [.;, (above P) as

"

oo (dy,d”y), (ag, ag), (ay,af), . .. (7.29)
in such order that one has

e <a jd’ ) <agag =0 < ajal <--- (7.30)

In particular, in the case II1°°, the sequence 1) is finite on the left and infinite
on the right, and vice versa in the case HI&O.

Hli l.» intersects one of the coordinate axes at an integer point. Then we enumerate
all integer points of ., (not just half) as in (7.29), so that ((7.30)) holds.

III. I.j intersects both coordinate axes at non-integer points. Then we enumerate all
integer points of [.;, as in (7.29)), so that
! n ! n

We also draw a second line [, through the point (—ag, ag) parallel to [, and
enumerate its integer points as

cs (B, 074), (b, bg) = (—ag, ag), (b, BY), - .. (7.32)
so that one has
s < Vb < bpby = —agag < 0 < bib] < - (7.33)
Theorem 7.3.1 (Feigin-Fuchs). Fiz c¢,h € R and a line l.;, as above. Then:
o In cases I, I1y: V., is trreducible and not a proper submodule of any Verma module.

o In the case 11, V), has a single Verma submodule isomorphic to V. (which is
irreducible) and generated a by a null vector at level a’a”; V.., is not a proper submodule

of any Verma module.

o In the case II_, V., is irreducible but can be embedded into V. piqqr and is generated
there by a null vector at level —a’a"”. V., cannot be embedded into any other Verma
module.



CHAPTER 7. REPRESENTATION THEORY OF VIRASORO ALGEBRA 248

e [n the cases Hlio, I11%, there is a sequence of embeddings
= ch,h-‘,—a’la’{ — ‘/c,h — ‘/<Z,h+aL1a’L1 — (734)

Modules in this sequence are not related by morphisms with any Verma modules not
from this sequence.

e In the cases 111y there is a commutative diagram of embeddings of Verma modules

‘/c,th(; 1’y ch+a Ka’, (735)

ch ch+b’ b +apag

>,
<

‘/c hA-bL b +ag af c Lh4-by b +agaf)

ch Jh+a) c h+a0a0

Modules in this diagram are not connected by homomorphisms with any other Verma
modules. In each piece of the form

T\ (7.36)
B C

D E
the images of B and C' in A do not contain each other and their intersection is generated
by images of D and E in A.

Example 7.3.2. The case ¢ = 1, h = 0 corresponds is ITII"" in Feigin-Fuchs classification
and c=1, h = %2 with n =1,2,...1s ITI°. In these cases the sequence |D is one of the
two sequences (7.27)).

Example 7.3.3. For ¢ = 1, h = 0 we have the line lio= {(p,q) | 4p—3q = 1} corresponding
to the case ITI_. The integer points on 1%70 are (1 + 3k, 1+ 4k) with k € Z; arranged in the
order ([7.31)) they are:

n | 0 1 2 3 4
(a,,al) | (1,1) (=2,-3) (4,5) (=5,—7) (7,9)

n’-'n

(7.37)
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The parallel line ' | = {(p,q) | 4p—3¢ = —T7}, it has integer points (—1+3k,1+4k), k € Z;
arranged in the order ([7.33]) they are:

n | 0 1 2 3 4
O, 0 [ (—1,1) (2,5) (—4,-3) (5,9) (—7,-7) (7.38)
The diagram of embeddings ([7.35)) becomes
Vio (7.39)
V%,ﬁ V%J
Vl711 V%79

One has similar diagrams for h = 1 and for h = 75 (all with ¢ = 3).

7.3.1 Characters of highest weight modules of Virasoro algebra

Given a module W of Virasoro algebra with central charge c is defined as

xw(a) = trwq"7, (7.40)

with q a complex parameter with |q| < 1. For a Verma module V_, one has

(@) = S P(N)g" V-5 = Lo (7.41)

= n(r)

where P(N) is the number of partitions and 7(7) is the Dedekind eta-function; q is related
to 7 € Il by
_2miT
q=e"". (7.42)
Characters of irreducible highest weight modules M., can be obtained using Theorem

3.1

Example 7.3.4. The character of the irreducible module M; , can be obtained from the

diagram ([7.39)):

XMy (q) XV (Q) - XV%,I (Q) o XV%yﬁ (q> + XV%,Q (q) + XV%,M (q) - =

2.0

1
qs -
_ l-—q-®+@+qr =)= 2 : (q1+( 143k) (1+4k) _ q(1+3k)(1+4k)) (7.43)
) iz
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Characters of irreducible modules M, are the conformal blocks for the torus partition
function in a CF'T. If the space of fields of a CF'T with central charge ¢, ¢ contains primary
fields ®; with ¢ € I (the indexing set for primary fields), with conformal weights (h;, h;),
then the space of states (or space of fields) is

H =P My, @ M, (7.44)

el

and the torus partition function is

7.4 Minimal models of CFT

7.4.1 Unitary minimal models

The following theorem is due to Friedan-Qiu-Shenker (1984) and Goddard Kent-Olive (1986).

Theorem 7.4.1. The irreducible highest weight Virasoro module M.y is unitary (i.e. the
sesquilinear form (,) is positive definite) if

(a) either ¢ > 1, h >0,

(b) OTCZI—LH) withm =2,3,4,...andh=h,, with1 <p<m-—-1,1<g<m.

m(m

Note that for ¢ as in (]ED above, one has a symmetry in the table of admissible h,, ,’s:

hp,q = hm—p,m+1—q‘ (7'46)

Fix m = 2,3,4,... The “minimal model” M(m, m+1) is defined’] as a CFT with central

charge
6
=c=1-——— 7.47
e m(m+ 1) (7.47)
and space of states (or space of fields)
H - @ Mcvhpyq ® Mczhp,q' (748)

1<p<m—1, 1<q<m /Z>

Here the sum is over pairs (p, ¢) where the pairs (p, ¢) and (m —p, m+1— q) are understood
as equivalent; notation “/Z,” above means that we should take one representative for each
equivalence class. Each term in the sum in ((7.48)) is a representation of left and right Virasoro
algebra, Vir @ Vir, given as a tensor product of two copies of the same irreducible Virasoro
module M., ; bar over the second copy of M indicates that we see it as a module over the
right (antiholomorphic) copy of Virasoro algebra.

2 We say “defined” a bit sloppily here. To have a CFT, the definition of the space of states as a
Vir@ Vir-module needs to be supplemented with extra data: OPEs of primary fields, or equivalently, structure
coeflicients of 3-point correlators of primary fields, which then allows to determine all correlators.

Lecture
35,
11/18/2022
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Example 7.4.2. For m = 3, the minimal model M(3,4) is the CFT with central charge ;
and three species of primary fields:

o ®,; of conformal weight h =h =hy; =0,
e &y, of conformal weight h = h = ho1 = %,

e &, of conformal weight h = h = hio = %.

Comparing this to (6.122]), we see that the space of states for M(3,4) is the even part of the
space of states of the free Majorana fermion, and we can identify the fields as

(I)l,l = 1, @271 = €, @1’2 = (749)

— the identity, “energy” and “spin” fields.
In particular, the CFT minimal model M(3,4) corresponds to the Ising model at critical
temperature (at the point of second-order phase transition), and in particular correlators of
reproduce the correlators of spins in critical Ising model.
The selection rules (so-called “fusion rules”) for OPEs are given by the following table

ANANEES
e @ [ (7.50)
] ]

Here for ® a primary field [®] stands for its conformal family (the span of all descendants,
or equivalently, the corresponding term in the sum (7.48))). For instance, the fusion rule
[ ] X[ ]=1[1] + [¢] means that in the r.h.s. of the r.h.s of the OPE of any two descendants
of one can find only descendants of 1 and of e. We will comment later on where these
selection rules for OPEs come from, see Remark [7.5.4]

Example 7.4.3. Case m = 2 is the “trivial CF'T” with ¢ = 0 and a single conformal family
Wlthh:h:hl’lzo .

H= M()p ® M070. (751)
In fact the irreducible Virasoro module M consists of just the highest vector |vac) (or 1)
and all its descendants are zero.

7.4.2 General minimal models

Let c=1— ﬁ with m € Q (rational but not necessarily integer). Assume that
m+1 @
—_— == 7.52
=7 (7.52)

with @), P > 1 coprime integers.
As a consequence of Theorem [7.3.1] one has that for such ¢, the mazimal’| reducible
highest weight Verma modules are V., with 0 <p < P, 0< ¢ < Q.

3“Maximal” means that they cannot be embedded as proper submodules into any other Verma module
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The minimal model M(P, Q) is defined as a CFT with the space of states (or space of
fields)
H= @ Mcvhp-,q & Mc7hp,q7 (753)

1<p<P-1,1<q< Q-1 /Zy

where /Z, again means that from each equivalence class (p,q) ~ (P — p,Q — q) we need to
pick one representative.

The minimal models M(P, Q) are not unitary (the sesquilinear product on H is not
positive-definite), unless one has (P, Q) = (m,m+ 1) for m =2,3,.. ..

Example 7.4.4. The minimal model M(2,5) corresponds to ¢ = —22/5 (and m = 2) and
has two primary fields:

o ®;; =1 of conformal weight h = h = hii =0,

e ®,, of conformal weight h = h = h; 5 = _%

In particular, it is clear that the model cannot be unitary, since ¢ < 0 and there is a field
with negative conformal weight (each of these observations separately contradicts unitarity).

Example 7.4.5. The minimal model M (4, 5) is unitary. It has ¢ = 7/10 and the array{| of
conformal weights h,, , for admissible p, ¢ is

=1 p=2 p=3

g=1| 0 7/16  3/2

g=2|1/10 3/80 3/5 (7.54)
g=31] 3/5 3/80 1/10

g=41] 3/2 T7/16 0

In particular, the model has 6 = 3 x 4/2 conformal families/species of primary fields.

Each minimal model M(P, Q) has a collection of primary field ®, , of conformal weight
(hpgs Ppq), With p,q as in the r.h.s. of ; ®,, = 1 has conformal weight (0,0) and is
identified with the identity field.

Some of the fusion rules are:

(I)p,q—l] + [(I)p7q+1]a (7-55)
CI)pfl,q] + [q)p+1,q]~

Minimal models of CFT describe different 2d systems of statistical mechanics at the point
of second-order phase transition (put another way, they describe universality classes of 2d
critical phenomena). For instance, one has the following correspondences were identified
between 2d systems at the point of phase-transition and minimal models of CFT:

4Note that the negative conformal weight means that the correlator of two such fields increases as the
fields get farther apart: (®;5(w)®;2(2)) = |w — 2|5 (cf. Lemma .
®Such arrays for minimal models are called “Kac tables”
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CFT minimal model phase transition
M(3,4) Ising model at critical temperature
M(2,5) Yang-Lee edge singularity
M(4,5) tricritical Ising model
M(5,6) 3-state Potts model
M(6,7) tricritical 3-state Potts model

Remark 7.4.6. All primary fields in a minimal model M(P, Q) are highest vectors of reducible
Virasoro modules (always corresponding to the case III_ in Feigin-Fuchs classification, The-
orem and thus have vanishing descendants. Therefore any 4-point correlation function
of primary fields in M(P, Q) can be reduced to a function F'(\) of the cross-ratio A satisfying
certain ODE (e.g. a hypergeometric equation in the case of fields ®1 2, ®5 1), as in the case
of the correlator ( ) in Section [6.3.9]

Definition 7.4.7. One calls a CFT with finitely many primary fields (or equivalently finitely
many conformal families — irreducible summands in the space of states/ space of fields) a
rational CFT, or RCFT.

Thus, minimal models are the prime examples of rational CF'T. On the other hand, free
boson (with values in R or S') is not rational: it contains infinitely many primary fields.
To define a CF'T, one needs to present two pieces of data:

e The space of states H or equivalently the space of fields V' as a Vir @ Vir-module (with
come central charge ¢, ¢) — in particular, splitting it into irreducible summands, one
has conformal families generated by highest weight vectors/primary fields.

e The coefficients in 3-point correlation functions of primary fields ((5.118)).

This data allows one to recover all correlation functions of all fields but there are two con-
straints that the data above must satisfy:

(i) “Crossing symmetry” — a certain quadratic constraint on the coefficients of 3-point
functions of primary fields, see Section [7.5.1]

(ii) Modular invariance of genus one partition function.

Remark 7.4.8. 1f one defines the space of states to be just the single conformal family gener-
ated by the identity field 1, then the corresponding “CFT” will have correlators and OPEs
on the plane but will fail the modular invariance property (unless ¢ = 0 which is the case of
the trivial CFT M(2,3)).

More explicitly, one computes the torus partition function in M(P, Q) using and
evaluating the characters as in Example resulting in the formula

Z(t) =

s
IRUIGE 2

1<p<P-1,1<¢< Q-1 /25

2

th,q Z <qpq+(—p+Pk)(q+Qk’) _ q(p+Pl<:)(q+Qk))

kez

(7.56)

This expression is modular invariant (which can be proved by Poisson summation). However,
restricting to only the (p,q) = (1,1) term in the sum one obtains a non-modular invariant
expression.
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7.5 Correlators and OPEs of primary fields in a general
RCFT

Consider a general CFT. Fix {®,},ec; an orthonormal basis of primary fields, with I an
indexing set.

Lemma 7.5.1. For &, &5 primary fields, the OPE has the form

ZZ%Z =yttt g — gy et RgfE ) (767)

pel *j

where:
e The first sum is over species primary fields.

o The second sum over pairs of nondecreasing sequences 1 <k < -+ < k. (which
we denote k) and 1 < kb < --- < k (denoted k) with r,s > 0; we also denoted
k| = ky + - + k, and similarly for k (IJk ks the descendant

]

=L 4 -

ol Lo L g L ®, (7.58)

e The coefficients on the right are

Cfé]; = ClQPﬂprBpr (759)

where Cha, are certain coefficients depending on the triple of primary fields @1, Po, @,
and /Bﬁp a certain family of um’versaﬂ rational functions of c, hy, ha, hy, parametrized

by the sequence /;; B is the same family where ¢, hy, ho, Bp are used instead.

One can always assume the normalization /Bﬁp =1.

Remark 7.5.2. (a) “Structure constants” Cpg, in the r.h.s. of (7.59) are the same as the
constants appearing in the r.h.s. of the 3-point function (5.118)) of primary fields

(@1 (w)Pa(2) Dy (). (7.60)
Expressed another way, it is the matrix element
(@,]@1(1)[@2). (7.61)

It is symmetric under permutations of species 1,2, p (as obvious from the previous in-
terpretation).

(b) Remark that as a consequence of Lemma [7.5.1] a descendant field CIDEE can appear in
the OPE @, (w)®2(2) only if the primary field ®, itself appears in that OPE.

6I.e. not depending on any details of the CFT.
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(¢) From the ansatz ([7.5.1)) it is clear that only finitely many descendants of each primary
field ®, contribute to the singular part of the OPE.

Sketch of proof of Lemma[7.5.1. The exponents in the ansatz ([7.57)) follow immediately from
Lemma [5.6.5 The only thing to check is (7.59).

The idea is to consider 3-point correlation functions
(@1 (w) Dy (2)BL (1)) (7.62)

for various nondecreasing sequences waith ] = ||, |lj\ = \l?| On one hand one can find
these correlators explicitly by reducing them to a differential operator acting on (@4 (w)®y(z)P,(x))
(cf. Example [5.6.3)), resulting in expressions of the form

(@|21(1)]P2) = CrapYinyTio, (7.63)

with 'yfzp some universal rational functions of ¢, hy, ha, h, depending on the sequence lj and
similarly for 7; for convenience we set z = 0,w = 1,z — oo in the correlator . On the
other hand one can replace ®;(w)®Py(2) in with the r.h.s. of and evaluate the
remaining 2-point functions of descendants in terms of elements of the Gram matrix ([7.18]):

(@B, (1)]®s) = Z chkqr " (7.64)

12pY YR

where Ggfare the matrix elements of the Gram matrix. Here we again set z =0, w = 1,2 —
oo. Comparing the two sides, we obtain the claimed ansatz ((7.59)) with

By = _(GP) g Yiap (7.65)
r
m
Example 7.5.3. The first coefficients 61’;219 appearing in ([7.59) are:
Biap =1,
1y _ hi—hathy
Biap = Q—hp’

Bia dhy+§ b, )7 2y — hy + hy
Bl ( 6h,  2h,(4h, +2) ) ( (—hy — hg + hy)(3hy — hy + hy, + 1) + 6h3 ) ‘
Remark 7.5.4. Assume that the primary field ®; has a vanishing descendant al level N
(corresponding to a null vector in the corresponding Verma module). Then by the argument
of Example there is a degree < N differential operator annihilating the 3-point function
of primary fields . Combining with the expression for the 3-point function this
implies an algebraic equation of degree < N. Thus, there is an algebraic equation of degree
< N on the conformal weight h, of a primary field which (and whose descendant) can appear
in the r.h.s. of the OPE (7.57)).

This is exactly the case in minimal models M (P, Q)) and this is how one obtains “fusions
rules” ([7.55)) and, more generally, obtains the result that fields ®,, of the minimal model
form a closed algebra under OPEs: no fields with other conformal weights can appear.
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7.5.1 4-point correlator of primary fields

The correlator of four primary fields in a general CF'T is bound by global conformal symmetry

to be of the form (5.125]):

(@1(21)Ba(20)s(z)0a () = ([ 23" E Y p0) (766)

1<i<j<4

with f a smooth function of the cross-ratio A = 22224 ¢ CP"\{0,1,00}. We can use Mobius

symmetry to fix points 29, 23, 24 at 1,0, oo, then ;14zgzcomes A. Thus, we have
(D4] Do(1)®1 ()| B5) = f(N) (7.67)

Applying the OPE (7.57) to the expression ®;(\)|®3) above, we obtain

f()\) = Z Z Cl3pﬁfsp6{f3p)\*h17h3+hp+\k\5\51753+Bp+|fc| (<I>4@2(1) ‘(I)];’E>

el if
= 204219013;7 5 (PN F 13(p|)\) (7.68)
pel
where N
FApIA): = Aheth 30 \K T 513;,@3 45241” (7.69)

K=0 g I'with |k|=|l]=K

and similarly for 7. Here G 718 a matrix element of the Gram matrix ([7.18)).

The r.h.s. of (7.69) is a holomorphlc function of A (possibly with monodromy at A = 0),
the sum over K is absolutely convergent in the unit disk |A\| < 1. Thus the function f(\)
determining the 4-point correlation function is a sum over I (i.e. a finite sum for a rational
CFT) of products of certain universal holomorphic and antiholomorphic functions, with
coefficients given in terms of coefficients of 3-point functions. This begins to justify the
claim that coefficients of 3-point functions determine all correlators in a CFT.

Function @ is called the conformal block of the 4-point function, cf. .

Computation @ can be thought of in terms of Segal’s axioms, as cutting a 4-punctured
sphere CP! by a circle S} of radius [A| < r < 1 centered at the origin and evaluating the
corresponding composition as a sum over the basis in the space of states for the circle S}:

(B[ s(1) 1 (V) B3) = ZZ%I% ) (@)@, ()] (7.70)
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Figure 7.1: Cutting the 4-point correlator on CP?.

7.5.1.1 Crossing symmetry.

Starting from the 4-point function ([7.66]) and switching the roles of fields ®9(z5) and ®3(z3),
one obtains another expression for the 4-point function:

FO) =3 CuspCrapFi(pl1 — N F1p(pll = X). (7.71)

pel

Expressions and must agree in the region where r.h.s. in both cases is defined,
i.e., in the region {A € C | |\| <1, |1 — A] < 1}. This is the so-called “crossing symmetry.”
In particular it implies nontrivial quadratic relations (a version of associativity constraint)
on the coefficients of 3-point functions of primary fields.

In terms of Segal’s axioms, crossing symmetry is just the statement that cutting a 4-
punctured sphere in two ways yields the same partition function.

Py

Figure 7.2: Crossing symmetry = cutting the 4-point correlator on CP' in two ways.

Replacing punctures by finite circles, the same picture can be regarded as cutting a sphere
with four holes into two pairs of pants in two different ways.
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Figure 7.3: Another visualization of crossing symmetry.

7.5.2 n-point correlator of primary fields

The strategy above can be applied to n-point correlators of primary fields on C (or CP?),
with n > 4.

First note that Lemma has a straightforward generalization to the case of an OPE
between descendants:

CI)El’El (w)q)EQ’EZ (2) ~

~ Z Z 0]1-6212;’62,]6 k17k2, ( _ Z)7h17h2+hp+|k|f|k1‘7|k2‘(,lD _ 2)7517524»}_1,1;4»“—9‘7“21‘7‘]_62|¢l]’;‘,l_€(z)
pel ¢
(7.72)
with
k,k,kk,k, k,kkkkk
Crop 7 = Crgplia, " Prayy - (7.73)

Here all conventions are as in Lemma [7.5.1} szlz’,kg’k are again some universal rational func-
tions of conformal weights and the central charge. To obtain ([7.72), one repeatedly applies
Virasoro generators (centered at z and at w) to the OPE ((7.57)).

Given a correlator of primary fields

(@1(1) -~ Dulz0), (7.74)

choose a tree T' with trivalent vertices and with n leaves decorated by ®;(z;). The tree T" de-
termines an asymptotic region in the configuration space C, (CP'), prescribing in which order
the points are approaching one another (for instance, z, approaches z; and z, approaches z3;
then z3 approaches 21)|Z| In this asymptotic region, one can compute the correlator
by iteratively using the OPE ([7.72). The result is a sum over “intermediate states/fields”

— a sum over species of primary fields and partitions E, k decorating each inner edge of T.

"This asymptotic region corresponds to a compactification stratum of complex codimension n — 3 in the
Fulton-MacPherson compactification of C,,(CP').
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Such a sum coverges in a finite region of the configuration space.ﬂ
The resulting formula for the correlator has the general form

(@1(21) - Pu(za)) = D> ]I Courpgpes - Fr(zis - 20) Fr(z,. ., 2) (7.75)

P1y--Pn—3€l vVEVT

Here the sum is over species of primary fields decorating the inner edges of 1. The first
term in the r.h.s. is the product over inner vertices of the structure constant of 3-point
functions, corresponding to the decorations of the three incident edges of the vertex. The
two subsequent factors F,F are a holomorphic and an antiholomorphic function on the
configuration space, depending on the tree 7' and on the conformal weights (h for F and h
for F) of the primary fields decorating the leaves and the inner edges. The functions Fr,
Fr arising from summation over intermediate descendants are the conformal blocks of the
n-point correlation function (7.74)).

Regions of convergence corresponding to different trees may overlap. The resulting for-
mulae ([7.75)) give compatible answers on the overlap due to the crossing symmetry.

80ne can also think of T as prescribing a way to cut CP! by n — 3 circles (corresponding to the inner
edges of the tree) into pairs of pants. The “asymptotic region of the configuration space” picture corresponds
to the circles being infinitesimal, while a finite region of the configuration space corresponds to having finite
circles.



Chapter 8

Wess-Zumino-Witten model

8.1 Affine Lie algebras

For details on affine Lie algebras we refer to [23], [28], [9].
Fix a compact simple Lie group G, denote its Lie algebra g and the complexification of
the latter gc =C® g.

Definition 8.1.1. The loop group LG = Map(S', Q) is the group of G-valued smooth func-
tions on a circle with pointwise multiplication. Its complexified Lie algebra Lg = Map(S*!, gc)
— the Lie algebra of ge-valued functions on S! with pointwise Lie bracket is called the loop
Lie algebra.

One can identify loop Lie algebra with the algebra of gc-valued Laurent polynomials
Lg = gc ® C[t,t7'] (8.1)

where ¢ is the complex coordinate on the unit circle S' = {t € C | |¢| = 1}[] The Lie bracket
in Lg is

X®fY®g=[XY]®fg (8.2)
for X,Y € gc, f,g9 € Clt,t71].

Definition 8.1.2. The affine Lie algebra g associated with g is defined as the unique (up to
normalization) central extension g = Lg @ C - K of the loop Lie algebra, equipped with Lie
bracket

X fY®gl;=[X,Y]® fg+K(X,Y)gresi—o(df - g). (8.3)

Here K is the central element, (,), is the Killing formf] on g and the residue res;—o(- )
returns the coefficient of £~*dt in the 1-form (---).

'One can choose different completions of the algebra of Laurent polynomials in corresponding to
different regularity assumptions on the allowed maps from S! to gc, cf. the discussion of models of Witt
algebra in Section We will not dwell on this point.

2 We assume the normalization of the Killing form (X,Y), = tr(XY') - the trace of the product in the
fundamental representation of g (e.g. in the 2-dimensional representation for g = su(2)).

260

Lecture
36,
11/21/2022



CHAPTER 8. WESS-ZUMINO-WITTEN MODEL 261

One can write the Lie bracket (8.3 more explicitly:
(X @t"Y @t"] = [X,Y]@t" + K(X,Y)gndy —m. (8.4)

We will be using a shorthand notation X,,: = X ® t".

Remark 8.1.3. The statement that (8.3]) is the unique up to normalization central extension
of the loop Lie algebra is tantamount to a statement about Lie algebra cohomology:

HEiC(Lg7 C) = Cu (85)

where the nontrivial 2-cocycle is given by the rightmost term in (8.3).

The result (8.5)) uses the fact that g is simple. For g semisimple with n simple summands
g=0g1D - Dy, the r.h.s. of (8.5)) is C" — there are n independent 2-cocycles corresponding
to Killing forms on g;.

Remark 8.1.4. If weset g=Rand (X,Y), = XY for X,V € R,E| then ({8.3]) becomes the Lie
bracket of the Heisenberg Lie algebra (4.129)), (4.130]), so in this case one has g = Heis.

Similarly to the loop Lie algebra Lg, the loop group LG also has a family of central

—~ k
extensions LG

—~k
1-C" = LG — LG —1, (8.6)

—~k
with the “level” parameter £ = 1,2,3,...; here LG is a principal C*-bundle over LG with
first Chern class ¢; = k € H*(LG,Z) ~ Z.

—~k
At the level of Lie algebra, the central extension LG corresponds to the affine Lie algebra

g where K is identified with & - Id — an integer multiple of identity (in particular, an EZJk—
module is automatically a g-module, with K acting by & - Id).

Notation. The affine Lie algebra g with the central element identified with k - Id, with
k an integer, is customarily denoted gj.

8.1.1 Highest weight modules over g

Fix a decomposition
gc=9g+ Dhdg- (8.7)
with b the Cartan subalgebra, g, the span of positive roots {e,}a0 of g and g_ the span of
negative roots {e, }a<o-
Consider the following decomposition of the affine Lie algebra g:

g=(g0tClll@g)®(C-Kah)®(gat 'Ct oy ). (8.8)
Ny No N

A Verma module over g is defined (cf. footnote [1)) as

Vka,,\ = U(9) ®uvoan,) Cra- (8.9)

Here:

3 This example is somewhat outside the setup of this section: R is not the Lie algebra of a compact simple
group and this choice of (,)4 is not the Killing form (the Killing form for g = R is zero).



CHAPTER 8. WESS-ZUMINO-WITTEN MODEL 262

e k € Cis the levellﬂ and A = (A1,...,\") is a highest weight of g, with r = dimb the
rank of g. We assume that a basis 71,...,7" in b is fixed.

e Cj is a 1-dimensional module over Ny & N, where N, acts by zero, K acts by mul-
tiplication by the level k and elements of the Cartan 7° € b act by multiplication by
A

e U(---) is the universal enveloping algebra.

Let us denote by v the highest weight vector in — the generator of Cy, .

As in Virasoro case, in ng, , one can have null vectors — vectors (distinct from the highest
weight vector v) annihilated by N, .
The irreducible highest weight module (of level k, with highest weight A) is

MIS,A = ng,A/V (8.10)

— the quotient of the Verma module by the maximal proper submodule. As in the Virasoro
case, v can also be described as

e the submodule generated by the null-vectors,

e or equivalently as the kernel of the sesquilinear form on Vkﬁ’)\ characterized by the
properties (v,v) = 1, (X @ t")T = XT @t "

Remark 8.1.5. Tt is convenient to adjoin to g an extra generator (“grading operator” or

“Euler vector field”) § = —t% satisfying the commutation relations

[0, X®t)=—-jX®t), [§K =0 (8.11)

The algebra g @ C - ¢ is called the affine Kac-Moody algebra.

In a highest weight module W, if we set §(v) = 0, the module becomes Z>(-graded by
eigenvalues ng of 9:

W =B W(ns). (8.12)
ns=0
We will call ns “depth.”[]
Note that each term W (ns) in the r.h.s. of carries a representation of g (without
the hat). In particular, for W the Verma module and ns = 0 one has that VIEA(O) is the Verma
module V} of g with highest weight A obtained by acting on v by elements of g_. Similarly,

for the irreducible g-module one has that M, ,S’/\(O) = M3 is the irreducible representation of
g with highest weight .

4 In the context of Verma modules over g, the level does not have to be an integer and A € C" can be any
vector. However, more detailed structure of the Verma module (e.g. null vectors) is sensitive to integrality
of k and to X belonging to the weight lattice of g.

5Tt is not a standard term; we use it because the word “level” already has another meaning in the context
of affine Lie algebras.
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8.1.1.1 Integrable highest weight modules.

There is a distinguished set of irreducible highest weight modules over g — “integrable highest
weight modules” for positive integer level k = 1,2, 3, ... Their equivalent characterizations
are:

(i) The module MEM\ is integrable if the action of g on it integrates to the action of the
—~ K
group LG .

(ii) (Purely Lie algebraic definition.) The module M,g , is integrable if it satisfies the “local

nilpotency condition”: for any u € M,g y, any j € Z and any root e, of g there exists
N such that
(e @t Nu=0. (8.13)

If the irreducible module M,g ) 1s integrable, we will also denote it Hy .

Theorem 8.1.6 (see Kac [23]). There are finitely many integrable highest weight g-modules
for any given positive integer level k =1,2,3,....

Example 8.1.7. Consider the case G = SU(2). In the complexified Lie algebra gc =
C ® su(2) = sl(2,C) one can consider the standard basis

eo(Ba) r(B0) - h) e

satisfying the commutation relations
[H,E|=2F, [H,F|=-2F, [E,F]=H. (8.15)

We consider H as the basis vector for the Cartan subalgebra b, FE as the positive root and
F the negative root, i.e., the decomposition (8.7) is

sl(2,C)=C-E®C-H®C - F (8.16)
9+ b g—
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ns
-1 A N \\\ }A[l /,' A Ey
0| F H/ ‘\iEo
1 F,l H,l E,l
2| F,  H., B,
) 0 27 A

Figure 8.1: Root diagram of 511/(3) Positive roots (basis of N, cf. 1} are indicated
by dashed arrows and negative roots (basis of N_) — by solid arrows. The encircled part
corresponds to the Cartan subalgebra Ny. The diagram extends infinitely vertically.

Fix the level k = 1,2,3,.... Then the irreducible highest weight module M;'*) is inte-
grable if and only if the highest weight A is an integer in the range 0 < A < k. We denote

this integrable module Hj y; it can be realized as the quotient of the Verma module V,::\(Q)
by the submodule v generated by two null vectorsﬁ

x = (E_)" M, o = (F) M. (8.17)

At depth ns = 0, Hy ) is the standard irreducible representation of sl(2,C) of dimension
A+1 (or the “representation of spin 7).

As an illustration, consider the case k = 1, A = 0. Here are the dimensions of first weight
spaces (joint eigenspaces of H and ¢), a.k.a. multiplicities of weights, in the Verma module
Vil

ns\H—ev.|—-10 -8 —6 —4 -2 0 2 4 6 8 10
1 1 1 1 1
3 3 3 3 3 2 1
9 9 9 9 8 6 3 1
22 22 22 21 19 14 8 3
51 51 50 48 42 32 19 9

(8.18)

= w N = O

1
31

®In fact, V; (
"The generating function for the numbers in this table is

51;\ ?) contains other null vectors, but they are contained in v.

(1—a?r)~! H((l — a2 (1 = (1 — a2 r)

n=0

The coefficient of a?*7! in this function is the dimension of the weight space with H eigenvalue 2k and
ng = l. This generating function counts the “nondecreasing” words made out of the ordered alphabet
E_;Fo,H 1,E_3;F 1, H 5, E_3;F 5, H_3,E_4,... (ordered by ns —  (H—eigenvalue)) — such words give
a Poincaré-Birkhoff-Witt basis in U(N_) and hence in the Verma module.
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Here an empty cell means that the corresponding weight space is zero; we are indicating
H-eigenvalue horizontally and d-eigenvalue vertically. The boxed entry corresponds to the
highest vector v. The cell at position (2i,4) corresponds to the weight space C- (E_;)v; the
cell at position (—2i,0) corresponds to the weight space C - (Fp)'v.

The similar table of multiplicities for the integrable module H, g is the followingﬁ

ns\H—ev.| -6 —4 -2 0 2 4 6

1
2
3
5

(8.19)

=W N = O
W N = =
W N = =

1 1

This table illustrates e.g. that at the representation of s[(2, C) arising at a fixed depth ns > 0
is finite-dimensional but generally not irreducible.

For the second integrable module arising at level k = 1, H; 1, the table of multiplicities
is

ns\H—ev.| =5 -3 -1 1 3 5
0 1
1 11 (8.20)
2 1 2 2 1
3 1 3 3 1

8.1.2 Sugawara construction

Sugawara construction is a realization of Virasoro algebra (with some particular value of of
central charge) in terms of quadratic expressions in generators of the affine Lie algebra g.
Put another way, it is an embedding Vir < U(g) of Virasoro into (the degree two part of)
the enveloping algebra of g.
Let {T%} be an orthonormal basis in g with respect to the Killing form. The quadratic
Casimir element
Cas: = ZT“T“ € Ul(g) (8.21)

a

acts on the irreducible g-module with highest weight A by multiplication by a constant C),
Cas =C,-1d on Mj. (8.22)

We also denote the normalized trace of the Casimir element in the adjoint representation
of g by
_ trgad(Cas)

V.
h 2dim g

(8.23)

— it is the so-called dual Coxeter number of g.

8See Figure 14.4 and Table 15.1 in [9]. For (8.20) sec Table 15.2 in [9].
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Theorem 8.1.8 (Sugawara, [41]). Let W be a highest weight g-module on which K acts by
multiplication by a number k € C, k # —h". Consider the elements

dim g
]‘/2 a a
"= > TeT € End(W), (8.24)
JEZ a=1
where T = T* ® t* and the normal ordering symbol : --- : puts T%, to the right of TSOH

Then:

(a) The operators L, satisfy Virasoro commutation relations with central charge

k-dimg
= —. 8.25
k+ hY (8.25)
(b) The commutation relation between operators and the generators of g is
[Ln,Xj] == _an—l-j (826)

for any X € g.

(c) If W = Hy is an integrable g-module and v is the highest weight vector, then one has

Lov = =2 ) 8.27
0

with Cy the value of the quadratic Casimir in the representation M3, as in .

For the proof see e.g. Theorem 10.1 and Proposition 10.1 in [24].

Comparing (8.26)), (8.27)) and (8.11])) we note that in the decomposition of the integrable
module by depth

Hyx = @D Hia(ns), (8.28)

ns>0

the term Hy \(ns) in the r.h.s. is the eigenspace of Ly with eigenvalue

where 1
A= _2 .
k+ hY (8.30)

is the constant in (8.27)). Put another way, one has
Lo=A-1d+¢ (8.31)

as an equality of operators on Hj .

Also note that all elements of Hj ,(0) are annihilated by L, i.e. they are all Virasoro-
highest weight (or “Virasoro-primary”) vectors with Lg-eigenvalue A. There may also be They are
other Virasoro-primary vectors in Hj, , emerging at depths ns; > 0. also  g-
primary

9Note that the normal ordering only affects the expression for Ly, as T3 and T);_; commute for n £ 0.
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Example 8.1.9. For g = su(2), one has h¥ = 2 (more generally, for g = su(N), one has

hY = N), thus (8.24) becomes
1/2 : a a
L= 2533 mt (8.32)

JEZ a=1

For the orthonormal basis {7} in su(2), one can choose the appropriately normalized Pauli
matrices,

P30 e 5(T) rh( )

The operators (8.32]) satisfy Virasoro commutation relations with central charge
3k

= —. 8.34
T re2 (8.34)
For W = Hj,  an integrable w/@—module, the highest vector satisfies
IAA+2)
Loy =4__"7 )
0v 2 (8.35)
since for g = su(2) the value of the quadratic Casimir in an irreducible representation is
1
Cy = 5)\()\ +2). (8.36)

8.2 Wess-Zumino-Witten model as a classical field the-
ory

Let G be a compact simple, simply connected matrix group (keeping in mind G = SU(2) in
the fundamental representation as the main example).
Consider the following 3-form on G:
1
0= St (X7HdX) A (XTHdX) A (XTHdX)) € QX(G) (8.37)

T
It is known as the Cartan 3-form on Gj; it is left- and right-invariant under G-action and
represents the image of the generator of H3(G,Z) ~ Z in de Rham cohomology H?*(G,R).
In particular, the form ¢ has integer periods.

Example 8.2.1. For G = SU(2) the group manifold is the 3-sphere and ¢ is a volume form
of unit total volume, [,o = 1. The funny normalization factor in (8.37) is tuned so as to
have this property.

Remark 8.2.2. The form o is constructed out of the Maurer-Cartan 1-form

p=X'1dXx €QY(G,g) (8.38)
— the unique left-invariant g-valued 1-form form on the group G such that its value at the
group unit yl.: T.G — g is identity. In terms of p, the Cartan 3-form is

g
1

7= 4872

(e [ pl)g. (8.39)

Lecture
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8.2.0.1 The action functional.

Let ¥ be a closed Riemannian surface. Fields of the model are smooth maps

g:X—=G (8.40)
and the action functional i{™]
Ssl): = 1= [ (57109 1 g71B9) + Wlg) (3.41)
where the last term is the so-called “Wess-Zumino term.” It is defined as
WZ(g): = —é Btr (g‘ldﬁ)Ag = —2m’/B§*J (8.42)

where B is any compact oriented 3-manifold with boundary 0B = X (e.g. one can choose B
to be a handlebody)lﬂ and g: B — G any smooth extension of the map g: ¥ — G into B
(“extension” means that g must satisfy glop = g).

Lemma 8.2.3. For a fized map g: ¥ — G, the Wess-Zumino term WZ(g) modulo 2miZ
does not depend on the choice of 3-manifold B cobounding > and on the choice of extension

g.
Sketch of proof. Denote by WZP9(g) the r.h.s. of (8.42). Let B, B’ be two 3-manifolds
cobounding ¥ and g, ¢’ some extensions of g from ¥ into B and into B’, respectively. One

has

wzrlg) - wzr T g) = i ([ 7o~ [ @ro) -

= —27i (/B g*a+/B/(§’)*a) = —2m‘/Bg*a, (8.43)

where B is B’ with reversgc/i orientation. Here in the last step we defined the closed 3-
manifold B as B glued to B _a/long Y, and we defined the “glued” map §: B — G as the
map whose restrictions to B, B are g and ¢, respectively.

Figure 8.2: Closed 3-manifold B glued out of B and B along X and the corresponding glued
map to G.

0Recall that 8 = dza%, 8= dZ% are the holomorphic and antiholomorphic Dolbeault differentials.
1 One says “the 3-manifold B cobounds the surface X.”
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Thus, one has

WZB9(g) — WZP'9 (g) = —2mi([B), §*[0]) € 2miZ (8.44)
— the pairing (up to normalization) of the fundamental class of the closed 3-manifold 5B with
the pullback along ¢ of the integral cohomology class [o] € H3(G, Z)E O

In particular, this lemma implies that Wess-Zumino-Witten (WZW) action modulo
2miZ is well-defined (independent of choices of cobounding 3-manifold B and the extension
g). Thus, for k = 1,2,3,... an integer (the “level” of Wess-Zumino-Witten model), the
expression

e kS=(9) (8.45)

is well-defined. This expression is the integrand in the path integral for the Wess-Zumino-
Witten model,

Z(X) =« / Dg e k9509 » (8.46)
Map(Z,G)

Here the level £k = 1,2,3, ... is a parameter of the theory playing the role of inverse Planck
constant, k = A~!, see Remark [1.4.1]

Remark 8.2.4. (a) In the action (8.41]) the first term is real and the second term is imaginary.
(b) One can write the action (8.41)) in terms of the Maurer-Cartan 1-form on G:

1 i

Se(g) = —— U st odeed g ——— | T [u A 8.47

=(9) - Z<gu,>'<Hdggu>g 247T/39<u I (8.47)
WZ(g)

The benefit of this rewriting is that it one can use it to define WZW action for non-matrix
Lie groups.

(c) Although the Wess-Zumino term is non-local (not an integral over X), its variation is
local:

SWZ = ﬁ / trg~'0g(8(g~ 8g) + 89~ dy)) (8.48)
by

(note that the integral is over X, not over B). Putting this together with the variation
of the first term of (8.41)) (let us denote it E(g)),

i - 17 m
5 = - | trg59(0(9™09) - (g™ 3), (3.49)
s
one obtains the variation of the full action ({8.41)) is
55y, = QL / tr(g~169)d(g~' ). (8.50)
TJe

An equivalent expression is:

5Sy, = —QL/tr(agg—l)é(agg—l). (8.51)
T Js

12By abuse of notations, here [0] stands for the class in H3(G,Z) whose image in H3(G,R) is the class of
the Cartan 3-form in de Rham cohomology. We also remark that in the special case G = SU(2) the r.h.s. of
admits the interpretation as —2mi times the degree of the map §: B — SU(2) ~ S® between oriented
closed 3-manifolds.
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8.2.0.2 Euler-Lagrange equation.

For the discussion of the Euler-Lagrange equation (especially the holomorphic factorization
of solutions ) and symmetries it is convenient to complexify the space of classical fields,
i.e., to allow fields g to be maps from ¥ to the complexified group G¢ rather than the compact
group G.
The Euler-Lagrange equation corresponding to the action is read off from the
fromula for the variation (8.50)):
(g '0g) = 0. (8.52)

Equivalently, the same equation can be written as 8(8gg~') = 0.
The general solution of the Euler-Lagrange equation (8.52)) is:

g(2) = hi(2)ha(2), (8.53)

where hy, hy: ¥ — G¢ are two holomorphic maps into the complexified group.

Remark 8.2.5. One can consider Wess-Zumino-Witten theory for G = U(1). (This group
fails our assumptions: it is neither simple nor simply connected, but nevertheless one can
play with it.) Then the field g: ¥ — G can be parametrized as g = €!*. The action is
then simply the action of a free boson (with values in S'); the Wess-Zumino term vanishes.
Euler-Lagrange equation becomes the equation of a harmonic function A¢ = 0. The
factorization simply becomes the statement that any harmonic function is a sum of a

holomorphic and an antiholomorphic function, ¢(z) = x1(z) + x2(2).

8.2.0.3 Symmetry and conserved currents.

The action (8.41)) is invariant under the following transformations of the field:

9(2) = ¢'(2) = Q(2)g(2)2(2) (8.54)

where €2y,€)5: 3 — G¢ are two arbitrary holomorphic maps.ﬁ
The invariance under transformations (8.54) corresponds by Noether theorem to having
two conserved currents

J=098g -9 €0 (%,g),
J=g"089 € Q" (%,9),

satisfying the conservation properties

(8.55)

0J ~ 0, 8J ~ 0. (8.56)
EL EL

Remark 8.2.6. The action (8.41)) is the sum of the action of a sigma model with target
a group (the natural quadratic “energy of a map”) and a seemingly complicated nonlocal
cubic term WZ(g). One might reasonably ask: why add this extra term to the sigma model?

13The transformations are sometimes called “gauge symmetry” in the literature. We would argue
that it is not a very good term here, since the generators of the symmetry are not local: they are holomorphic
(rather than, say, smooth) maps from ¥ to the target, and for holomorphic maps one doesn’t have partitions
of unity, so one cannot have a bump function as a generator.
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The answer is that adding this term actually makes the model much simpler: it creates
two separately conserved holomorphic and antiholomorphic Noether currents J,J, leads to
simpler Euler-Lagrange equation which allows an explicit solution (8.53). Ultimately, the
addition of the Wess-Zumino term to the model results in the factorization of the model
into a holomorphic and an antiholomorphic sector (this statement makes sense both at the
classical and at the quantum level).

Remark 8.2.7. One can also write down the currents (8.55) without referring to the matrix
structure of the group G-

1. . . = 1. , .
J= 5(1d + Z>l<Hodge)g HR, J= 5(1d - Z*Hodge)g Hr, (857)

where gy, is the left-invariant Maurer-Cartan form (8.38]) and pp is its right-invariant coun-
terpart (up = dX X! for a matrix group).

8.2.0.4 Polyakov-Wiegmann formula.

For the next discussion it is important to know how the action (8.41)) interacts with pointwise
products of fields (as maps to the group).

Theorem 8.2.8 (Polyakov-Wiegmann). For ¥ a closed Riemannian surface and f,g: ¥ —
G two maps to the group, one has

Ss(f 9) = Ss(f) + Ss(0) + 5 [ (719 n0g-g7"). (5.58)

-~

FE(fvg)

Here - in the l.h.s. stands for the pointwise product of maps to G.

Thus, the action is “almost” additive w.r.t. pointwise product of fields, with the defect
given by the rightmost term in which we denoted I's(f, g).

We note that the “defect” I'y in (8.58) is a 2-cocycle for the group Map(X, G) (with
trivial coefficients), i.e., for any triple of maps f,g,h: ¥ — G it satisﬁeﬁ

I's(g,h) =Ts(fg,h) + I's(f,gh) = T's(f,9) = 0. (8.59)

8.2.1 Case of surfaces with boundary

Here we briefly sketch a geometric construction from [28].

It is not straightforward to generalize the action (8.41)) to surfaces with boundary, due
to the presence of a nonlocal term in the action. It turns out one can still do it, with two
caveats:

e one should consider the exponential of the action e *5= instead of the action itself (we
assume that the level k= 1,23, ... is fixed),

" Indeed, 0 = Ss((fg)h) — Sx(f(gh)) = Ss(fg) + Sz(h) + Ts(fg,h) — Ss(f) — Sx(gh) — Ts(f,gh) =
SetfT+Setgy+Is(f, 9)+Sethy+Ts(fg, h) —SetfT—Setg)—Seth)—I's(g, h) —T's.(f, gh) = —Lh.s. of (8.59).
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e instead of obtaining e *%* as a function on the space of fields on a surface with bound-
ary, it will be a section of a certain line bundle over Fx..

Let X be a compact Riemannian surface with n boundary circles. Construct a closed
surface ¥’ by attaching n disks Dy, ..., D, to the boundary of ¥ (i.e. attach a disk to each
boundary circle): X' =X U| |, D;.

Figure 8.3: Closed surface obtained from ¥ by attaching disks along boundary circles.

The basic idea is to define the WZW action on a surface with boundary via

e—kSg(g): — e—kSE’(gl) (860)

where ¢ is a map ¥ — G and ¢ is some extension of g as a map ¥’ — G (i.e. an extension
of the map ¢ into each disk D; is to be chosen).

The ambiguity in the choice of the extension ¢’ leads to the idea that the expression
e #92(9) should be understood as taking values in the fiber of the complex line bundle

LER ... K CFk
l (8.61)
LG x -+ x LG

over the point glgs € Map(0%, G) ~ LG*", i.e., over the boundary value of the map g seen
as a collection of loops in G.
The complex line bundle over the loop group

£k — LG, (8.62)

several copies of which appear in (8.61]), is constructed as follows (see [28] for details).
Consider the trivial line bundle

Map(D, G) x C — Map(D, G) (8.63)
with D the unit disk, and consider the following equivalence relation: two pairs
(fo: D= GueC) ~ (gp: D— G,veC) (8.64)
are considered equivalent if

e fp and gp agree on the boundary circle: fplop = gplop,
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e one has

— kS (h)—kT b (fp,h
V=1u-e cp1(h) p(fp D)7

where h: CP' — G is defined on D as f5'gp =: hp and extended by 1 to CP*\D; I'p
is given by the same formula as in (8.58) (but the integral is over D).

Quotienting the line bundle by this equivalence relation produces a line bundle over
LG (loops in G seen as boundary values of functions fp) which we call L.

By construction and as a consequence of Polyakov-Wiegmann formula, one indeed has
that e 929 defined by seen as an element in the fiber of over the boundary
value of ¢ is independent of the extension ¢’ E

Put another way, the exponentiated action for ¥ a surface with boundary is not a function
on Fy = Map(X, G) but rather is a section of a line bundle,

e M ¢ T (Fy, m*(LF)E) (8.65)
where
7 Fy — Map(0%, G) ~ LG™" (8.66)
—_———
Fox
is the restriction of the map to the boundary. We will denote Ly : = (LF)®" seen as a line

bundle over Fys.
Remark 8.2.9. (a) Denoting £! =: £ one has

L= L% (8.67)

Thus, the superscript in £* can be interpreted as the tensor power of a special line
bundle corresponding to £ = 1. The first Chern class of the bundle L is given by

(W] = p(ev¥]o]) € H*(LG), (8.68)

where [o] is the cohomology class of Cartan 3-form (8.37)) in H3(G); p and ev are the
projection and evaluation maps in the diagram

LG x S' =
pl (8.69)
LG

The map ev evaluates the loop in G at a given point of S*; p, stands for the pushforward
in cohomology (fiber integral over S1).

15 Tn a bit more detail, one chooses an extension ¢’ of g: ¥ — G into the disks D; and thinks of e~#5=(9)

as a tuple ({g’|Di} € Map(D, G)*", e k9= (d) ¢ C) up to an equivalence as the one on (8.63), extended in

an obvious way to n disks.

For instance, if ¥ has a single boundary circle (i.e. n = 1), if ¢’ and ¢’ are two extensions of the map g: ¥ —
G into the single attached disk D, one has ¢’ = ¢’h with the map h: ¥’ — G (“discrepancy” of the two
extensions) equal to 1 on ¥ and nontrivial in D, the pairs (¢'h|p, e *52@'M) and (¢'|p, e ¥5=)) are equiv-
alent precisely because by Polyakov-Wiegmann formula one has e kS=(g'h) = o~kSx(d") . e*kSZ(h)*fFZ(g/’h).
We note that in the r.h.s. here I's can be replaced with I'p and Sx(h) can be replaced with Scp1(h) where
I is the extension of h|p into CP*\D by 1 (the intuition here is that since h is trivial outside D, the surface
3 can be replaced by anything, including a complementary disk).
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(b) One has a product on the total space of the line bundle £* given by
(91, ule—kSD(zh)) ” (927u26_kSD(Q2)) _ (91 ga u1u26—k5D(9192)—kFD(91792)) (8.70)

with w15, € C and ¢12: D — G. Here we understand that on both sides we pass
to equivalence classes under (8.64). Removing the zero-section from £ one obtains a
group which is none other than the central extension of the loop group we mentioned in

Section (see (8.6)):
LF\{zero-section} = i7el (8.71)

8.2.1.1 Symmetry of the model on a surface with boundary.

Fix ¥ a surface with boundary. One has a left and a right action of the group Map(X, G) on
Fx = Map(X%, G) coming from multiplication in the target G from the left or from the right.
One also has left and right actions of the group Map(M, G) on the space of sections of the
line bundle Ly, — Fos.

The symmetry for ¥ with boundary becomes the following statement.

Lemma 8.2.10. The exponentiated action
e ¢ T'(Fy, " Lox) (8.72)
18
e left-invariant under holomorphic maps 2: ¥ — Gc and
e right-invariant under antiholomorphic maps Q*: ¥ — G,
where maps act both on the fields and on the bundle Lys, in .

For the proof see [28, Proposition 1.11].

8.2.1.2 Path integral heuristics.

The path integral on a surface with boundary
Z(E) _ / Dg e—kSg(g) c F(f827Eaz)Hol(E,G’c)XAntihol(XLGc) (873)
glox=gs

is to be thought of as averaging the exponentiated action over fields with fixed boundary
value gy € Fy, and the value of the path integral is not a number but an element in the line
Los|g,- Thus, considering the path integral with all possible boundary conditions one has
a section of Lsy. By the invariance property of the exponentiated action (Lemma ,
this section should be invariant under holomorphic maps ¥ — G¢ acting from the left and
antiholomorphic maps ¥ — G¢ acting from the right. This invariance property of the path
integral is a variant of Ward identity.

write
formulas
for  the
action

Lecture
38,
11/30/2022
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8.3 Quantum Wess-Zumino-Witten model

We fix as before a compact simple simply-connected group G and a level k =1,2,3,.... It is
possible to quantize the classical WZW theory — either by canonical/geometric quantization
in the hamiltonian formalism, or by path integral. Here we will just outline the resulting
(quantum) CFT.

8.3.0.1 Space of states/space of fields.

The space of states of the model associated to the circle — or equivalently the space of fields
V —is
M =P Hia® Hy (8.74)
AET,
where the sum is over integrable highest weight modules of g at level k (we denote the set of
corresponding highest weights I ); the summand is a tensor product of the integrable module
and the dual one, seen as a module over g @ /ﬁ\ — two copies of the affine Lie algebra.
The space H;, can be identified with the space of sections of the line bundle £* over the

loop group (8.62)) via the inclusion
@Aelk Hex® Hy, — I'(LG, LF)

¢o € End(Hy) +— <gb(g+gog_): = trM§(¢0 ~pa(g0)) - e*kSD(ngog—)) (8.75)

Here g4 are a holomorphic and an antiholomorphic map D — Gc, taking value 1 € G at
a base point on the boundary circle 1 € 9D; go: D — Gc is a constant map; px(g) is the
linear operator on M} representing the action of the group element g. In both sides
carry a natural action of § @ g and these actions are intertwined by the inclusion.

By Sugawara construction, H;, carries an action of two copies of Virasoro algebra Vir@ Vir,

with central charges
kEdim G

E+2 -

(8.76)

c=cCc=

8.3.0.2 Quantum currents.

Let {7} be a fixed orthonormal basis in g and let f%¢ be the structure constants of g in
this basis defined by [T, 7% = Y, fe*T°. Components of Noether currents (8.55) become
in the quantum setting certain local quantum fields — elements in the space of fields V':

JJ eV, a=1,...,dimG, (8.77)
which are holomorphic/ antiholomorphicm
0J°=0, 0J*=0 (8.78)
(as a reflection of the classical conservation laws (8.56])) and satisfy the OPEs

k5abl N Zc fabCJC(Z)
(w—2)? w—z

J(w)J(2) + reg., (8.79)

16Under a correlator with any collection of test fields, or as local field operators.
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ab abc Jc >
J(w)J°(2) (55_ ,:)2 + ZCZJ _i ) + reg., (8.80)
JH(w)J*(2) ~ reg. (8.81)

The field J* acts on the space of states by a local field operator Je “(z); one can introduce
the corresponding mode operators J¢ € End(#H) as

N 1 .
SR " 82
JE 5 dz 2" J(z) (8.82)

where the integral is over a contour going about the origin. Equivalently, we have

J(z) =Y =L (8.83)

nezZ

Repeating the computation of Section|[5.2.2 we obtain from the OPE (8.79) the commutation
relations between the mode operators

-~

[j\;@l7 j\rbn] - Z fabcj\rcz—l-m + kn(sn,—ml (884)

Note that these are exactly the commutation relations of the affine Lie algebra g. Comparing
with the notations in 1} we have the identification J¢ = T = T* ® t". Likewise one

introduces the mode operators J¢ for the antiholomorphic current J® which again satisfy

the commutation relations of g and commute with the mode operators j,‘; (due to )
Therefore, the action of § @& g on the space of states is realized by the mode operators
generated by the currents J, J.

Similarly to the action on the space of states, we have a local action of g on fields at a
point z given by local mode operators J¢ € End(V,) defined by

JoB(2): = —— b dw (w — )" (w)®(2) (8.85)

27 .

for any field ®(z) € V,; 7, is a contour going around z. Equivalently, the mode operators
yield the coefficients in the OPE of a field at z with the current:

T w)®(z) ~ Y (w—2) " I (). (8.86)

neZ

One has a similar local action of E on V. generated by local mode operators of J.

8.3.0.3 The g-primary multiplet.

Fix A a weight of an integrable g-module Hy,. Let e? be a basis in the irreducible g-
module M} (which is also the depth-zero component Hy, 5(0) of the corresponding integrable
g-module). We have a collection (“multiplet”) of § @ g-primary fields ¢5” (primary here
means “annihilated by J%,, J<,”) corresponding to coordinates of a vector in
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By (8.86) and the primary property, we have

() o 2TV ()

w—z

+ reg. (8.88)
where T} is the matrix representing 7 € g as an operator on Mj.

8.3.0.4 Stress-energy tensor.

The quantum stress-energy tensor of the model is the field

T(z) = k:i/iv > J(2)Jz) : (8.89)

a

it satisfies the standard TT OPE (5.10) with central charge ; the expression for T is
similar (replacing J with J).

Normal ordering in (8.89)) refers to the following definition: for local fields ®;, ®5 their nor-
mally ordered product : ®1(z)Py(2) : is defined as the constant term in the OPE &4 (w)®y(z)
or equivalently

. 1
c Dy (2)Py(2) = ilinz (D1 (w)Po(2) — [P1(w)P2(2)]sing) = 2—7”]{ Oy (w)Po(2), (8.90)
V=
where [- - - Jgng is the singular part of the OPE and ~, is the contour around z.

Remark 8.3.1. The classical Hilbert stress-energy tensor in Wess-Zumino-Witten theory,
obtained as a variation w.r.t. the metric, is given by the formula without the normal
ordering and without the A" shift in the denominator. In this regard, the shift by h" should
be understood as a quantum correction: it must be incroporated in the quantum picture,
otherwise 7" would not satisfy the OPE of the standard form .

Remark 8.3.2. Note that substituting the mode expansion of the current (8.83)) into the
stress-energy tensor (8.89) we obtain the Sugawara formula (8.24]) expressing Virasoro gen-
erators in terms of generators of g:

- 1/2 N
L,=—"— SJAJ 91
" k:—l—hV; S n—m (8.91)

In this sense, the construction of the stress-energy tensor (8.89)) is a restatement of Sugawara
construction.

Remark 8.3.3. The counterpart of the formula (8.89)) in the abelian case g = R is the formula
(5.21)) for the free boson. Note that in that case there is no h" shift.

Fields J® are Virasoro-primary, of conformal weight (1,0). Similarly,fields J* are Virasoro-
primary, of conformal weight (0, 1).
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8.3.0.5 Example: WZW model for G = SU(2) at level & = 1 and the r = v/2 free
boson

Consider the WZW model in the case G = SU(2), k = 1. In this case there are only two

integrable modules of 5"‘/@1 and space of states (8.74)) is

H = HLO ® Hio EB Hl}l ® Hil' (892)
By (8.76)), the central charge of the model is
c=c=1 (8.93)

It turns out that in this very special case the WZW model is equivalent to the free boson
with values in a circle of radius r = v/2 (the “self-dual radius,” w.r.t. T—duality) More
specifically, the components of the WZW current corresponds to special fields in the r = /2
free boson theory:

—

su(2), WZW | r = v/2 free boson
J? i0¢
JT Via
J Vo4 (8.94)
J? i0¢
7t Vi
J- V_ia

Here V., are the vertex operators . We are writing the components of the WZW
current in terms of the basis T3, T+ = (T + zTQ) with 7123 as in . For instance, it
is easy to check that the OPE algebra (8.79 i of the components of the WZW current
is reproduced in the free boson theory by the ﬁelds in the right column of .

The g-primary multiplet for A = 0 corresponds on the 7 = /2 free boson side to the
identity field 1. The A = 1 multiplet corresponds to the quadruple of vertex operators

V1,0, Vo,a1, all of conformal weight (3, 7).

8.3.1 Ward identity for g-symmetry. Knizhnik-Zamolodchikov equa-

tions.

As a consequence of Lemma one has the Ward identity generated by the holomorphic
field J* as in ([5.138]): for a collection of points z1,...,2, € C, a a g-valued meromorphic

function with poles at z1,..., z, allowed , ®¢,...,®, € V a collection of fields, one has
o 1(21) - nZn L = 121,,.pJZ' a) o ij... n\Zn =0, .
(B1(21) -~ Pu(z0)) (B1(z1) - P57 () 0 Bj(z) -+~ Bulza)) =0, (8.95)
j=1

17 «“Equivalence” of CFTs means that there is an isomorphism of spaces of states as Vir @ Vir-modules,
and all correlators in the two CFTs agree via this isomorphism. In the case at hand the equivalence also

—

implies a “hidden” su(2),-symmetry of r = V2 free boson CFT.
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where

1
pSZ)(a) o®(2): = — ¢ dwa(w)J"(w)d(z). (8.96)
2 ),
One has a similar Ward identity corresponding to the action on a correlator by an antimero-

morphic function using the second current J.

Remark 8.3.4. One can think of the Ward identity (8.95]) as corresponding to the expected
invariance property of the WZW path integral (8.73) where:

e Boundary circles are shrunk to punctures z;.

e We consider the infinitesimal action of the Lie algebra of g-valued functions, holomor-
phic in the complement of the punctures, instead of the group of holomorphic maps to
the group Gg,

Specializing (8.95)) to the case a(w) = —= and the collection of fields being the identity
field at z and g-primary fields at zi, ..., z,, we have the identity

(TN () 57 (o) ZZZ_Z 07 (1) B ) 57 () (8.97)

JIQJ

Here we have fixed some weights \i, ..., \, of g corresponding to integrable g-modules.
One can also obtain this identity by realizing that due to , the L.h.s. has to be a

meromorphic function in z with first-order poles at z = 21, ..., z,, with residues controlled

by the r.h.s. of . Such a function (decaying as z — o0) is unique and given by the

r.h.s. of .

One can also write the identity in slightly more pleasing notations:

(T (=n(20) On, () = D0 2 (on, (20) o, (20)) (399)
j=1 J
where
e We denote i
o =Y e, €V @ (M) @ M. (8.99)

D,D

where {e,} is the basis in (M})* dual to the basis {e’} in M7. (8.99) is a vector-valued
field — the “full” g-primary multiplet with weight .

e Both sides of (8.98)) are valued in tensors

n

Qg ) @ MY (8.100)

=1

e We understand that the operator Tfj is acting in the j-th factor in the product (8.100)).
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8.3.1.1 Knizhnik-Zamolodchikov equations.
As a special case n = —1 of the Sugawara construction (8.91]) one has

1/2 a a .
L= S o Tndt (8.101)

meZ

where we think of both sides as operators acting on the space of fields V.. In particular, for
the g-primary multiplet ¢y, we have

1 1
Laon(z) = =55 2 0I5 (2) = 1w SU oA (=), (8.102)

Using this, we have the following:

0= (on (1) (Lor = = S TATE ), () -+ 6, 20)) =

. 4
g

0

0 1 d
- a_zj<¢/\1(Z1) On( Z k+ hV B N 2mi }[ w —U)Zj (S (W)@a (21) -+~ O (2n).
(8.103)

Here we used that L_;®(2) = 0®(z). Next we deform the integration contour 7., going
around z; to a collection of contours going around the punctures z; in negative direction,

Vay ~ Uiz (—7z) (8.104)
Then, using the Ward identity (8.98)), we obtain the following.

Theorem 8.3.5 (Knizhnik-Zamolodchikov [27]). Given the weights A1, ..., A\, of g corre-
sponding to integrable g-modules, the correlator of primary multiplets satisfies the following
the system of ODEs

( k+ hv ZZ Zi— ZJ> Oxi (21) -+ dan(20)) = 0, (8.105)

i#]

KZ
Vj

J

forany j=1,...,n
One can interpret the result as follows: one has a flat connection
Viz: = > dzVEZ 4 a5V (8.106)
J
on a vector bundle over the open configuration space C,(CP") with fiber (8.100 m. "5 here VE*

are the differential operators appearing in the equation 1} The correlator of g-primary
multiplets (¢x, (21) - - - &x, (25)) is a section of this bundle that is horizontal w.r.t. Vikz.

8 The structure of a vector bundle is determined by conformal weights of vectors in the fiber. Le., a
vector with conformal weight (h,h) in (8.100) contributes a summand K®" @ K=" to the vector bundle.
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The flat connection (8.106)) is known as the Knizhnik-Zamolodchikov (KZ) connection.
For future reference we will introduce a notation for the holomorphic part of the KZ
connection 3
hol KZ -
vl — Xj:dzjvj + dzja—% (8.107)

as a connection on the vector bundle on C,,(CP') with the fiber @, (M3 )* (i.e. taking only
the first factor in each term in (8.100))).

8.3.2 Space of conformal blocks. Chiral WZW model.
For zi,. .., 2, distinct points in CP', let us denote by g(z1, ..., z,) the Lie algebra of g-valued
meromorphic functions on CP! with poles allowed only at 2z, ..., 2.
Fix weights A1, ..., \, of g corresponding to integrable modules of g at level k. Then the
Lie algebra g(z1, ..., 2z,) acts on the tensor product of integrable modules
Hipy @@ Hy\, (8.108)
by
ao(th @ @) =Y @+ @ p(Laurent, (a)) o1h; @ -+ @ ¢y (8.109)
j=1

where Laurent. (o) = > 7"\ > an (T°®1}') is the Laurent expansion of « at z;, in powers
of t; = z — 2;; this Laurent expansion acts on Hy, (this action is denoted by p above) via
the tautological embedding

g@C[t; ' 1] = 3. (8.110)

Definition 8.3.6. For \;,..., \, a collection of weights of g corresponding to integrable
modules of g and a collection of distinct points 21, ..., 2z, € CP!, the space of Wess-Zumino-
Witten conformal blocks is defined as the complex vector space

B(z1,. . 205 A1, An) s = Homyggs, oy (Hp s, @ - @ Hy y,,C) (8.111)

— the space of g(z1, . .., z,)-equivariant maps between two g(z1, .. ., z,)-modules, Hy ), ®- - -®
Hj, 5, with module structure (8.109) and C as the trivial module.

One can think of elements of (8.111]) as correlators
(W1 (21) - (2)) (8.112)

in the chiral WZW model, where the correlators are (possibly multivalued) holomorphic
functions on the open configuration space C,,(CP") and only a single copy of g (and a single
copy of Virasoro) acts on the space of states/space of fields. Thus, in the chiral theory one
has
vchiral ~ Hchiral _ @ Hk,/\' (8113)
A

One can say that the chiral WZW is obtained from usual WZW by setting the antiholomor-
phic current to zero, J = 0 (and consequently 7" = 0).

remark
on KZ7B
connec-
tion
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The fact that in the maps are required to be g(z1, ..., 2,)-equivariant is exactly
the statement of Ward identity for chiral correlators.

Somewhat surprisingly, the space of conformal blocks is finite-dimensional (with dimen-
sion depending on the level and the weights). In fact, the inclusion

L M§1®"'®M§n;)Hk,kl®"'®Hk,)\n (8.114)
of depth-zero subspaces in each integrable module induces an injective map
i =10 Bz, 2 Ay, Ap) = Homg (M, @ -+ @ M3, C). (8.115)

This map corresponds to considering only correlators of g-primary chiral fields. The fact
that the map ¢ is injective reflects the fact that using the Ward identity one can reduce a
correlator of g-descendants to the correlator of g-primary fields (similarly to Virasoro case,
cf. Example . From is is obvious that the space of conformal blocks must be

finite-dimensional.

Example 8.3.7. Consider the case G = SU(2) and fix the level £ = 1,2,3,.... The
admissible weights corresponding to integrable modules are A =0,1,... k.

e For n = 3, the space of conformal blocks can be either 0- or 1-dimensional:

— One has B(z1, 29, 23; A1, A2, A3) = C if the “fusion rules” (or “quantum Klebsch-
Gordan condition”) hold:

>\1+)\2+)\3 GQZ, |/\1—>\2| S)\g S)\l—f-)\g, >\1+)\2+)\3 < 2k. (8116)

— Otherwise one has B(z1, 22, 23; A1, Ao, A3) = 0.

e For a general n one can associate a basis in the space of conformal blocks B(z1, . . ., zp; Aq, - . .

to any trivalent tree with n leaves decorated with Ay, ..., \,. Basis vectors in B corre-
spond to ways to decorate the internal edges e of the tree by labels A\, € {0,1,...,k}
so that fusion rules hold at each vertex. The idea behind constructing such a
basis is similar to that of Sections [7.5.1] and comes from a pair-of-pants decom-
position of the surface; edges of the graph correspond to circles we cut along and their
decorations correspond to intermediate states we sum over.

In the case when CP! is replaced by a Riemannian surface ¥ of genus h, instead of
a trivalent tree one should consider decorations of a connected trivalent graph with h
loops.

e One has a fascinating explicit formula due to Verlinde [42] for the dimension of the
space of n-point conformal blocks for G = SU(2), on a surface ¥ of genus h:

dim B(z1, . zni M A) = 3 (S0)? TS S (8.117)
0<X<k
where
2 A+1 1
Sy = sinr O Dt (8.118)

k+2 k+2

7)\’)1)
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The result comes from a “diagonalization” of the dimension of the space of 3-point
conformal blocks:

dim B(z1, 22, 23; A1, Ao, A3) =
B Z SaaSxnadaa { 1 if the fusion rules (8.116|) hold, (8.119)

o 0 otherwise
0<A<k Sox

The matrix S (8.118)) appearing here can be interpreted as representing the action of

the modular S-transformation 7 — —% on the space of conformal blocks with genus

one and no punctures.[r_g]
8.3.2.1 The bundle of conformal blocks.

Spaces of conformal blocks (8.111)) with fixed weights Ay, ..., A, and variable points z1, ..., 2,
arrange into a complex vector bundle over the open configuration space of n points,

8)\1...)\” — B(Zl,...7zn;/\17...,>\n)
l (8.120)
C,(CP")
This vector bundle comes equipped with a flat connection
. 0 ) _ 0
= dz; | =— — LY dz;— 121
Vg ; z] (8Zj 1) + Z] azj7 (8 )

where L(_Ji is (the dual of) the Sugawara operator acting on Hj»,. Correlators of chiral
WZW model yield a horizontal multivalued section of £. Restricted to depth zero in each
integrable module (i.e. restricted to chiral correlators of g-primary fields), the holomorphic

part of the connection Vg becomes the holomorphic part of the Knizhnik-Zamolodchikov

connection Vi (8.107)). Lecture
39,
8.3.3 The “holographic” correspondence between 3d Chern-Simons!2/02/2022

and 2d Wess-Zumino-Witten theories

Here we quickly mention the remarkable relation between a 3d topological field theory
(Chern-Simons theory) on a 3-manifold M and a 2d CFT (Wess-Zumino-Witten model)
on the boundary surface 3 = OM. There is a lot of literature on the subject, starting with
the seminal work of Witten [47]. The correspondence between WZW and Chern-Simons is an edit
example in the class of so-called “holographic correspondences” between (d+ 1)-dimensional
gravity and a d-dimensional conformal theory on the boundary.

Fix G a compact, simple, simply connected Lie group with Lie algebra g and fix M
an oriented compact 3-manifold with the boundary surface ¥ (possibly disconnected); we
assume that X is equipped with complex structure.

19This space is (k+1)-dimensional, with a natural basis given by characters of modules Hy, y with 0 < X < k,

cf. Section m
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Consider Chern-Simons theory on M with space of fields Fi = Q'(M, g) = Conn(M, G)
— the space of connections in the trivial principal G-bundle over M; we identify connections
with their 1-forms on the base. The action functional is

1 1 1 1
Sb(A): =— | tr|{ =AANdA+=-AAN[AN A — [ tr A0 A A0 8.122
s =5 [ (ganaasganiaea) s o o L e
b(Alx)

The last term here is a boundary term, depending only on the restriction of A to ¥ (and
the decomposition of that restriction into a (1,0)-form and a (0, 1)-form using the complex
structure). The superscript b in the action is to emphasize the presence of the boundary
term b. The term b is designed to tweak the Noether 1-form induced by the action to a
convenient form: for the variation of the action one has

1 1
080 = —— | trédAANFs+— [ tr A% AGAN0, 8.123
cS 27T/M r At 27?/2 ' ( )

J/

-~
«

Here the last term is the Noether 1-form on the phase space ®$5 = Q'(%, g) and the fact
that it vanishes on the (Lagrangian) fibers of the fibration

p: (2, 9c) = (2, 9) (8.124)

implies that one flat connections A are actual critical points of S2q on the subspace of fields
with prescribed boundary condition (A|g)"°. In particular, one can study the path integral
for Chern-Simons theory

Z95(AY): = / DA ¢5es(A) (8.125)
Conn(M,G)3A s.t. (A]g)10=A10

with £ =1,2,3,... the “level” of Chern-Simons theory.
Consider gauge transformations of the connection

A A9 =g 'Ag+ g ldg (8.126)
with generator g: M — G. If the generator is trivial on the boundary g|y;, = 1, one has
Seg(A9) = Sby(A)  mod 27Z, (8.127)

i.e., Chern-Simons action is invariant modulo 27Z under gauge transformations relative to
the boundary. The 2wZ-ambiguity is the reason why one wants the normalization factor k& in
the exponential in the path integral to be an integer — so that the integrand in the
path integral is gauge-invariant.

8.3.3.1 Classical CS-WZW correspondence.

If the generator of the gauge transformation is nontrivial on the boundary, one has

. 1 -
Ses(A%) = Seg(A) = iSwaw(gls) + %/ztr A0g™19g. (8.128)
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The first term on the r.h.s. is the Wess-Zumino-Witten action evaluated on the boundary
restriction of the generator of the gauge transformation. Thus, the defect of gauge-invariance
of Chern-Simons theory due to the presence of boundary is given by WZW action on the
boundary.

The full r.h.s. of is sometimes called the gauged WZW model. It can also be
thought of as the action of the chiral WZW model: we can regard the field A'Y as a Lagrange
multiplier, integrating it out imposes the vanishing of the antiholomorphic WZW current
J=0.

Formula is a manifestation of the Chern-Simons/Wess-Zumino-Witten correspon-
dence at the classical level. A consequence of it is the following: if M is a 3-ball, with
Y = OM = CP!, any flat connection on M can be written as A = g~'dg (gauge-equivalent
to zero connection) for some g: M — G. In this case implies

Ses(A) = iSwzw(g)- (8.129)

8.3.3.2 Quantum CS-WZW correspondence.
The relation (8.128)) has a very nontrivial quantum counterpart:

BY*W = H$P (8.130)

— the space of states that quantum Chern-Simons theory (as an Atiyah’s TQFT) assigns to
a surface X is isomorphic to the space of WZW conformal blocks on the surface.

One has a version of this statement with punctures on . For that one should consider a
Wilson graph observable Or in the Chern-Simons theory on M. Let I' C M be an embedded
oriented graph in M, which is allowed to meet the boundary surface transversally; we treat
these boundary points of I as univalent vertices. Bulk vertices are assumed to be trivalent.
Assume that the edges of I' are decorated by weights A\ of integrable representations of ﬂ
and the trivalent vertices are decorated by intertwiners — elements of (M} ®@ M3, @ M3,)°,
where A\, X', \" are the weights decorating the incident edges. At the level of classical field
theory, the observable

Or: Fu — (M) @@ (M3 )" (8.131)

is a function on the space of connections A, given by the contraction of holonomies of A
along the edges of I', taken in corresponding representations, with the intertwiners at the
vertices. In (8.131)) we are assuming that [ has n boundary vertices at points 2y,..., 2, € X
and the incident edges are decorated by weights Aq, ..., \,.

20 We understand that one can switch the orientation of any edge, switching simultaneously the represen-
tation M} to its dual.
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M

A

Figure 8.4: Wilson graph observable.

The path integral of Chern-Simons theory with the Wilson graph observable is

788 — / DA eSO (A) €
' Conn(G,X)3A s.t. (Alg)10=A10

€ (C=(Q"(2,9)) ® Hom(M}, ® --- @ M} ,C))
Hégf

Map(Z,G)

(8.132)

where understand that the path integral is a function of the boundary (1,0)-form A" (the
boundary condition of the path integral) and also takes values in a product of representations
due to the presence of Or-observable. The whole expression is expected to be equivariant
under gauge transformations, where only the boundary value of the gauge generator matters
after averaging over the fields in the bulk, since the integrand is equivariant (and invariant
under gauge transformations relative to the boundary). The expected equivariance property

following from (8.128]) is:
ZSEr((AM0)0) = e7kSwaw(@)taz s A00700 (8 53 (g(2;)) 0 Z§7(AM), (8.133)
j=1

where A0 € Q19(X) g) is the boundary condition and g: ¥ — G is the gauge transformation
on the boundary; (A°)Y = ¢g71AY0g + ¢710g is the chiral gauge transformation on the
boundary; p3(g) is the operator representing the group element on the module (M3)*.

The vector space where the path integral takes values is the space of states assigned to
the boundary ¥ by Chern-Simons theory deformed by the observable I'. It depends on the
positions zq, ..., 2z, € X of boundary vertices of I' and the corresponding weights Ay, ..., \,.
The statement of CS-WZW correspondence generalizing in this setting is:

BY™ (21, 2 My ) = HEST (8.134)
— the Chern-Simons space of states on ¥ deformed by I' is the space of WZW n-point

conformal blocks on . We refer the reader to [17] for details on the correspondence ({8.134).

Remark 8.3.8. The space of states HS® of Chern-Simons theory can also be obtained as
as a geometric quantization of the moduli space of flat connections on ¥ (as a symplectic
manifold with singularities, with polarization inferred from complex structure), see [2]. The

double
check
conven-
tions
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choice of complex structure serves as a parameter of quantization, and hence one obtains a
vector bundle of spaces of states over the moduli space of complex structures

H — GeomQ(Mga(X), cx. str.onX)

l (8.135)
Ms

This vector bundle comes with a natural projectively flat connection — the so-called Hitchin
connection — allowing one to compare quantizations with different choices of complex struc-
ture. This bundle in the case of ¥ = CP! with punctures (and up to reduction by the M&bius
group) is the bundle of conformal blocks with Knizhnik-Zamolodchikov connection.

Remark 8.3.9. The correspondence allows one to use things known in WZW to make
statements about Chern-Simons theory. For instance, from Atiyah’s axioms one has that
for a closed 3-manifold of the form M = ¥ x S with ¥ a closed surface of genus h, the
Chern-Simons partition function is the dimension of the space of states on X::

786 = dimH$ =
Atiyah holography (8.130)

Eao\ ! k A1\ 22
= — i 8.136
Verlinde (B.117) ( 2 ) )\Z:O (sm Wk + 2) ( )

Here we assumed G = SU(2); k is the level.
Likewise, consider the Chern-Simons partition function for the 3-manifold ¥ x S! with

dim BYAW —

observable I" consisting of n circles of the form {z;} x S, with zy, ..., 2, an n-tuple of distinct
points on X, assuming that the circles are decorated with weights A{,..., \,. By the same
logic, this partition function is again given by the Verlinde formula,

Zgh g = dimBY "W (21, .. 20 Aty Ag) = s, of (BII7). (8.137)

8.3.4 Parallel transport of the KZ connection, R-matrix and rep-
resentation of the braid group

Consider the Knizhnik-Zamolodchikov connection Vi on the depth-zero part of the bundle
of n-conformal blocks where all weights are the same A\ =--- =\, = A\
EY ., — Cn(C). (8.138)

We also restricted the base from CP! to C for the sake of present discussion. Recall that the
base C,, here is the space of ordered configurations of points. However, since we chose all
weights to be the same, we can quotient the bundle by the symmetric group permuting the
n points, obtaining a vector bundle

g;\OA N C«;Lmordered(c) (8139)

over the unordered configuration space. The connection V% descends to this quotient.
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Consider a path

. A L
’yj(t):(l,...,]—l,]—l— 5 7+ 5 ,]—1—2,...,71), t € [0,7] (8.140)
in C,,(C) for j € {1,...,n — 1} — it interchanges the points z; and z;;; by a smooth move,

ie., it starts at P =(1,...,7,7+1,...,n) and finishes at Q@ = (1,...,5+1,4,...,n).

Figure 8.5: Path in the configuration space.

This path descends to a closed loop 7} in Cunordered (C) gtarting and ending at the point

{1,...,n}. The parallel transport of V2% along this loop is an endomorphism of the fiber of

£V, of the form

d® - ®IdeRRIA®- - ®id € End(((M3)*)*") (8.141)
J— n—j—

with R a certain element
R € End (((M3)")®?) (8.142)

— it is an example of the so-called “R-matrix.” (This particular one is the R matrix given by
the holonomy of Knizhnik-Zamolodchikov connection.) It satisfies the Yang-Baxter equation

(R®id)(id ® R)(R®id) = (id ® R)(R ®id)(id ® R) (8.143)

by construction — because both sides give the parallel transport along loops in Ctnordered(C)
and the two sides correspond to two homotopic loops (recall that Vi is a flat connection,
so the parallel transport does not change under homotopy of the loop).

The fundamental group of C'"orderd(C) is also known as the braid group on n strands.

Its standard presentation is with n — 1 generators ¢y, ..., c,_1 subject to relations

CjCj4+1C5 = Cj41CiCj41, CiCj = CjC; if |Z - ]| Z 2. (8144)

“ p K S Cj+1
N

Cj+1
joj+1 j+2 JooJ+l j+2

Figure 8.6: Relation in the braid group. One can understand this picture as being in R x C.
The Lh.s. is the graph of the concatenation of paths 7; * ;11 *;, and similarly for the r.h.s.
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The construction above gives a representation of the braid group on the space
((MR))=m, (8.145)

with the generator ¢; represented by the element (8.141)) — by the R-matrix acting in the j-th
and (j + 1)-st factors of the representation space (8.145). The first relation in (8.144]) holds
due to the Yang-Baxter equation (8.143) and the second relation is obvious by construction

B121).

Remark 8.3.10. Let v be a loop in C'mordered(CP!) or equivalently a braid. Gluing the top
and the bottom of the braid, we obtain a link L in the 3-manifold M = CP' x S'. Let
=€ End(B(1,2,...,n;A,...,\)) be the parallel transport of the connection along ~.
Then by the argument analogous to Remark one has

0

Zmiysnr, = 812, miA.) (8.146)

Here we think of L as a special type of Wilson graph (a disjoint union of circles), with all
components of the link decorated by the weight \. Given a presentation of v seen as a braid
in terms of generators ¢;, v = ¢, - - - ¢;,, the endomorphism = can be written as a product
of R-matrices,

==R; - Rj, (8.147)

where the subscript j means that the R-matrix acts on the j-th and (j + 1)-st factors. Here
a remark is that although the r.h.s. of is an endomorphism of , it actually
stabilizes the image of the inclusion and hence determines an endomorphism of the
space of conformal blocks.

We refer to the seminal paper [15] for details on the invariant of knots and links arising
from the construction (8.146|).



Chapter 9
A-model

The A-model introduced by Witten in [45] is an example of a 2d topological conformal field
theory which contains a special class ()-closed observables (so-called evaluation observables)
whose correlators yield closed forms on the moduli space M, ,,. Integrated over M, ,, these
correlators yield interesting numbers — Gromov-Witten invariants — solutions of a certain
class of enumerative geometric problems. Moreover, field-theoretic origin of these numbers
(ultimately, Segal’s axioms) result in an equation on Gromov-Witten invariants — the Witten-
Dijkgraaf-Verlinde-Verlinde or WDV'V equation — which allows in some cases to fully compute
the Gromov-Witten invariants, see [29].

9.1 Closed forms on the moduli space from TCFT cor-
relators.

9.1.1 Genus zero case

First, recall from Section[6.6.1.2|that in any TCFT, given a collection of Q)-cocycles &4, ..., D,
the correlator of their total descendants on CP!,

(®1(21) - - Pulz0)) (9.1)

yields a closed form (under de Rham differential) on the moduli space My, which can
subsequently be integrated over relevant cycles to yield interesting periods.

9.1.2 Higher genus

For a surface ¥ of general genus g, given ()-closed fields ®4,...,®, € V, the construction
(9.1) yields a closed form on the configuration space, i.e., on the fiber of the bundle

Ms, ——— Cp(D)
l (9.2)
My

but not on the total space.

290
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As a generalization of the construction (9.1)), for fixed Q-closed fields ®4,...,®, € V and

any p > 0 one can consider the correlatoﬂ
p —

(1 its - fptfip): = <H (/ d®a; (i () G () + ﬁz(l‘z)G(%)O ®y(21) - (I)n(zn)>
i=1 /X

(9.3)
Here {; + fi;}iz1,.., are a p-tuple of Beltrami differentials on 3, i.e., tangent vectors to the
space of complex structures on 3 (see Section . We assume that supports of u; + ji; for
different 7 are disjoint and also disjoint from points z.

Note that if one changes p; — i; + 0v'? for v'0 a section of T7°% vanishing at points
2p (cf. ), the expression does not change (as follows from integration by parts
and the property G = 0). Similarly, o, does not change under the transformation ji; —
i +0v™t. This shows that «,, descends to a differential form on the moduli space of complex
structures with marked points z1, ..., 2,:

a, € QP(M,,,). (9.4)

Lemma 9.1.1. The form o, is closed. If at least one of @y, is Q-exact, then «, is an exvact
form.

Proof. We have

p
do,(po + fig, - - - 5 fip + fip) = Z(_l)rﬁurﬂlr&p(ﬂo A i0s - Ly ) =
r=0

1

normalizatio:

:é¥4mxéf%wmma%yHM%ﬁ@m)m(%ly%wm%ﬁu»ﬂm%ﬁum)

([ Eratinten G + )G ) 0 (e

_ /Z oy i / 3(w) TT ()G ) + (e )Gla)) Ba(z2) -+ () ) = 0. (9.5)

Y i=0

Here v — the integration contour for the BRST current J — is a union of circles going
around points z;. We deform it to a homologous contour going around points z;. Since
QP = 0, the latter contributions vanish. The stress-energy appears in the correlator by the
mechanism . Another remark is in order here: we understand the Beltrami differentials
i + j1; as a collection of vector fields on the moduli space My, ,, defined in the neighborhood
of the reference complex structure (we can do it, since Beltrami differentials define finite
deformations of complex structures); these vector fields commute, due to the disjoint support
condition. This is why there is no second term in the computation of de Rham differential

in the computation (9.5) ]

! Note that the (1,1)-form d?xu(z) G(z) appearing in (9.3) is a coordinate-independent object — it is the
contraction of the Beltrami differential dz ,u(x)% and the quadratic differential G (z)(dx)?.
2Recall that the general formula for the de Rham differential of a p-form is dw(Xi,...,X,) =

P () L, w(Xoy -, Xy oo Xp)  gercsey (1) WX, Xol, Xoy oo, Xry oo, Xy, Xp).
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If &, = Q(V) for some k and some field ¥, one has a similar contour-deformation
argument transforming the integration contour for J around W(z;) to a contour around
points x; where the action of J transforms the field GG into the stress-energy tensor 7', and
the whole expression becomes day,_1(®y,...,V,...,®,). Here the arguments indicate the
fields to which the construction (9.3)) is applied. [

Remark 9.1.2. In a chirally split TCFT (cf. Remark [6.6.2) one has a refined version of the
construction above: assuming that fields ®,,...,®, € V are both Q.- and Q)r-closed, one
can construct a family of closed (p, ¢)-forms on the moduli space,

Ot = <H ([ eauntaicin) H ([ Pums 6 @10 0u(a)) € 257(My0)
(9.6)

Remark 9.1.3. Construction (9.1)) (correlators of descent towers), specialized to the case of
canonical descent (6.265), can be understood as a special case of construction ([9.3) (corre-
lators with fields G, G adjoined), using the following observation. For v € T, a tangent
vector and ®(z) € V, a field, one can express the descent operator I' acting on ® as
the action by a particular Beltrami differential:

L DO(z) = / () Gx) + il2)G(x))D(2), (9.7)

where

p=08(0pv™°), = a(0pv™). (9.8)

Here D is a small disk containing z, 6p is the function equal to 1 in the disk and zero outside
it, v10 is a holomorphic vector field whose value at z is the (1,0)-component of the vector
v, and likewise for v%!. The idea is that the r.h.s. of is a contour integral of G, G over
the boundary of the disk, which is exactly the descent operator I'.

From this standpoint, the differential form on the configuration space (defined via
repeated action of I' at punctures) contracted with some tangent vectors to C,(X) can be
written in terms of Beltrami differentials, i.e., as a special case of .

9.2 2d cohomological field theories

Given a TCFT, restricting to correlators of Q-cocycles (extended to total descent towers as
in (9.1)), one obtains a simpler structure called a cohomological field theoryf]
The following definition is from Kontsevich-Manin [29] section 6.1].

Definition 9.2.1. A 2d cohomological field theory is the following data:

e A Z-graded complex vector space W with an inner product >E|

3Here we are making an implicit assumption that the correlators extend to the Deligne-Mumford com-
pactification of the moduli spaces Mg ;.

4In the cohomological field theory associated with a TCFT, one should think of W as the Q-cohomology
of the space of fields of the TCFT, Weonrr = Ho(Vrort).
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e A collection of linear maps (correlators)
Ipn: WE — H*(M,,) (9.9)
with g,n > 0 satisfying
2—-2g—n<0 (9.10)
(“stability” condition). lLe., I,, maps an n-tuple of elements of W to a de Rham

cohomology class of the Deligne-Mumford compactification M,,,, of the moduli spaces
of complex structures.

The collection of maps I, ,, is assumed to satisfy the following factorization axioms.

(i) Let S ={i1,...,in, } C{1,...,n} be a subset with n; elements and S = {j1,...,Jn, }
its complement, with ny = n — ny elements. For g; + g2 = g, let

aglrl;Sﬂg," ~ Mgy i1 X Mg,y (9.11)

be the Deligne-Mumford compactification stratum of complex codimension 1 (a.k.a.
“compactification divisor”), corresponding to nodal curves where one component has
genus ¢; and contains punctures from the subset S, plus the “node” or “neck” puncture
and the second component similarly has genus g and contains punctures from 5S¢, plus
the “neck” punctureﬂ Then the factorization axiom is:

M—
691;5/\/!9,”

= Z Ig1,n1+1<q)il7 N q)inl y ek)hkljg2,n2+1<q)jl, ey (I)]nQ y 6[) (912)
k,l

I (Pq,..., D)

Here ®4,...,®, € W any elements. We also introduced a basis {e;} in W and h* is
the inverse matrix of the inner product in this basis hy = (e, ;).

(ii) Consider the second type of Deligne-Mumford compactification stratum, corresponding
to introducing a neck on a handle,

MMy = My 1o (9.13)

The corresponding factorization axiom is:
Ig,n(q)la SRR ¢)n) ST = Z hkl[g-l,n—i—?(q)la SR 7®n7 €k, el)‘ (914)

o k.l

Figure 9.1: Factorization on nodal curves.

5See Remark
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Remark 9.2.2. Thinking of a cohomological field theory as a reduction of a “parent” TCFT
by passing to ()-cohomology, the factorization axioms above are a consequence of Segal’s
sewing axiom for the parent TCFT.

9.3 Gromov-Witten cohomological field theory

Fix a compact Kahler manifold X (the target). We will assume that the Kahler symplectic
form w on X has integer periodsf]

We will be constructing a cohomological field theory in the sense of Definition [9.2.1
with the space of fields W = H$, gpam(X). This cohomological field theory, called Gromov-
Witten theory, arises as a reduction by passing to ()-cohomology from a certain TCF'T — the
A-model, which is a sigma-model with target X (coupled to certain extra fields).

Let ¥ be a closed Riemannian surface. For any smooth map ¢: > — X, we define the
degree of ¢ as

d:/zaﬁ*w €z (9.15)

Let us denote by Holy(X, X) the space of holomorphic maps ¢: ¥ — X of a fixed degree d.
The space Holy(X, X) is finite-dimensional for any d € Z{7| it vanishes for d < 0 and
consists of constant maps for d = 0:

Holo(S, X) = X. (9.16)

Example 9.3.1. Let the surface be ¥ = CP! with homogeneous coordinates (2 : ;) and
let the target be X = CPY = (C¥+1\{0})/C* with homogeneous coordinates (ug : - - - : uy).
We assume that the target CPY is equipped with the symplectic structure wy = wpg the
Fubini-Study 2-form normalized to have unit integral over CP' ¢ CPY. We describe degree
d holomorphic maps CP! — CP" as degree d polynomial maps

C*\{0} — CcN¥*\{0} (9.17)

where we subsequently quotient both sides by C*.
Thus, a degree d holomorphic map CP! — CP¥ is given as

up, = Ay(20,21), 0<p<N, (9.18)

where Ay, ..., A, are homogeneous polynomials of degree d in 2y, z;. Tuples of polynomials
{A,} and {A!} determine the same map CP' — CP" if and only if Aj = cA,, ..., A, = c4,
for some ¢ € C*. Also, a tuple {4,} determines a map CP' — CP" if and only if the
polynomials {A,} do not have a common nontrivial root (zo, z1) — if they do, then there is a

6In fact, the story of this section goes through under much milder assumptions: one just needs to require
X to be a symplectic manifold with compatible almost complex structure, such that the symplectic form has
integer periods. The stronger assumption that X is Kéhler comes from the field theory side, where one wants
to start with a sigma-model, cf. Section (in the original approach [45], with A" = (2,2) supersymmetric
sigma-model).

“For this statement, compactness of X is crucial.
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point of C2\{0} which is mapped to {0} € C¥*! which does not correspond to any point in
CP¥. Such tuples {A,} correspond to so-called Drinfeld’s quasimaps CP! — CP¥: they are
not however holomorphic maps in the usual sense (in particular they cannot be evaluated
at all points of the source), so we will discard them. In summary, the space of holomorphic
maps of degree d is

Hol,(CP*,CPY) =
= {(A,(20, 21) Zap]zdzl p=o...n | {A,} do not have common roots} / C*

= CPUHNINFD=I\D  (9.19)

where a,,; € C are the coefficients of the polynomials — thus in order to specify a holomorphic
map CP' — CPY we need to specify the (N + 1) x (d + 1) array of coefficients a,,;, modulo
scaling them all by a number ¢ € C*, which yields the projective space CP@TVEFI=L e
denoted the set of “prohibited” Conﬁguratlons corresponding to quasimaps by D — it is a
subvariety in CPU@+HDWOFD=1 of hogitive codimension and can be described as D ~ CP! x
CPYN+D=1 (the first factor in the r.h.s. gives the point on the source where the common
root occurs).

As a further simplicifation, consider the case N = 1. Then degree d holomorphic maps
CP! — CP! are described by

Ai(2)
Ao(2)
where Ay and A; are two degree d polynomials in the variable z without common roots. For
instance, for d = 1 the holomorphic maps are

(1:2)—(1:

) (9.20)

z—0b

z—C

(1:2) = (1:a>—2) (9.21)

with parameters a, b, c € C such that a # 0 and b # ¢ (otherwise it is a quasimap).

9.3.1 Genus zero case.

Let ¥ = CP'. We have a diagram of maps
Cp(X) x Holg(2, X) —= X x---x X
—_—
(9.22)
|
Cn(2)

Here ev is the evaluation map, evaluating the holomorphic map on an n-tuple of points in
2,
ev: ((Zb s 7Zn)7 ¢) = (¢<Zl)a s 7¢(zn>) (923)

The vertical map p in (9.22)) is the projection onto the first factor.
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Remark 9.3.2. The two objects in the left column in ((9.22)) admit a certain compactification
(we will leave it as a black box and denote it by an overline) such that the maps ev, p extend
to it

Fix a collection of closed forms on the target, aq, ..., a, € Q%(X). Then one can define

Ionalar, ... o) = / evi(mi(ag) A AT (an)) € Qu(Ch(X)), (9.24)
Holy(3,X)

where m;: X" — X is the projection onto the i-th factor. The form (9.24)) has the following
properties:

(i) it is closed and its cohomology class is depends only on the cohomology classes of forms
a; — this fact follows from Stokes’ theorem for fiber integrals and relies on the existence
of compactifications, cf. Remark

(ii) The form (9.24) extends to a closed form on the Fulton-MacPherson compactified
configuration space C',(X).

(iii) The form is also basic w.r.t. Mdbius transformations (which act diagonally in the top
left corner in (9.22) and in the obvious way on the configuration space). Therefore, the
Iy 5.q descends to a closed from on the moduli space M ,:

Tonalas, ... a,) € QY(Mo,), (9.25)
and by (i) above, the construction descends to de Rham cohomology:
Iona(fanl, ..., [am]) € H* (Mo,,). (9.26)
This is the so-called Gromov-Witten cohomology class.

The genus zero part of the Gromov-Witten cohomological field theory is then defined as

Inn(loa], ... o)) = Z “lona(foa], -, [om]), (9.27)

d>0

where ¢ is a formal (infinitesimal) generating parameter.

Remark 9.3.3. The A-model, the “parent” TCFT for the Gromov-Witten hohomological
field theory, contains a class of ()-closed observables: for each closed form « on the target
one has an “evaluation observable” O, € V', see Section m The cohomology class ((9.27))
is the cohomology class of the n-point correlator on CP?,

<Oa1 e Oan>7 (928)

where tilde means the full descendant, cf. (9.1)).

Lecture

8The compactification of the configuration space C,,(¥) is due to Fulton-MacPherson. The compactifica- 40,
tion of C,(X) x Holy(3, X) is a special case of Kontsevich’s compactification of the moduli space of stable 12/5/2022
maps.
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9.3.2 General genus

Let X be a closed oriented smooth surface of any genus g and fix d > 0. One has a fiber
bundle over the moduli space of complex structures on ¥ with fiber over J € My the space
of holomorphic maps (w.r.t. to the complex structure J on ¥) to X of degree d:

Ms(X,d) +—— Holy(Z, X)

J (9.29)
Ms

We have the “forgetful” map
r: Mzm — ME (9.30)

from the moduli space with n marked points to the moduli space without marked points,
given by forgetting the marked points. The pullback of the bundle (9.29)) along the forgetful
map My, (X,d): =r*Mx(X,d) - My, fits into the diagram similar to ((9.22):

M&n(X, d) L} X"

pl (9.31)
Ms,

)

where ev evaluates the holomorphic map at the n marked points. Again, there exists a
compactification of the objects in the right column of the diagram — Kontsevich’s moduli
space of stable maps at the top and Deligne-Mumford compactification of M, ,, at the bottom
— such that the maps ev, p extend to the compactiﬁcations:ﬂ

M,y (X, d) —— X"

P (9.32)
Mg n
Here we put the genus of ¥ instead of ¥ as index.
Given closed forms oy, ..., o, € Q%(X), we construct a form
%MWM”@@:/ vt (11 (an) A AT ) € H (M) (9.33)
Holy(3,X)

As in genus zero case, by Stokes’ theorem and due to the existence of compactifications,
this form is closed and its cohomology class depends only on the cohomology classes of
a;; thus the construction descends to cohomology. Also, the form extends to the
compactification of the moduli space of complex structures ﬂg,n.

This leads to the following definition at the level of cohomology.

9 Very roughly, the idea is that in addition to adjoining Deligne-Mumford compactification strata (nodal
curves) coming from the compactification of the base, in the total space one needs to blow up the config-
urations where a quasimap point in the space of holomorphic maps coincides with a marked point on the
surface (i.e. exactly the situations where the evaluation of a map at a marked point becomes problematic).
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Definition 9.3.4. Genus g Gromov-Witten classes are defined via the diagram (9.32)) as
Lina([ad], - [ow]) = peev(mf o] A - an]) € HY (Myn), (9.34)
where [aq], ..., [a,] € H*(X) are any de Rham cohomology classes of the target X.

As a generalization of (9.27)) to any genus, Gromov-Witten cohomological field theory is
defined by summing the classes (9.34]) over the degree d, weighed with ¢,

Ln(aa], - an]): = ¢ Tgnalfon], - - o). (9.35)

d>0

Theorem 9.3.5. The cohomology classes 1,, satisfy the factorization properties ,
19.14)).

Idea of proof. Fix the numbers g,n,d > 0, fix a splitting of genus g = ¢g; + g2 and a splitting
of the set of marked points into complementary subsets {1,...,n} = SUS¢. Consider a com-
pactification stratum 9, M, , of the moduli space of complex structures. The restriction

of the bundle (9.32) to it if]

P~ (0gy,5Mgn) = |_| My, 50g(X, dr) Xx Mg, se0g (X, da) (9.36)
di1+do=d

Here ¢,q" are the names of the nodal point as point seen as a marked point on either
component of the nodal curve; the fiber product in the r.h.s. is w.r.t. evaluations at ¢ and at
q*, respectively. The evaluation map on the r.h.s. lands in X x A x X% where A C X x X
is the diagonal.

Fix the cohomology classes (], ..., [an] € H*(X). Then we have

o ([Tl

where ey, is a basis in H*(X) and h* is the inverse matrix of Poincaré pairing; ev in the L.h.s.
is for holomorphic maps out of the whole nodal curve ¥ and in the r.h.s. we have maps ev
for the two components of ¥. Here we used the fact that the cohomology class of X x X
Poincaré dual to the homology class of the diagonal A C X x X is Zk 1 h¥le, ® e;. The
appearance of this class in the r.h.s. of (9.37)) effectively forces ¢ and ¢* to map to the same
point in X.

Pushing forward (i.e. performing the fiber integral) the Lh.s. of to the Deligne-
Mumford stratum 8y, sM,, and pushing forward the r.h.s. to the product M, s,, X
My, seuq, and summing over the degree d (and the splittings d = dy + dy) with weight
¢%, we obtain the desired factorization property :

Lyn(loa], - lamDla,, m,,, = Z a1 ({[oilies, er)h Igy my i1 ({[ei Viese, ) (9.38)

= evig ([ [ 7ile] - mher) ¥ eviey. (| 7ilau] - ) (9.37)

k.l ieS iese

1 SMQ TL)

19The intuition is that a holomorphic map ¢ from a nodal curve ¥ = %' U, ¥ to X is given by a pair of
holomorphic maps, ¢’ on ¥’ and ¢” on X" agreeing at the node q. The degree of ¢ splits as the degree of ¢’
plus the degree of ¢".
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The factorization property on the second type of Deligne-Mumford strata (9.14)) is proved
similarly.

]

Definition 9.3.6. For a collection of cohomology classes [a1], ..., [a,] € H*(X). The genus
g, n-point Gromov-Witten invariant of degree d is defined as the pairing of the Gromov-
Witten class 1) with the fundamental class of the moduli space My ,:

GWna([aa], ..., [an]): :/ Ijna(ad],.. . [an]) €C (9.39)

Mg n

9.3.3 Enumerative meaning of Gromov-Witten classes

Fix c1,...,¢, € Co(X,Z) — a collection of cycles in X and let [0,.,] € H*(X) be the Poincaré
dual classes to the homology classes of ¢;; [d.,] can be represented in de Rham cohomology
by a (cohomologically smeared) Dirac delta-form on ¢;, hence the notation.

Recall that for ¢ C X a k-cycle in a smooth N-manifold X, the delta-form ¢, is the
distributional (N — k)-form characterized by the property

/Xéc/\a:/ca|c (9.40)

for any a € QF(X). A cohomologically smeared d-form on ¢ is a smooth form with the same
property which is only required to hold for a a closed k-form.
The Gromov-Witten invariant

GW97n,d([561]a ] [5071,]) € Q (941)

is the “virtual” count of holomorphic curves in X of genus g and degree d passing through
the cycles ¢y, ..., c,. This number is an integer for zero genus. Generally, for higher genus,
it is a rational number: holomorphic maps ¢ in this virtual count should be weighed with

IstTIW)I — the inverse of the number of holomorphic automorphisms > commuting with gb.

X

Figure 9.2: The enumerative problem: counting holomorphic maps ¢: ¥ — X with the
image passing through a given set of cycles ¢y, ..., ¢,

A related point: compactified moduli spaces M, ,,(X) have orbifold singularities which lead to having
the “virtual” fundamental class defined over Q rather than Z.
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9.3.4 Quantum cohomology ring

Consider de Rham cohomology of X as a Zg—gradedm vector space H*(X) equipped with an
inner product (,) given by Poincaré pairing ([a1], [as]) = [y a1 A @y and equipped with a
bilinear map

m: HX)® HX) - H(X) (9.42)
characterized by
(m(lau], [az)), [as]): =) ¢*GWoga(len]. [aa], [as]) (9-43)

with ¢ the generating parameter as in ((9.27). Note that Gromov-Witten classes in the r.h.s.
here are elements of H®*(My3), i.e., numbers (since M, 3 is a point). If ; are integer classes
then the Gromov-Witten invariant GWy 3 4 is an integer.

Definition 9.3.7. The bilinear operation m: H(X) ® H(X) — H(X) defined by (9.43) is
called the “quantum product” on the cohomology H(X). The quantum product endows the
cohomology H (X)) with the structure of a Z,-graded ring called the “quantum cohomology
ring.”

Note that due to (9.16) one has
GW07370([Q1], [ag], [Oég]) = / a1 A (6D) N Q3. (944)
b

Thus, the ¢° term in m is the usual cup product while ¢° terms comprise a deformation of
the cup product by the data of (genus-zero, three-point) Gromov-Witten classes.

Implicitly present in the definition above (in the words “ring” and “product”) is the
following.

Lemma 9.3.8. The operation m defined by 18 supercommutative and associative.

Supercommutativity is obvious from the definition of Gromov-Witten classes. Associa-
tivity is not obvious and is a consequence of the WDVV equation ({9.58]).

Example 9.3.9. Let X = CP!. The space of holomorphic maps of degree d is given by
(19.19):
Holy(CP*,CP!) = CP**™\D (9.45)

— it is a manifold of real dimension 2(2d + 1) = 4d + 2. Thus the Gromov-Witten invariants
GWysa(on, sz, as) = / ev(mial A myas A Thas). (9.46)
Holy(CP!,CP?)

Note that for this number to be nonzero it is necessary that the dimension of the space over
which we integrate is equal to the degree of the form we are integrating:

4d+ 2= |Cl{1| + |O./2| + |Q43|, (947)

12 The reason for why we only consider the mod 2 projection of the natural Z-grading on cohomology is
elucidated in Example below: Z-grading is not preserved by the deformation of the cup product we are
describing.
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where |a] is the de Rham degree of the form «.

The cohomology of CP' is spanned by two classes, [1] € H°(CP') and [w] € H?(CP')
— the class of the Fubini-Study 2-form normalized to have unit volume. Choosing o 23 in
to be the basis classes in H*(CP') we observe that there are only two possibilities (up
to permutations) to satisfy (9.47):

GWozo([1], (1 [w]) = 1, (9.48)
GWoa([w], W], [w]) = 1. (9.49)

Note that corresponds to the usual cup product in cohomology ([1] U [1] = [1], or
[1] U [w] = [w]). On the other hand, is the number of degree 1 holomorphic maps
CP! — CP' (i.e., M&bius transformations) mapping three marked points in the source CP!
into three fixed points cy, ¢, c5 in the target CP' in general position (we then think of ¢; as
zero-cycles with [w] the Poincaré dual cohomology class for each ¢;). There is exactly one
such map.

To summarize the result, the quantum product in the cohomology of CP! is given by the
following multiplication table.

m([1], (1) = {1, m([1], [w]) = [w], m(w], [w]) = ¢-[1]. (9.50)

Note that due to the last relation the quantum product does not preserve the de Rham
degree. In this particular example, X = CP!, one can prescribe degree 4 to ¢ and then m
preserves the Z-degree.

9.3.5 Gromov-Witten potential
Fix a basis ey, ..., es for H*(X). The function

tnl tn
Oty ... t): = Y an 'q GWosna(€1s- - sei,.oregyes)  (9.51)
ni,...,ns>0 d>0 n T
of the generating parameters ti,...,t, is called the Gromov-Witten potential. Here we

understand that the variable ¢, is even (commuting) if e, € H®**(X) and t, is odd if
ea € H°4(X). Thus, ® is a generating function for Gromov-Witten invariants.

One can think of ¢;,...,t, as coordinates on H*(X), i.e., coordinates of the vector § =
Y o ta€a € H*(X). Then one can also write ¢ as

O(t, ... 1t ZZQ‘GWOM 5) (9.52)

n>0 d>0

One can treat parameters ¢, as formal (i.e. treat ® as a formal power series in t,’s), however
the sum over n is actually convergent for 8 in some open set U in H*(X).
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9.3.5.1 “Big” quantum product.

One defines the “big quantum product” as a family parametrized by § =) t.e, € H*(X)
of supercommutative associative products on cohomology

mg: H(X) ® H(X) = H(X) (9.53)
defined by
d
q
(mp(on, ag), a3): = Z Z —GW pis4(on, az, 03, 6,...,0), (9.54)
n>0 d>0 n!

n

for any a3 € H(X). Thus, it is the construction of the quantum product deformed
by the class g € H(X).

Note that the big quantum product can be written in terms of the third derivative of the
potential ®:

PP

- Ot 0,0t
for any a,b,c =1,...,s; both sides are understood as functions of € U C H(X).

The big quantum product endows an open subset of cohomology U C H(X) with the
structure of a Frobenius manifold.

The following definition is due to Dubrovin [10, [11].

<mﬁ(ea7 eb); 6c> (955)

Definition 9.3.10. A Frobenius manifold is a manifold Y equipped with the following data:
e Affine flat structure on Y and a compatible (flat) Riemannian metric h.

e For each B € Y, the tangent space T3Y is equipped with a commutative associative
product
mp: TgY @ TgY — TgY (9.56)

compatible with A, in the sense that h(mg(z,y), 2) = h(z, mg(y, 2)).

e A potential ® € C*(Y’) such that
h(m(u,v),w) =uovowo® (9.57)
for any triple of flat vector fields w, v, w on Y.

This definition has a straightforward Zs-graded generalization. To see the big quantum
product as equipping an open set in H(X) with the structure of a Frobenius manifold, one
should consider the ring of scalars to be formal power series in q.

9.3.6 WDVYV equation

Let h® be the inverse matrix of the Poincaré pairing in the basis {e,} in H(X). The following
theorem is due to Witten-Dijkgraaf-Verlinde-Verlinde [48].
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Theorem 9.3.11. Gromov-Witten potential ® satisfies the following differential equation:

83<I> 83(13 83(1) 83(13
hcd _ th ‘
; Oladtydt. " Otadlt; Xd: OLOLOL, | DtadLOL; (9.58)

[

(the r.h.s. is the l.h.s. with indices a, e switched).

The equation is known as Witten-Dijkgraaf-Verlinde-Verlinde (or WDVV) equa-
tion. It is a consequence of the factorization properties of Gromov-Witten classes on com-
pactification divisors in ﬂgyn (Theorem and certain relations between homology classes
of these divisors — so-called Keel’s relations, see Section below.

Remark 9.3.12. WDVV equation is not specific to Gromov-Witten theory: it holds in any
2d cohomological field theory: one can define the potential in a general CohF'T as

2=y /MM Ion(B,... B), (9.59)

n>3

seen as a function of 5 = tje; +- - - tse, € W, and then @ satisfies (9.58)) (the proof we sketch
in Section [9.3.10| carries over to this general case).

9.3.7 Example of Gromov-Witten potential: X = CP!

Consider the example X = CP'. In this case the cohomology H(X) has a basis [1], [w] (with
w the Fubini-Study 2-form normalized to have unit volume); let us denote the corresponding
generating parameters fo, ;. We already know the numbers GWy 3 4 from ((9.48), (9.49).

Lemma 9.3.13. Gromov- Witten invariants for n > 4 points are

CWona(Ww], ..., W], [1],.... [1]) = (9.60)

> >
-~ -~

k

{1 ifl=0,d=1,

0 otherwise

here k +1 = n.

Proof. 1f | > 0, p.ev* is a class on My, coming as a pullback of a class from Moy, via the
map forgetting the [ points mapping to [1]. Being a pullback, it integrates to zero on My,,.

For the case | = 0 (and hence k = n), we have a balancing condition (degree of the form)
= (dimension of Hol;)+(dimension of M,,):

m=22d+1)+2(n—-3) < d=1. (9.61)

In the case k = n, d = 1 — the only case when we might get a nontrivial Gromov-Witten
invariant, we are counting the number of Mdbius transfromations CP' — CP! that take
points (0,1,00, z4,...,2,) to points (uy,...,u,) where wu; are fixed distinct points on the
target and zy4, ..., %, are arbitrary (integrated over when we integrate over My, in (9.41)).
There is exactly one such map. O]
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As a corollary, the Gromov-Witten potential for X = CP? is

3t t tgh . t2
@(to,tl)_7+;qm—7+q e —l-ti— ). (9.62)
The big quantum product is given on basis elements by
ma([1], (1) = [1],  ms([1], [W]) = [w], ma([w], [w]) = ge" - [1], (9.63)

where the reference point is 3 = to[1] + t1[w] € H(CP?).

9.3.8 Example of Gromov-Witten potential: X = CP?

We proceed to the case X = CP?. This example due to Kontsevich-Manin is a spectacular
application of WDVV equation to enumerative geometry. We refer to original paper [29] for
details.

One has three basis cohomology classes: [1], [w], [w?] where again w is the Fubini-Study
2-form normalized to have unit period on CP! C CP? Let us denote the corresponding
generating parameters tg,t1, to.

Theorem 9.3.14 (Kontsevich-Manin [29]). (i) The Gromouv-Witten potential for X = CP?
has the form
tits | toti 3 N(d)  ay3a-1,an

D(tg,t1,t2) = — =
(07 1 2) + q + 3d—1)'

— .64
2 2 2 (9.64)

d>1 (

where N'(d) is the number of rational (i.e. genus zero) holomorphic curves of degree d
in CP? passing through 3d — 1 points in general position.

(ii) The numbers N (d) satisfy N'(1) = 1 and the recurrence relation
B , 3d—4\ [ 3d—4
N(d) = k%;dN(k)N(l)k l (z ( o9 > k < 1 )) (9.65)

ford > 2. These two properties define the numbers N (d) completely. In particular, the
first numbers are:
d |12 3 4 5
N(d)|1 1 12 620 87304

(9.66)

In particular V(1) = 1 is the number of degree 1 curves (lines) in CP? through 2 (generic)
points, N'(2) = 1 is the number of conics through 5 points, A(3) = 12 is the number of
rational cubics through 8 points[5 etc.

The term —q% in ((9.64]) is inconsequential, it cancels a similar term with the opposite
sign present in the sum over d; it is put there so that ® does not have terms of degree < 3
in t’s (cf. the stability condition (9.10)): we only consider GW invariants in genus zero for
n > 3).

130ne can find a cubic through 9 points in general position, but it will (in general position) have genus
one, not zero.
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Sketch of proof. (i) Consider the Gromov-Witten invariant

CWorna(t]- - (1) fol - o] ) ) (9.67)

\—

for n > 4; we understand that n = ng + n; + ne. The number (9.67) vanishes for ng > 0 by
the same argument as in for [ > 0. The balancing condition between the form degree
and the dimension of the space over which it is integrated is

WMy +4ny =203(d+1)—1)+2n—13) < ny=3d—1 (9.68)
~ -~ -7 N ~ N——
form degree dimg Hol dimg Mo,n
Denote
N(d) L= GW073d_1,d([w2], ey [w2]) (969)
d—1
3d—

If we insert n; additional copies of the class [w] (Poincaré dual to the class of a hyperplane
H C CP? of complex codimension 1) into the Gromov-Witten invariant , the number
gets multiplied by d"!, since a curve of degree d intersects the hyperplane H d times.
This analysis, together with the straightforward case n = 3 results in the ansatz (9.64)).
(ii) The recurrence relation (9.65)) is an immediate consequence of the WDVV equation

(9.58), from substituting the ansatz (9.64]) into it.
[

9.3.9 Keel’s theorem

For a subset S C {1,...,n}, let us denote by Dg € H,(My,) the homology class of Deligne-
Mumford compactification stratum 0y g |D of the compactified moduli space M, ,,. We
will denote S° the complement of S in {1,...,n}.

Theorem 9.3.15 (Keel [26]). Homology of the moduli space My, is generated by classes
Dg with S subsets of {1,...,n} such that |S|,|S¢| > 2, modulo the following relations:

[ J DS - DSC.

e Fori,j, k,l distinct,

> Ds= > Ds= > Ds (9.70)

i,5€S, kleSe i,k€eS, jlese il€S, j,kese

e DsN Dy =0 unlessSCT orT CS.

In the relation the summation in the left term is over partitions of {1,...,n} into two
subsets S, S¢ such that S contains i,j and S¢ contains S¢, and similarly for the middle and
the right terms.

Lecture
41,
12/7/2022
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Example 9.3.16. Consider the case n = 4. Non-compactified moduli space My, =
C4(CPY)/PSL(2,C) can be identified with sphere with three punctures, CP*\{0, 1, 00} (fix-
ing three of the marked points to 0, 1, 0o, the modulus is the position of the fourth point), cf.
(2.142). Deligne-Mumford compactification fills the the three punctures with the compact-
ification strata Oy 143, (90 {24} 90,43.4) (configurations where z; approaches z; = 00, z9 = 0
or z3 = 1), see Figure[2.4l The compactified moduli space M 4 1s just a sphere CP1 and all
three Deligne- Mumford strata are in the same homology class — the class of a point in CP".
Thus, one indeed has

Dy = Dppay = Dis gy (9.71)

which is the Keel’s relation (9.70]) for n = 4.

9.3.10 Explanation of WDVYV equation from Keel’s theorem and
factorization of GW classes

Consider the moduli space Mg, 44 with marked points labeled {A, B, E, F,1,...,n}. Fix
a,b,e, f € {1,...,s} aquadruple of basis elements in H(X). Restricting the Gromov-Witten
class to Deligne-Mumford compatification strata of My 14, we obtain

/ IO,n+4(€a76b7€e7€faﬂa"’7&) =
Dsya,By "

factorization (9.38]

Sc{1,...,n} n
_ cd
- § E / IO,\S|+3(ea7€b7ﬁ7'"75766) h / [0,|SC|+3<€67€f7/87"'7ﬁ7€d>

Sc{l,...,n} cd Mo, su¢a,B,0} |S“ | Mo, scu(D,E,F} \SVC|

E d cd d:
= 1GW0n1+3 €a76b757"'7ﬁ760>h q 2GW07n2+3(6676f7ﬁ7'"757660
In —— ——
ni+n2=n d1 d2>0 c,d ny ng
(9.72)

In this computation we called C, D the nodal point seen as a marked point on the two
components of the curve. Note that by Keel’s relation (9.70]), expression doesn’t
change if we switch A +» F and a < e: under this switch, both the cohomology class in
the Lh.s. and the homology class ) Dsuga,py it is paired with are invariant — the former
trivially and the latter by Keel’s theorem.

Summmg over n > 0 with weight 1 1> we obtain the Lh.s. of the WDVV equation
([9-53). SWltchlng a <> e (which doesn’t change the expression by the argument above), we
obtain the r.h.s. of WDVV.
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Keel’s relation

Figure 9.3: A nodal curve with two groups of marked points corresponding to (9.72)).

9.4 A-model

Roughly speaking, the A-model is the nonlinear sigma model, with fields being maps into a
target manifold X, with some extra fields (fermions) adjoined, so that the path integral of
the model “localizes” — in the sense that will be explained below — to just the holomorphic
maps into the target.

For details on the A-model we refer to Witten’s original papers [45, 49]. For the viewpoint
on the A-model as calculating the Euler class of a vector bundle over the mapping space
whose section is the holomorphicity equation, see [4].

Fix a Riemannian surface ¥ and a target Kahler manifold X. We will assume that the
Kéhler symplectic form w on X has integral periods.

We will use local complex coordinates on the target: holomorphic coordinates x* and
antiholomorphic coordinates z*; we will denote the real coordinates on the target z! (equiv-
alently, one may think of 2/ as holomorphic and antiholomorphic coordinates jointly). The
action functional of the A-model i

S = % /E %w%l 8¢” + "Dy’ — "D+ iR MO Iy (9.73)
The fields are
e A smooth map ¢: ¥ — X.
e An odd (anticommuting) field
x €T(E,¢o"'TX). (9.74)
e Odd (1,0)- and (0, 1)-form fields

H0 € QMO(S, " (T X), O € QOY(E, ¢*(TO1)* X). (9.75)

One can assign Z-grading to fields (ghost number):

gh(¢) =0, gh(x) =1, gh(¥"") =gh(¥™) = —1. (9.76)

14 We put the normalization factor % in the action, so that its bosonic part yields (for a flat target) the
standard free boson propagator (¢! (w)¢”(2)) = —g'’/2log |w — 2| + const.
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In the action (9.73)), ¢ = g(¢) is the Riemannian metric on the target X pulled back to ¥
by the map ¢;

Dy’ = dx' +Ti(0)d¢'x", Dy’ = X' +T5(0)0¢'x* (9.77)

are the Dolbeault operators on ¥ twisted by the pullback of the Levi-Civita connection V¢
on X; R = R(¢) is the pullback of the Riemann curvature tensor on X to X.
Using local complex coordinates on 2, we can write the 1-form fields as

i = dzy, Y = dz . (9.78)

Then the action (9.73)) can be written as
1 1 _ — = = .=
S =1 [ d2501106/067 + DY + DX’ - Rt (9.79)
b

with D, D the covariant derivatives on ¥ in the directions 0., 0, w.r.t. the pullback of the
target Levi-Civita connection.

The first term of the action (9.73)) is the action of a sigma-model with target X seen as
a Riemannian manifold; one can rewrite it as

R 136 = L [ i 0688 i/*
QW/EQQU&ZS 19J0) —QW/Ezggj&ﬁ oJer +47T Eqbw (9.80)
s

Here w = igijda:i A da? is the Kahler symplectic form on X. The last term in the r.h.s.
of is “topological”: it depends only on the homotopy class of the map ¢ (and the
cohomology class of w). In particular, Sip is a locally constant function on the space of
fields.

The space of fields is equipped with a degree —1 odd derivation () acting by

Qo' =x', Qx' =0,
QUi = —ig;0¢7 + TExI v, (9.81)
QU™ = —igyd¢! + TErTp ™Y,
The operator ) squares to zero modulo equations of motionE

Q° ~ 0. (9.82)

One can in fact massage the model (construct a “first-order” action) to make ) square to
zero on the nose, see Section [0.4.4]
The crucial property of the action ((9.73) is that it is Q-exact, up to the topological term:

S ~ Sup + QR) (0.83)

5More precisely, here and in (9.83), we only need the part of the Euler-Lagrange equations arising as
the variation of S w.r.t. fields (19 ¢(®1)  These equations read Dy’ + iRiiﬁwéO,l)ijj =0 and Dx* —

iR My = 0.
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where .
R=_— / —"0g! + "V g (9.84)
AT Js

Again, the equality (9.83]) is true only modulo equation of motion but becomes true every-
where on the space of fields in the version of Section [9.4.4]

Remark 9.4.1. In the language of TCFT, the operator ) is given by integrating around a
field the conserved current J = J + J, cf. (6.223), where

J=g:x'8¢, T =gyx' 0. (9.85)

The currents J,J are conserved separately: 8J ~ 0, 8J ~ 0.

The fields G, G — the Q-primitives of the components of the stress-energy tensor (6.219))
are given by o o
G(d2)? = —ip)"Va¢,  C(dz)? = "V ¢, (9.86)
The stress-energy tensor itself is
T(dz)" = Q(G)(d=2)” = —g;506'0¢’ + ivyy"" D,

z - 9.87
T(d2) = Q(C)(d2)* = —g506'00 + iv!"" Dy (957

Remark 9.4.2. The A-model is described by somewhat lengthy formulae due to the involve-
ment of target geometry. For a flat target all formulae simplify drastically. E.g., the action
(9.73]) becomes simply a free (quadratic) action
1 [ o _ .
S = Stop + % / Z%ja¢za¢J + ¢§1,0)axz o w§071)8xza (988)
)

with g;;. In fact there is a very interesting class of cases where the target is compact and
admits a flat metric everywhere except for finitely many points — toric manifolds X. In this
case one can study the A-model as a free theory with special observables corresponding to
the preimages of the special points in X where the metric is singular. This approach is due
to Frenkel-Losev [14].

Remark 9.4.3. For the target X = C" with standard Kahler structure, the A-model ((9.88)

becomes a system of n free complex bosons and n simple ghost systems (cf. Remark .

Note that in this case it is clear that the central charge of the system is 2n + (—2)n = 0.
In fact the central charge of the A-model is zero for any target, by the general argument

(6.227]) holding in any TCF'T.

Remark 9.4.4. The space of states of the A-model on a circle (or equivalently the space of
quantum fields V') can be identified with the de Rham complex of the free loop space of X,

V=Hs =Q° (LX), (9.89)

with differential () being the de Rham differential dx. Put another way, states on S* can
be realized as functions of fields ¢!, x! on S'.The )-cohomology of V is then

Ho(V)=H*(LX)=H*(X)® (---) (9.90)

where the first term on the right corresponds to constant loops. One can identify H*(X) C
Hg(V) as evaluation observables (Section [9.4.3)).
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9.4.1 Path integral heuristics: independence on the target geo-
metric data.

The fact leads to the following expectation about the A-model path integral: the
correlator of any collection of (Q-closed observables ®4,...,®, should be invariant under
deformations of the geometric data on the target, except for the possible change of the
topological term. More precisely, one can split the correlator into contributions of different
homotopy classes of the map ¢: ¥ — X:

(@1(21) - By () = /F e 5By () - By (z) =
_ e=Son@) [ QR (1)) D, () =
3 /f ) (21) - Do(z)

[4l€[=,X]
= > el (z) - By (z))g (991)

[¢le[=,X]

where [X, X] is the set of homotopy classes of maps. Then the expectation is that for Q-
closed observables ®; and for a path (g, J;, w;) of Kéhler data on X with parameter ¢, the
contribution

(@1(21) - - Pn(2n))10) (9.92)

of a homotopy class into the correlator does not depend on t.

The logic is that one differentiates the path integral over a given homotopy class in
in the parameter ¢ of the family which results in a Q-exact expression (modulo Euler-
Legrange equations) under the path integral, such expressions are expected to have zero
averages over the space of fields.

Remark 9.4.5. Later, in Section [9.4.3] we will be discussing evaluation observables which are
not ()-closed, but rather Q)-closed up to a d-exact “error term.” The argument above goes
through for them, with the caveat that the correlators for them change by a d-exact
term under the deformation of target geometric data.

9.4.2 A-model as an integral representation for the delta-form on
holomorphic maps

If we rescale the target metric g — % g with € a constant, the action becomes

1 1 7 - . - — -
g€ — — ¢*w+ _/ _g_ija(bzaqb] _i_,l/}Z(LO)DXz . wgo,l)DXz + ieR“"'wZ‘(LO)w—(OJ)XjXJ
e s, 21 Js € E 3 !
~————

Stop R (I) B

St

(9.93)
In the limit € — 0 the dominating term (I) in the action essentially enforces the constraint
0¢' = 0, i.e., enforces the holomorphicity property of the map ¢: ¥ — X.
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More precisely, integrating out fields ¢/ (19 01 we obtain a cohomologically smeared
delta-form on the space of smooth maps > — X supported on holomorphic maps:

/ DYIOIDYOD =5 = 5 € Q(Map(E, X)). (9.94)

In this identification, one identifies the field x! as
X' = dvap®’ € TjMap(3, X) (9.95)

—a 1-form/covector on the mapping space; dyap stands for de Rham operator on the mapping
space. The parameter € in ((9.94)) serves a “smearing” parameter, with ¢ — 0 limit being the
“true” (non-smeared) distributional delta-form.

9.4.2.1 Prototype of a Mathai-Quillen representative.

Given a function f: M — R (assume that it is smooth, with nonvanishing differential on its
zero-locus), one has the following cohomologically smeared delta-form on the hypersurface
f710) Cc M: .

5srigy = (2me) 7e 5 df € QL(M) (9.96)
with € > 0 a smearing parameter. In the limit ¢ — 0 this form distributionally converges to
true delta-form 6 4-1). The form can be written as a Berezin integral over an auxiliary
odd (anticommuting) variable :

1 x 2
5510y = (2m€) / Dy e~ 15ETvd, (9.97)

More generally, for f: M — R a smooth function with surjective differential on f~1(0),
the zero-locus is a submanifold of codimension £ and one has the following smeared delta-
form on it:

k

. _k _ @12 a

0510 = (2m€) 2 / [ Dwa e 550t e 0l (), (9.98)
a=1

where we introduced k auxiliary odd variables °.

9.4.2.2 Mathai-Quillen representative of the Euler class of a vector bundle.

Let £ — M be a real oriented vector bundle of even rank k over a manifold M. Assume
that F is equipped with fiberwise metric g, a connection V compatible with the metric and
a section s: M — E. Consider the following differential form:

Svg = ig(s, s) + (¢, Vs)

> — Sl g™ () =

1
= S gus"s” + it (ds" + A's') = S Fathy € QUM AE). (9.99)

Here we think of odd variables v, as generators of the exterior algebra of the fiber, A*F,
(put another way 1), are coordinates on the parity-reversed dual fiber IIE?). In the second
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line we rewrote Sysq explicitly in a local trivialization of E; A% are the components of the
local connection 1-form, Fy € Q?(M,End(F)) is the curvature 2-form of the connection and
F2 € Q*(M) are its components. The smearing parameter ¢ in corresponds to scaling
the fiber metric g — 2g.

Even more epxlicitly, using local coordinates z° on M, can be written as

1 . a a 7 € c a i ]
SMQ = ggabsasb + Zwa(ais + AZ bsb)X - Zgb F@J cwal/}bx Xj7 (9100)

where we denoted y': = dz’.
Consider the fiber Berezin integral

. k
1
= Dy e %Ma e QF(M). 9.101
(v27T€> /ﬁber of TIE*—M (M) ( )

Here Dy € T'(M, A¥E*) is the fiber Berezinian (fermionic integration measure) induced from
the fiber metric and the orientation of the fiber.

(11

Theorem 9.4.6 (Mathai-Quillen [34]). e Form Z is closed.
e Changing the data s,g,V, € changes = by an exact form, =+ Z+d(---).

o The class of = in de Rham cohomology H*(M) is the Euler class of the bundle E —
M [

o [f the section s intersects the zero-section of E transversally, then one has

lim= = s~1(0) (9102)

e—0

where the limit is understood in distributional sense.

In particular, the form is a cohomologically smeared delta-form on the zero-locus
of the section s; = is known as the Mathai-Quillen representative of the Euler class of the
bundle £ — M.

Mathai-Quillen construction has a straightforward modification to complex vector bun-
dles equipped with hermitian fiber metric.

Remark 9.4.7. In the limit € — oo, the last term in is dominating and the formula
(9.101]) becomes the Gaussian integral over the odd variable ). The latter yields the repre-

sentative for the Euler class of the bundle as a Pfaffian of the curvature 2-form,

1
= =Pf <%Fv> c QF(M). (9.103)

16 Recall that for rank k oriented real vector bundle E over a closed manifold M, the Euler class e is the
cohomology class of M Poincaré dual to the homology class of the zero-locus of a generic section s: M — E
(“generic” here means “transversal to the zero-section”). More precisely (to take signs into account), “zero-
locus” should be understood as the intersection of the graph of s with the graph of the zero-section. An
equivalent definition: consider the Thom class of E — the cohomology class of the total space 7 € H(E)
with the property that its pushforward to M by the bundle projection is the constant function 1. Then the
Euler class is the pullback e = s*7 of the Thom class by an (arbitrary) section s : M — E (here one doesn’t
need a transversality condition).
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This is the Chern-Weil representative of the Euler class. In the special case when E = TM
is the tangent bundle and V is the Levi-Civita connection, integrating = over M one obtains
the Chern-Gauss-Bonnet theorem,

(M) = /M pf <217T R> (9.104)

where the Lh.s. is the Euler characteristic and R = Fy,, € Q*(M,End(TM)) is the Riemann
curvature tensor.
9.4.2.3 A-model as a Mathai-Quillen representative.

Consider the vector bundle £ over the space of smooth maps M = Map(2, X) where the
fiber over the map ¢ is
E, = Q% (%, ¢ T X) (9.105)

The bundle F is equipped with:

e A natural section s = 8: M — E. Note that the zero-locus of this section is the
submanifold of holomorphic maps inside smooth maps, Hol(3, X') C Map(Z, X).

e A natural fiber hermitian metric given by (&, p) fz (& p) for &, p € Ey, with g the
metric on the target.

e A connection compatible with fiber metric, induced from Levi-Civita connection on X.

Comparing and the Lh.s. of (9.94), we observe that the integral over the field ¢ in
the A-model can be formally identified with the Mathai-Quillen representative of the Euler
class of the vector bundle over the space of smooth maps, or, put differently, with the
cohomologically smeared delta-form on the cycle of holomorphic maps inside smooth maps.

9.4.3 Evaluation observables

Consider the evaluation map
ev: X x Map(2, X) - X (9.106)
Given a differential form o on X

o= ay,.p(x)dz" - dz' € QP(X), (9.107)

one defines the corresponding evalutation obsem}abl 6a(z) at a point z € X as

Ou(2): =evial. = an..p, (9) (X +do¢") -~ (x" + d¢™)]|
€ Q*(Map(X, X)) @ AN°T7Y C C%(Fxg) @ A°T;E (9.108)

1"Here we think of O, as an observable in the sense of classical field theory, which can then be put into
the path integral. Tilde in the notation refers to the fact that it is a nonhomogeneous form on ¥ which we
will in a moment identify as a total descendant (|6.252]), for a closed.
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Thus, 6a is a form on Y depending on field configuration, or more specifically on the fields
@, X = dmap@ and first derivatives of ¢ at the point z. Evaluation observable can be split
according to the de Rham degree on >,

Of =00 + 0V + 02 (9.109)
The following is checked by a direct computation.

Lemma 9.4.8. FEvaluation observables satisfy the following properties:

(d+ Q)00 = Ouyan (9.110)
QoY = of), (9.111)

where d,dx are the de Rham differentials on the source and the target, respectively.

In particular, if « is a closed form on X, then 0P is (Q-closed and O, is (d + @Q)-closed
and is the total descendant of O&O), cf. (6.252)).

Remark 9.4.9. It is natural to identify the total de Rham differential on ¥ x Map(%, X) with
d+ (@, rather than d — (). Thus, in this section we are using a different sign convention than

in Sectionfor the descent equations (6.242), (6.253): (d+Q)O = 0, or dO*=D = —QO®,

Remark 9.4.10. One does not have the equality 5a = eFOéO) with I' the descent operator

associated with the G, G field (9.86). ILe., the evaluation observable is not the canonical
total descendant of its O-form component, in the sense of (6.265)). However, one can consider
adjusting the Q-primitive of the total stress-energy tensor by a (J-exact term

G = G(d2)? + Cldz)?
. G/mt _ G<d2)2 +6(d2>2 + Q(gﬁwi(l’o)%@’l)) _ _iwi(l,())d(bi N sz(o,l)d(bf (9112>

Then, denoting by I' the associated modified descent operator, given by integrating G'*°*
around a field, one has for the evaluation observable the equality

Op =0, (9.113)

9.4.3.1 Gromov-Witten classes as correlators of evaluation observables.

Consider for simplicity the case ¥ = CP'. Given a collection of closed forms on the target,
ag, ..., ap € Qq(X), the correlator of the corresponding evaluation observables in the path
integral formalism is

(O -+ O} = / DéDy / DY =50, O, —
_d

_ - € A A
557 E e 4’“/ tol(s,x)Oar =+ Oa,, =

d>0 Mapy (%, X)

= qu (/ meviap A Amrevia, + d( e )> € Qu(Crh(X)). (9.114)
Holy (%,X)

d>0
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Here in the second line, the prefactor is the exponential of the topological term in the action,

e~Swr evaluated on maps of degree d (defined by (9.15))); we also identify this prefactor as
d .

q® with

1

q: =e . (9.115)

In the second step in we consider the limit € — 0 in the path integral over Map, (3, X),
which localizes the integral to holomorphic maps; however the change of € induces a shift of
the value of the integral by an exact form on the configuration space (since we are looking
at a fiber integral over C,(X) x Map(X, X) — C,(X) of a closed form changed by an exact
form — such a change induces an exact change of the fiber integral). The cohomology class

of the correlator (9.114]) is the genus zero Gromov-Witten class (9.27)).

9.4.4 A-model in the first-order formalism

The first-order action for the A-model is
Sﬁrst»order — Stop(¢)+
1 _ = -~ . -
bom [ 8000 006 ig T Y 4 o B~ VD R
»
(9.116)

with Siop(¢) the topological term as in (9.80). Here the fields are as in (9.73)), plus two new
“momentum” fields (even, of ghost number 0):

PO € QVI(E, 6 (T X), P10 € QM(S, ¢ (1) X). (9.117)
Integrating out the fields, p9, p©1) one obtains back the action (9.73):
/ Dp(10) Ppy(0D) =Sererder s (9.118)
The odd derivation @) acts on fields of the first-order theory as
Q' =x', Qx' =0,
Qw(lo 10) + Fk j%il,o)7 Qw_(o,l) _ 2(0, ) ngjw(Ol : (9.119)

1,0) 1,0 (1,0) (0,1) i 01 0.1)
QPE FUX pg; ) ikk¢j XX7 QP = z]X pk ) Rjzkk¢( XXk

The operator () squares to zero
Q*=0 (9.120)

and one has

Sﬁrstorder:Stp_i_Q(i/ w(l(] 3¢1+1/101)8¢ _|_ z]w(l(] (01 Z]w()l .1, )
¢ 2m

(9.121)
Both equalities ((9.120]), ((9.121]) hold strictly, not just modulo Euler-Lagrange equations.
The counterpart of currents (9.85)) in the first-order formalism is

J=xpM” T =P, (9.122)
whereas formulae (9.86) for G, G do not change.
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Remark 9.4.11. Scaling the metric as g — %g in the first-order action, one obtains

Sﬁrst order — Ssop(gb)

o —p"8¢" + "V 0g +iegp! I pY + Dy — VDN e ROy

J/

TV
/first-order
Se

(9.123)

Note that only the inverse metric is involved in the first-order action (barring the topological
term), so one can take the limit € — 0:

1 A i . — . -
hmsﬁrsc order _ %/ —p§1’0)8¢z +p§0,1)8¢l + wl(l,O)DX'L o wSO,l)DXz. (9124>
P

e—0 ¢

Here it is clear that fields p play the role of Lagrange multipliers imposing the holomorphicity
constraint ¢ = 0; fields ¥ are the corresponding odd Lagrange multipliers imposing the
associated constraint on the differential x of a holomorpic map ¢.

9.4.4.1 “First-order” Mathai-Quillen construction.

The first-order A-model ((9.116f) can be seen as an example of the “first-order” variant of the

Mathai-Quillen construction , (19.101)):
first-order

W = 507 0.p) — ilp.s) + i, Vs) = S (0, Felg ™ (1)) =

= %g“bpapb — ipas® + i), (ds® + A“bsb) — igch“c@Dawb € Q(M,\NE ® SymF). (9.125)

where the new even momentum field p, is a coordinate on the dual of the fiber E?. Denote
j: IITM — M the bundle projection from the parity-reversed tangent bundle of M to M
and denote E: = j*(E @ IIF) — a supervector bundle over IITM. Then the action (9.125))
is a function on the total space of E.

One has the following:

e Integrating out the variable p, one gets the “second order” Mathai-Quillen action

(9.99): s
e—Sna — (i> / dp =SNG (9.126)

2
Thus, integrating out both p and ¥, one obtains the Mathai-Quillen representative of

the Euler class (9.101)):
E=(2m)" /dp Die

7sﬁrst order

€ QF(M). (9.127)

e One can introduce an odd derivation ¢ on C*(E) = Q(M, AE®SymFE) (i.e. functions
of the variables z, x = dx, 1, p) defined by
Q(xz) = Xiv Q( Z) =0, Q(¢a) Pa + Az axzwlh

(9.128)
Q(pa) = —F," XX 0y + A X o,
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cf. (9.119). Then one has
Q* =0, (9.129)

i.e., () is a cohomological vector field on E. The first-order Mathai-Quillen action is
Q-exact:
st-order . € _
N = Q(=ifw,s) + 57 (). (9.130)

e One has a “Q-bundle” (E, Q) — (IIT'M, d) — a supervector bundle where both the total
space and the base are equipped with cohomological vector fields intertwined by the
bundle projection. This perspective leads to a natural proof of Theorem [9.4.6 E.g.,
one has Stokes’ theorem for fiber integrals for (-bundles, which implies that = is a
closed form on M (or equivalently a closed function on IIT'M), being a pushforward

first-order

of a closed function e~ "M@ on the total space.

e Substituting the data of the bundle into the construction one gets back
the first-order action of the A-model (9.116)); here one needs to make an appropriate
change to account for the fact that the bundle carries a hermitian rather than
a FEuclidean fiber metric.

9.4.5 A-model from supersymmetric sigma model

We sketch briefly the original approach [45], [49] to the A-model as a “twist” of another
(non-topological) CFT — the N = (2,2) supersymmetric sigma model.

Fix a source Riemann surface ¥ and a target Kéahler manifold X with metric g. The
N = (2,2) supersymmetric sigma model is defined by the action functional

1 1 L L
SOUSY = - /2 d*z (591]6¢18¢J + gy DY +igyt Dy’ + Riijj¢+¢+7/)j¢J) . (9.131)

As in (9.73]), we are using complex coordinates on the target; here we are additionally using
a complex coordinate z on the surface. The fields of the supersymmetric model are:
e A smooth map ¢: ¥ — X.
e Odd spinors (fermions)
eN(S, K2 ® ¢*TO'Y),
€ P(Z,F% ® ¢ TMY).

N|=
N

W (dz)
U (dZ)

(S, K% ®¢'TYE), ¢ (d
€T, K:®¢ ), Wi(dz) (9.132)
r

V4
(2K ¢ TO), vl (d2)

VI
NI

This model has two distinguished odd holomorphic fields of conformal weight (%, 0) — the
supercurrents

Jy = =g 0¢1, Ty =gy 0¢!, (9.133)

and their antiholomorphic counterparts

Ti = —g0' 3¢/, To = igy0 99, (9.134)
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The supercurrents leg(dz)% can be contracted with a meromorphic section of K~z and
integrated around any field, and similarly for 7172(d2)%. This gives rise to the action of the
N = (2,2) superconformal algebra on the (quantum) space of fields V.

The stress-energy tensor of the supersymmetric model is:

ing 7 1 i ol
TSUSY _ _gija¢ o’ — §%jw+Dwi - §gi3¢+D¢i,

=SUSY

e (9.135)
T = —g;506/0¢/ — S g Dy’ - g0 Dy’

Finally, the model contains an even holomorphic field j of conformal weight (1,0) — the
“R-symmetry current,” or the “U(1)-current”|'®| - and its antiholomorphic counterpart:

j=iggivl, =gyl (9.136)

Remark 9.4.12. In the case of the target X = C" with standard Kahler structure, the action
describes a system of n complex free bosons and n free Dirac fermions. In particular,
the central charge of the system is ¢ = 2-n+1-n = 3n (cf. Remark . In fact, this
result remain true for a nontrivial target geometry, see below.

9.4.5.1 OPE algebra of distinguished fields and commutation relations of their
mode operators

Denote n: = dimc X — the complex dimension of the target.
Distinguished holomorphic fields T5Y5Y | J; 5. ] satisfy the following OPEs:

3n 2T(z) 0T (z)
(w— 2)* * (w— 2)? te—2

%JL?(Z) i 8(]172(7;)

TSUSY ()T (2) ~ (9.137)

TSYSY () J, 5(2) ~ TSUSY (i)j(z) = E) 4 OE) g ey

(w—2)2  w—z"~ (w—2)?2 w-—=z2
Ji(w)J1(2) ~reg., Jo(w)Jy(z) ~ reg., (9.139)
- SUSY 19i(~
Ji(w)J2(2) ~ (w _n BE (wj(_Z)z)z + ] 5?_—228]( )’ (9.140)
jw)j(z) ~ s, (9.141)
(w = z2)
@) 5(2) ~ AL (e ~ —2 (9.142)

and similar OPEs for the antiholomorphic counterparts. OPEs between holomorphic and

antiholomorphic fields are regular.
In particular, (9.137)) implies that the central charge of the supersymmetric model is

¢ = 3n = 3dimc X. (9.143)

18 i is the Noether current for the symmetry of the action z/Ji — ei"‘z/Ji, wi — e‘i“wi, for o any
holomorphic function on X.
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OPEs say that fields J; » are primary, with h = % and that j is primary with h = 1.
(9.142) means that fields J; 5 have U(1)-charge 1.

As a consequence of the OPEs above, using Lemma/|5.7.4] the mode operators of the holo-
morphic fields 75Y5Y | J; , j form a Lie superalgebra and satisfy the following (super)commutation
relations:

[LmL ] ( ) n+m (n _n)(sn,—ma

[Ln7<]7}2 ( > n+r7 TL?Jm] njn+m7
[JL, I =0, [J2,J3. =0,

T)YSs T)YSs

X (9.144)
n
[Jv}v J52] - 1"+S + 2(7” )JTJrs + = 9 (TQ - _> 67",787

4

[Jm.]m] = nnén —m)
[jm Jl] J:L—H” ['m ']2] J2+r

r

Here L,,j, are the even mode operators of T5YSY with n € Z; JY? are the odd mode
operators of Jj o, with r ranging either over integers or over half-integers, depending on the
choice of spin—structurelﬂ in . This Lie superalgebra is known as N' = 2 super-Virasoro
algebra, or equivalently as N' = 2 superconformal algebra.

9.4.5.2 The “A-twist”

The “A-twist” of the supersymmetric sigma-model consists in changing the stress-energy
tensor ad?|

1 — —A—mode — 1 4=
TSUSY — TA—model — TSUSY + 58_], TSUSY N TA del _ TSUSY B 58] (9145)

The action, fields (locally) and equations of motion are unchanged, see Remark[9.4.13| below.

The change of the stress-energy tensor affects the conformal weights of fields (recall that
they are determined by the quadratic pole in the OPE of the stress-energy tensor with the
field). In particular:

e Conformal weight of ¢ changes from (h, k) = (3,0) (a left Weyl spinor) to (h, k) =
(0,0) (scalar).

e ¢’ changes from (3,0) (aleft Weyl spinor) to (1,0) (thus, dz Yl is a (1,0)-form field).
e ¢' changes from (0, %) (a right Weyl spinor) to (0,1) (i.e., dz¢ is a (0, 1)-form field),

e " changes from (0, %) (a right Weyl spinor) to (0,0) (a scalar).

19 Tf the mode operators are understood as acting on fields at z, then here we are talking about the
choice of spin-structure (or periodicity/antiperiodicity condition for fermions) on the punctured disk around
z. Periodic condition on the punctured disk (Neveu-Schwarz spin-structure) corresponds to r ranging in
half-integers; antiperiodic condition (Ramond spin structure) corresponds to integer r, cf. Section

20 One also has a “B-twist” where the sign of the shift for T is +, leading to the “B-model,” [45], [49).
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e Conformal weights of the supercurrent shift as

ilz (3/2,0) — (1,0), i2: (3/2,0) — (2,0), (9.146)
Ti:(0,3/2) v (0,2),  Ja: (0,3/2) v (0,1).

Thus, the twist transforms the spinor fields of the supersymmetric sigma model into
differential form fields of the A-model.

The correspondence of notations for fields of the supersymmetric sigma-model and the
A-model is given by the following dictionary:

SUSY sigma model | A — model
o' (0,0) o' (0,0)
vy (1/2,0) x' (0,0)
vy (1/2,/0) 975 (1, ;
YL (0,1/2) 9745 (0,
W0,1/2) |y (0,0) (9-147)
Ji (3/2,0) J (1,0)
Jy (3/2,0) G (2,0)
J1 (0,3/2) iG (0,2)
Jy (0,3/2) —iJ (0,1)

Here we are indicating the conformal weight (h, k) of each field. In particular, the supercur-
rents after the twist become the natural objects of a TCEFT — the holomorphic/antiholomorphic
BRST currents .J, J and the primitive fields for the stress-energy tensor, G, G.

All fields in the table are primary, both on the supersymmetric and on the A-

model side.

Remark 9.4.13. In a coordinate-independent language on the source surface, the twist yields
a mapping of fields of the supersymmetric model on a contratible open set U C ¥ to fields
of the A-model:

]_-A model

ngSY N
(@ 9l 9l i ) = (¢ AT A¢+ ) (9.148)
—— —~~ ) Y) ~——
X ”111]10 ”%‘Ol NG

Here A € T'(U, K %) is some reference nonvanishing holomorphic spinor on U (e.g. if U is
equipped with a complex coordinate z, one can choose \ = (dz)%).

Since the Lagrangian density of the action is invariant under the R-symmetry
(footnote , its pushforward under the map is independent under the choice of the
reference spinor A and yields the Lagrangian density of the A-model .
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Appendix

10.0.1 Variational bicomplex
Recall that one can introduce the “variational bicomplex” (see [I] for details)

QP x Fpp) (10.1)

loc

of “local” ¢g-forms on Fy; valued in p-forms on M; locality means that for w € Q2 its value

at ¥ € M depends on z and the je]l] of fields at =, but not on the values of the fields away
from x. The bicomplex Q3% (M, Fyr) comes with

e the vertical differential §: QP — QP9*' — the de Rham operator on the space of

fields. Locally, in a local trivialization of F, one has § = Z 005, ;. agba where a
r>0

labels the field components. i.e. coordinates in the fiber of the field bundle E, and
¢ . =0 - 0;,.¢% are components of the r-th jet of the field.

PARERI

11y

e the horizontal differential d: Q% — QF tl ! which is the de Rham operator on M. It is

loc
understood that d also acts on fields. Locally, one has

d= ( Zd) g ¢a +Z(5¢m " 3(5gr ZT)> (10.2)

11 Zr
The two differentials d, d both square to zero and anticommute with each other.
Another viewpoint on the bicomplex Q7' is as follows. Assume that the space of fields
is as above Fy; = I'(M, E). Consider the composition of maps

M x T(M, E) 9= M x T(M, Jetoo E) <5 Jetoo E
where j,, takes the jet] of a section of F at each point of M; ev is the evaluation of a section
at a point of M. Consider the complex of forms Q(Jet,£) on the total space of the jet
bundle. Then Q,.(M x F)y) is the image of Q(Jet, F) under the pullback (ev o (id X js))*.
edit

'Recall what jet is...
2Recall that a jet of a section is....

321

Image
where?
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10.0.1.1 Aside on source forms.

A source formin the variational bicomplex is an expression of the form w = w,(z, ¢, 09, . . .)d¢*,
i.e., it does not depend on variations of derivatives of fields d¢f ; for r>1

In the variational bicomplex one can consider the subspace of such source forms:

Qn,l source  — Qn’l (103)

loc loc

Note that the subspace of source forms is invariant with respect to 0 but not with respect
to d. We have the following lemma.

Lemma 10.0.1.
Qn’l _ Qn,l source ®d (Qn—l,l) ] (104)

loc loc loc

Le., any (n,1)-form B can be written in a unique way as f = w + dn with w a source form.

Proof. The proof is straightforward, by moving the derivatives from d¢ to its prefactor in 3,
at the cost of adding a d-exact term:

B;'Lnir (% ¢7 a(b’ . )(5¢?1~~ir =
= =008 )00% i,y + 00 (B 0B, )

dua; (B85, )

r—1
== (_1)T(az T airﬁélmir)(sgba +d (Z(_l)kbairk ((alr o .airk+1/821'”ir)6¢?1"'i7'k1)) :

- (10.5)

One extends this computation by R-linearity to general 8’s. This gives a splitting 5 = w+dp,
with w a source form. The fact that the splitting is unique follows from the observation that
d of a field-dependent (*,1)-form will necessarily contain a term depending on §¢f ; with

7> 1. Thus, Q" Nd(Q ") = 0. O

loc loc

10.0.2 Canonical stress-energy tensor
edit

Example 10.0.2 (Canonical stress-energy tensor for the free massive scalar field). Consider
the free massive scalar field on M = R™ (equipped with standard Euclidean metric), with
the action

1 m?

.

-

L
Consider the symmetry given by a translation on R™:

R.: R* — R™
r — ¥ =7+ed

(10.7)
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with @ € R" a fixed vector. This symmetry acts on fields as
¢ — (R7Y)*¢ = ¢ — ed' 0,0 + O(e?). (10.8)

This transformation is described by the vector field

» 0
v=— a'0;p—. 10.9
/R doog (10.9)
We have 5
EvL = —Qa %L = —Ea’L = d(—i\@‘L) (1010)

Here the derivatives % act on fields, @ is understood as a constant vector field on R™.

Computation ((10.10) in particular shows that (10.8)) is indeed a symmetry, in the sense of
Definition 3.3.1] The corresponding Noether current is

Ja = (=1)"tpa + A = xd¢(d, dp) — 1z (%daﬁ A xdo + m?qudeol) ) (10.11)

.

I
So, one gets a family of conserved charges parametrized by @ € R™. This family is linear in

a, so it can be written as
in = <a:> Tcan>7 (1012)

where the generating object of the family
Tean € V(M) @coeany QY (M) =T(M, A" 'T*M @ T*M) (10.13)

(depending on a field) is called the “canonical stress-energy tensor.” In ((10.12)), the second
factor in ([10.13]) (covectors) is contracted with the constant vector field .
By Noether theorem, one has

(d®id)Tean o~ 0. (10.14)

If we switch in (10.13)) from (n — 1)-forms on M to vector fields on M by contacting with
metric volume form, we obtain the tensor

(Tean)®s = (8% d;¢ — 6. (%fm "o+ m;qsz)) 0 @de’ e D(M,TMT*M). (10.15)

Here the bullets (- --)®, indicate the location of indices — the type of tensor — once covariant
and once contravariant.

Remark 10.0.3. More generally, one can repeat the computation of Example [10.0.2] for any
classical field theory on M = RP? (or any full-dimensional submanifold M of RP?), defined
by some Lagrangian density

L = d"z L(¢, 09). (10.16)
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Then one obtains as the generating object for Noether currents associated with translations
(10.7) on RP? the “canonical stress-energy tensor”

(Tean)®s =T';0; ® da’ € I(M,TM @ T*M)

- i OL(¢,00) ) a4 (10.17)
By Noether theorem, it satisfies the conservation property
(div ® id)(Tean)®s ~ 0 or oT ~ 0. (10.18)

Remark 10.0.4. One can trade tangent and cotangent coefficient bundles in ((10.17) (i.e.
raise/lower indices), using the standard metric on M = RP4. In particular, one has the
versions

(Tean)** = (Tean)” 0, ® 0; € T(M,TM @ TM), (10.19)
(Tean)es = (Tean)ij do' @ dz? € T(M, T*M @ T*M). (10.20)

In the example of the free massive scalar field (Example , these two versions of the
canonical stress-energy tensor happen to be symmetric. However, in a general (not necessar-
ily scalar) field theory on RP? this fails: the canonical stress energy tensor is generally not
symmetric.

=======================We remark that the canonical (rather than improve
Hilbert) stress-energy tensor for Chern-Simons theory on R®, is nonzero. Seen as an the
element of O*(M) ®ceo(ary Q'(M) and then projected to 3-forms (i.e. skew-symmetrized), it result
is

[Toan]os = —(A, Fy). (10.21)

This expression is not zero on the nose, but vanishes modulo EL.



Bibliography

1]
2]

3]

[10]

[11]

[12]

[13]

I. M. Anderson, “Introduction to the variational bicomplex.” (1992).

S. Axelrod, S. Della Pietra, E. Witten, “Geometric quantization of Chern-Simons gauge
theory,” J. Diff. Geom. 33.3 (1991) 787-902.

M. Atiyah, “Topological quantum field theory.” Publications Mathmatiques de I'THES
68 (1988) 175-186.

M. Atiyah, L. Jeffrey, “Topological Lagrangians and cohomology.” Journal of Geometry
and Physics 7.1 (1990) 119-136.

S. Barannikov, M. Kontsevich, “Frobenius manifolds and formality of Lie algebras of
polyvector fields,” Internat. Math. Res. Notes 14(1998), 201-215.

A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, “Infinite conformal symmetry in
two-dimensional quantum field theory,” Nuclear Physics B 241.2 (1984) 333-380.

A. Cannas Da Silva, “Lectures on symplectic geometry,” Vol. 3575. Berlin: Springer
(2008).

A. S. Cattaneo, P. Mnev, N. Reshetikhin, “Perturbative quantum gauge theories on
manifolds with boundary.” Communications in Mathematical Physics 357, no. 2 (2018)
631-730.

P. Di Francesco, P. Mathieu, D. Sénéchal, “Conformal field theory.” Springer Science &
Business Media, 2012.

B. Dubrovin, “Integrable systems in topological field theory.” Nucl. Phys. B379 (1992)
627-689.

B. Dubrovin, “Geometry of 2D topological field theories.” In: Springer LNM, 1620
(1996) 120-348.

B. Farb, D. Margalit. “A primer on mapping class groups,” Princeton university press
(2011).

B. L. Feigin, D. B. Fuchs, “Verma modules over the Virasoro algebra.” Topology.
Springer, Berlin, Heidelberg (1984) 230-245.

325



BIBLIOGRAPHY 326

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[20]

[27]

28]
[29]

[30]

E. Frenkel, A. Losev, “Mirror symmetry in two steps: AIB,” Communications in math-
ematical physics 269.1 (2007) 39-86.

J. Frohlich, C. King, “The Chern-Simons theory and knot polynomials,” Communica-
tions in mathematical physics 126.1 (1989) 167-199.

K. Gawedzki, “Lectures on conformal field theory.” No. IHES-P-97-02. SCAN-9703129,
1997.

K. Gawedzki, A. Kupiainen, “SU(2) Chern-Simons theory at genus zero,” Communica-
tions in mathematical physics 135.3 (1991) 531-546.

E. Getzler, ”Batalin-Vilkovisky algebras and two-dimensional topological field theories,”
Communications in mathematical physics 159.2 (1994) 265-285

P. Ginsparg, “Applied conformal field theory,” arXiv preprint hep-th/9108028 (1988).

J. Glimm, A. Jaffe, “Quantum physics. A functional integral point of view,” Springer-
Verlag, New York, second edition (1987).

R. Iraso, P. Mnev, “T'wo-dimensional Yang-Mills theory on surfaces with corners in
BatalinVilkovisky formalism.” Communications in Mathematical Physics 370, no. 2

(2019) 637-702.

Th. Johnson-Freyd, “Feynman-diagrammatic description of the asymptotics of the time

evolution operator in quantum mechanics.” Letters in Mathematical Physics 94, no. 2
(2010) 123-149.

V. G. Kac, "Highest weight representations of infinite dimensional Lie algebras”, Proc.
Internat. Congress Mathematicians (Helsinki, 1978).

V. G. Kac, A. K. Raina, “Bombay lectures on highest weight representations of infinite
dimensional Lie algebras.” World scientific, 1987.

S. Kandel, P. Mnev, K. Wernli, “Two-dimensional perturbative scalar QFT and Atiyah-
Segal gluing.” arXiv preprint arXiv:1912.11202 (2019).

S. Keel, “Intersection theory of moduli space of stable N-pointed curves of genus zero,”
Trans. AMS 330.2 (1992) 545-574.

V. G. Knizhnik, A. B. Zamolodchikov, “Current Algebra and WessZumino Model in
Two-Dimensions,” Nucl. Phys. B, 247.1 (1984) 83-103.

T. Kohno, “Conformal field theory and topology.” American Mathematical Soc., 2002.

M. Kontsevich, Yu. Manin, “Gromov-Witten classes, quantum cohomology, and enu-
merative geometry,” Commun. Math. Phys. 164 (1994) 525-562.

A. S. Losev, Lectures on topological quantum field theory, 2008 (lectures given online
in Russian).



BIBLIOGRAPHY 327

[31]

[40]

[41]
[42]

[43]

[44]

[45]
[46]

A. S. Losev, “TQFT, homological algebra and elements of K. Saitos theory of Primitive
form: an attempt of mathematical text written by mathematical physicist.” In: Primi-
tive Forms and Related Subjects—Kavli IPMU 2014, vol. 83, pp. 269-294. Mathematical
Society of Japan, 2019.

A. S. Losev, P. Mnev, D. R. Youmans, ” Two-dimensional abelian BF theory in Lorenz
gauge as a twisted N=(2, 2) superconformal field theory,” Journal of Geometry and
Physics 131 (2018) 122-137.

A. S. Losev, P. Mnev, D. R. Youmans, ”Two-dimensional non-abelian BF theory in
Lorenz gauge as a solvable logarithmic TCFT,” Communications in Mathematical
Physics 376.2 (2020) 993-1052.

V. Mathai, D. Quillen, “Superconnections, Thom classes, and equivariant differential
forms,” Topology, 25.1 (1986) 85-110.

L. Onsager, “Crystal statistics. [. A two-dimensional model with an order-disorder tran-
sition,” Physical Review, Series II, 65 (34) (1944) 117-149.

R. C. Penner, “Decorated Teichmiiller theory.” Vol. 1. European Mathematical Society,
2012.

N. Reshetikhin, “Lectures on quantization of gauge systems,” In: New Paths Towards
Quantum Gravity. Springer, Berlin, Heidelberg (2010) 125-190.

M. Schottenloher, “A mathematical introduction to conformal field theory.” Vol. 759.
Springer (2008).

G. Segal, “The definition of conformal field theory,” Differential geometrical methods
in theoretical physics. Springer, Dordrecht (1988) 165-171.

B. Simon, “The P(¢); Euclidean (quantum) field theory,” Princeton University Press,
Princeton, N.J. (1974).

H. Sugawara, “A field theory of currents,” Phys. Rev. 170, 1659 (1968).

E. Verlinde, “Fusion rules and modular transformations in 2D conformal field theory,”
Nuclear Physics B, 300.3 (1988) 360-376.

D. R. Youmans, “Topological conformal field theories from gauge-fixed topological gauge
theories: a case study,” Ph.D. dissertation, Université de Geneve (2020).

E. Witten, “Supersymmetry and Morse theory,” Journal of differential geometry 17.4
(1982) 661-692.

E. Witten, “Topological sigma models,” Commun. Math. Phys. 118 (1988) 411-449.

E. Witten, “Topological quantum field theory,” Comm. Math. Phys. Volume 117, Num-
ber 3 (1988) 353-386



BIBLIOGRAPHY 328

[47] E. Witten, “Quantum field theory and the Jones polynomial.” Communications in Math-
ematical Physics 121.3 (1989) 351-399.

[48] E. Witten, “Two-dimensional gravity and intersection theory on moduli space.” Surveys
in Diff. Geom. 1 (1991) 243-310.

[49] E. Witten, “Mirror manifolds and topological field theory.” arXiv:hep-th/9112056
(1991).

[50] E. Witten, “Superstring perturbation theory revisited,” arXiv:1209.5461 (2012).



	A long introduction: functorial view on classical and quantum local field theories
	Classical local field theory
	Functorial framework for local quantum field theory
	Local Quantum Field Theory as a functor
	Summary.
	Unitarity and Reflection Positivity 
	Unitarity
	Reflection Positivity


	Quantum observables in the functorial framework (the idea)
	Functoriality and a path integral quantization
	Path integral quantization of classical field theory: a desired dream and a reality.
	Sewing as Fubini theorem for path integrals
	Observables in path integral formalism

	Examples of local Quantum Field Theories
	An example of a TQFT
	Quantum mechanics as a one-dimensional quantum filed theory
	 Functorial view on a quantum mechanical system
	Point observables for quantum systems

	Quantum mechanics of a free one dimensional particle
	When the space time is an interval
	When the space time is a circle


	Two dimensional conformal field theory
	Genus one partition function, modular invariance
	Correction to the picture: conformal anomaly

	The importance of Conformal Field Theory.
	CFT description of 2d Ising model
	Bosonic string theory
	Invariants of 3-manifolds
	A zoo of computable QFTs
	Motivation from representation theory
	Motivation from topology of Mg,n and enumerative geometry

	CFT as a system of correlators
	The action of conformal vector fields on V
	The ``double complexification''
	Grading on V by conformal weights
	Conformal Ward identity
	The ``L-1 axiom''
	Some special fields
	Operator product expansions

	Comments on bibliography

	Elements of conformal geometry
	Conformal maps
	Examples of conformal maps
	Conformal vector fields
	Conformal symmetry of Rp,q with p+q>2
	Conformal vector fields on Rp,q
	Finite conformal automorphisms of Rp,q with p+q>2. 
	Sketch of proof of Theorem 2.4.4: action of SO(p+1,q+1) on Rp,q and the conformal compactification of Rp,q
	Case of Rn
	Case of general Rp,q


	Conformal symmetry of R2
	Conformal vector fields on C*, Witt algebra
	Some interesting Lie subalgebras of conf(C*)

	Conformal symmetry of CP1
	The group of conformal automorphisms of a simply-connected domain in C
	Vector fields on S1 vs. Witt algebra

	Conformal symmetry of R1 (trivial case)
	Conformal symmetry of R1,1
	Moduli space of conformal structures
	Reminder: almost complex structures and complex structures
	2d conformal structures (of Riemannian signature) = complex structures
	Deformations of a complex structure. Parametrization of deformations by Beltrami differentials
	Tangent space to the space of complex structures.
	Cotangent space to the space of complex structures (case of surfaces).

	Uniformization theorem
	Moduli space Mg,n of complex structures on a surface with n marked points
	Aside: cross-ratio
	Moduli space M0,n
	Deligne-Mumford compactification

	Moduli space M1,0
	The mapping class group of a surface


	Symmetries in classical field theory, stress-energy tensor
	Local classical field theory, Euler-Lagrange equations
	Basic setup
	Covariance
	Euler-Lagrange equations

	Examples of classical field theories
	Classical mechanics
	Free massive scalar field
	Scalar field with self-interaction
	Yang-Mills theory
	Chern-Simons theory
	General ultralocal Lagrangian for fields with the target space X
	The nonlinear sigma model
	Matter fields interacting with the Yang-Mills field

	Symmetries and Noether currents
	Infinitesimal symmetries
	Example: Lie group acting on the target space
	Example: gauge group action

	Conserved currents
	Noether currents and Noether charges
	Examples

	Stress-energy tensor
	Hilbert stress-energy tensor
	Space time symmetry
	Space-time symmetry and energy-momentum tensor
	Target symmetry
	Examples of Hilbert stress-energy tensors

	 First order classical field theories
	Scalar field with the target space X.
	 Hamiltonian framework and symmetries 
	Nonlinear -model
	First order reformulation
	Yang-Mills
	Chern-Simons

	Noether theorem and energy-momentum in the first order theories
	Target space symmetries are Hamiltonian
	Space time symmetries are Hamiltonian

	Gauge symmetry
	Yang-Mills
	Chern-Simons

	First order reformulation of two dimensional non-linear sigma models
	In complex coordinates
	The case of a cylinder

	Conformally invariant classical field theories
	Noether currents for conformal space time symmetries

	2d classical conformal field theory 
	Stress-energy tensor in local complex coordinates
	Conserved currents and charges associated to conformal symmetry
	Example: massless scalar field on a Riemann surface

	The Principal Chiral Field Theory
	Second order action
	First order framework for PCFT
	Noether currents
	The abelian version
	Classical WZW
	Liouville model

	Minkowski space time and Wick rotation

	2d quantum free massless scalar field
	A warm-up: harmonic oscillator
	Harmonic oscillator as a classical mechanical system
	Correspondence between Lagrangian and Hamiltonian descriptions of classical mechanics.
	Preparing for canonical quantization: Weyl algebra and Heisenberg Lie algebra
	Canonical quantization of the harmonic oscillator
	Creation/annihilation operators
	Normal ordering


	Free massless scalar field on Minkowski cylinder
	Lagrangian formalism
	Hamiltonian formalism
	Real oscillators.

	Aside: free particle
	Canonical quantization
	The space of states
	Normal ordering

	Aside: Schrödinger vs Heisenberg picture in quantum mechanics
	Back to free massless scalar field on a cylinder: time-dependent field operator

	Free massless scalar field on C
	From Minkowski to Euclidean cylinder (via Wick rotation), and then to C* (via exponential map)
	Aside: Wick's lemma (in the operator formalism)
	Propagator for the free massless scalar field on C*
	Correlators on the plane (in the radial quantization formalism)

	Operator product expansions
	Digression: path integral formalism (in the example of free scalar field)
	Finite-dimensional Gaussian integral
	Wick's lemma for the moments of Gaussian measure
	Scalar field theory in the path integral formalism
	Moments of Gaussian measure.
	Case =C.
	OPEs.
	Summary: path integral vs. radial quantization.



	Conformal Field Theory on C Belavin-Polyakov-Zamolodchikov axiomatic picture 
	Virasoro algebra
	Axiomatic CFT on C. Action of Virasoro algebra on H
	Example: action of Virasoro algebra on H in the scalar field theory. Abelian Sugawara construction.
	Virasoro commutation relations from TT OPE (contour integration trick)
	Digression: path integral heuristics, variation of a correlator in metric as an insertion of the stress-energy tensor, trace anomaly

	Field-state correspondence in the example of the scalar field CFT
	Vertex operators (in the scalar field theory)

	Local Virasoro action at a puncture 
	Primary fields
	Transformation property of a primary field
	Finite version, interpretation #1: ``active transformations.''
	Finite version, interpretation #2: ``passive transformations''

	Examples of primary fields in scalar field theory
	More on vertex operators

	Conformal Ward identity (via contour integration trick)
	 Constraints on correlators from global conformal symmetry 
	One-point correlators.
	Two-point correlators.
	Three-point correlators of primary fields.
	Correlators of n4 primary fields


	Holomorphic fields, mode operators
	Holomorphic fields
	Mode operators
	The Lie algebra of mode operators.
	Ward identity associated with a holomorphic field.

	Transformation law for the stress-energy tensor

	More free CFTs
	Free scalar field with values in S1
	Classical theory
	Canonical quantization
	Space of states
	Vertex operators
	Torus partition function in a general CFT
	Gluing with a twist by angle .
	Correction due to central charge.

	Torus partition function for the free scalar field with values in S1
	Path integral approach to the torus partition of the free scalar field with values in S1

	Aside: conformal blocks
	Chiral (holomorphic) free boson with values in S1

	Free fermion
	Classical Lagrangian theory on a surface
	Hamiltonian picture
	Canonical quantization
	Space of states for the chiral fermion
	2-point function 
	Stress-energy tensor
	A-sector.
	P-sector.
	Virasoro generators.

	Back to the space of states
	Non-chiral (Majorana) fermion
	Examples of correlators
	4-point correlator of  fields.

	Torus partition function for the Majorana fermion
	Aside: Jacobi triple product identity
	Back to torus partition function
	Path integral formalism

	Bosonization and Dirac fermion
	Dirac fermion
	U(1)-current
	Torus partition function for Dirac fermion
	Correspondence between Dirac fermion states and boson states
	Correlators of Majorana fermion theory via bosonization


	bc system
	Correlators on CP1, soaking field, ghost number anomaly
	Operator formalism for the bc system

	Bosonic string
	The BRST differential Q in bosonic string

	Topological conformal field theories
	Witten's descent equation
	Total descendant
	Closed forms on the configuration space from correlators of total descendants

	Canonical solution of descent equations using the G-field
	BV algebra structure on Q-cohomology
	Action of the operad of framed little disks on V


	Elements of representation theory of Virasoro algebra
	Verma modules of Virasoro algebra, null vectors
	Kac determinant formula
	Maps between Verma modules
	Characters of highest weight modules of Virasoro algebra

	Minimal models of CFT
	Unitary minimal models
	General minimal models

	Correlators and OPEs of primary fields in a general RCFT
	4-point correlator of primary fields
	Crossing symmetry.

	n-point correlator of primary fields


	Wess-Zumino-Witten model
	Affine Lie algebras
	Highest weight modules over g"0362g
	Integrable highest weight modules.

	Sugawara construction

	Wess-Zumino-Witten model as a classical field theory
	The action functional.
	Euler-Lagrange equation.
	Symmetry and conserved currents.
	Polyakov-Wiegmann formula.

	Case of surfaces with boundary
	Symmetry of the model on a surface with boundary.
	Path integral heuristics.


	Quantum Wess-Zumino-Witten model
	Space of states/space of fields.
	Quantum currents.
	The g"0362g-primary multiplet.
	Stress-energy tensor.
	Example: WZW model for G=SU(2) at level k=1 and the r=2 free boson

	Ward identity for g"0362g-symmetry. Knizhnik-Zamolodchikov equations.
	Knizhnik-Zamolodchikov equations.

	Space of conformal blocks. Chiral WZW model.
	The bundle of conformal blocks.

	The ``holographic'' correspondence between 3d Chern-Simons and 2d Wess-Zumino-Witten theories
	Classical CS-WZW correspondence.
	Quantum CS-WZW correspondence.

	Parallel transport of the KZ connection, R-matrix and representation of the braid group


	A-model
	Closed forms on the moduli space from TCFT correlators.
	Genus zero case
	Higher genus

	2d cohomological field theories
	Gromov-Witten cohomological field theory 
	Genus zero case.
	General genus
	Enumerative meaning of Gromov-Witten classes
	Quantum cohomology ring
	Gromov-Witten potential
	``Big'' quantum product.

	WDVV equation
	Example of Gromov-Witten potential: X=CP1
	Example of Gromov-Witten potential: X=CP2
	Keel's theorem
	Explanation of WDVV equation from Keel's theorem and factorization of GW classes

	A-model
	Path integral heuristics: independence on the target geometric data.
	A-model as an integral representation for the delta-form on holomorphic maps
	Prototype of a Mathai-Quillen representative.
	Mathai-Quillen representative of the Euler class of a vector bundle.
	A-model as a Mathai-Quillen representative.

	Evaluation observables
	Gromov-Witten classes as correlators of evaluation observables.

	A-model in the first-order formalism
	``First-order'' Mathai-Quillen construction.

	A-model from supersymmetric sigma model
	OPE algebra of distinguished fields and commutation relations of their mode operators 
	The ``A-twist''



	Appendix
	Variational bicomplex
	Aside on source forms.
	Canonical stress-energy tensor



