1. Classical Wess-Zumino-Witten model

Fix G a connected matrix Lie group G. Recall that the action functional of Wess-Zumino-Witten model on a closed Riemannian surface Σ is given by

$$
S_{W Z W}(g)=-\frac{i}{4 \pi} \int_{\Sigma} \operatorname{tr}\left(g^{-1} \partial g \wedge g^{-1} \bar{\partial} g\right)-\frac{i}{12 \pi} \int_{B} \operatorname{tr}\left(\widetilde{g}^{-1} d \widetilde{g}\right)^{\wedge 3}
$$

with the field being a map from the surface to the group $g: \Sigma \rightarrow G ; B$ is some oriented compact 3 -manifold with $\partial B=\Sigma, \widetilde{g}$ - some extension of g from Σ into B.
(a) Compute the variation of the action δS w.r.t. variation of the field.
(b) Find the Euler-Lagrange equation of the theory.
(c) Prove that the currents $J=\partial g g^{-1}, \bar{J}=g^{-1} \bar{\partial} g$ are conserved in the sense that

$$
\bar{\partial} J \sim 0 \bmod \mathrm{EL}, \quad \partial \bar{J} \sim 0 \bmod \mathrm{EL}
$$

(d) Prove that for $\Omega_{1,2}: \Sigma \rightarrow G_{\mathbb{C}}$ two holomorphic maps to the complexified group and $g: \Sigma \rightarrow G_{\mathbb{C}}$ any smooth map, one has

$$
S_{W Z W}\left(\Omega_{1} g \overline{\Omega_{2}}\right)=S_{W Z W}(g)
$$

(Hint: use connectedness of G to reduce the problem to infinitesimal deformations of g.)

2. Classical correspondence between 3d Chern-Simons and 2d Wess-Zumino-Witten

Let G again be a matrix Lie group with Lie algebra \mathfrak{g}. Let M be a compact oriented 3-manifold with boundary surface Σ (possibly disconnected); assume that Σ is equipped with a complex structure.

Define the Chern-Simons action as

$$
S_{C S}(A)=\frac{1}{2 \pi} \int_{M} \operatorname{tr}\left(\frac{1}{2} A \wedge d A+\frac{1}{3} A \wedge A \wedge A\right)
$$

with the field $A \in \Omega^{1}(M, \mathfrak{g})$ - a Lie-algebra valued 1-form, which can be thought of as describing a connection in the trivial principal G-bundle on M. Let

$$
b(A)=\frac{1}{4 \pi} \int_{\Sigma} \operatorname{tr} A^{1,0} \wedge A^{0,1}
$$

be the "boundary term" and let

$$
S_{C S}^{\prime}(A)=S_{C S}(A)+b\left(\left.A\right|_{\Sigma}\right)
$$

(a) Find the variation of $S_{C S}^{\prime}(A)$ with respect to variation of the field A. Show that the euler-Lagrange equation is the flatness condition $d A+\frac{1}{2}[A, A]=0$ and find the Noether 1-form on the space of boundary values of the field A.
(b) For $g: M \rightarrow G$ and $A \in \Omega^{1}(M, \mathfrak{g})$, let $A^{g}:=g^{-1} A g+g^{-1} d g$ be the gauge transformation of A. Show that one has

$$
S_{C S}^{\prime}\left(A^{g}\right)-S_{C S}^{\prime}(A)=i S_{W Z W}\left(\left.g\right|_{\Sigma}\right)+\frac{1}{2 \pi} \int_{\Sigma} \operatorname{tr} A^{1,0} \wedge g^{-1} \bar{\partial} g
$$

where the right hand side depends only on the restriction of A and g to $\Sigma .{ }^{1}$
(c) Show that if the connection A is "pure gauge," i.e., $A=g^{-1} d g$ for some $g: M \rightarrow$ G, then

$$
S_{C S}^{\prime}(A)=i S_{W Z W}\left(\left.g\right|_{\Sigma}\right)
$$

[^0]
[^0]: ${ }^{1}$ I might be off here with normalization factors and right vs. left action of gauge transformations.

