CFT EXERCISES 8, 11/7/2022

1. Schwarzian derivative

Recall that for a holomorphic map $z \mapsto w(z)$ one defines the Schwarzian derivative as $S(w, z):=\frac{\partial_{z}^{3} w}{\partial_{z} w}-\frac{3}{2}\left(\frac{\partial_{z}^{2} w}{\partial_{z} w}\right)^{2}$. Compute the Schwarzian derivative for $z \mapsto w=\log z$ and for the inverse map, $w \mapsto z=\exp w$.

2. Free boson with values in S^{1} : partition function on a torus

Recall that for the free boson with values in a circle of radius r the space of states is

$$
\begin{equation*}
\mathcal{H}=\operatorname{Span}\left\{\hat{a}_{-k_{r}} \cdots \hat{a}_{-k_{1}} \hat{\bar{a}}_{-l_{s}} \cdots \hat{\bar{a}}_{-l_{1}}|e, m\rangle\right\}_{(e, m) \in \mathbb{Z}^{2}, 1 \leq k_{1} \leq \cdots \leq k_{r}, 1 \leq l_{1} \leq \cdots \leq l_{s}} \tag{1}
\end{equation*}
$$

It carries a representation of the Lie algebra Heis $\oplus \overline{\text { Heis }}=\operatorname{Span}\left\{\hat{a}_{n}, \hat{\bar{a}}_{n}\right\}_{n \in \mathbb{Z}} \oplus \mathbb{C} \cdot \mathbf{1}$, with commutation relations $\left[\hat{a}_{n}, \hat{a}_{m}\right]=n \delta_{n,-m} \mathbf{1},\left[\hat{\bar{a}}_{n}, \hat{\bar{a}}_{m}\right]=n \delta_{n,-m} \mathbf{1},\left[\hat{a}_{n}, \hat{\bar{a}}_{m}\right]=0$. With respect to this representation, vectors $|e, m\rangle$ are the highest vectors:

$$
\begin{align*}
\hat{a}_{>0}|e, m\rangle=\hat{\bar{a}}_{>0}|e, m\rangle=0 & \tag{2}\\
\qquad \hat{a}_{0}|e, m\rangle & =\underbrace{\left(\frac{e}{r}+\frac{m r}{2}\right)}_{\alpha_{e, m}}|e, m\rangle, \quad \hat{\bar{a}}_{0}|e, m\rangle=\underbrace{\left(\frac{e}{r}-\frac{m r}{2}\right)}_{\bar{\alpha}_{e, m}}|e, m\rangle
\end{align*}
$$

Furthermore, \mathcal{H} carries a representation of two copies of Virasoro algebra, with generators $\hat{L}_{n}=: \frac{1}{2} \sum_{k \in \mathbb{Z}} \hat{a}_{k} \hat{a}_{n-k}:, \hat{\bar{L}}_{n}=: \frac{1}{2} \sum_{k \in \mathbb{Z}} \hat{\bar{a}}_{k} \hat{\bar{a}}_{n-k}:$.
(a) Show that $\left[\hat{L}_{0}, \hat{a}_{-p}\right]=p \hat{a}_{-p}$ and similarly $\left[\hat{\bar{L}}_{0}, \hat{\bar{a}}_{-p}\right]=p \hat{\bar{a}}_{-p}$.
(b) Show that the state $|e, m\rangle$ is an eigenvector of \hat{L}_{0} with eigenvalue $\frac{1}{2} \alpha_{e, m}^{2}$ and an eigenvector of $\hat{\bar{L}}_{0}$ with eigenvalue $\frac{1}{2} \bar{\alpha}_{e, m}^{2}$.
(c) Use items (a), (b) to show that the state

$$
\hat{a}_{-k_{r}} \cdots \hat{a}_{-k_{1}} \hat{\bar{a}}_{-l_{s}} \cdots \hat{\bar{a}}_{-l_{1}}|e, m\rangle
$$

is an eigenvector of \hat{L}_{0} with eigenvalue $\frac{1}{2} \alpha_{e, m}^{2}+k_{1}+\cdots+k_{r}$ and an eigenvector of $\hat{\bar{L}}_{0}$ with eigenvalue $\frac{1}{2} \bar{\alpha}_{e, m}^{2}+l_{1}+\cdots+l_{s}$.
(d) Partition function of a conformal field theory on the torus $\mathbb{C} /(\mathbb{Z} \oplus \tau \mathbb{Z})$, with $\tau \in \mathbb{C}, \operatorname{Im} \tau>0$ the modular parameter, is given by the formula (take it as a definition)

$$
\begin{equation*}
Z(\tau)=\operatorname{tr}_{\mathcal{H}}\left(q^{\hat{L}_{0}-\frac{c}{24}} \bar{q}^{\hat{\bar{L}}_{0}-\frac{\bar{c}}{24}}\right) \tag{3}
\end{equation*}
$$

where $q=e^{2 \pi i \tau}, \bar{q}=e^{-2 \pi i \bar{\tau}}$ is its complex conjugate; c, \bar{c} are the left/right central charges (in our case $c=\bar{c}=1$). Show that in our case of the free boson with values in a circle, (3) becomes

$$
\begin{equation*}
Z(\tau, r)=\frac{1}{\eta(\tau) \eta(\bar{\tau})} \sum_{(e, m) \in \mathbb{Z}^{2}} q^{\frac{1}{2} \alpha_{e, m}^{2}} \bar{q}^{\frac{1}{2} \bar{\alpha}_{e, m}^{2}} \tag{4}
\end{equation*}
$$

We made the dependence on the radius of the target circle explicit in the notation. Here

$$
\begin{equation*}
\eta(\tau)=q^{\frac{1}{24}} \prod_{n=1}^{\infty}\left(1-q^{n}\right) \tag{5}
\end{equation*}
$$

is the Dedekind eta function.
(e) Show that the partition function (4) satisfies the relation

$$
\begin{equation*}
Z(\tau, r)=Z\left(\tau, \frac{2}{r}\right) \tag{6}
\end{equation*}
$$

- so-called "T-duality" (in string theory jargon).

3. Poisson summation formula and modular invariance of the torus PARTITION FUNCTION

Poisson summation formula says that if $f(x)$ is a Schwartz class function on the real line and $\tilde{f}(p)=\int_{-\infty}^{\infty} d x e^{2 \pi i p x} f(x)$ its Fourier transform, then one has

$$
\begin{equation*}
\sum_{n \in \mathbb{Z}} f(n)=\sum_{p \in \mathbb{Z}} \tilde{f}(p) \tag{7}
\end{equation*}
$$

(a) ${ }^{1}$ Use (7) and Euler's identity

$$
\begin{equation*}
\prod_{n=1}^{\infty}\left(1-q^{n}\right)=\sum_{j=-\infty}^{\infty}(-1)^{j} q^{\frac{3 j^{2}-j}{2}} \tag{8}
\end{equation*}
$$

to prove that the Dedekind eta function (5) satisfies

$$
\begin{equation*}
\eta\left(-\frac{1}{\tau}\right)=(-i \tau)^{1 / 2} \eta(\tau), \quad \eta(\tau+1)=e^{\frac{2 \pi i}{24}} \eta(\tau) \tag{9}
\end{equation*}
$$

(b) Using Poisson summation of (4) in e and m, and using (9), show that the partition function (4) satisfies the modular invariance property:

$$
\begin{equation*}
Z\left(-\frac{1}{\tau}, r\right)=Z(\tau, r), \quad Z(\tau+1, r)=Z(\tau, r) \tag{10}
\end{equation*}
$$

I.e., for a fixed $r, Z(\tau, r)$ defines smooth $\operatorname{PSL}(2, \mathbb{Z})$-invariant function on the complex upper half-plane Π_{+}, or equivalently a smooth function on the moduli space of complex structures on a torus $\mathcal{M}_{1,0}=\Pi_{+} / P S L(2, \mathbb{Z})$.
(c) Using Poisson summation of (4) in e only, obtain the following asymptotic formula for the case $r \rightarrow \infty$:

$$
\begin{equation*}
Z(\tau, r) \underset{r \rightarrow \infty}{\sim} r \cdot \frac{1}{\sqrt{\operatorname{Im} \tau} \eta(\tau) \eta(\bar{\tau})} \tag{11}
\end{equation*}
$$

[^0]
[^0]: ${ }^{1}$ This item is a bit lengthy and you can jump right to (b) and (c) taking the result (9) for granted on the first pass.

