CFT EXERCISES 9, 11/14/2022

Null-VEctors at level 2

(1) Let $|h\rangle$ be a highest vector of a Virasoro Verma module with central charge c and with $L_{0}|h\rangle=h|h\rangle$ (for some $c, h \in \mathbb{R}$). Under which condition on c and h there exist two numbers $\alpha, \beta \in \mathbb{R}$ not vanishing simultaneously, such that the vector

$$
|\chi\rangle:=\left(\alpha L_{-2}+\beta L_{-1}^{2}\right)|h\rangle
$$

satisfies $L_{n}|\chi\rangle=0$ for all $n \geq 1$? (Such a vector is called a null-vector.)
(2) Show that for $c=\frac{1}{2}, h=\frac{1}{16}$,

$$
\begin{equation*}
\left(L_{-2}-\frac{4}{3} L_{-1}^{2}\right)\left|\frac{1}{16}\right\rangle \tag{1}
\end{equation*}
$$

is a null-vector.
(3) In the free fermion theory, using the expression for Virasoro generators L_{n} in terms of Clifford generators \hat{b}_{n}, show that the vector (1) is actually zero (as an element of the space of states, not an element of the Verma module).

$$
b c \text { SYSTEM }
$$

In the $b c$ system, one has field operators

$$
\hat{c}(z)=\sum_{n \in \mathbb{Z}} \hat{c}_{n} z^{-n+1}, \quad \hat{b}(z)=\sum_{n \in \mathbb{Z}} \hat{b}_{n} z^{-n-2}
$$

with the operators \hat{b}_{n}, \hat{c}_{n} satisfying the anticommutation relations

$$
\begin{equation*}
\left[\hat{b}_{n}, \hat{c}_{m}\right]_{+}=\delta_{n,-m} \operatorname{Id}, \quad\left[\hat{b}_{n}, \hat{b}_{m}\right]_{+}=0, \quad\left[\hat{c}_{n}, \hat{c}_{m}\right]_{+}=0 \tag{2}
\end{equation*}
$$

One understands the operators $\hat{b}_{\geq-1}, \hat{c}_{\geq 2}$ as annihilation operators and $\hat{b}_{\leq-2}, \hat{c}_{\leq 1}$ as creation operators. ${ }^{1}$ The normal ordering puts annihilation operators to the right and creation operators to the left; vacuum vector $|\mathrm{vac}\rangle$ is killed by annihilation operators; applying creation operators to it gives nonzero vectors.
(a) Show that one has

$$
\langle b(w) c(z)\rangle:=\langle s| \mathcal{R} \hat{b}(w) \hat{c}(z)|\operatorname{vac}\rangle=\frac{1}{w-z}
$$

where $|\mathrm{vac}\rangle$ is the vector annihilated by $\hat{b}_{>0}, \hat{c}_{>0}$. Here $\langle s|$ is an element of \mathcal{H}^{*} which is killed by acting on it on the right with any creation operator.

Also show that one has the OPE

$$
\mathcal{R} \hat{b}(w) \hat{c}(z)=\frac{\mathrm{Id}}{w-z}+\mathrm{reg} .
$$

[^0](b) The stress-energy of the system is defined as
$$
\hat{T}(z)=: 2 \partial \hat{c}(z) \hat{b}(z)+\hat{c}(z) \partial \hat{b}(z):
$$

Compute (using Wick's lemma) the OPEs $T(w) b(z), T(w) c(z)$ and show that b, c are primary fields, with $h=2$ and $h=-1$, respectively.
(c) Compute the OPE $T(w) T(z)$ and show that the central charge of the model is $c=-26$.
(d) Consider the modification of the system with $\hat{T}_{j}(z)=: \partial \hat{c}(z) \hat{b}(z)+j \partial(\hat{c}(z) \hat{b}(z)):$, with $j \in \mathbb{R}$ a parameter. Find the conformal weights of fields b, c in this theory and find the central charge.

Bosonic string

Consider the CFT consisting of D free scalar fields $\phi_{1}, \ldots, \phi_{D}$, a $b c$ system and a complex conjugate $\bar{b} \bar{c}$-system. Consider the field

$$
J=c T_{\mathrm{bosons}}+\frac{1}{2}: c T_{b c}:=: c\left(-\frac{1}{2} \sum_{k=1}^{D} \partial \phi_{k} \partial \phi_{k}\right)+c \partial c b:
$$

(a) Find the singular part of the OPE $J(w) J(z)$. Show that it is purely regular if and only if $D=26$.
(b) Introduce the operator $Q: V \rightarrow V, \Phi(z) \mapsto \frac{-1}{2 \pi i} \oint_{\gamma} d w J(w) \Phi(z)$ where the integration contour γ goes around z. Show that if $D=26$, then $Q^{2}=0$.
(c) Show that one has $Q(b)=T$, where $T=T_{\text {bosons }}+T_{b c}$ is the stress-energy tensor.

[^0]: ${ }^{1}$ Note that this is forced by requiring that the state-field correspondence sends fields c and b to well-defined nonzero vectors in \mathcal{H}.

