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1. Toy case: delta-form on zeroes of a function.

Question: Given a manifold M and a smooth function f : M → R,
how can one write a (smeared) delta-form supported on f−1(0)?
Answer: Consider the normalized Gaussian 1-form

(1) τ =
1√
2πε

e−
1
2ε
ξ2dξ

on R, with ε > 0 the dispersion/smearing parameter, and pull it back
to M by f . Then, we have

(2) δεf−1(0) = f ∗τ =
1√
2πε

e−
1
2ε
f2df ∈ Ω1(M)

One has the following properties:
1
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• δεf−1(0) is a closed form and changes by an exact form as ε or

f is changed. In particular, the de Rham cohomology class
[δεf−1(0)] ∈ H1

de Rham(M) is invariant under such deformations.1

• For α ∈ Ωn−1(M), then

(3) lim
ε→0

∫

M

δεf−1(0) ∧ α =

∫

f−1(0)

α

(assuming that 0 is a regular value of f).
• For α closed, the equality in (3) holds without having to take

the limit ε→ 0, for any value of ε.

Importantly, the form (2) can be expressed as a Berezin integral over
the odd line

(4) δεf−1(0) =
i√
2πε

∫

R[−1]

Dπ e−
1
2ε
f2−iπdf

with π an odd auxiliary variable of internal degree −1; Dπ is the stan-
dard Berezinian on the odd line.2 Furthermore, introducing a second
auxiliary variable p (even, of degree 0), we can write (4) as

δεf−1(0) =
i

2π

∫

R[−1]⊕R
Dπ dp eipf−iπdf−

ε
2
p2(5)

=
i

2π

∫

T [1]R[−1]

Dπ dp e(d+p ∂
∂π

)(iπf− ε
2
πp)(6)

In the last expression one can think of R[−1] = Vaux as auxiliary space.
Then, the integrand is a closed form on M × Vaux (in fact, exponential
of an exact form), with d + p ∂

∂π
viewed as de Rham differential on

M × Vaux, and the integral (6) can be understood as a pushforward
(fiber integral) of a closed form on M × Vaux to a closed form on M .
From this viewpoint, it is obvious that changing ε of f changes the
form on M × Vaux by an exact form and hence the pushforward δεf−1(0)

is also changed by an exact form.

2. Representative of the Euler class of a vector bundle

Let E be an oriented vector bundle of rank m over a compact man-
ifold M , endowed with:

• a fiber metric g,
• a connection ∇ compatible with g,

1For M compact, this cohomology class is necessarily trivial (as shown by con-
sidering (2) for functions f and −f).

2The factor i accompanying the odd variable π in (4) looks unnecessary but will
be justified in (6) below.
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• a section s : M → E.

Consider the function

(7) SMQ =
1

2ε
g(s, s) + i〈π,∇s〉 − ε

2
〈π, F∇(g−1(π))〉
∈ C∞(q∗E∗[−1]) = Ω•(M,∧•E)

where

• q : T [1]M →M is the bundle projection of the tangent bundle,3

• π is the (odd, degree −1) coordinate in the fiber of the graded
vector bundle E∗[−1]→M ,4

• F∇ ∈ Ω2(M,End(E)) is the curvature form of the connection
∇,
• ε > 0 is the “smearing parameter” (scaling the fiber metric as
g → 1

ε
g).

In local coordinates xi on M , using a basis of local sections ea of E,
(7) reads

(8) SMQ =
1

2ε
gabs

asb + iπa

(
θi

∂

∂xi
sa + θiAaibs

b

)
− ε

4
θiθjgbcF a

ijcπaπb

where θi = dxi are the fiber coordinates in T [1]M and sa, gab, g
ab, Aaib

and F a
ijc are the local components of the section, fiber metric and its

inverse, local connection 1-form on the base and the curvature 2-form,
respectively.

Next, consider the fiber Berezin integral

(9) Ξ =

(
i√
2πε

)m ∫

fiber of E∗[−1]→M
Dπ e−SMQ ∈ Ω(M)

Here Dπ ∈ Γ(M,∧mE∗) is the fiber Berezinian (fermionic integration
measure) induced by the fiber metric g and the orientation of the fiber.

Note that the form degree of Ξ is m. Indeed, SMQ is concentrated
in ⊕2

k=0Ωk(M,∧kE). Thus, e−SMQ is concentrated in ⊕mk=0Ωk(M,∧kE)
and the Berezin integral (9) selects the k = m term.

Theorem 2.1. (i) Form Ξ is closed.
(ii) Changing the data s, g,∇, ε changes Ξ by an exact form, Ξ 7→ Ξ + d(· · · ).
(iii) The class of Ξ in de Rham cohomology Hm(M) is the Euler class

of the bundle E →M .

3Note that, at the level of total spaces, one has q∗E∗[−1] = T [1]M ⊕ E∗[−1]
with ⊕ the Whitney sum of bundles over M .

4Alternatively, one can think of the symbol π as standing for the tautological
map E∗[−1]→ E∗.
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We will give a proof of this theorem below, in Sections 3.2, 4.
The differential form Ξ defined by (7), (9) is called the Mathai-

Quillen representative of the Euler class of E →M .

Remark 2.2. If M is not compact, the class of Ξ in de Rham coho-
mology of the complex of forms Ω0(M) falling off to zero at infinity
(this complex is quasi-isomorphic to forms with compact support) can
depend on s (or rather its behavior at infinity). Example: M = R
with coordinate x, E – a trivial bundle with fiber R with fiber metric
g = (dξ)2 and connection ∇ = dx ∂

∂x
. Then for s = 1 one has Ξ = 0,

while for s = x one has Ξ = 1√
2πε
e−

x2

2ε dx which has integral 1 on M

and therefore is not a coboundary in Ω0(M).

2.1. Limits of Ξ as ε → 0 (localization) and as ε → ∞ (Chern-
Weil). ε→ 0 limit of Ξ. Assuming that graph(s) ⊂ E intersects the
zero-section M ⊂ E transversally, we have

(10) lim
ε→0

Ξ = δs−1(0)

– the (distributional) δ-form on the zero-locus of the section, s−1(0) ⊂
M . (The limit is understood in distributional sense.)

In this limit we see that the cohomology class [Ξ] ∈ Hm(M) is the
Poincaré dual5 of the homology class of the zero-locus of the section
s, [s−1(0)] ∈ Hn−m(M) (understood as the oriented intersection of
graph(s) ⊂ E with the zero-section M ⊂ E), which is one of the
interpretations of the Euler class.

Limit (10) means that for any differential form O ∈ Ω(M), we have

(11) lim
ε→0

∫

M

Ξ ∧ O =

∫

s−1(0)

O

And if O is a closed form, then the l.h.s. is independent of ε and
reduced to an integral over the zero-locus of s. This is a prototypical
localization statement. In QFT examples, M is the space of fields,
s(x) = 0 is the equation of motion and O is an observable (or a product
of observables).
ε→∞ limit.

(12) lim
ε→∞

Ξ = (2π)−
m
2 Pf(F∇)

– the Pfaffian of the curvature of the connection in E. This is a Chern-
Weil representative for the Euler class of E.

5Here we need to assume that M is oriented.
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2.2. Example: Euler characteristic. Let E = TM the tangent
bundle of an oriented compact n-manifold M , section s – a generic
vector field on M (i.e. such that its graph in TM intersects the zero-
section transversally). Assuming thatM is Riemannian, we have a fiber
metric in TM and a compatible connection ∇LC – the Levi-Civita con-
nection with curvature R = F∇LC

∈ Ω2(M,End(TM)) – the Riemann
tensor. Here the integral of (10) over M becomes

(13) lim
ε→0

∫

M

Ξ =
∑

zeroes xi of s

±1︸︷︷︸
indxis

– the sum of indices of zeroes of the vectors field (i.e. the oriented inter-
section number of graph(s) and the zero-section of TM). By Poincaré-
Hopf theorem, this is the Euler characteristic of M .

On the other hand, the integral of (12) over M becomes

(14) lim
ε→∞

∫

M

Ξ = (2π)−
n
2

∫

M

Pf(R)

which is the Chern-Gauss-Bonnet formula for the Euler characteristic
of M .

Thus, Mathai-Quillen representative for the Euler class of TM (at fi-
nite ε) “interpolates” between the Poincaré-Hopf representative

∑
i±δxi

and the Chern-Gauss-Bonnet representative (2π)−
n
2 Pf(R).

3. “First-order formalism” for the Mathai-Quillen
representative

The integrand in the formula (9) for the Mathai-Quillen represen-
tative is the exponential of a quadratic expression in the section s.
In field theory applications, s contains a derivative and (9) becomes
a path integral in the “second-order formalism” (i.e. with the action
functional of second order in derivatives). It is useful to rewrite Ξ in
“first-order formalism” – as a fiber integral of the exponential of an
action linear in s. There are two natural ways to do it – “version 1”
below is known in the literature on supersymmetry,6 whereas “version
2” gives a more clear geometric picture in terms of fiber integrals of
closed forms.

3.1. Version 1. Consider the function

(15) S̃MQ =
ε

2
g−1(p, p)− i〈p, s〉+ i〈π,∇s〉 − ε

2

〈
π, F∇(g−1(π))

〉

∈ C∞(q∗(E∗[−1]⊕ E∗))
6See, e.g., (4.2) in [3] and (13), (14) in [1] (the case of A-model).
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where π is the odd, degree −1 fiber coordinate on E∗[−1] as before and
p is the even, degree 0 fiber coordinate on E∗. Evaluating the Gaussian
integral over p, we have

(16)

(
i

2π

)m ∫

fiber of E∗
dp e−S̃MQ =

(
i√
2πε

)m
e−SMQ

with SMQ as in (7). Here dp is the volume form in the fiber of E∗

determined by fiber metric g. Thus, we have the following integral
presentation for the Mathai-Quillen form Ξ representing the Euler class:

(17) Ξ =

(
i

2π

)m ∫

fiber of E∗[−1]⊕E∗
Dπ dp e−S̃MQ

In the total fiber integration measure Dπ dp, the dependence on fiber
metric g cancels out: it only depends on the orientation of the fiber.

3.2. Version 2 (pushforward of the exponential of an exact
form). Another version of the construction is as follows: consider the
following exact differential form on the total space of E∗[−1]:

ŜMQ = dE∗[−1]

(
− i〈π, s〉+

ε

2
g−1(π,A∗)

)
(18)

=
ε

2
g−1(A∗,A∗)− i〈A∗, s〉+ i〈π,∇s〉 − ε

2
〈π, F∇(g−1(π))〉(19)

where A∗ ∈ Ω1(E∗[−1], T vertE∗) is the connection 1-form on the to-
tal space of E∗[−1] corresponding to the connection ∇∗ on E∗[−1] –
the dual of the connection ∇ on E. In a local trivialization, over a
trivializing neighborhood U ⊂ M , one has A∗ = dπ − ATπ, where
A ∈ Ω1(U,End(E)) is the local connection 1-form of ∇.

Then, we have

(20) Ξ =

(
i

2π

)m ∫

fiber of E∗[−1]→M
e−ŜMQ

where the expression on the right is understood as a fiber integral of a
differential form on the total space of E∗[−1] to a differential form on
the base.

Equivalently, (20) can be thought of as a fiber integral of a function
on T [1]E∗[−1] to a function on T [1]M :

(21) Ξ =

(
i

2π

)m ∫

fiber of T [1]E∗[−1]→T [1]M

Dπ dP e−ŜMQ

where P = dπ viewed as a coordinate in E∗-fibers of the vector bundle
T [1]E∗[−1]→ q∗E∗[−1].
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Proof of (i) and (ii) of Theorem 2.1. Differential form (18) on E∗[−1]

is exact, thus e−ŜMQ is closed and changes by an exact form under a
deformation of the data s, g,∇, ε. Therefore, Stokes’ theorem for fiber
integrals implies

dMΞ = const ·
∫
dE∗[−1]e

ŜMQ = 0

and for the variation under the change of data one has

δΞ =

∫
dE∗[−1](· · · ) = dM(· · · )

Here
∫

stands for the fiber integral for the vector bundle E∗[−1] →
M . �

3.3. Limit ε → 0. In the limit ε → 0, the first-order action (18)
becomes

(22) ŜMQ = dE∗[−1]

(
− i〈π, s〉

)
= −i〈P, s〉+ i〈π, ds〉

and (21) becomes and integral representation of the delta-form on
s−1(0) ⊂M :

(23) δs−1(0) =

(
i

2π

)m ∫
Dπ dP ei〈P,s〉−i〈π,ds〉

Remark 3.1. The expression 〈π, s〉 appearing in (22) (the “gauge-fixing
fermion”) corresponds by the odd Fourier transform to the Koszul dif-
ferential dKoszul = 〈s, ∂

∂ψ
〉 acting on C∞(E[1]) = Γ(M,∧E∗) (with ψ

the odd fiber coordinate on E[1]), for which the zeroth homology is
HKoszul

0 = C∞(s−1(0)). Here by the odd Fourier transform we mean
the mapping

C∞(E[1]) → C∞(E∗[−1])

f(x, ψ) 7→ f̃(x, π) =

∫

fiber of E[1]→M
Dψ e〈ψ,π〉f(x, ψ)

3.4. Comparison of versions 1 and 2. Note that a choice of connec-
tion ∇ on E determines a diffeomorphism of graded supermanifolds7

(24)
Ψ∇ : q∗(E∗[−1]⊕ E∗) → T [1]E∗[−1]

(x, θ, π, p) 7→ (x, θ, π, P = p+ ATπ)

7Recall that an Ehresmann connection on a vector bundle r : H →M is a split-
ting of the tangent bundle TH ' r∗TM ⊕T vertH. At the level of total spaces, this
yields a diffeomorphism TH ' TM ⊕H ⊕H. Setting H = E∗ and incorporating
the degree shifts, one has (24).
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Here x ∈ M and θ = dx is the fiber coordinate in T [1]M → M . This
diffeomorphism identifies the two first-order actions (15) and (18):

S̃MQ = Ψ∗∇(ŜMQ)

In particular, expression (18) for ŜMQ translates into the following

for S̃MQ:

(25) S̃MQ = Q
(
− i〈π, s〉+

ε

2
g−1(π, p)

)

where Q is a cohomological vector field on q∗(E∗[−1]⊕ E∗) arising as
a pullback of the de Rham vector field dE∗[−1] on T [1]E∗[−1] by Ψ∇.
In local coordinates, one has:

Q : x 7→ θ, θ 7→ 0, π 7→ p+ ATπ, p 7→ −F T
∇π + ATp

Mathai-Quillen representative

q∗(E∗[−1]⊕ E∗), e−S̃MQ T [1]E∗[−1], e−ŜMQ

q∗E∗[−1], e−SMQ

T [1]M, Ξ

Ψ∇

∫

E∗
dp

∫

E∗
dP

∫

E∗[−1]
Dπ

pushforward of a diff. form

first-order actions

second-order action

Figure 1. A diagram of pushforwards. Top-down ar-
rows are fiber integrals.

4. Representative of the Thom class

Consider the function

(26) SThom
MQ =

1

2ε
g(ξ, ξ) + i〈π,A〉 − ε

2
〈π, F∇(g−1(π))〉

∈ C∞(u∗E∗[−1]) = Ω(E,∧(r∗E))

where

• ξ is the fiber coordinate in E,
• r : E → M is the bundle projection and u : T [1]E → M is the

composition of bundle projections T [1]E → E and E →M .
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• A ∈ Ω1(E, T vertE) is the 1-form of the connection ∇ (locally,
A = dξ + Aξ).

Next, consider the fiber integral

(27) τ =

(
i√
2πε

)m ∫

fiber of u∗E∗[−1]→T [1]E

Dπ e−S
Thom
MQ ∈ Ω(E)

This is an m-form on E depending on g,∇, ε (note that the section s
is not involved in this construction) with the following properties:

(a) τ is closed and changes by an exact form under a change of g,∇, ε.
(b) τ has Gaussian shape along the fiber of E (in particular, is it fast-

decaying as ||ξ|| → +∞).
(c) τ has integral 1 over each fiber of E →M . Thus, τ represents the

Thom class of E in Hm
RD(E).8

One can furthermore rewrite (27) in the first-order formalism, as a
pushforward of an exact differential form on E ⊕ E∗[−1] to E:

(28) τ =

(
i

2π

)m ∫

fiber of E⊕E∗[−1]→E
e−Ŝ

Thom
MQ

where

(29) ŜThom
MQ = dE⊕E∗[−1]

(
− i〈π, ξ〉+

ε

2
g−1(π,A∗)

)

From this description, the property (a) of τ above is obvious, using
Stokes’ theorem for fiber integrals.

Proof of (iii) of Theorem 2.1. Comparing differential forms (27) and
(9), we see that they are related by the pullback by the section s:

Ξ = s∗τ

Knowing that the cohomology class [τ ] ∈ Hm
RD(E) is the Thom class

of E, we get that its pullback by the section, [Ξ] = s∗[τ ] ∈ Hm(M), is
the Euler class of E. �

One can also restate the diagram of pushforwards above for the Thom
class instead of Euler class.

The actions SThom
MQ , S̃Thom

MQ , ŜThom
MQ are obtained from their Euler class

counterparts by replacing the section s in all the formulae by the fiber
coordinate ξ in E →M .

8The subscript RD stands for “rapid decay in fiber direction.” The cohomology
of RD-forms is isomorphic to the cohomology of forms with compact support in the
fiber and, in turn, to the cohomology of the Thom space of E.
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∫

E∗[−1]
Dπ

T [1](E ⊕ E∗[−1]), e−ŜThom
MQ

u∗E∗[−1], e−SThom
MQ

T [1]E, τ

∫

E∗
dp

∫

E∗
dP

pushforward of a diff. form

u∗(E∗[−1]⊕ E∗), e−S̃Thom
MQ
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