CFT EXERCISES, 3/1/2019

1. QUANTUM HARMONIC OSCILLATOR

Assume that operators \hat{a}, \hat{a}^+ acting on a Hilbert space \mathcal{H} are mutually Hermitian conjugate and satisfy the commutation relation

$$[\hat{a}, \hat{a}^+] = \mathrm{id}$$

Further, assume that there is a vacuum vector $|0\rangle \in \mathcal{H}$ of unit norm and satisfying $\hat{a}|0\rangle = 0$.

• Show that, for $n \ge 0$, the vector

(2)
$$(\hat{a}^+)^n |0\rangle \in \mathcal{H}$$

has norm $\sqrt{n!}$. In other words, prove the equality

$$\langle 0|\hat{a}^n(\hat{a}^+)^n|0\rangle = n!$$

(where in Dirac's notation multiplication with co-vector $\langle 0|$ one the left stands for evaluating the Hermitian pairing with $|0\rangle$).

• In Schrödinger representation, one identifies \mathcal{H} with square-integrable complexvalued functions on the real line (*wavefunctions*), $\mathcal{H} = L^2(\mathbb{R}) = \{\psi(x)\}$. One identifies

$$\hat{a} = \frac{1}{\sqrt{2}}(x + \frac{d}{dx}), \qquad \hat{a}^+ = \frac{1}{\sqrt{2}}(x - \frac{d}{dx})$$

Check that these operators are Hermitian conjugate to each other and satisfy (1). Find a wavefunction in $L^2(\mathbb{R})$ representing the vacuum vector. Is it uniquely characterized by its properties (being annihilated by \hat{a} and being of unit norm)? Find the expression for the vector (2) in $L^2(\mathbb{R})$ in terms of Hermite polynomials $H_n(x) = (-1)^n e^{x^2} \frac{d}{dx^n} e^{-x^2}$.

• The Hamiltonian of the harmonic oscillator is given by $\hat{H} = \hat{a}\hat{a}^{+} + \hat{a}^{+}\hat{a}$. Check that it satisfies the commutation relations

$$[\hat{H}, \hat{a}^+] = \hat{a}^+, \qquad [\hat{H}, \hat{a}] = -\hat{a}$$

Show that the vector (2) is an eigenvector of the \hat{H} with the eigenvalue $n + \frac{1}{2}$.

2. Free Boson Propagator

The field inserted at a point $z \in \mathbb{C} \setminus \{0\}$ is represented (in the canonical quantization formalism) by the operator

$$\hat{\phi}(z,\bar{z}) = \hat{\phi}_0 - i\hat{\pi}_0 \log(z\bar{z}) + \sum_{n \neq 0} \frac{i}{n} (\hat{a}_n z^{-n} + \hat{\bar{a}}_n \bar{z}^{-n})$$

¹Hint: notice that \hat{a}^+ can be written as a conjugation of the pure derivative: $\hat{a}^+ = -\frac{1}{\sqrt{2}}e^{\frac{x^2}{2}}\frac{d}{dx}e^{-\frac{x^2}{2}}$.

where operators $\{\hat{a}_n, \hat{\bar{a}}_n\}_{n\neq 0}, \hat{\phi}_0, \hat{\pi}_0$ satisfy the commutation relations

$$[\hat{a}_n, \hat{a}_m] = n\delta_{n, -m}, \quad [\hat{\bar{a}}_n, \hat{\bar{a}}_m] = n\delta_{n, -m}, \quad [\hat{a}_n, \hat{\bar{a}}_m] = 0, \quad [\hat{\pi}_0, \hat{\phi}_0] = -i$$

(and all other commutators vanish). These operators are represented on a Hilbert space (Fock space)

$$\mathcal{H} = \left\{ \sum_{1 \le n_1 \le \dots \le n_r; 1 \le m_1 \le \dots \le m_s} \int d\underline{\pi}_0 \; \underbrace{\Psi_{n_1 \dots n_r; m_1 \dots m_s}(\underline{\pi}_0)}_{\text{wavefunction}} \; \underbrace{\hat{a}_{-m_1} \cdots \hat{a}_{-m_s} \hat{a}_{-n_r} \cdots \hat{a}_{-n_1} | \underline{\pi}_0 \rangle}_{\text{basis vector } |n_1, \dots, n_r; m_1, \dots, m_s; \underline{\pi}_0 \rangle} \right\}$$

Here $|\underline{\pi}_0\rangle$, with $\underline{\pi}_0 \in \mathbb{R}$ is an eigenvector of $\hat{\pi}_0$ with eigenvalue $\underline{\pi}_0$, annihilated by all "annihilation operators" $\hat{a}_{>0}, \hat{a}_{>0}$.

• We define the normal ordering : \cdots : of a product of basic operators as a reordering that puts annihilation operators $\hat{a}_{>0}$, $\hat{\bar{a}}_{>0}$ to the right and creation operators $\hat{a}_{<0}$, $\hat{\bar{a}}_{<0}$ to the left (we also supplement this by the prescription that the normal ordering puts $\hat{\pi}_0$ to the right and $\hat{\phi}_0$ to the left). Prove that, for $z, w \in \mathbb{C} \setminus \{0\}, |z| > |w|$, one has

$$\hat{\phi}(z,\bar{z})\hat{\phi}(w,\bar{w}) - :\hat{\phi}(z,\bar{z})\hat{\phi}(w,\bar{w}) := -2\log|z-w|$$

• Show that, for |z| > |w| > 0, one has

$$\langle \operatorname{vac}|\partial\hat{\phi}(z,\bar{z})\partial\hat{\phi}(w,\bar{w})|\operatorname{vac}\rangle = -\frac{1}{(z-w)^2}$$

Here $|vac\rangle$ is the state $|\underline{\pi}_0 = 0\rangle$ normalized to unit norm.

• Find the Hermitian inner product on \mathcal{H} such that the the Hermitian conjugate of \hat{a}_n is \hat{a}_{-n} , conjugate of \hat{a}_n is \hat{a}_{-n} , and $\hat{\phi}_0$, $\hat{\pi}_0$ are self-adjoint.