
Exam 3C

All multiple choice due to COVID issues. Each actual exam contained one part of parts (A), (B) ...

1.

(A) Which equation below is satisfied by the solution to y0 = ex+y with initial condition y(0) = 0?

(a) 2e�2y + ex = 3 (b) ex + e�y = 2 (c) �ey + 3e�x = 2 (d) e�2y + 2ex = 3

(e) ey � ex = 0

(B) Which equation below is satisfied by the solution to y0 = ex�y with initial condition y(0) = 0?

(a) 2e�2y + ex = 3 (b) ey � ex = 0 (c) �ey + 3e�x = 2 (d) e�2y + 2ex = 3

(e) ex + e�y = 2

(C) Which equation below is satisfied by the solution to y0 = ex+2y with initial condition y(0) = 0?

(a) 2e�2y + ex = 3 (b) e�2y + 2ex = 3 (c) �ey + 3e�x = 2 (d) ey � ex = 0

(e) ex + e�y = 2

2.

(A) Which function below is an integrating factor for the linear equation xy0 + (x+ 1)y = ex ?

(a) x�1ex (b) ex+x2/2 (c) xe�x (d) xex (e) x�1e�x

(B) Which function below is an integrating factor for the linear equation xy0 + (x� 1)y = ex ?

(a) xex (b) ex+x2/2 (c) xe�x (d) x�1ex (e) x�1e�x

(C) Which function below is an integrating factor for the linear equation xy0 � (x+ 1)y = ex ?

(a) xex (b) ex+x2/2 (c) xe�x (d) x�1e�x (e) x�1ex1
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Exam 3C

(D) Which function below is an integrating factor for the linear equation xy0 � (x� 1)y = ex ?

(a) xex (b) ex+x2/2 (c) x�1e�x (d) xe�x (e) x�1ex
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Exam 3C

3.

(A) The equation (ex + 4xy)dx +
�
2x2 + cos(y)

�
dy = 0 is exact. Which formula below is an implicit

solution which goes through the point
�
�1, ⇡

2

�
?

(a) There is no solution to the equation going through the given point.

(b) 2x2y + ex + sin(y) = ⇡ + 1 + e�1

(c) 2x2y + ex+y + sin(x� y) = ⇡ � cos(1) + e⇡/2�1

(d) 2x2y + ex�y + sin(x+ y) = ⇡ + cos(1) + e⇡/2+1

(e) 2x2y + ey + sin(x) = ⇡ � sin(1) + e⇡/2

(B) The equation (cos(x) + 4xy)dx +
�
2x2 + ey

�
dy = 0 is exact. Which formula below is an implicit

solution which goes through the point
�
�1, ⇡

2

�
?

(a) There is no solution to the equation going through the given point.

(b) 2x2y + ey + sin(x) = ⇡ � sin(1) + e⇡/2

(c) 2x2y + ex+y + sin(x� y) = ⇡ � cos(1) + e⇡/2�1

(d) 2x2y + ex�y + sin(x+ y) = ⇡ + cos(1) + e⇡/2+1

(e) 2x2y + ex + sin(y) = ⇡ + 1 + e�1

4.

(A) Classify all the equilibria of y0 = (3y2 � 2y � 1)(cos(y) + 2).

(a) No equilibrium is stable and none is unstable.

(b) All equilibria are unstable.

(c) y = �1

3
is stable; y = 1 is unstable.

(d) y = �1

3
is unstable; y = 1 is stable.

(e) All equilibria are stable. 3



Exam 3C

(B) Classify all the equilibria of y0 = (3y2 � 2y � 1)(cos(y)� 2).

(a) No equilibrium is stable and none is unstable.

(b) All equilibria are unstable.

(c) y = �1

3
is unstable; y = 1 is stable.

(d) y = �1

3
is stable; y = 1 is unstable.

(e) All equilibria are stable.
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Exam 3C

5.

(A) What are the eigenvalues of the matrix

2

4
1 4 �2
0 3 0

�4 5 3

3

5?

(a) �3, 1, 3 (b) �2, 2, 4 (c) �1, 3, 5 (d) 1, 3, 3 (e) 0, 4, 6

(B) What are the eigenvalues of the matrix

2

4
2 4 �2
0 4 0

�4 5 4

3

5?

(a) �3, 1, 3 (b) �2, 2, 4 (c) 0, 4, 6 (d) 1, 3, 3 (e) �1, 3, 5

(C) What are the eigenvalues of the matrix

2

4
0 4 �2
0 2 0

�4 5 2

3

5?

(a) �3, 1, 3 (b) 0, 4, 6 (c) �2, 2, 4 (d) 1, 3, 3 (e) �1, 3, 5

6.

(A) Which of the following is a complex eigenvector of the matrix A =


2 2

�1 4

�
?

(a)


1

1 + 2i

�
(b)


1 + 2i

1

�
(c)


1

1� 3i

�
(d)


1

1 + i

�
(e)


1 + i

1

�
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Exam 3C

7.

(A) The vector ~v is an eigenvector with eigenvalue 2 for a square matrix A. Which of the following is

equal to (2A3 � 3A2)~v ?

(a) 28~v (b) �28~v (c) ~0 (d) 4~v (e) �4~v

(B) The vector ~v is an eigenvector with eigenvalue �2 for a square matrix A. Which of the following is

equal to (2A3 � 3A2)~v ?

(a) 28~v (b) 4~v (c) ~0 (d) �28~v (e) �4~v

(C) The vector ~v is an eigenvector with eigenvalue 2 for a square matrix A. Which of the following is

equal to (2A3 + 3A2)~v ?

(a) �28~v (b) 4~v (c) ~0 (d) 28~v (e) �4~v

(D) The vector ~v is an eigenvector with eigenvalue �2 for a square matrix A. Which of the following is

equal to (2A3 + 3A2)~v ?

(a) �28~v (b) 4~v (c) ~0 (d) �4~v (e) 28~v

8.

(A) Let A be the matrix

2

4
3 1 1
1 3 1
1 1 3

3

5, which has eigenvalues 2 and 5. Let m be the dimension of the

2-eigenspace of A and n be the dimension of the 5-eigenspace of A. Which of the following is true?

(a) m = 2, n = 1 (b) m = 1, n = 2 (c) m = 2, n = 2 (d) m = 2, n = 0 (e) m = 1, n = 1
6
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Exam 3C

(B) Let A be the matrix

2

4
6 1 1
1 6 1
1 1 6

3

5, which has eigenvalues 5 and 8. Let m be the dimension of the

8-eigenspace of A and n be the dimension of the 5-eigenspace of A. Which of the following is true?

(a) m = 1, n = 2 (b) m = 2, n = 1 (c) m = 2, n = 2 (d) m = 2, n = 0 (e) m = 1, n = 1

7
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9.

(A) Let A be a 5⇥ 5 matrix whose only eigenvalues are 1 and 2. Four of the statements below are false

and one is sometimes true and sometimes false. Which one COULD be true?

(a) The algebraic multiplicities of the eigenvalues � = 1 and � = 2 are 1 and 4, ,

and the geometric multiplicities are 0 and 3, respectively.

(b) The algebraic multiplicities of the eigenvalues � = 1 and � = 2 are 2 and 3,

and their geometric multiplicities are 3 and 2, respectively.

(c) The algebraic multiplicities of the eigenvalues � = 1 and � = 2 are 2 and 3,

and the geometric multiplicities are 2 and 2, respectively.

(d) The algebraic multiplicities of the eigenvalues � = 1 and � = 2 are 2 ,

and 4, and the geometric multiplicities are 2 and 4, respectively.

(e) The algebraic multiplicities of the eigenvalues � = 1 and � = 2 are 2 and 2,

and the geometric multiplicities are 2 and 3, respectively.

10.

(A) Which among the following statements is FALSE?

(a) Any 1⇥ 1 matrix is diagonalizable.

(b) If matrices A and B are similar, then detA = detB.

(c) If the characteristic polynomial of an n⇥ n matrix A has n distinct roots, then A is diagonalizable.

(d) Any lower-triangular matrix is diagonalizable.

(e) The only matrix similar to the identity matrix In is In itself.
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11.

(A) Given the vectors

~x1 =

2

4
1

�1
�1

3

5 , ~x2 =

2

4
�1
�1
�1

3

5 , ~x3 =

2

4
1
1

�1

3

5 ,

the Gram-Schmidt algorithm for the first two of them yields

~v1 =

2

4
1

�1
�1

3

5 , ~v2 =

2

4
�4/3
�2/3
�2/3

3

5 .

Determine the third vector ~v3.

(a) Since the vectors are linearly dependent, ~v3 = 0

(b) ~v3 =

2

4
0
1

�1

3

5

(c) ~v3 =

2

4
1
0
1

3

5

(d) ~v3 =

2

4
1

�1
1

3

5

(e) ~v3 =

2

4
1

�1
�1

3

5

(B) Given the vectors

~x1 =

2

4
1

�1
�1

3

5 , ~x2 =

2

4
�1
�1
1

3

5 , ~x3 =

2

4
1

�1
1

3

5 ,

the Gram-Schmidt algorithm for the first two of them yields

~v1 =

2

4
1

�1
�1

3

5 , ~v2 =

2

4
�2/3
�4/3
2/3

3

5 .

Determine the third vector ~v3.

(a) Since the vectors are linearly dependent, ~v3 = 0

9
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(b) ~v3 =

2

4
1
0
1

3

5

(c) ~v3 =

2

4
0
1

�1

3

5

(d) ~v3 =

2

4
1

�1
1

3

5

(e) ~v3 =

2

4
1

�1
�1

3

5

12.

(A) Given a subspace W ✓ R4 with some orthogonal basis ~u1 =

2

664

1
0
1
0

3

775, ~u2 =

2

664

0
1
0
1

3

775, and a vector

~v =

2

664

1
�1
�1
�1

3

775 2 R4, compute projW~v.

(a)

2

664

�1
0

�1
0

3

775 (b)

2

664

1
0

�1
0

3

775 (c)

2

664

�1
�1
1
1

3

775 (d)

2

664

0
�1
0

�1

3

775 (e)

2

664

�1
1
1
1

3

775

(B) Given a subspace W ✓ R4 with some orthogonal basis ~u1 =

2

664

1
0

�1
0

3

775, ~u2 =

2

664

0
1
0

�1

3

775, and a vector

~v =

2

664

1
�1
�1
�1

3

775 2 R4, compute projW~v.

(a)

2

664

�1
0

�1
0

3

775 (b)

2

664

0
�1
0

�1

3

775 (c)

2

664

�1
�1
1
1

3

775 (d)

2

664

1
0

�1
0

3

775 (e)

2

664

�1
1
1
1

3

775

10
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13.

(A) Given a matrix A =

2

664

�1 �1 0
0 1 �1
1 0 1
0 0 1

3

775 and its QR-decomposition

Q =

2

664

�
p
2/2 �

p
6/6 0

0
p
6/3 0p

2/2 �
p
6/6 0

0 0 1

3

775 , R =

2

4

p
2 a

p
2/2

0
p
6/2 b

0 0 1

3

5 ,

determine the missing entries a and b.

(a) a = (3
p
2�

p
6)/6, b =

p
6/3 (b) a =

p
2/2, b = �

p
6/2

(c) a = 0, b =
p
6 (d) a = �

p
6/6, b = 0

(e) a = �
p
2/2, b =

p
6/2

(B) Given a matrix A =

2

664

�1 0 �1
0 1 1
1 �1 0
0 0 1

3

775 and its QR-decomposition

Q =

2

664

�
p
2/2 �

p
6/6 0

0
p
6/3 0p

2/2 �
p
6/6 0

0 0 1

3

775 , R =

2

4

p
2 a

p
2/2

0
p
6/2 b

0 0 1

3

5 ,

determine the missing entries a and b.

(a) a = (3
p
2�

p
6)/6, b =

p
6/3 (b) a = �

p
2/2, b =

p
6/2

(c) a = 0, b =
p
6 (d) a = �

p
6/6, b = 0

(e) a =
p
2/2, b = �

p
6/2

14.

(A) Given a subspace W of R4

W = span

0

BB@

2

664

1
0
2

�1

3

775 ,

2

664

0
1
1

�1

3

775

1

CCA ,

determine a basis of W?.

(a)

2

664

1
1
0
1

3

775 ,

2

664

�2
�1
1
0

3

775 (b)

2

664

2
�1
1
0

3

775 ,

2

664

�1
0
0
1

3

775 (c)

2

664

�1
�1
0
1

3

775 ,

2

664

2
1
1
0

3

775 (d)

2

664

2
0
1
0

3

775 ,

2

664

2
1
0
1

3

775
11
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(e)

2

664

1
0
0
1

3

775 ,

2

664

�2
1
1
0

3

775

(B) Given a subspace W of R4

W = span

0

BB@

2

664

1
0
2

�1

3

775 ,

2

664

0
1

�1
0

3

775

1

CCA ,

determine a basis of W?.

(a)

2

664

1
0
0
1

3

775 ,

2

664

�2
1
1
0

3

775 (b)

2

664

2
�1
1
0

3

775 ,

2

664

�1
0
0
1

3

775 (c)

2

664

�1
�1
0
1

3

775 ,

2

664

2
1
1
0

3

775 (d)

2

664

2
0
1
0

3

775 ,

2

664

2
1
0
1

3

775

(e)

2

664

1
1
0
1

3

775 ,

2

664

�2
�1
1
0

3

775

12
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15.

(A) Find a least squares solution to A~x = ~b for

A =

2

4
1 0
0 1
1 1

3

5 , b =

2

4
5
2
1

3

5

(a) x =


6
3

�

(b) x =


3
0

�

(c) x =


0
3

�

(d) No least squares solution exists as this is an inconsistent system.

(e) x =


3
6

�

(B) Find a least squares solution to A~x = ~b for

A =

2

4
1 0
0 1
1 1

3

5 , b =

2

4
2
5
1

3

5

(a) x =


6
3

�

(b) x =


0
3

�

(c) x =


3
0

�

(d) No least squares solution exists as this is an inconsistent system.

(e) x =


3
6

�

16.

13



Exam 3C

(A) We would like to find an approximating line, y = a+ bx, for the data points

{(�1, 0) , (0, 0) , (2, 1)}?

Which of the following are the normal equations that will solve for the line of best fit?

(a)


3 1
1 5

�
x =


1
2

�
(b)

2

4
�1 0
0 0
2 1

3

5x =

2

4
0
1
2

3

5 (c)

2

4
1 �1
1 0
1 2

3

5x =

2

4
0
0
1

3

5

(d)


3 �1
�1 5

�
x =


1
�2

�
(e)

2

4
1 1
1 0
1 �2

3

5x =

2

4
0
0
1

3

5

(B) We would like to find an approximating line, y = a+ bx, for the data points

{(1, 0) , (0, 0) , (�2, 1)}?

Which of the following are the normal equations that will solve for the line of best fit?

(a)


3 �1
�1 5

�
x =


1
�2

�
(b)

2

4
�1 0
0 0
2 1

3

5x =

2

4
0
1
2

3

5 (c)

2

4
1 �1
1 0
1 2

3

5x =

2

4
0
0
1

3

5

(d)


3 1
1 5

�
x =


1
2

�
(e)

2

4
1 1
1 0
1 �2

3

5x =

2

4
0
0
1

3

5

14
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17.

(A) Find the standard matrix for the linear transformation of projW : R3 ! R3 for subspace W with

basis
8
<

:

2

4
1
0
1

3

5 ,

2

4
1
1
0

3

5

9
=

; .

(a)
1

3

2

4
2 -1 1
-1 2 -1
1 -1 2

3

5

(b) There is not a standard matrix since projW is not linear.

(c)
1

3

2

4
2 -1 1
-1 2 1
1 1 2

3

5

(d)
1

3

2

4
2 1 -1
1 2 1
-1 1 2

3

5

(e)
1

3

2

4
2 1 1
1 2 -1
1 -1 2

3

5

(B) Find the standard matrix for the linear transformation of projW : R3 ! R3 for subspace W with

basis
8
<

:

2

4
1
0
1

3

5 ,

2

4
1
�1
0

3

5

9
=

; .

(a)
1

3

2

4
2 -1 1
-1 2 -1
1 -1 2

3

5

(b) There is not a standard matrix since projW is not linear.

(c)
1

3

2

4
2 1 1
1 2 -1
1 -1 2

3

5

(d)
1

3

2

4
2 1 -1
1 2 1
-1 1 2

3

5

(e)
1

3

2

4
2 -1 1
-1 2 1
1 1 2

3

5

15



Exam 3C

Solutions

1. 1 y0 = ex+y = exey so e�ydy = exdx or �e�y = ex + C; ex + e�y = A. At (0, 0), A = 2.

1. 2 y0 = ex�y = exe�y so eydy = exdx or ey = ex + C; ey � ex = C. At (0, 0), C = 0.

1. 3 y0 = ex+2y = exe2y so e�2ydy = exdx or �1

2
e�2y = ex + C; e�2y + 2ex = A. At (0, 0), A = 3.

2. 1 Standard form: y0+
x+ 1

x
y =

ex

x
.
µ0

µ
=

x+ 1

x
so ln |µ| =

Z
1+

1

x
dx = x+ln |x|+C so µ = ±ex+ln |x| =

|x|ex so we can use µ = x ex.

16
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2. 2
Standard form: y0+

x� 1

x
y =

ex

x
.
µ0

µ
=

x� 1

x
so ln |µ| =

Z
1� 1

x
dx = x� ln |x|+C so µ = ±ex�ln |x| =

ex

|x| so we can use µ = x�1ex.

2. 3
Standard form: y0 � x+ 1

x
y =

ex

x
.

µ0

µ
= �x+ 1

x
so ln |µ| =

Z
�1 � 1

x
dx = �x � ln |x| + C so

µ = ±e�x�ln |x| =
e�x

|x| so we can use µ = x�1e�x.

2. 4
Standard form: y0 � x� 1

x
y =

ex

x
.

µ0

µ
= �x� 1

x
so ln |µ| =

Z
�1 +

1

x
dx = �x + ln |x| + C so

µ = ±e�x+ln |x| = e�x|x| so we can use µ = xe�x.

3. 1

M(x, y) = ex + 4xy; N(x, y) = 2x2 + cos(y).
@M

@y
= 4x;

@N

@x
= 4x.

m(x, y) = 2x2y + ex + h(y) so
@m

@y
= 2x2 + 0 + h0(y).

my(x, y) = 2x2 + 0 + h0(y) = 2x2 + cos(y).
m(x, y) = 2x2y + ex + sin(y) +K.

2x2y + ex + sin(y) = C

C = 2 · (�1)2 ·
⇣⇡
2

⌘
+ e�1 + sin

�
⇡
2

�
= ⇡ + 1 + e�1 so

2x2y + ex + sin(y) = ⇡ + 1 + e�1

17
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3. 2

M(x, y) = cos(x) + 4xy, N(x, y) = 2x2 + ey so
@M

@y
= 4x;

@N

@x
= 4x.

m(x, y) = 2x2y + sin(x) + h(y) so
@m

@y
= 2x2 + 0 + h0(y).

my(x, y) = 2x2 + 0 + h0(y) = 2x2 + ey.
m(x, y) = 2x2y + ey + sin(x) +K.

2x2y + ey + sin(x) = C

C = 2 · (�1)2 ·
⇣⇡
2

⌘
+ e

⇡
2 + sin (1) = ⇡ + sin(�1) + e

⇡
2 so

2x2y + ey + sin(x) = ⇡ + sin(�1) + e⇡/2

4. 1
Let F (y) = (3y2�2y�1)(cos(y)+2). Since cos(y)+2 > 0 the equilibria are the solutions to 3y2�2y�1 =
(3y+ 1)(y� 1) = 0 so y = 1 and y = � 1

3 are the equilibria. F (0) = �1(3) < 0; F (2) = 7(cos(2) + 2) > 0
and F (�1) = 4(cos(�1) + 2) > 0. Hence y = � 1

3 is a stable equilibrium and y = 1 is unstable.

4. 2
Let F (y) = (3y2�2y�1)(cos(y)�2). Since cos(y)�2 < 0 the equilibria are the solutions to 3y2�2y�1 =
(3y+1)(y�1) = 0 so y = 1 and y = � 1

3 are the equilibria. F (0) = (�1)(�1) > 0; F (2) = 7(cos(2)�2) < 0
and F (�1) = 4(cos(�1)� 2) < 0. Hence y = � 1

3 is an unstable equilibrium and y = 1 is stable.

18
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5. 1

The characteristic polynomial of the matrix is
������

1� � 4 �2
0 3� � 0

�4 5 3� �

������
= (3� �)

����
1� � �2

�4 3� �

����

= (3� �) ((1� �)(3� �)� (�2)(�4))

= (3� �)(�2 � 4�� 5) = (3� �)(�� 5)(�+ 1)

which has roots � = �1, 3, 5. The eigenvalues are �1, 3 and 5.

5. 2

The characteristic polynomial of the matrix is
������

2� � 4 �2
0 4� � 0

�4 5 4� �

������
= (4� �)

����
2� � �2

�4 4� �

����

= (4� �)(�2 � 6�+ 0) = (4� �)�(�� 6)

which has roots � = 0, 4, 6. The eigenvalues are 0, 4 and 6.

5. 3

The characteristic polynomial of the matrix is
������

�� 4 �2
0 2� � 0

�4 5 2� �

������
= (2� �)

����
�� �2
�4 2� �

����

= (2� �)(�2 � 2�� 8) = (2� �)(�� 4)(�+ 2)

which has roots � = �2, 2, 4. The eigenvalues are �2, 2 and 4.
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6.

The characteristic polynomial of the 2⇥ 2-matrix A is given by �2 � tr(A)�+ det(A) = �2 � 6�+ 10 =

(� � 3)2 + 1 with roots 3 ± i. We consider the eigenvalue 3 � i. Then A � �I2 =


�1 + i 2

�1 1 + i

�
.

A corresponding eigenvector [x1 x2]T satisfies �1x1 + (1 + i)x2 = 0 so could be taken to be


1 + i

1

�
.

(Working with the conjugate eigenvalue 3 + i would give the conjugate eigenvector, but you should still
recognize the correct answer from the fact that complex conjugates of eigenvectors of real matrices are
also eigenvectors, for the complex conjugate eigenvalue.)

Alternatively, check that


2 2

�1 4

� 
1 + i

1

�
= (3� i)


1 + i

1

�
to see that


1 + i

1

�
is an eigenvector

with eigenvalue 3� i.

7. 1 Given any polynomial p(x), p(A)~v = p(2)~v. In the problem, p(x) = 2x3 � 3x2 and p(2) = 16� 12 = 4.

7. 2 Given any polynomial p(x), p(A)~v = p(�2)~v. In the problem, p(x) = 2x3� 3x2 and p(�2) = �16� 12 =
�28.

7. 3 Given any polynomial p(x), p(A)~v = p(2)~v. In the problem, p(x) = 2x3 + 3x2 and p(2) = 16 + 12 = 28.
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7. 4 Given any polynomial p(x), p(A)~v = p(�2)~v. In the problem, p(x) = 2x3+3x2 and p(�2) = �16+12 =
�4.

8. 1

A� 2I3 =

2

4
1 1 1
1 1 1
1 1 1

3

5 A� 5I3 =

2

4
�2 1 1
1 �2 1
1 1 �2

3

5

The case � = 2 looks easiest to reduce:

2

4
1 1 1
0 0 0
0 0 0

3

5 so the 2-eigenspace has dimension 2. Hence the

5-eigenspace has dimension at least 1 and at most 3� 2 so it has dimension 1.
For those of you who did row reduce � = 5, we include the computation:

A� �I3 =

2

4
�2 1 1
1 �2 1
1 1 �2

3

5 !

2

4
1 �2 1

�2 1 1
1 1 �2

3

5 !

2

4
1 �2 1
0 �3 3
0 3 �3

3

5 !

2

4
1 �2 1
0 1 �1
0 0 0

3

5

8. 2

A� 5I3 =

2

4
1 1 1
1 1 1
1 1 1

3

5 A� 8I3 =

2

4
�2 1 1
1 �2 1
1 1 �2

3

5

The case � = 5 looks easiest to reduce:

2

4
1 1 1
0 0 0
0 0 0

3

5 so the 5-eigenspace has dimension 2. Hence the

5-eigenspace has dimension at least 1 and at most 3� 2 so it has dimension 1.
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9.

The sum of the algebraic multiplicities of the complex eigenvalues is the size of the matrix (5) so algebraic
multiplicities of 2 and 2, or 2 and 4, are impossible. Geometric multiplicities of eigenvalues are between 1
and the algebraic multiplicity (inclusive), so a geometric multiplicity of 0 is impossible, and a geometric
multiplicity greater than the corresponding algebraic multiplicity is impossible. The case in which the
algebraic multiplicities of the eigenvalues � = 1 and � = 2 are 2 and 3, and the geometric multiplicities
are 2 and 2, respectively, meets all these requirements and is possible.

10.

If A and B are similar, A = PBP�1 and so they have the same determinant. If the characteristic
polynomial of an n⇥n matrix A has n distinct roots, then the fact that A is diagonalizable is a theorem.
If A = PInP�1 then A = I. Any 1 ⇥ 1 matrix is obviously diagonalizable. This only leaves lower

triangular matrices so there must be some which are not diagonalizable:


0 0
1 0

�
has characteristic

polynomial x2 so if it is diagonalizable,


0 0
1 0

�
= P


0 0
0

�
P�1 =


0 0
0

�
so


0 0
1 0

�
is not

diagonalizable.

11. 1

According to the Gram-Schmidt algorithm, the third vector is given by

~v3 = ~x3 �
~v1 •~x3

~v1 •~v1
~v1 �

~v2 •~x3

~v2 •~v2
~v2.

Plugging in the known vectors, we obtain

~v3 =

2

4
1
1

�1

3

5� 1

3

2

4
1

�1
�1

3

5+
4/3

24/9

2

4
�4/3
�2/3
�2/3

3

5 =

2

4
0
1

�1

3

5 .
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11. 2

Just for completeness check ~v2 = ~x2 �
~x1

•~x2

~x1
•~x1

~x1 =

2

4
�1
�1
1

3

5� (�1/3)

2

4
1

�1
�1

3

5 =

2

4
�2/3
�4/3
2/3

3

5.

Then

~v3 = ~x3 �
~v1 •~x3

~v1 •~v1
~v1 �

~v2 •~x3

~v2 •~v2
~v2.

Plugging in the known vectors, we obtain

~v3 =

2

4
1

�1
1

3

5� 1

3

2

4
1

�1
�1

3

5� 4/3

24/9

2

4
�2/3
�4/3
2/3

3

5 =

2

4
1

�1
1

3

5� 1

3

2

4
1

�1
�1

3

5� 1

2

2

4
�2/3
�4/3
2/3

3

5 =

2

4
1
0
1

3

5 .

12. 1

According to the theory, the projection of ~v onto W is given by

projW~v = proj~u1
~v + proj~u2

~v.

Therefore,

projW~v =
1� 1

2

2

664

1
0
1
0

3

775+
�1� 1

2

2

664

0
1
0
1

3

775 =

2

664

0
�1
0

�1

3

775 .

12. 2

According to the theory, the projection of ~v onto W is given by

projW~v = proj~u1
~v + proj~u2

~v.

Therefore,

projW~v =
1 + 1

2

2

664

1
0

�1
0

3

775+
�1 + 1

2

2

664

0
1
0

�1

3

775 =

2

664

1
0

�1
0

3

775 .
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13. 1

From the formula A = QR, we solve for R as R = QTA. Therefore, the (1, 2) entry of R (which is a) is
given by the dot product of the first column of Q with the second column of A:

a = (�
p
2/2) · (�1) =

p
2/2.

Similarly, the (2, 3) entry of R (which is b) is given by the dot product of the second column of Q with
the third column of A:

b =
p
6/3 · (�1) + (�

p
6/6) · 1 = �

p
6/2.

13. 2

From the formula A = QR, we solve for R as R = QTA. Therefore, the (1, 2) entry of R (which is a) is
given by the dot product of the first column of Q with the second column of A:

a =
p
2/2 · (�1) = �

p
2/2.

Similarly, the (2, 3) entry of R (which is b) is given by the dot product of the second column of Q with
the third column of A:

b = (�
p
6/6) · (�1) +

p
6/3 · 1 =

p
6/2.
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14. 1

If ~x 2 W?, then ~x is orthogonal to the basis of W , and this yields a system of linear equations for the
components of ~x: 2

664

x1

x2

x3

x4

3

775 •

2

664

1
0
2

�1

3

775 = 0,

2

664

x1

x2

x3

x4

3

775 •

2

664

0
1
1

�1

3

775 = 0;

it becomes (
x1 + 2x3 � x4 = 0

x2 + x3 � x4 = 0.

This system is already in its RREF, so we choose t := x3 and s := x4, and the leading variables are then
given by (

x1 = �2t+ s

x2 = �t+ s

Therefore, the solution vector is
2

664

x1

x2

x3

x4

3

775 =

2

664

�2t+ s
�t+ s

t
s

3

775 = t

2

664

�2
�1
1
0

3

775+ s

2

664

1
1
0
1

3

775 .

Thus, a basis of W? can be chosen as

2

664

�2
�1
1
0

3

775 and

2

664

1
1
0
1

3

775.
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14. 2

If ~x 2 W?, then ~x is orthogonal to the basis of W , and this yields a system of linear equations for the
components of ~x: 2

664

x1

x2

x3

x4

3

775 •

2

664

1
0
2

�1

3

775 = 0,

2

664

x1

x2

x3

x4

3

775 •

2

664

0
1

�1
0

3

775 = 0;

it becomes (
x1 + 2x3 � x4 = 0

x2 � x3 = 0.

This system is already in its RREF, so we choose t := x3 and s := x4, and the leading variables are then
given by (

x1 = �2t+ s

x2 = t.

Therefore, the solution vector is
2

664

x1

x2

x3

x4

3

775 =

2

664

�2t+ s
t
t
s

3

775 = t

2

664

�2
1
1
0

3

775+ s

2

664

1
0
0
1

3

775 .

Thus, a basis of W? can be chosen as

2

664

�2
1
1
0

3

775 and

2

664

1
0
0
1

3

775.

15. 1

The least squares solution can be found by solving the system

ATAx = AT~b.

Since A has linearly independent columns, there is a unique solution to this system. We compute ATA
and AT~b:

ATA =


1 0 1
0 1 1

�2

4
1 0
0 1
1 1

3

5 =


2 1
1 2

�
,

AT~b =


1 0 1
0 1 1

�2

4
5
2
1

3

5 =


6
3

�
.

We can solve the system (ATA)x = AT~b directly or find

(ATA)�1 =
1

3


2 �1
�1 2

�
.

Using this we can solve for x,

x = (ATA)�1(AT~b) =


3
0

�
.
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15. 2

The least squares solution can be found by solving the system

ATAx = AT~b.

Since A has linearly independent columns, there is a unique solution to this system. We compute ATA
and AT~b:

ATA =


1 0 1
0 1 1

�2

4
1 0
0 1
1 1

3

5 =


2 1
1 2

�
,

AT~b =


1 0 1
0 1 1

�2

4
2
5
1

3

5 =


3
6

�
.

We can solve the system (ATA)x = AT~b directly or find

(ATA)�1 =
1

3


2 �1
�1 2

�
.

Using this we can solve for x,

x = (ATA)�1(AT~b) =
1

3


2 �1
�1 2

� 
3
6

�
=


0
3

�
.

16. 1

We are using least squares approximation to find a line y = a + bx that minimizes the error vector for
these data points. Evaluating the line’s equation at the data points, we get the following three equations:

a� b = 0

a = 0

a+ 2b = 1

To find a and b for the line of best fit, we find a least squares solution to the inconsistent system
2

4
1 �1
1 0
1 2

3

5

a
b

�
=

2

4
0
0
1

3

5 .

Let

A =

2

4
1 �1
1 0
1 2

3

5 ,~b =

2

4
0
0
1

3

5 .

Then the least squares solution to A~x = ~b is the solution x to system ATAx = AT~b. Computing

ATA =


1 1 1
�1 0 2

�2

4
1 �1
1 0
1 2

3

5 =


3 1
1 5

�
and AT~b =


1 1 1
�1 0 2

�2

4
0
0
1

3

5 =


1
2

�
, we find


3 1
1 5

�
x =


1
2

�
.
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16. 2

We are using least squares approximation to find a line y = a + bx that minimizes the error vector for
these data points. Evaluating the line’s equation at the data points, we get the following three equations:

a+ b = 0

a = 0

a� 2b = 1

To find a and b for the line of best fit, we find a least squares solution to the inconsistent system
2

4
1 1
1 0
1 �2

3

5

a
b

�
=

2

4
0
0
1

3

5 .

Let

A =

2

4
1 1
1 0
1 �2

3

5 ,~b =

2

4
0
0
1

3

5 .

Then the least squares solution to A~x = ~b is the solution x to system ATAx = AT~b. Computing

ATA =


1 1 1
1 0 �2

�2

4
1 1
1 0
1 �2

3

5 =


3 �1
�1 5

�
and AT~b =


1 1 1
1 0 �2

�2

4
0
0
1

3

5 =


1
�2

�
, we find


3 �1
�1 5

�
x =


1
�2

�
.

17. 1

From the basis of W , we construct a matrix A,

A =

2

4
1 1
0 1
1 0

3

5 .

Then projW (~v) = A(ATA)�1AT~v. In particular, the standard matrix of projW is A(ATA)�1AT . We
compute ATA and its inverse first:

ATA =


2 1
1 2

�
,

(ATA)�1 =
1

3


2 �1
�1 2

�
.

Now we find

A(ATA)�1AT =
1

3

2

4
1 1
0 1
1 0

3

5

2 �1
�1 2

� 
1 0 1
1 1 0

�
=

1

3

2

4
2 1 1
1 2 �1
1 �1 2

3

5 .
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17. 2

ATA =


2 1
1 2

� �
ATA

��1
=

1

3


2 -1
-1 2

�
. Then

projW = A(ATA)�1AT =
1

3

2

4
1 1
0 -1
1 0

3

5


2 -1
-1 2

� 
1 0 1
1 -1 0

�
=

1

3

2

4
2 -1 1
-1 2 1
1 1 2

3

5
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