Towards perturbative topological field theory on manifolds with boundary

Pavel Mnev

University of Zurich

QGM, Aarhus University, March 12, 2013
Plan of the talk

- Background: topological field theory
- Hidden algebraic structure on cohomology of simplicial complexes coming from TFT
- One-dimensional simplicial Chern-Simons theory
- Topological field theory on manifolds with boundary
Axioms of an \(n \)-dimensional topological quantum field theory. (Atiyah’88)

Data:

1. To a closed \((n - 1)\)-dimensional manifold \(B \) a TFT associates a vector space \(\mathcal{H}_B \) (the “space of states”).

2. To a \(n \)-dimensional cobordism \(\Sigma : B_1 \rightarrow B_2 \) a TFT associates a linear map \(Z_\Sigma : \mathcal{H}_{B_1} \rightarrow \mathcal{H}_{B_2} \) (the “partition function”).

3. Representation of \(\text{Diff}(B) \) on \(\mathcal{H}_B \).
Axioms:

(a) Multiplicativity “⊔ → ⊗”:

\[\mathcal{H}_{B_1 \sqcup B_2} = \mathcal{H}_{B_1} \otimes \mathcal{H}_{B_2}, \quad Z_{\Sigma_1 \sqcup \Sigma_2} = Z_{\Sigma_1} \otimes Z_{\Sigma_2} \]

(b) Gluing axiom: for cobordisms \(\Sigma_1 : B_1 \to B_2, \Sigma_2 : B_2 \to B_3, \)

\[Z_{\Sigma_1 \sqcup B_2 \Sigma_2} = Z_{\Sigma_2} \circ Z_{\Sigma_1} \]

(c) Normalization: \(\mathcal{H}_{\emptyset} = \mathbb{C}. \)

(d) Diffeomorphisms of \(\Sigma \) constant on \(\partial \Sigma \) do not change \(Z_{\Sigma} \). Under general diffeomorphisms, \(Z_{\Sigma} \) transforms equivariantly.

Remarks:

- A closed \(n \)-manifold \(\Sigma \) can be viewed as a cobordism \(\emptyset \xrightarrow{\Sigma} \emptyset \), so \(Z_{\Sigma} : \mathbb{C} \to \mathbb{C} \) is a multiplication by a complex number – a diffeomorphism invariant of \(\Sigma \).

- An \(n \)-TFT \((\mathcal{H}, Z) \) is a functor of symmetric monoidal categories \(\text{Cob}_n \to \text{Vect}_\mathbb{C} \), with diffeomorphisms acting by natural transformations.

A. S. Schwarz’78: path integral of the form

\[Z_\Sigma = \int_{F_\Sigma} D X \ e^{i \hbar S(X)} \]

with \(S \) a local functional on \(F_\Sigma \) (a space of sections of a sheaf over \(\Sigma \)), invariant under \(\text{Diff}(\Sigma) \), can produce a topological invariant of \(\Sigma \) (when it can be defined, e.g. through formal stationary phase expression at \(\hbar \to 0 \)).

Example: Let \(\Sigma \) be odd-dimensional, closed, oriented; let \(E \) be an acyclic local system, \(F_\Sigma = \Omega^r(\Sigma, E) \oplus \Omega^{\text{dim } \Sigma - r - 1}(\Sigma, E^*) \) with \(0 \leq r \leq \text{dim } \Sigma - 1 \), and with the action

\[S = \int_\Sigma \langle b \wedge da \rangle \]

The corresponding path integral can be defined and yields the **Ray-Singer torsion** of \(\Sigma \) with coefficients in \(E \).

Witten’89: Let Σ be a compact, oriented, framed 3-manifold, G – a compact Lie group, $P = \Sigma \times G$ the trivial G-bundle over Σ. Set $F_\Sigma = \text{Conn}(P) \simeq \mathfrak{g} \otimes \Omega^1(\Sigma)$ – the space of connections in P; $\mathfrak{g} = \text{Lie}(G)$. For A a connection, set

$$S_{CS}(A) = \text{tr}_\mathfrak{g} \int_\Sigma \frac{1}{2} A \wedge dA + \frac{1}{3} A \wedge A \wedge A$$

– the integral of the Chern-Simons 3-form. Consider

$$Z_\Sigma(k) = \int_{\text{Conn}(P)} DA \ e^{\frac{ik}{\hbar} S_{CS}(A)}$$

for $k = 1, 2, 3, \ldots$ (i.e. $\hbar = \frac{2\pi}{k}$). For closed manifolds, $Z(\Sigma, k)$ is an interesting invariant, calculable explicitly through surgery. E.g. for $G = SU(2), \Sigma = S^3$, the result is

$$Z_{S^3}(k) = \sqrt{\frac{2}{k+2}} \sin \left(\frac{\pi}{k+2} \right)$$
The space of states \mathcal{H}_B corresponding to a surface B is the geometric quantization of the moduli space of local systems $\text{Hom}(\pi_1(B), G)/G$ with Atiyah-Bott symplectic structure.

For a knot $\gamma : S^1 \hookrightarrow \Sigma$, Witten considers the expectation value

$$W(\Sigma, \gamma, k) = Z_{\Sigma}(k)^{-1} \int_{\text{Conn}(P)} D A \, e^{\frac{ik}{2\pi} \text{CS}(A)} \, \text{tr}_R \, \text{hol}(\gamma^* A)$$

where R is a representation of G. In case $G = SU(2)$, $\Sigma = S^3$, this expectation value yields the value of Jones’ polynomial of the knot at the point $q = e^{\frac{i\pi}{k+2}}$.

Background: Lagrangian TFTs

Axelrod-Singer'94: Perturbation theory (formal stationary phase expansion at \(\hbar \to 0 \)) for Chern-Simons theory on a **closed**, oriented, framed 3-manifold rigorously constructed.
\[Z_{\Sigma}^{\text{pert}}(A_0, \hbar) = e^{i\frac{\hbar}{\pi} S_{CS}(A_0)} \tau(\Sigma, A_0) e^{i\pi \frac{\eta(\Sigma, A_0, g)}{2}} e^{ic(\hbar) S_{\text{grav}}(g)} \]

\[\cdot \exp \left(\frac{i}{\hbar} \sum_{\text{connected 3-valent graphs } \Gamma} \frac{(i\hbar)^{l(\Gamma)}}{|\text{Aut}(\Gamma)|} \int_{\text{Conf}_V(\Gamma)(\Sigma)} \prod_{\text{edges}} \pi_{e_1 e_2} \eta \right) \]

where
- \(A_0 \) is a fixed \textbf{acyclic} flat connection, \(g \) is an arbitrary Riemannian metric,
- \(\tau(\Sigma, A_0) \) is the Ray-Singer torsion, \(\eta(\Sigma, A_0, g) \) is the Atiyah’s eta-invariant,
- \(V(\Gamma) \) and \(l(\Gamma) \) are the number of vertices and the number of loops of a graph,
- \(\text{Conf}_n(\Sigma) \) is the Fulton-Macpherson-Axelrod-Singer compactification of the configuration space of \(n \)-tuple distinct points on \(\Sigma \),
- \(\eta \in \Omega^2(\text{Conf}_2(\Sigma)) \) is the \textbf{propagator}, a parametrics for the Hodge-theoretic inverse of de Rham operator, \(d/(dd^* + d^*d) \),
- \(\pi_{ij} : \text{Conf}_n(\Sigma) \to \text{Conf}_2(\Sigma) \) – forgetting all points except \(i \)-th and \(j \)-th.
- \(S_{\text{grav}}(g) \) is the Chern-Simons action evaluated on the Levi-Civita connection, \(c(\hbar) \in \mathbb{C}[[\hbar]] \).
Remarks:

- Expression for $\log Z$ is finite in each order in \hbar: given as a finite sum of integrals of smooth forms over compact manifolds.
- Propagator depends on the choice of metric g, but the whole expression does not depend on g.

Comments:

- Explicit examples of Atiyah’s 3-TFTs were constructed by Reshetikhin-Turaev’91 and Turaev-Viro’92 from representation theory of quantum groups at roots of unity.

- Main motivation to study TFTs is that they produce invariants of manifolds and knots.

- Example of a different application: use of the 2-dimensional Poisson sigma model on a disc in Kontsevich’s deformation quantization of Poisson manifolds (Kontsevich'97, Cattaneo-Felder'00).
Problems:

1. Witten’s treatment of Chern-Simons theory is not completely mathematically transparent (use of path integral as a “black box” which is assumed to have certain properties); Axelrod-Singer’s treatment is transparent, but restricted to closed manifolds: perturbative Chern-Simons theory as Atiyah’s TFT is not yet constructed.

2. Reshetikhin-Turaev invariants are conjectured to coincide asymptotically with the Chern-Simons partition function.

3. Construct a combinatorial model of Chern-Simons theory on triangulated manifolds, retaining the properties of a perturbative gauge theory and yielding the same manifold invariants.
Program/logic of the exposition:

Simplicial BF theory \textbf{(P.M.)}

\[\rightarrow \text{hidden algebraic structure on cohomology of simplicial complexes} \]

\[\downarrow \]

One-dimensional simplicial Chern-Simons theory

\[\text{(with A. Alekseev)} \]

\[\downarrow \]

Perturbative TFT on manifolds with boundary

\[\rightarrow \text{Euler-Lagrange moduli spaces: supergeometric structures, gluing, cohomological quantization. Gluing formulae for quantum invariants.} \]

\[\text{(partially complete, with A. Cattaneo and N. Reshetikhin)} \]

\[\downarrow \]

Perturbative TFT on manifolds with corners \textbf{(in progress)}
Background: simplicial complexes, cohomological operations

Simplicial complex T
Background: simplicial complexes, cohomological operations

Simplicial complex T

\[
\begin{align*}
\text{Simplicial cochains } C^0(T) & \rightarrow \cdots \rightarrow C^\text{top}(T), \\
C^k(T) &= \text{Span}\{k - \text{simplices}\}, \\
d_k : C^k(T) &\rightarrow C^{k+1}(T), \\
\sum_{\sigma' \in T: \sigma \in \text{faces}(\sigma')} &\pm e_{\sigma'}
\end{align*}
\]
Simplicial complex T

\[\xrightarrow{} \]

Simplicial cochains $C^0(T) \to \cdots \to C^{\text{top}}(T)$,

\[C^k(T) = \text{Span}\{k - \text{simplices}\}, \]

\[d_k : C^k(T) \to C^{k+1}(T), \quad e_\sigma \mapsto \sum_{\sigma' \in T : \sigma \in \text{faces}(\sigma')} \pm e_{\sigma'} \]

Cohomology $H^\bullet(T)$, $H^k(T) = \ker d_k / \text{im } d_{k-1}$

a homotopy invariant of T
Cohomology carries a commutative ring structure, coming from (non-commutative) Alexander’s product for cochains.
Cohomology carries a commutative ring structure, coming from (non-commutative) Alexander’s product for cochains.

Massey operations on cohomology are a complete invariant of rational homotopy type in simply connected case (Quillen-Sullivan), i.e. rationalized homotopy groups $\mathbb{Q} \otimes \pi_k(T)$ can be recovered from them.
Cohomology carries a commutative ring structure, coming from (non-commutative) Alexander’s product for cochains.

Massey operations on cohomology are a complete invariant of rational homotopy type in simply connected case (Quillen-Sullivan), i.e. rationalized homotopy groups $\mathbb{Q} \otimes \pi_k(T)$ can be recovered from them.

Example of use: linking of Borromean rings is detected by a non-vanishing Massey operation on cohomology of the complement.\[m_3([\alpha], [\beta], [\gamma]) = [u \wedge \gamma + \alpha \wedge v] \in H^2\]
where $[\alpha], [\beta], [\gamma] \in H^1, du = \alpha \wedge \beta, dv = \beta \wedge \gamma.$
Another example: \textbf{nilmanifold}

\[M = H_3(\mathbb{R})/H_3(\mathbb{Z}) \]

\[
= \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \mid x, y, z \in \mathbb{R} \right\} / \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \mid a, b, c \in \mathbb{Z} \right\}
\]

Denote

\[\alpha = dx, \ \beta = dy, \ u = dz - ydx \in \Omega^1(M) \]

Important point: \(\alpha \wedge \beta = du \). The cohomology is spanned by classes

\[
\begin{align*}
\{[1]\} & \quad \text{degree 0} \\
\{[\alpha], [\beta]\} & \quad \text{degree 1} \\
\{[\alpha \wedge u], [\beta \wedge u]\} & \quad \text{degree 2} \\
\{[\alpha \wedge \beta \wedge u]\} & \quad \text{degree 3}
\end{align*}
\]

and

\[m_3([\alpha], [\beta], [\beta]) = [u \wedge \beta] \in H^2(M) \]

is a non-trivial Massey operation.
Fix \mathfrak{g} a unimodular Lie algebra (i.e. with $\text{tr}[x, \bullet] = 0$ for any $x \in \mathfrak{g}$).

Main construction (P.M.)

Simplicial complex T

\[\text{local formula}\]

Unimodular L_∞ algebra structure on $\mathfrak{g} \otimes C^\bullet(T)$

\[\text{homotopy transfer}\]

Unimodular L_∞ algebra structure on $\mathfrak{g} \otimes H^\bullet(T)$
Fix \(g \) a unimodular Lie algebra (i.e. with \(\text{tr}[x, \bullet] = 0 \) for any \(x \in g \)).

Main construction (P.M.)

Simplicial complex \(T \)

\[
\begin{align*}
\text{local formula} & \downarrow \\
\text{Unimodular } L_\infty \text{ algebra structure on } g \otimes C^\bullet(T) & \downarrow \\
\text{homotopy transfer} & \\
\text{Unimodular } L_\infty \text{ algebra structure on } g \otimes H^\bullet(T)
\end{align*}
\]

Main theorem (P.M.)

Unimodular \(L_\infty \) algebra structure on \(g \otimes H^\bullet(T) \) (up to isomorphisms) is an invariant of \(T \) under simple homotopy equivalence.
Main construction (P.M.)

Simplicial complex T

\downarrow local formula

Unimodular L_∞ algebra structure on $g \otimes C^\bullet(T)$

\downarrow homotopy transfer

Unimodular L_∞ algebra structure on $g \otimes H^\bullet(T)$

- Thom’s problem: lifting ring structure on $H^\bullet(T)$ to a **commutative** product on cochains. Removing g, we get a homotopy commutative algebra on $C^\bullet(T)$. This is an improvement of Sullivan’s result with cDGA structure on cochains $= \Omega_{\text{poly}}(T)$.
- **Local** formulae for Massey operations.
- Our invariant is strictly stronger than rational homotopy type.
References:

A unimodular L_∞ algebra is the following collection of data:

(a) a \mathbb{Z}-graded vector space V^\bullet,
(b) “classical operations” $l_n : \wedge^n V \to V$, $n \geq 1$,
(c) “quantum operations” $q_n : \wedge^n V \to \mathbb{R}$, $n \geq 1$,

Note: First classical operation satisfies $(l_1)^2 = 0$, so (V^\bullet, l_1) is a complex.

A unimodular L_∞ algebra is in particular an L_∞ algebra (as introduced by Lada-Stasheff), by ignoring q_n. Unimodular Lie algebra is the same as unimodular L_∞ algebra with $l_1 = q_1 = 0$.
Definition

A unimodular L_∞ algebra is the following collection of data:

(a) a \mathbb{Z}-graded vector space V^\bullet,
(b) “classical operations” $l_n : \wedge^n V \to V$, $n \geq 1$,
(c) “quantum operations” $q_n : \wedge^n V \to \mathbb{R}$, $n \geq 1$,

subject to two sequences of quadratic relations:

1. $\sum_{r+s=n} \frac{1}{r! s!} l_{r+1}(\bullet, \cdots, \bullet, l_s(\bullet, \cdots, \bullet)) = 0$, $n \geq 1$
 (anti-symmetrization over inputs implied),

2. $\frac{1}{n!} \text{Str} l_{n+1}(\bullet, \cdots, \bullet, -) + $ $\sum_{r+s=n} \frac{1}{r! s!} q_{r+1}(\bullet, \cdots, \bullet, l_s(\bullet, \cdots, \bullet)) = 0$
Definition

A unimodular L_∞ algebra is the following collection of data:
(a) a \mathbb{Z}-graded vector space V^\bullet,
(b) “classical operations” $l_n : \wedge^n V \rightarrow V$, $n \geq 1$,
(c) “quantum operations” $q_n : \wedge^n V \rightarrow \mathbb{R}$, $n \geq 1$,

subject to two sequences of quadratic relations:
1. $\sum_{r+s=n} \frac{1}{r!s!} l_{r+1}(\bullet, \cdots, \bullet, l_s(\bullet, \cdots, \bullet)) = 0$, $n \geq 1$
 (anti-symmetrization over inputs implied),
2. $\frac{1}{n!} \text{Str} l_{n+1}(\bullet, \cdots, \bullet, -) +
 \sum_{r+s=n} \frac{1}{r!s!} q_{r+1}(\bullet, \cdots, \bullet, l_s(\bullet, \cdots, \bullet)) = 0$

Note:
- First classical operation satisfies $(l_1)^2 = 0$, so (V^\bullet, l_1) is a complex.
- A unimodular L_∞ algebra is in particular an L_∞ algebra (as introduced by Lada-Stasheff), by ignoring q_n.
- Unimodular Lie algebra is the same as unimodular L_∞ algebra with $l\neq 2 = q_\bullet = 0$.
An alternative definition

A unimodular L_∞ algebra is a graded vector space V endowed with

- a vector field Q on $V[1]$ of degree 1,
- a function ρ on $V[1]$ of degree 0,

satisfying the following identities:

$$[Q, Q] = 0, \quad \text{div } Q = Q(\rho)$$
Homotopy transfer theorem (P.M.)

If \((V, \{l_n\}, \{q_n\})\) is a unimodular \(L_\infty\) algebra and \(V' \hookrightarrow V\) is a deformation retract of \((V, l_1)\), then

1. \(V'\) carries a unimodular \(L_\infty\) structure given by

\[
l'_n = \sum_{\Gamma_0} \frac{1}{|\text{Aut}(\Gamma_0)|} \cdot \ni

q'_n = \sum_{\Gamma_1} \frac{1}{|\text{Aut}(\Gamma_1)|} \cdot \ni

where \(\Gamma_0\) runs over rooted trees with \(n\) leaves and \(\Gamma_1\) runs over 1-loop graphs with \(n\) leaves.
Homotopy transfer theorem (P.M.)

If \((V, \{l_n\}, \{q_n\})\) is a unimodular \(L_\infty\) algebra and \(V' \hookrightarrow V\) is a deformation retract of \((V, l_1)\), then

\[V' \text{ carries a unimodular } L_\infty \text{ structure given by} \]

\[l'_n = \sum \Gamma_0 \frac{1}{|\text{Aut}(\Gamma_0)|} : \wedge^n V' \rightarrow V' \]

\[q'_n = \sum \Gamma_1 \frac{1}{|\text{Aut}(\Gamma_1)|} + \sum \Gamma_0 \frac{1}{|\text{Aut}(\Gamma_0)|} : \wedge^n V' \rightarrow \mathbb{R} \]

where \(\Gamma_0\) runs over rooted trees with \(n\) leaves and \(\Gamma_1\) runs over 1-loop graphs with \(n\) leaves. Decorations:

<table>
<thead>
<tr>
<th>leaf</th>
<th>(i : V' \hookrightarrow V)</th>
<th>root</th>
<th>(p : V \rightarrow V')</th>
</tr>
</thead>
<tbody>
<tr>
<td>edge</td>
<td>(-s : V^\bullet \rightarrow V^{\bullet-1})</td>
<td>((m + 1))-valent vertex</td>
<td>(l_m)</td>
</tr>
<tr>
<td>cycle</td>
<td>super-trace over (V)</td>
<td>(m)-valent (\circ)-vertex</td>
<td>(q_m)</td>
</tr>
</tbody>
</table>

where \(s\) is a chain homotopy, \(l_1 s + s l_1 = \text{id} - i p\).
Homotopy transfer theorem (P.M.)

If \((V, \{l_n\}, \{q_n\})\) is a unimodular \(L_\infty\) algebra and \(V' \hookrightarrow V\) is a deformation retract of \((V, l_1)\), then

1. \(V'\) carries a unimodular \(L_\infty\) structure given by

\[
l'_n = \sum_{\Gamma_0} \frac{1}{|\text{Aut}(\Gamma_0)|} : \wedge^n V' \to V'
\]

\[
q'_n = \sum_{\Gamma_1} \frac{1}{|\text{Aut}(\Gamma_1)|} + \sum_{\Gamma_0} \frac{1}{|\text{Aut}(\Gamma_0)|} : \wedge^n V' \to \mathbb{R}
\]

where \(\Gamma_0\) runs over rooted trees with \(n\) leaves and \(\Gamma_1\) runs over 1-loop graphs with \(n\) leaves. **Decorations:**

<table>
<thead>
<tr>
<th>leaf</th>
<th>(i : V' \hookrightarrow V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>edge</td>
<td>(-s : V^\bullet \to V^{\bullet-1})</td>
</tr>
<tr>
<td>cycle</td>
<td>super-trace over (V)</td>
</tr>
</tbody>
</table>

where \(s\) is a chain homotopy, \(l_1 s + s l_1 = \text{id} - i p\).

2. Algebra \((V', \{l'_n\}, \{q'_n\})\) changes by isomorphisms under changes of induction data \((i, p, s)\).
Introduction

Locality of the algebraic structure on simplicial cochains

\[l_n^T(X_{\sigma_1}e_{\sigma_1}, \cdots, X_{\sigma_n}e_{\sigma_n}) = \sum_{\sigma \in T : \sigma_1, \ldots, \sigma_n \in \text{faces}(\sigma)} \bar{l}_n^\sigma(X_{\sigma_1}e_{\sigma_1}, \cdots, X_{\sigma_n}e_{\sigma_n})e_{\sigma} \]

\[q_n^T(X_{\sigma_1}e_{\sigma_1}, \cdots, X_{\sigma_n}e_{\sigma_n}) = \sum_{\sigma \in T : \sigma_1, \ldots, \sigma_n \in \text{faces}(\sigma)} \bar{q}_n^\sigma(X_{\sigma_1}e_{\sigma_1}, \cdots, X_{\sigma_n}e_{\sigma_n}) \]

Notations: \(e_{\sigma} \) – basis cochain for a simplex \(\sigma \), \(X_{\bullet} \in g \), \(Xe_{\sigma} := X \otimes e_{\sigma} \).

Here \(\bar{l}_n^\sigma : \wedge^n(g \otimes C^\bullet(\sigma)) \to g \), \(\bar{q}_n^\sigma : \wedge^n(g \otimes C^\bullet(\sigma)) \to \mathbb{R} \) are universal local building blocks, depending on dimension of \(\sigma \) only, not on combinatorics of \(T \).
Zero-dimensional simplex $\sigma = [A]$

$\bar{l}_2(X e_A, Y e_A) = [X, Y]$, all other operations vanish.
Zero-dimensional simplex $\sigma = [A]$:
$\bar{l}_2(X e_A, Y e_A) = [X, Y]$, all other operations vanish.

One-dimensional simplex $\sigma = [AB]$:

\[
\bar{l}_{n+1}(X_1 e_{AB}, \cdots, X_n e_{AB}, Y e_B) = \frac{B_n}{n!} \sum_{\theta \in S_n} [X_{\theta_1}, \cdots, [X_{\theta_n}, Y] \cdots]
\]

\[
\bar{l}_{n+1}(X_1 e_{AB}, \cdots, X_n e_{AB}, Y e_A) = (-1)^{n+1} \frac{B_n}{n!} \sum_{\theta \in S_n} [X_{\theta_1}, \cdots, [X_{\theta_n}, Y] \cdots]
\]

\[
\bar{q}_n(X_1 e_{AB}, \cdots, X_n e_{AB}) = \frac{B_n}{n \cdot n!} \sum_{\theta \in S_n} \text{tr}_g [X_{\theta_1}, \cdots, [X_{\theta_n}, \bullet] \cdots]
\]

where $B_0 = 1$, $B_1 = -1/2$, $B_2 = 1/6$, $B_3 = 0$, $B_4 = -1/30, \ldots$ are Bernoulli numbers.
Higher-dimensional simplices, $\sigma = \Delta^N$, $N \geq 2$: \bar{l}_n, \bar{q}_n are given by a regularized homotopy transfer formula for transfer $g \otimes \Omega^\bullet(\Delta^N) \to g \otimes C^\bullet(\Delta^N)$
Higher-dimensional simplices, \(\sigma = \Delta^N, \ N \geq 2 \): \(\bar{l}_n, \bar{q}_n \) are given by a regularized homotopy transfer formula for transfer \(g \otimes \Omega^\bullet(\Delta^N) \rightarrow g \otimes C^\bullet(\Delta^N) \), with

- \(i \) = representation of cochains by Whitney elementary forms,
- \(p \) = integration over faces,
- \(s \) = Dupont’s chain homotopy operator.
Higher-dimensional simplices, \(\sigma = \Delta^N, \ N \geq 2 \): \(\bar{l}_n, \bar{q}_n \) are given by a regularized homotopy transfer formula for transfer \(g \otimes \Omega^\bullet(\Delta^N) \rightarrow g \otimes C^\bullet(\Delta^N) \), with

- \(i = \) representation of cochains by Whitney elementary forms,
- \(p = \) integration over faces,
- \(s = \) Dupont’s chain homotopy operator.

\[
\left\{ \bar{l}^\sigma_n, \bar{q}^\sigma_n \right\}(X_{\sigma_1}e_{\sigma_1}, \ldots, X_{\sigma_n}e_{\sigma_n}) = \sum_{\Gamma} C(\Gamma)^\sigma_{\sigma_1 \ldots \sigma_n} \text{Jacobi}_g(\Gamma; X_{\sigma_1}, \ldots, X_{\sigma_n})
\]

where \(\Gamma \) runs over binary rooted trees with \(n \) leaves for \(\bar{l}_n^\sigma \) and over trivalent 1-loop graphs with \(n \) leaves for \(\bar{q}_n^\sigma \); \(C(\Gamma)^\sigma_{\sigma_1 \ldots \sigma_n} \in \mathbb{R} \) are structure constants.
Higher-dimensional simplices, $\sigma = \Delta^N$, $N \geq 2$: \bar{l}_n, \bar{q}_n are given by a regularized homotopy transfer formula for transfer $g \otimes \Omega^\bullet(\Delta^N) \rightarrow g \otimes C^\bullet(\Delta^N)$, with

- $i =$ representation of cochains by Whitney elementary forms,
- $p =$ integration over faces,
- $s =$ Dupont’s chain homotopy operator.

$$\bar{l}_n^\sigma \quad \bar{q}_n^\sigma \left\{ X_{\sigma_1} e_{\sigma_1}, \cdots, X_{\sigma_n} e_{\sigma_n} \right\} = \sum_{\Gamma} C(\Gamma)^\sigma_{\sigma_1 \cdots \sigma_n} \text{Jacobi}_g(\Gamma; X_{\sigma_1}, \cdots, X_{\sigma_n})$$

where Γ runs over binary rooted trees with n leaves for \bar{l}_n^σ and over trivalent 1-loop graphs with n leaves for \bar{q}_n^σ;
$C(\Gamma)^\sigma_{\sigma_1 \cdots \sigma_n} \in \mathbb{R}$ are structure constants.
There are explicit formulae for structure constants for small n.
Summary: logic of the construction

building blocks \bar{l}_n, \bar{q}_n on Δ^N

\[
\begin{align*}
\downarrow & \quad \text{combinatorics of } T \\
\downarrow & \quad \text{algebraic structure on cochains} \\
\downarrow & \quad \text{homotopy transfer} \\
\downarrow & \quad \text{algebraic structure on cohomology}
\end{align*}
\]
Summary: logic of the construction

building blocks \bar{l}_n, \bar{q}_n on Δ^N

\[\downarrow \text{combinatorics of } T \]

algebraic structure on cochains

\[\downarrow \text{homotopy transfer} \]

algebraic structure on cohomology

- Operations l_n on $g \otimes H^\bullet(T)$ are **Massey brackets** on cohomology and are a complete invariant of **rational homotopy type** in simply-connected case.

- Operations q_n on $g \otimes H^\bullet(T)$ give a version of **Reidemeister torsion** of T.

- Construction above yields new local combinatorial formulae for Massey brackets (in other words: Massey brackets lift to a local algebraic structure on simplicial cochains).
Example: for a circle and a Klein bottle, $H^\bullet(S^1) \simeq H^\bullet(KB)$ as rings, but $\mathfrak{g} \otimes H^\bullet(S^1) \not\simeq \mathfrak{g} \otimes H^\bullet(KB)$ as unimodular L_∞ algebras (distinguished by quantum operations).

\[
e^{\sum_n \frac{1}{n!} q_n (X \otimes \varepsilon, \cdots X \otimes \varepsilon)} =
\begin{cases}
\det_{\mathfrak{g}} \left(\frac{\sinh \frac{\text{ad} X}{2}}{\frac{\text{ad} X}{2}} \right) & \text{for } S^1 \\
\det_{\mathfrak{g}} \left(\frac{\text{ad} X}{2} \cdot \coth \frac{\text{ad} X}{2} \right)^{-1} & \text{for Klein bottle}
\end{cases}
\]

where $\varepsilon \in H^1$ – generator, $X \in \mathfrak{g}$ – variable.
Example: Massey bracket on the nilmanifold, combinatorial calculation

Triangulation of the nilmanifold:

- **one 0-simplex:** $A=B=C=D=A'=B'=C'=D'$
- **seven 1-simplices:** $AD=BC=A'D'=B'C'$, $AA'=BB'=CC'=DD'$, $AB=DC=D'B'$, $AC=A'B'=D'C'$, $AB'=DC'$, $AD'=BC'$, AC'
- **twelve 2-simplices:** $AA'B'=DD'C'$, $AB'B=DC'C$, $AA'D'=BB'C'$, $AD'=BC'C$, $ACD=AB'D'$, $ABC=D'B'C'$, $AB'D'$, $AC'D'$, ACC', ABC'
- **six 3-simplices:** $AA'B'D'$, $AB'C'D'$, $ADC'D'$, $ABB'C'$, $ABCC'$, $ACDC'$

Massey bracket on H_1: $\mu_3(X \otimes [\alpha], Y \otimes [\beta], Z \otimes [\beta]) = \frac{1}{2} \mu_2(X \otimes [\alpha], Y \otimes [\beta]) + \sum_{\text{permutations of inputs}}$
Triangulation of the nilmanifold:

One 0-simplex: $A=B=C=D=A'=B'=C'=D'$

Seven 1-simplices: $AD=BC=A'D'=B'C'$,
$AA'=BB'=CC'=DD'$, $AB=DC=D'B'$,
$AC=A'B'=D'C'$, $AB'=DC'$, $AD'=BC'$, AC'

Twelve 2-simplices: $AA'B'=DD'C'$, $AB'B=DC'C$,
$AA'D'=BB'C'$, $AD'D=BC'C$, $ACD=AB'D'$,
$ABC=D'B'C'$, $AB'D'$, $AC'D'$, ACC', ABC'

Six 3-simplices: $AA'B'D'$, $AB'C'D'$,
$ADC'D'$, $ABB'C'$, $ABCC'$, $ACDC'$

Massey bracket on H^1:

\[l_3(X \otimes [\alpha], Y \otimes [\beta], Z \otimes [\beta]) = \]
\[\frac{1}{2} X \otimes \alpha \xrightarrow{l_3^T} l_2^T - s^T + \frac{1}{6} Y \otimes \beta \xrightarrow{l_3^T} + \text{permutations of inputs} \]

\[= ([X, Y], Z) + ([X, Z], Y) \otimes [\eta] \in g \otimes H^2(T) \]

Where $s^T = d^\vee / (dd^\vee + d^\vee d)$;
\[\alpha = e_{AC} + e_{AD} + e_{AC'} + e_{AD'}, \beta = e_{AA'} + e_{AB'} + e_{AC'} + e_{AD'} \]
representatives of cohomology classes $[\alpha], [\beta]$ in simplicial cochains.
Simplicial program for TFTs: Given a TFT on a manifold M with space of fields F_M and action $S_M \in C^\infty(F_M)[[\hbar]]$, construct an exact discretization associating to a triangulation T of M a fin.dim. space F_T and a local action $S_T \in C^\infty(F_T)[[\hbar]]$, such that partition function Z_M and correlation functions can be obtained from (F_T, S_T) by fin.dim. integrals. Also, if T' is a subdivision of T, S_T is an effective action for $S_{T'}$.

M
TFT
M
T' TFT
M
T partition function
(invariant of M)
Example of a TFT for which the exact discretization exists:

BF theory:

- **fields:** $F_M = \underbrace{g \otimes \Omega^1(M)}_{A} \oplus \underbrace{g^* \otimes \Omega^{\dim M-2}(M)}_{B}$,

- **action:** $S_M = \int_M \langle B \wedge dA + A \wedge A \rangle$,

- **equations of motion:** $dA + A \wedge A = 0$, $d_A B = 0$.
Algebra – TFT dictionary

<table>
<thead>
<tr>
<th>De Rham algebra $\mathfrak{g} \otimes \Omega^\bullet(M)$ (as a dg Lie algebra)</th>
<th>BF theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unimodular L_∞ algebra $(V, {l_n}, {q_n})$</td>
<td>BF_∞ theory, $F = V[1] \oplus V^*[-2]$, $S = \sum_n \frac{1}{n!} \langle B, l_n(A, \cdots, A) \rangle + \hbar \sum_n \frac{1}{n!} q_n(A, \cdots, A)$</td>
</tr>
<tr>
<td>Quadratic relations on operations</td>
<td>Batalin-Vilkoviski master equation $\Delta e^{S/\hbar} = 0$</td>
</tr>
<tr>
<td>Homotopy transfer $V \to V'$</td>
<td>Effective action $e^{S'/\hbar} = \int_{L \subset F''} e^{S/\hbar}$, $F = F' \oplus F''$</td>
</tr>
<tr>
<td>Choice of chain homotopy s</td>
<td>Gauge-fixing (choice of Lagrangian $L \subset F''$)</td>
</tr>
</tbody>
</table>
Batalin-Vilkovisky formalism

Motivation: resolution of the problem of degenerate critical loci in perturbation theory ("gauge-fixing").

Definition

A *BV algebra* \((A, \cdot, \{\}, \Delta)\) is a unital \(\mathbb{Z}\)-graded commutative algebra \((A^\bullet, \cdot, 1)\) endowed with:

- a degree 1 Poisson bracket \(\{\}, : A \otimes A \to A\) — a bi-derivation of \(\cdot\), satisfying Jacobi identity (i.e. \((A, \cdot, \{\}, \Delta)\) is a *Gerstenhaber algebra*),
- a degree 1 operator ("BV Laplacian") \(\Delta : A^\bullet \to A^{\bullet+1}\) satisfying

\[
\Delta^2 = 0, \quad \Delta(1) = 0, \quad \Delta(a \cdot b) = (\Delta a) \cdot b + (-1)^{|a|} a \cdot (\Delta b) + (-1)^{|a|} \{a, b\}
\]
Examples:

1. For \mathcal{F} a \mathbb{Z}-graded manifold endowed with a degree -1 symplectic form ω and a “consistent” volume element μ (the data $(\mathcal{F}, \omega, \mu)$ is called an “SP-manifold”), the ring of functions $A = C^\infty(\mathcal{F})$ carries a BV algebra structure, with pointwise multiplication \cdot, and with

\[
\{f, g\} = \tilde{f}g, \quad \Delta f = \frac{1}{2} \text{div}_\mu \tilde{f}
\]

where \tilde{f} is the Hamiltonian vector field for f defined by $\iota_{\tilde{f}} \omega = df$. Consistency condition on μ: $\Delta^2 = 0$.

2. Special case of the above when (\mathcal{F}, ω) is a degree -1 symplectic graded vector space and μ is the translation-invariant volume element.

3. Polyvector fields on a manifold M carrying a volume element ρ, with opposite grading:

\[
A^\bullet = \mathcal{V}^{-\bullet}(M), \quad \cdot = \wedge, \quad \{,\} = [,,]_{NS}, \quad \Delta = \text{div}_\rho
\]

— this correspond to setting $\mathcal{F} = T^*[-1]M$ in (1).
Definition

Element $S \in A^0[[\hbar]]$ is said to satisfy Batalin-Vilkovisky quantum master equation (QME), if

$$\Delta e^{\frac{i}{\hbar}S} = 0$$

or equivalently in Maurer-Cartan form:

$$\frac{1}{2}\{S, S\} - i\hbar \Delta S = 0$$

Two solutions of QME, S and S' are said to be equivalent (related by a canonical transformation) if

$$e^{\frac{i}{\hbar}S'} = e^{\frac{i}{\hbar}S} + \Delta \left(e^{\frac{i}{\hbar}S} R \right)$$

for some generator $R \in A^{-1}[[\hbar]]$. For infinitesimal transformations:

$$S' = S + \{ S, R \} - i\hbar \Delta R$$
Fix an SP-manifold $(\mathcal{F}, \omega, \mu)$. Given a solution of QME $S \in C^\infty(\mathcal{F})[[\hbar]]$ and a Lagrangian submanifold $\mathcal{L} \subset \mathcal{F}$, one constructs the BV integral:

$$Z_{S, \mathcal{L}} = \int_{\mathcal{L}} e^{\frac{i}{\hbar} S}$$

BV-Stokes theorem (Batalin-Vilkovisky-Schwarz)

1. If $\mathcal{L}, \mathcal{L}' \subset \mathcal{F}$ are two Lagrangian submanifolds that can be connected by a smooth family of Lagrangian submanifolds, then

$$Z_{S, \mathcal{L}} = Z_{S, \mathcal{L}'}$$

2. If S and S' are equivalent, then

$$Z_{S, \mathcal{L}} = Z_{S', \mathcal{L}}$$
Let \((F = F' \times F'', \omega = \omega' + \omega'', \mu = \mu' \times \mu'')\) be a product of two \(SP\)-manifolds and \(S\) a solution of QME on \(F\). Define the effective BV action \(S'\) on \(F'\) by the \textbf{fiberwise BV integral}

\[
e^{i\frac{\hbar}{\kappa}S'} = \int_{L'' \subset F''} e^{i\frac{\hbar}{\kappa}S}
\]

where \(L''\) is a Lagrangian submanifold of \(F''\).

Theorem (P.M.)

1. Effective BV action \(S'\) satisfies QME on \(F'\).
2. If \(L'', \tilde{L}'\) are two Lagrangian submanifolds of \(F''\) that can be connected by a smooth family of Lagrangian submanifolds, then corresponding effective actions are equivalent.
3. If \(S, \tilde{S}\) are two equivalent solutions of QME on \(F\), then the corresponding effective actions on \(F'\) are equivalent.
Thus the effective BV action construction defines the push-forward

\[(\text{solutions of QME on } \mathcal{F})/\text{equivalence}\]

\[
\downarrow \text{fiberwise BV integral}
\]

\[(\text{solutions of QME on } \mathcal{F}')/\text{equivalence}\]
One-dimensional simplicial Chern-Simons theory

Continuum theory on a circle. Fix \((g, \langle, \rangle)\) be a *quadratic* even-dimensional Lie algebra.

- Space of fields: \(\mathcal{F} = \Pi g \otimes \Omega^0(S^1) \oplus g \otimes \Omega^1(S^1)\) — a \(\mathbb{Z}_2\)-graded manifold with an odd symplectic structure coming from Poincaré duality on \(S^1\): \(\omega = \int_{S^1} \langle \delta \psi \wedge \delta A \rangle\)

- Action: \(S(\psi, A) = \int_{S^1} \langle \psi \wedge d\psi + [A, \psi] \rangle\)

Effective BV action on cochains of triangulated circle.
Denote \(T_N\) the triangulation of \(S^1\) with \(N\) vertices. Discrete space of fields:

\[\mathcal{F}_{T_N} = \Pi g \otimes C^0(T_N) \oplus g \otimes C^1(T_N)\]

with coordinates \(\{\psi_k \in \Pi g, A_k \in g^1\}_{k=1}^N\) and odd symplectic form

\[\omega_{T_N} = \sum_{k=1}^N \langle \delta \left(\frac{\psi_k + \psi_{k+1}}{2} \right), \delta A_k \rangle\]
Explicit simplicial Chern-Simons action on cochains of triangulated circle:

\[
S_{TN} = \left(-\frac{1}{2}\sum_{k=1}^{N} \left(\psi_k, \psi_{k+1} \right) + \frac{1}{3} \left(\psi_k, \text{ad}_{A_k} \psi_k \right) + \frac{1}{3} \left(\psi_{k+1}, \text{ad}_{A_k} \psi_{k+1} \right) + \frac{1}{3} \left(\psi_k, \text{ad}_{A_k} \psi_{k+1} \right) + \frac{1}{2} \right) \\
+ \frac{1}{2} \sum_{k=1}^{N} (\psi_{k+1} - \psi_k) \left(\frac{1 - R(\text{ad}_{A_k})}{2} \left(\frac{1}{1 + \mu_k(A')} - \frac{1}{1 + R(\text{ad}_{A_k})} \right) \right) \cdot \frac{1 - R(\text{ad}_{A_k})}{2} \\
+ (\text{ad}_{A_k})^{-1} + \frac{1}{12} \text{ad}_{A_k} - \frac{1}{2} \coth \frac{\text{ad}_{A_k}}{2} \circ (\psi_{k+1} - \psi_k) + \\
+ \frac{1}{2} \sum_{k'=1}^{k'-N-1} \sum_{k=k'+1}^{N-k'-1} (-1)^{k-k'} (\psi_{k+1} - \psi_k) \cdot \frac{1 - R(\text{ad}_{A_k})}{2} \cdot R(\text{ad}_{A_{k-1}}) \cdots R(\text{ad}_{A_{k'}}) \cdot \\
\cdot \frac{1}{1 + \mu_{k'}(A')} \cdot \frac{1 - R(\text{ad}_{A_{k'}})}{2} \circ (\psi_{k'+1} - \psi_{k'}) + \\
+ \hbar \frac{1}{2} \text{tr}_g \log \left((1 + \mu \cdot (A')) \prod_{k=1}^{n} \left(\frac{1}{1 + R(\text{ad}_{A_k})} \cdot \frac{\sinh \frac{\text{ad}_{A_k}}{2}}{\text{ad}_{A_k}} \right) \right) \right)
\]

where

\[
R(A) = -\frac{A^{-1} + \frac{1}{2} - \frac{1}{2} \coth \frac{A}{2}}{A^{-1} - \frac{1}{2} - \frac{1}{2} \coth \frac{A}{2}}, \quad \mu_k(A') = R(\text{ad}_{A_{k-1}}) R(\text{ad}_{A_{k-2}}) \cdots R(\text{ad}_{A_{k+1}}) R(\text{ad}_{A_k})
\]
Questions:

- Why such a long formula?
- It is not simplicially local (there are monomials involving distant simplices). How to disassemble the result into contributions of individual simplices?
- How to check quantum master equation for S_{TN} explicitly?
- Simplicial aggregations should be given by finite-dimensional BV integrals; how to check that?
1D simplicial Chern-Simons as Atiyah’s TFT

Set

$$\zeta(\tilde{\psi}, A) = (i\hbar)^{-\dim g/2} \int_{\Pi g} D\lambda \exp \left(-\frac{1}{2\hbar} \langle \hat{\psi}, [A, \hat{\psi}] \rangle + \langle \lambda, \hat{\psi} - \tilde{\psi} \rangle \right) \in Cl(g)$$

where \(\{\hat{\psi}^a\}\) are generators of the Clifford algebra \(Cl(g)\),

\[\hat{\psi}^a \hat{\psi}^b + \hat{\psi}^b \hat{\psi}^a = \hbar \delta^{ab}\]

Element \(\zeta\) can be used as a building block (partition function for an interval with standard triangulation) for 1D Chern-Simons as Atiyah’s TFT on triangulated 1-cobordisms \(\Theta\), with

- Partition functions

 $$Z_\Theta \in C^\infty(\Pi g \otimes C^1(\Theta) \oplus g \otimes C^1(\Theta)) \otimes Cl(g) \otimes \# \{\text{intervals}\},$$

- For a disjoint union, \(Z_{\Theta_1 \sqcup \Theta_2} = Z_{\Theta_1} \otimes Z_{\Theta_2}\),

- For a concatenation of two triangulated intervals, \(Z_{\Theta_1 \cup \Theta_2} = Z_{\Theta_1} * Z_{\Theta_2} - \text{Clifford product}\),

- For the closure of a triangulated interval \(\Theta\) into a triangulated circle \(\Theta'\), \(Z_{\Theta'} = \text{Str}_{Cl(g)} Z_{\Theta} - \text{Clifford supertrace}\).
Theorem (A. Alekseev, P.M.)

1. For a triangulated circle,
\[Z_{TN} = \text{Str}_{Cl(g)} \left(\zeta(\tilde{\psi}_N, A_N) \ast \cdots \ast \zeta(\tilde{\psi}_1, A_1) \right) = e^{\frac{i}{\hbar}S_{TN}} \]

2. For a triangulated interval, the partition function satisfies the \textit{modified} quantum master equation
\[\hbar \Delta_\Theta Z_\Theta + \frac{1}{\hbar} \left[\frac{1}{6} \langle \hat{\psi}, [\hat{\psi}, \hat{\psi}] \rangle, Z_\Theta \right]_{Cl(g)} = 0 \]

where \(\Delta_\Theta = \sum_k \frac{\partial}{\partial \psi_k} \frac{\partial}{\partial A_k} \).

3. Simplicial action on triangulated circle \(S_{TN} \) satisfies the usual BV quantum master equation, \(\Delta_{TN} e^{\frac{i}{\hbar}S_{TN}} = 0 \).

The space of states for a point. Fix a complex polarization \(g \otimes \mathbb{C} = \mathfrak{h} \oplus \mathfrak{\bar{h}} \). Then one has an isomorphism \(\rho : Cl(g) \rightarrow C^\infty(\Pi \mathfrak{h}) \otimes C^\infty(\Pi \mathfrak{\bar{h}}) \). Thus we set
\[\mathcal{H}_{pt^+} = C^\infty(\Pi \mathfrak{h}), \quad \mathcal{H}_{pt^-} = C^\infty(\Pi \mathfrak{\bar{h}}) \simeq (\mathcal{H}_{pt^+})^* \]
The building block ζ can be written as a path integral with boundary conditions:

$$
\rho(\zeta)(\eta_{\text{out}}, \bar{\eta}_{\text{in}}; \bar{\psi}, A) = \int_{\pi_{\text{out}} = \eta_{\text{out}}, \bar{\pi}_{\text{in}} = \bar{\eta}_{\text{in}}, \int_{0}^{1} d\psi = \bar{\psi}} \mathcal{D}\psi \, e^{\frac{i}{\hbar} \int_{0}^{1} \langle \psi^\dagger \, d\psi + [A d\psi, \psi] \rangle}
$$

where $\pi : \mathbf{g}_{\mathbb{C}} \to \mathfrak{h}$, $\bar{\pi} : \mathbf{g}_{\mathbb{C}} \to \bar{\mathfrak{h}}$ are the projections to the two terms in $\mathbf{g}_{\mathbb{C}} \simeq \mathfrak{h} \oplus \bar{\mathfrak{h}}$.
Classical BV structure for gauge theory on a closed manifold:
A graded manifold \mathcal{F} (space of fields) endowed with
- a cohomological vector field Q of degree 1, $Q^2 = 0$,
- a degree -1 symplectic form ω,
- a degree 0 Hamiltonian function S generating the cohomological vector field: $\delta S = \iota_Q \omega$

Extension to manifolds with boundary ("BV-BFV formalism").
To a manifold Σ with boundary $\partial \Sigma$ a gauge theory associates:
- **Boundary BFV data:** a graded manifold \mathcal{F}_{∂} endowed with
 - a degree 1 cohomological vector field Q_{∂},
 - a degree 0 exact symplectic form $\omega_{\partial} = \delta \alpha_{\partial}$,
 - a degree 1 Hamiltonian S_{∂} generating Q_{∂}, i.e. $Q_{\partial} = \{S_{\partial}, \bullet\}_{\omega_{\partial}}$.
- **Bulk BV data:** a graded manifold \mathcal{F} endowed with
 - a degree 1 cohomological vector field Q,
 - a projection $\pi : \mathcal{F} \to \mathcal{F}_{\partial}$ which is a Q-morphism, i.e. $d\pi(Q) = Q_{\partial}$,
 - a degree -1 symplectic form ω,
 - a degree 0 function S satisfying $\delta S = \iota_Q \omega + \pi^* \alpha_{\partial}$.

Euler-Lagrange spaces.
One can define coisotropic submanifolds \(\mathcal{E}L \subset \mathcal{F} \), \(\mathcal{E}L_\partial \subset \mathcal{F}_\partial \) as zero loci of \(Q \) and \(Q_\partial \) respectively. For “nice” theories, the “evolution relation” \(\mathcal{L} = \pi(\mathcal{E}L) \subset \mathcal{E}L_\partial \subset \mathcal{F}_\partial \) is Lagrangian.

Reduction: EL moduli spaces.
One can quotient Euler-Lagrange spaces by the distribution induced from the cohomological vector field to produce \(EL \) moduli spaces \(\mathcal{M} = \mathcal{E}L/Q \), \(\mathcal{M}_\partial = \mathcal{E}L/Q_\partial \). They carry the following structure induced from BV-BFV structure on fields:

- map \(\pi_* : \mathcal{M} \to \mathcal{M}_\partial \),
- \(\mathcal{M}_\partial \) is degree 0 symplectic, \(\mathcal{M} \) is degree 1 Poisson,
- image of \(\pi_* \) is Lagrangian, fibers of \(\pi_* \) comprise the symplectic foliation of \(\mathcal{M} \),
- a line bundle \(L \) over \(\mathcal{M}_\partial \) with connection \(\nabla \) of curvature being the symplectic form on \(\mathcal{M}_\partial \),
- a horizontal section of the pull-back bundle \((\pi_*)^* L \).
A simple example: abelian Chern-Simons theory on a 3-manifold Σ with boundary.

$$\mathcal{F} = \Omega^\bullet(\Sigma), \quad S = \frac{1}{2} \int_{\Sigma} A \wedge dA, \quad \omega = \frac{1}{2} \int_{\Sigma} \delta A \wedge \delta A,$$

$$\mathcal{F}_\partial = \Omega^\bullet(\partial \Sigma), \quad S_\partial = \frac{1}{2} \int_{\partial \Sigma} A_\partial \wedge dA_\partial, \quad \alpha_\partial = \frac{1}{2} \int_{\partial \Sigma} A_\partial \wedge \delta A_\partial$$

Euler-Lagrange spaces: $\mathcal{EL} = \Omega^\bullet_{\text{closed}}(\Sigma), \mathcal{EL}_\partial = \Omega^\bullet_{\text{closed}}(\partial \Sigma)$.
EL moduli spaces: $\mathcal{M} = H^\bullet(\Sigma), \mathcal{M}_\partial = H^\bullet(\partial \Sigma)$.

Non-abelian Chern-Simons theory. EL moduli spaces are (derived versions of) the moduli spaces of flat G-bundles over Σ and $\partial \Sigma$.

Remarks:

- One can introduce the third EL moduli space \mathcal{M}_{rel}, so that the triple $(\mathcal{M}_{\text{rel}}, \mathcal{M}, \mathcal{M}_\partial)$ supports long exact sequence for tangent spaces, Lefschetz duality, Meyer-Vietoris type gluing.

- EL moduli spaces come with a cohomological description, $\mathcal{M} = \text{Spec } H_Q(C^\infty(\mathcal{F}))$ which is particularly useful for quantization. (E.g. we get a simple cohomological description of Verlinde space, arising as the geometric quantization of the moduli space of local systems).
Idea of quantization.
Take a foliation of \mathcal{F}_∂ by Lagrangian submanifolds. Each leaf of the foliation is a valid boundary condition for bulk fields in the path integral. Space of states is constructed as

$$\mathcal{H}_{\partial \Sigma} = \text{Fun}\{\text{space of leaves of the foliation}\}$$

with a differential \hat{S}_∂. Partition function, constructed by the path integral, is a function of the leaf and of the bulk zero-modes (i.e. function on fiber of $\pi_* : \mathcal{M} \to \mathcal{M}_\partial$), and is expected to satisfy a version of quantum master equation:

$$(\Delta_{\text{bulk z.m.}} + \hat{S}_\partial)Z_\Sigma = 0$$
Developments

- Axelrod-Singer’s perturbative treatment of Chern-Simons on closed manifolds extended to non-acyclic background flat connections. Algebraic model of Chern-Simons based on dg Frobenius algebras studied.

- Global perturbation theory for Poisson sigma model studied from the standpoint of formal geometry of the target. Genus 1 partition function with Kähler target is shown yield Euler characteristic of the target.

- A class of generalized Wilson loop observables constructed via BV push-forward of the transgression of a Hamiltonian Q-bundle over the target to the mapping space.

- Cohomology of \hat{S}_ϕ on the canonical quantization of boundary BFV phase space of Chern-Simons with Wilson lines yields the space of conformal blocks of Wess-Zumino-Witten model.
Program

- Construct perturbative quantization of TFTs in the BV-BFV formalism as a (far-reaching) extension of Axelrod-Singer’s construction. Possible application: link between Reshetikhin-Turaev invariant and Chern-Simons theory.

- Study applications to invariants of manifolds and knots consistent with surgery. (In particular, study the extension of gluing formulae for cohomology and Ray-Singer torsion to higher perturbative invariants, e.g. Axelrod-Singer and Bott-Cattaneo invariants of 3-manifolds.)

- Further study of EL moduli spaces (and their geometric quantization) from the point of view of derived symplectic geometry.

- Extend the construction to allow manifolds with corners; compare the results with Baez-Dolan-Lurie axioms for extended TFTs.