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Motivation I: Chern-Simons theory
@ Classical Chern-Simons theory:
o S= [, tr(ANdA+ ANA, A])
o A€ Conn(M,G).
M an oriented 3-manifold, G a Lie group.
@ Heuristic expression

7 = LL/ DA” e%S(A)
Conn(M,G)

Q Treat fConn as oscillatory integral at 4 — 0 by the stationary phase
formula:

@), #7(0) (27h) % |det 92 f|TF eFoenoi, s,
/Ne Mh—>0 Z e T !e xof‘ e 0

Crit.pts zg of f
- exp E ‘ BV . o

References: Frank W. J. Olver, Introduction to asymptotics and special
functions, Academic Press, New York, 1974. [leading term]

Pavel Etingof, Mathematical ideas and notions of quantum field theory,
http: / /www-math.mit.edu/~etingof/lect.ps (2002) [Feynman graphs]
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Motivation I: Chern-Simons theory — continued

@ Problem: S(A) has degenerate critical points = flat connections

@ Solution: Batalin-Vilkovisky formalism — replaces the integral by one
with non-degenerate critical points.

@ Output — the perturbative answer (Witten-Axelrod-Singer):

chrt —
—x(T
= e#S(40) .7 (M, Ag)7 e TV -exp Z O JEHV L Aoy | .
< Aus(D)] r

. eic(h) Sgrav (9,9)

References:
E. Witten, Quantum field theory and the Jones polynomial, Comm.

Math. Phys. 121 3 (1989) 351-399.
S. Axelrod and |. M. Singer, Chern-Simons perturbation theory, |
and Il, arXiv:hep-th/9110056 (1991), arXiv:hep-th/9304087 (1993).



Introduction
ooe
Motivation I: perturbative Chern-Simons theory

Motivation I: Chern-Simons theory — the perturbative answer
(Witten-Axelrod-Singer):
Zpert(M7 Ga A07 ha <p) =
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— o#S(A0) (M. ANE LTV VT BV pAog |
e T(M,Ap)Z - e exp ;|Aut(l“)|l T

. eic(h) Sgrav (g)¢)

e M is closed, Ay is an acyclic flat connection.
e 7(M, Ap) — Reidemeister-Ray-Singer torsion.
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Motivation I: Chern-Simons theory — the perturbative answer
(Witten-Axelrod-Singer):

Zpel't(M’ Ga A07 ha @) =

_ eﬁS(AO) (M, AO)% . e%wﬁ‘o» . exp (Z |h x(T) E+V (I)AO;!]> .

. et ic(h) Sgrav(g,9)

e M is closed, Ay is an acyclic flat connection.

@ 1) — the Atiyah-Patodi-Singer eta invariant of L_ = dg x+ xdg on
Q°d(M E). E the flat vector bundle determined by Aj.
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Motivation |: Chern-Simons theory — the perturbative answer
(Witten-Axelrod-Singer):

Zpert(]\/L Ga AO) ha QO) -

) x(T)
— e S(40) 7(M, Ao)% .e%wAO'g (Z Au iEtV @Ao’g> .
t

i) Sgrav (9:6)

@ M is closed, Ay is an acyclic flat connection.

ol'e {@,A, @,} — connected 3-valent,

Pr :/ H N(Zeims Teour)
Confy (M)

edges e

Here n € Q?(Confy(M), EX E) is the propagator — the integral
kernel of d},/Ag.
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Motivation |: Chern-Simons theory — the perturbative answer
(Witten-Axelrod-Singer):
ZPY (M, G, Ao, b, p) =
= en5( o) . (M, Ao)% P S - exp (Z S = ¢?07g> :
— [Aut(T)|
. gic(h)Sgrav(9,4)

e M is closed, Ay is an acyclic flat connection.

ol'c {@>A, @,} — connected 3-valent,

Pr = / H N(Tepns Teou)
Confy (M) edges e
Here n € O2?(Confy(M), EX E) is the propagator — the integral
kernel of d},/AE.
@ g — an arbitrary Riemannian metric, ¢ — framing of M, c¢(h) € C[[A]]
a universal element.
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Motivation Il: calculating partition functions by cut/paste.

Idea:

()

Functorial description (Atiyah-Segal):

) ))

Closed (n — 1)-manifold X

Hy

n-cobordism M

Partition function

ZM : ’Hg — Hzout

in

Gluing

Composition

ZyvuMr = Zg; © L

Atiyah: TQFT is a functor of monoidal categories

(Coby,, U) — (Vectc, ®).
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Example: 2D TQFT

Z

can be expressed in terms of building blocks:

02( >Z(C—>H51
0Z<; )ZH51—>(C

Q7 VV P Hor @ Hgr — Hgn

Q 7 : Hegr = Hgr @ Har

— Universal local building blocks for 2D TQFT!



Introduction
L]
Corners

For n > 2 we want to glue along pieces of boundary/ glue-cut with
corners.
Building blocks: balls with stratified boundary (cells)



Introduction
L]
Corners

For n > 2 we want to glue along pieces of boundary/ glue-cut with
corners.
Building blocks: balls with stratified boundary (cells)

Extension of Atiyah's axioms to gluing with corners: extended TQFT
(Baez-Dolan-Lurie).



Introduction
L]
Corners

For n > 2 we want to glue along pieces of boundary/ glue-cut with
corners.
Building blocks: balls with stratified boundary (cells)

Extension of Atiyah's axioms to gluing with corners: extended TQFT
(Baez-Dolan-Lurie).
Example: Turaev-Viro 3D state-sum model.

building block - 3-simplex

q6j-symbol

gluing sum over spins on edges
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Problems:
@ Very few examples!

@ Some natural examples do not fit into Atiyah axiomatics.

Goal:

@ Construct TQFT with corners and gluing out of perturbative path
integrals for diffeomorphism-invariant action functionals.

@ Investigate interesting examples.
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Classical BV-BFV theories

Reminder. A classical BV theory on a closed spacetime manifold M:
°o F
e w € O%(F) odd-symplectic, gh = —1
e Qe X(F) odd, gh=1,0Q%=0
0 ScC®F) gh=0, qw=245
Note: {S, S}, = 0.
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Subscripts ="ghost numbers”.
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BV-BFV formalism for gauge theories on manifolds with boundary
Reference: A. S. Cattaneo, P. Mnev, N. Reshetikhin, Classical BV
theories on manifolds with boundary, Comm. Math. Phys. 332 2 (2014)
535-603.

For M with boundary:

M — (7, w, Q, 9 — space of fields
OM —— (Fp, ws = davg, Qa, Sp) — phase space

Relations: Q% =0, tg,ws = 6Sa; Q?=0, ’LQM =05+ 1ray |.
=CME: %/,Q/Qw =7*Sy

Gluing:
My Us Mir — Fay XFg Fumg,

This picture extends to higher-codimension strata!
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Example: abelian Chern-Simons theory, dim M = 3.

M —— (Q(M)[1], 5 [, SANGSA, fMd‘A&’ 3 S ANdA)

J(T“A'—>-A|a l‘ﬂ'*

OM —— (Q(OM)[1], 3 [, 6ANSA, [,dAS:, & [, ANdA)

Superfield A= ¢+ A + AT +cf
~~ ~~ -1 -2
ghost,1  classical field,0 N>~ ——

. antifields
Euler-Lagrange moduli spaces:

M —— H*(M)[1]

OM ——— H*(OM)[1]
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Quantum BV-BFV formalism.
o ¥ closed, dim¥ =n—1 — (H3, )
o M,dimM =n —
o (Fres, Wres)
o Znr € Dens? (Fres) ® Hou satisfying mQME:

(%QE)J\J — iﬁAres) Zy =0

Reminder: In Darboux coordinates (z°,&;) on Fres,

0o 0

Apes = — —
res Ot (951
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Quantum BV-BFV formalism.
@ Y closed, dimYX =n—1 — (Hy, Q)
o M,dimM =n —
o (Fres, Wres)
o Zy € Dens? (Fres) ® Hom satisfying mQME:

(%QaM - ihAres) Zy =0
)

Gauge-fixing ambiguity = Zy ~ Zy + (£Qon — ihes) (- ).
Gluing:

’ZMIUZMII = P*(ZMI *5 ZMH)

xy, — pairing of states in Hy,
P, — BV pushforward (fiber BV integral) for

P
FMix FMu =y FpMiUsMi
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V = V' x V — splitting of odd-symplectic manifolds, P:V — V'
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BV pushforward:
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Aside: BV pushforward

Aside: BV pushforward.

V = V' x V — splitting of odd-symplectic manifolds, P:V — V'
L CV Lagrangian

BV pushforward:

P. : Dens%(V) — Dens%(V’)
(2 = fﬁcﬁw

@ P. is a chain map: P.(Ay)) = Ay P
@ For Lo ~ L1, Py =Py 4+ Ayi(--)

Reference: P. Mnev, Discrete BF' theory, arXiv:0809.1160
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Choose p : Fp — B Lagrangian fibration, ag|,-1(;) = 0.

Hy = Dens? (B)

 Q9=2S85 €End(Hs):.

FOF =xnlp b}

|

Fa

/|

B > b boundary condition
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Quantization
Choose p : Fp — B Lagrangian fibration, ag|,-1(;) = 0.

Ho = Dens%(B) Qo = 35 € End(Hs)1-

FOF, =rn'p b}

|

Fa

d
B > b boundary condition

Partition function:
Zy(b) = / ens, AYES DenS%(B)
LCFy

L C Fp gauge-fixing Lagrangian.
Problem: Zj; may be ill-defined due to zero-modes.
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Quantization
Choose p : Fp — B Lagrangian fibration, ag|,-1(3) = 0.

Hy =Dens? (B) | Q9 =S5 € End(Hy);.

FOF =xn1p b}
Fa

d

B > b boundary condition

Solution: Split Fp = Fres X F > (¢ms,25). Partition function:

Zat (b, res) = / CerSbded) 7 € Dens? (B) @ Dens? (Fres)
LCF

LCF gauge-fixing Lagrangian.
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Quantization
Choose p : Fp — B Lagrangian fibration, ag|,-1(3) = 0.

Hy =Dens? (B) | Q9 =S5 € End(Hy);.

FOF =xn1p b}
Fa

d

B > b boundary condition

Solution: Split Fp = Fres X F > (¢ms,25). Partition function:

Zat (b, res) = / CerSbded) 7 € Dens? (B) @ Dens? (Fres)
LCF

LCF gauge-fixing Lagrangian.

P
Fres — F!

res

= Z;V[:P*Z]u
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Input:

@ M a closed oriented n-manifold M.

@ FE an SL(m)-local system.



Examples
@000
Abelian B F' theory

Abelian BF theory: the continuum model.
Input:

@ M a closed oriented n-manifold M.

@ FE an SL(m)-local system.
Space of BV fields: F = Q*(M, E)[1] & Q*(M,E*)[n—2] > (A,B)
Action: S = [,,(B,dgA).

Reference: A. S. Schwarz, The partition function of degenerate
quadratic functional and Ray-Singer invariants, Lett. Math. Phys. 2, 3
(1978) 247-252.

A. S. Schwarz: For M closed and E acyclic, the partition function is the
R-torsion 7(M, E) € R.
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Result, C-M-R arXiv:1507.01221

For M closed, E possibly non-acyclic,
Fres = H.(M, E)[l} ® H.(M7 E*)[TL — 2] and

Zm :ET(M’E)
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Zy =€&-17(M,E)

where 7(M, E) € Det H*(M, E) = Dens%(}'res) is the R-torsion
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Abelian B F' theory

Result, C-M-R arXiv:1507.01221

For M closed, E possibly non-acyclic,
Fres = H.(M, E)[l} ® H.(M7 E*)[TL — 2] and

Zy =€&-17(M,E)

where 7(M, E) € Det H*(M, E) = Dens%(}'res) is the R-torsion and

= (Zﬂ_ﬁ/)zzzo(—i—%k(—l)k)-dim Hk(M,E)_(e—%h)zgzo(i—%k(_l)hdim H*(M,E)

2mi

In particular Z,; contains a mod16 phase e76 * with
s = Z:ZO(—l + 2k(—=1)F) - dim H*(M, E).
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Result, C-M-R arXiv:1507.01221

For M with boundary, F possibly non-acyclic,

s —

~|

ZM :f-T(M,Zin;E)-

-exp% </ Ba + / bA — / B(x)n(z, y)A(y))
Sout 3 Sout XXin 3(z,y)

in
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Abelian B F' theory

Result, C-M-R arXiv:1507.01221

For M with boundary, F possibly non-acyclic,

r

"'l’?l

ZM :f'T(M,Ein;E)~

-exp% (/ Ba + / bA — / B(x)n(z, y)A(y))
Sout Zin Sout XXin 3(z,y)

Where: Fros = H®(M, Xin; E)[1] @ H* (M, Xout; E*)[n — 2] 2 (a,b)
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Abelian B F' theory

Result, C-M-R arXiv:1507.01221

For M with boundary, F possibly non-acyclic,

ZM :f'T(M,Ein;E)~

-exp% (/ Ba + / bA — / B(x)n(z, y)A(y))
Sout Zin Sout XXin 3(z,y)

Where: B = Q°*(Zi)[1] ©@ Q°(Zout)[n — 2] > (A, B)

1
Hs, = Dens?(B) > /
k,1>0 Confy (Xin) x Conf; (Xout)

U(@1,. s Th; Y1, - Y) A1) - Alzr)B(y1) - - Blur)
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Abelian B F' theory

Result, C-M-R arXiv:1507.01221

For M with boundary, F possibly non-acyclic,

ZM :f'T(M,Ein;E)~

-exp% (/ Ba + / bA — / B(x)n(z, y)A(y))
Sout Zin Sout XXin 3(z,y)

Where: ¢ as before (but for relative cohomology),
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Abelian B F' theory

Result, C-M-R arXiv:1507.01221

For M with boundary, F possibly non-acyclic,

ZM :f'T(M,Ein;E)~

-exp% (/ Ba + / bA — / B(x)n(z, y)A(y))
Sout Zin Sout XXin 3(z,y)

Where: 7 - relative R-torsion,
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Abelian B F' theory

Result, C-M-R arXiv:1507.01221

For M with boundary, F possibly non-acyclic,

ZM :f'T(M,Ein;E)~

-exp% (/ Ba + / bA — / B(x)n(z, y)A(y))
Sout Zin Sout XXin 3(z,y)

Where: n € Q"~(Confy (M), E X E*) — propagator, i.e.
> fMay n(z,y)a(y) is a chain contraction from Q°® (M, ¥i,; F) to
H*(M,%n; E).
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Abelian B F' theory

Result, C-M-R arXiv:1507.01221

For M with boundary, F possibly non-acyclic,

ZM :f'T(M,Ein;E)~

-exp% (/ Ba + / bA — / B(x)n(z, y)A(y))
Sout Zin Sout XXin 3(z,y)

This result satisfies:
@ gluing
e mQME
o change of 1 shifts Zys by (£ — il es)-exact term.
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Abelian B F' theory

Result, C-M-R arXiv:1507.01221

For M with boundary, F possibly non-acyclic,

ZM :f'T(M,Ein;E)~

-exp% (/ Ba + / bA — / B(x)n(z, y)A(y))
Sout Zin Sout XXin 3(z,y)

This result satisfies:
@ gluing
e mQME
o change of 1 shifts Zys by (£ — il es)-exact term.

BFV operator: Q5 = —ih (fz . dEIB%(S% + [5 dEA%Q
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Abelian B F' theory

Gluing

in two steps:
o i A
Q Zu = [y, 5, ZM”(BS,Az;aH,bn)'eh‘&2 282 Zor, (Bo, A ag, by).
Q@ Zy = P.Zy, for P FL x FIL 5 Free.

res res
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o
Gluing of propagators

Result, C-M-R arXiv:1507.01221

N1, Nir — propagators on My, Mi;.
Assume H'(M, 21) = H.(M[, 21) D H.(M[], 22)
Then the glued propagator on M is:

n1(w,y) if 2,y € M

nrr(z,y) if x,ye My
n(z,y) =

0 if x€ Myp,y€e My

/ nrr(z,2)nr(z,y) | if x€ M,y e My
ZEXo
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Poisson sigma model
Example: Poisson sigma model, n = 2.
Action: S = [, (B,dA) + 3(r(B), A® A)

™=, ™ (u) 5% A 527 Poisson bivector on R™.

Result, C-M-R arXiv:1507.01221

ZM:€~T~exp% Z | \

graphs
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Example: Poisson sigma model, n = 2.
Action: S = [, (B,dA) + 3(r(B), A® A)
™=, ™ (u) 5% A 527 Poisson bivector on R™.

Result, C-M-R arXiv:1507.01221

In=crewt > (A (1
graphs \” T "
Z v satisfies:
@ gluing
e mQME

e change of 7 shifts Zy; by (#9 — ihAes)-exact term.




Examples

Poisson sigma model
Example: Poisson sigma model, n = 2.
Action: S = [, (B,dA) + 3(r(B), A® A)
™=, ™ (u) 5% A 527 Poisson bivector on R™.

Result, C-M-R arXiv:1507.01221

ZM:€~T~eXp% Z B :\ W,
graphs \” T " I
Z v satisfies:
@ gluing
e mQME

e change of 7 shifts Zy; by (#9 — ihAes)-exact term.

Qy = standard-ordering quantization (B — fihé% on Y, A — fihé%

. 1. i ynyd J gyt -
on Yoyut) of /IB%ZdAi + 51’[”7 (B)A;A; | where T (u) = “X4—=U*t s
d

Kontsevich's deformation of .

@O




Poisson sigma model

Examples
oce

Rules for calculating o (“Feynman rules”).
Decorate half-edges by i € {1,...,m}, put internal vertices to

Z1...,%p € M, boundary in-vertices to z1, ..
S Y1 € Yous. Assign:

out-vertices to y, ...

., Tk € Xin, boundary

Sum over i-labels, integrate over positions of vertices.
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Exact discretizations

Reference. Abelian and non-abelian BF"

P. Mnev, Discrete BF' theory, arXiv:0809.1160 (- for M closed),

A. S. Cattaneo, P. Mnev, N. Reshetikhin, Cellular BV-BFV-BF theory.
(= with gluing).

1D Chern-Simons: A. Alekseev, P. Mnev, One-dimensional Chern-Simons
theory, Comm. Math. Phys. 307 1 (2011) 185-227.
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Exact discretizations

Example: abelian BF' theory on a cobordism with a cell
decomposition.

Reference. A. S. Cattaneo, P. Mnev, N. Reshetikhin, Cellular
BV-BFV-BF theory.

@ M an n-cobordism, T a cell decomposition. TV — dual
decomposition.
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decomposition.

Reference. A. S. Cattaneo, P. Mnev, N. Reshetikhin, Cellular
BV-BFV-BF theory.

@ M an n-cobordism, T a cell decomposition. TV — dual
decomposition.

o Fr=C*(T)[1]eC*(TV)[n—2] > (A,B).
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Exact discretizations

Example: abelian BF' theory on a cobordism with a cell
decomposition.

Reference. A. S. Cattaneo, P. Mnev, N. Reshetikhin, Cellular
BV-BFV-BF theory.

@ M an n-cobordism, T a cell decomposition. TV — dual
decomposition.

o Fr=C*(T)[1]eC*(TV)[n—2] > (A,B).
@ BV 2-form w comes from the Lefschetz pairing
CH(T,Ty) ® C"=*(TV,TY.,,) — R, extended by zero to Tiy, 1.,

» ~out out



Examples
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Exact discretizations

Example: abelian BF' theory on a cobordism with a cell
decomposition.

Reference. A. S. Cattaneo, P. Mnev, N. Reshetikhin, Cellular
BV-BFV-BF theory.

@ M an n-cobordism, T a cell decomposition. TV — dual
decomposition.

o Fr=C*(T)[1]eC*(TV)[n—2] > (A,B).
@ BV 2-form w comes from the Lefschetz pairing
CH(T,Ty) ® C"=*(TV,TY.,,) — R, extended by zero to Tiy, 1.,

» ~out out

e S= <B,dA>T - <B?A>Tout'
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Exact discretizations

Example: abelian BF' theory on a cobordism with a cell
decomposition — continued.

e Quantization — as in continuum case, but replacing differential forms
by cellular cochains. R-torsion appears as a measure-theoretic
integral rather than regularized co-dimensional integral.
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Exact discretizations

Example: abelian BF' theory on a cobordism with a cell
decomposition — continued.

e Quantization — as in continuum case, but replacing differential forms
by cellular cochains. R-torsion appears as a measure-theoretic
integral rather than regularized co-dimensional integral.

@ Data on T can itself be viewed as quantum BV-BFV theory:

Z = e - ppy, satisfies mMQME (£Q — ihA7)Z = 0 with
: ) : ol
Q= —il{dA, 35) 1, — TP{dB, 55) Ton, -
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Exact discretizations

Example: abelian BF' theory on a cobordism with a cell
decomposition — continued.

e Quantization — as in continuum case, but replacing differential forms
by cellular cochains. R-torsion appears as a measure-theoretic
integral rather than regularized co-dimensional integral.

e Data on T’ can itself be viewed as quantum BV-BFV theory:

Z = e - ppy, satisfies mMQME (£Q — ihA7)Z = 0 with
Q = —ih(dA, &), — iWdB, Z)7,...

@ Consistent with BV pushforwards along cellular aggregations

7 —>T.



Conclusion

Examples

Further program

o
(%]
o

— Corners.

Partition function for a “building block™ (cell) in interesting
examples.

Compute cohomology of Qy, e.g. in PSM.

More general polarizations, generalized Hitchin's connection.

Chern-Simons theory in BV-BFV formalism: extension of
Axelrod-Singer's treatment to 3-manifolds with boundary/corners.
o Comparison with Witten-Reshetikhin-Turaev non-perturbative
answers.
o Prove the conjecture that k — oo asymptotics of the RT invariant
on a closed 3-manifold is given by Axelrod-Singer expansion.

Observables supported on submanifolds.
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Conclusion

Main references

@ A.S. Cattaneo, P. Mnev, N. Reshetikhin, Classical BV theories on
manifolds with boundary, Comm. Math. Phys. 332 2 (2014)
535—-603.

e A. S. Cattaneo, P. Mnev, N. Reshetikhin, Perturbative quantum
gauge theories on manifolds with boundary, arXiv:1507.01221
Cellular realizations:
@ P. Mnev, Discrete BF' theory, arXiv:0809.1160.

o A. Alekseev, P. Mnev, One-dimensional Chern-Simons theory,
Comm. Math. Phys. 307 1 (2011) 185-227.

e A.S. Cattaneo, P. Mnev, N. Reshetikhin, Cellular BV-BFV-BF
theory, in preparation.
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