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FINE SCALE PHENOMENA IN REACTING SYSTEMS:

IDENTIFICATION AND ANALYSIS FOR THEIR REDUCTION

Abstract

by

Ashraf Nadim Saleh Al-Khateeb

A robust method for rational reduction of chemically reacting models is devel-

oped using a rigorous scale analysis. All the physical scales, spatial and temporal,

inherent in reacting systems are accurately identified via eigenvalue analysis. The

required temporal scales to assure accuracy in modeling reactive systems and the

required spatial discretization to formally capture all detailed continuum physics

in the reaction zone are calculated. The interplay between chemistry and trans-

port is addressed via conducting a spectral analysis of reactive flow structure,

and the relation between closed reactive systems’ dynamics and notions from

equilibrium/non-equilibrium thermodynamics is investigated. It revealed that re-

acting systems’ physical scales are coupled, and their dynamics cannot be de-

duced from classical thermodynamics. The slow invariant manifolds of dynamical

systems arising from modeling closed reacting mixtures are constructed. These

manifolds describe accurately the reactive systems’ slow dynamics. The hydrogen–

air reactive mixture described by detailed mass-action kinetics is employed as a

paradigm in this work.
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CHAPTER 1

INTRODUCTION

In recent years, there have been orders of magnitude enhancements in computa-

tional capabilities, enabled by improvement in both hardware and software, which

have spurred the scientific and engineering community to employ mathematical

models to solve challenging physical problems. Some of the most difficult of these

are of multiscale nature; such problems are characterized by physics that evolve

over a wide range of scales. Typical examples are found in combustion [1, 2], bio-

chemistry [3, 4], oceanography [5], and atmospheric chemistry [6], where a number

of physical and chemical processes that occur at different scales exist.

In simulating multiscale problems, the presence of a broad range of scales incurs

a large computational cost [7]. In addition, to have confidence in the computa-

tional results, and to guarantee that they can be repeated by other researchers with

their own particular algorithms, predictions should be accompanied by evidence

that all physical scales inherent in the mathematical model have been captured.

It is well understood that in any mathematically based scientific theory, associ-

ated computations should have fidelity with the underlying mathematics, and the

underlying mathematical model has to represent the observed physics. The first

issue is demonstrated by comparing computational results with another known so-

lution and/or performing a formal grid convergence study, while the second issue

is demonstrated by comparing the computational predictions with experimental
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data. Addressing these two issues, in this order, is a necessity in any computa-

tional study to build confidence in both the simulation strategy and the underlying

mathematical model.

The exercise of demonstrating the harmony of the discrete solution with the

foundational mathematics is known as verification [8]. For multiscale problems,

verification is difficult due to the range of the scales, which may span many orders

of magnitude. As the range of scales widens, solution verification becomes increas-

ingly difficult. In this kind of problem, usually modeled by nonlinear equations,

significant coupling across the scales can occur, so that errors at small scales can

rapidly cascade to the large scales. Moreover, the strength of the coupling across

the scales is not known a priori. So, all the physical scales of the mathematical

model have to be captured in order to have full confidence that predictions are

repeatable, grid-independent, and thus verifiable. Subsequently, in the validation

step one can choose what physical phenomena and to what accuracy one wants

to reproduce experiments.

Chemically reactive flow simulation involves solving a large set of partial differ-

ential equations (PDEs) which represent chemical species evolution coupled with

the conservation axioms of mass, momentum, and energy. In addition, reactive

systems contain a broad range of spatial and temporal scales. As the scales’ range

widens, more stringent demands arise to assure the numerical stability of the solu-

tion algorithm, and the accuracy of the results. The computational cost for such

simulations increases with the scales’ range, the number of species, and the num-

ber of reactions. For combustion problems, which are inherently unsteady and

spatially inhomogeneous, the dynamics are often crucial, and proper numerical

resolution of all time and spatial scales can be critical to draw correct conclusions.
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Subsequently, it is a priority to determine the physical, spatial and temporal,

scales inherent in such problems. Furthermore, combustion processes are events

in which reaction, advection, and diffusion scales are fully coupled. Thus, for

accurate modeling, the interplay between chemistry and transport needs to be

captured.

In the combustion literature, there is some ambiguity about what constitutes

a resolved solution. Most consider a calculation to be resolved if certain global or

derived quantities are insensitive to grid size. Indeed, these are necessary condi-

tions. However, as discussed by Roache [9], convergence of global quantities only

is not a sufficient indicator of a fully resolved solution, and taken alone can lead to

incorrect conclusions. While a derived quantity may be a function of the depen-

dent variables, it may be insensitive to errors in some of them. Which variables

they are insensitive to is problem-dependent, and impossible to determine a priori.

Thus, following Roache, we adopt the more rigorous characterization of a resolved

solution as one in which all dependent variables throughout the spatio-temporal

domain are insensitive to changes in spatio-temporal discretization size is needed.

This more demanding characterization is fully consistent with standard notions

found in the broader mathematical and scientific computing literature, cf. [10–14].

1.1 Motivation and objective

For spatially inhomogeneous reactive systems, the employed models need to

adequately describe all the involved physical processes in order to obtain fidelity

with experiment. Thus, it became a necessity to employ a detailed kinetics model

to describe the reaction process [2], and a detailed multicomponent model to

describe the transport processes [15, 16]. Obtaining resolved solutions of such
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model problems is a challenge that requires a prohibitive computational resources;

e.g. Wang and Trouvé [17] report that to perform a single simulation for 6.4 ×

10−2 s to simulate the flame-wall interactions, the total computational cost was

39100 processor hours using 256 processors on two super-computers. Since, in

most cases, this difficulty is induced by the reaction term, the majority of the

developed algorithms to make the calculation of combustion processes feasible

focus on reducing the computational cost imposed by the use of detailed kinetics.

In detailed chemical kinetics models, the presence of a wide range of scales adds

a large computational cost. A typical reaction mechanism for a real fuel involves

more than 1000 molecular species; e.g. the detailed kinetics mechanism for the

n-heptane contains 1034 species that react in 4326 reaction steps [18]. However,

employing detailed chemical kinetics is essential in order to obtain accurate results

and draw correct conclusions [2]. Hence, numerous methods based on several

approaches have been proposed in the literature to reduce the computational cost

of simulating reactive systems described by detailed kinetics [19–48]. The main

challenge for these methods is to simplify the model equations without significant

loss of accuracy.

For spatially homogeneous reactive systems, reaction dynamics are described

by a set of non-linear coupled ordinary differential equations (ODEs) [49]. The

solutions of this set of ODEs are represented by trajectories in the species compo-

sition space. Each trajectory represents the reactive system’s evolution with time

for a specific initial condition. After a short transient, the evolved trajectories

seem to be attracted to a special trajectory and stay exponentially close to it un-

til they reach equilibrium in infinite time [29]. The reactive system’s slow modes

are the only active ones on this special trajectory. This implies that these mani-
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Figure 1.1. A lower dimensional manifolds in the composition phase
space of a three-dimensional reaction system.

folds, which are of smaller dimension than the full composition space dimension;

see Fig. 1.1, can describe the systems slow dynamics [45]. Thus, identifying this

manifold for a reactive system makes it possible to reduce the computational cost

by filtering the system’s fast modes. Such an approach relies on identifying these

manifolds within the species composition space which describes the slow dynamics

of a reactive system [37, 39, 41, 50, 51].

The dimension reduction approach can significantly reduce the computational

cost of modeling the detailed kinetics of a reactive system [37]. This approach is

based on representing the chemistry of a reactive system’s variables in terms of

the chemistry of a reduced number of variables, such that the reduced variables

retain only the original system’s slow dynamics. So, by constructing the slow

invariant manifold (SIM) for a reactive system, the asymptotic structure of the

5

figures/chap_1/SIM.eps


invariant attracting reactive system’s trajectories during their relaxation toward

equilibrium is captured.

This dissertation will focus on the development of an accurate and rational

algorithm to reduce the computational cost of simulating combustion processes

modeled by detailed kinetics. Explicitly, the main intent of this work is to reduce

the reacting system’s model equations in a way that maintains fidelity with the

underlying physics. To accomplish this aim, the scale spectrum over which a

reactive flow problem evolves needs to be calculated, and the system’s fine scales

admitted by the physics have to be identified. Based on a rigorous analysis of these

fine scales, an innovative method to describe the reacting system’s slow dynamics

is to be developed. A secondary set of goals of this research is to explore the

fine scale coupling, and to investigate the non-equilibrium thermodynamics of the

closed reacting system.

1.2 Literature review

Over the past decades, numerous methods have been developed to reduce the

computational burden imposed by the use of detailed chemical kinetics in modeling

reacting systems; some of them are reviewed by Refs. [1, 52]. These methods can

be classified into several major groups, where each group relies upon a different

approach. In this section, a summary of these methods is presented.

The first group of these methods employs several strategies to reduce the num-

ber of species and reaction steps in the employed reaction mechanism [19, 21, 22,

53–65]. These methods are employed to extract a skeletal mechanism from a de-

tailed kinetics mechanism by the elimination of the inconsequential species and/or

reaction based on a specific strategy. The first method in this group is based on
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describing a detailed kinetics mechanism by one- or two-steps model [53–59]. This

method employs a curve-fitting of the reaction rates to eliminate most of the in-

termediate species and steps in the reaction mechanism. Although this method

might capture some of the detailed kinetics model’s features, it has an ad hoc

basis. However, it is a useful tool to investigate complex physical phenomena,

e.g. flame instability [60, 61]. Employing sensitivity analysis [62–65] to eliminate

inconsequential species and reaction steps is another method in this group. To

accomplish such a task, a sensitivity parameter for each species in the reacting

mixture is defined based on the molar production rates of all the other species. For

each species, this parameter are assumed to sense the effect of changing its pres-

ence in the mixture on the reactive system’s dynamics. The sensitivity parameters

that do not meet a desired precision threshold, which is arbitrarily-assigned, imply

that the corresponding species have negligible effects. Thus, these species and all

the reaction steps in which they take part are eliminated from the reaction mech-

anism. Furthermore, following comparable procedure, redundant reaction steps,

which have weak contribution, are eliminated from the original detailed mecha-

nism. Here, the results for minor species are significantly deviated [52], and the

thermodynamic state of the mixture is flawed. Several strategies to perform sen-

sitivity analysis in chemical kinetic modeling are discussed by Kramer et al. [66].

Another method in this group employs optimization approaches [19, 20] to reduce

the kinetic mechanism in terms of reaction steps and species. By formulating and

solving a discrete constrained optimization problem, for a user-specified number

of species or reactions, the optimal number of reaction steps is found. However,

the optimization problem is non-linear, and solving it is not a straightforward

task. The directed relation graph method [21, 22] is another method in this group
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which employs the simple digraph technique. In this method, only the species

that exist in the reaction steps that are significant to the production of specific,

user-specified, species are included in the skeletal mechanism. Moreover, these

user-specified species need to be experimentally measured. Although these meth-

ods significantly reduce the number of reaction steps and/or the number of species

in the reaction mechanism, no significant computational saving is gained; these

methods do not reduce the reactive system’s stiffness.

The second group of methods have been developed to reduce the stiffness as-

sociated with modeling spatially homogeneous reactive systems. One of these

methods is the lumping technique [23–26], which employs a transformation to

represent the original reactive species by a subset of them. Such transformations

depend on a priori knowledge of the reaction chemistry, and they might be lin-

ear [23, 24] or non-linear [25, 26]. The main challenge of this method is to identify

the lumping transformation function, and its inverse, that retain accurate rep-

resentation of the original reaction mechanism. Another widely used method in

this group, which has been described in Warnatz et al. [67], is the quasi steady-

state assumption (QSSA) [68, 69]. In this method, species that react at fast time

scales, in comparison to other species in the mixture, are assumed to be in a

pseudo-steady state. Consequently, the evolution of these species is described by

a set of algebraic constraints instead of ODEs; the reactive system becomes mod-

eled by a set of differential algebraic equations (DAEs). Although QSSA captures

some of the reactive system’s dynamics, it is based on an ad hoc analysis of the

temporal scales, requires an extensive knowledge of the reaction’s chemistry, and

its accuracy remains questionable [70].

The third group of methods relies upon the dimension reduction approach [27–
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48]. Within this approach, two major techniques exist. The first set of methods

employs local linear time scale analysis to separate the system’s modes into fast

and slow, such as intrinsic low-dimensional manifolds (ILDM) [27], computational

singular perturbation (CSP) [29–31], the global quasi-linearization (GQL) [28],

and the G-Scheme [32]. In these methods, the dynamics are segregated using

chemical bases. These bases are generated a priori in the ILDM, while in CSP

and the G-Scheme they are estimated locally. Although ILDM is the more efficient

than the G-Scheme and the CSP, it is less accurate than CSP [71]. Furthermore,

the calculated manifolds using ILDM and GQL are not invariant [72]. Detailed

description of CSP and ILDM methods are provided by Singh [73].

The second set of methods, some of which will be discussed in detail later on

in this work, employs a geometrical approach to describe the multiscale kinetics.

Examples include the iterative algorithms [43–46], the minimal entropy production

trajectory (MEPT) method [41, 42], the method of invariant manifold (MIM) [39,

40], the rate-controlled constrained equilibrium (RCCE) method [33–35], and the

invariant constrained equilibrium edge preimage curve method (ICE-PIC) [37, 38].

The iterative algorithms are the most accurate among these approaches [47].

They are based on constructing the attractive invariant manifold from the system

trajectories by solving an algebraic functional equation, i.e. invariance equation,

iteratively, and constructing the attractive invariant manifold from the system

trajectories. The functional equation is obtained from the underlying system

of differential equations within a composition phase space formulation. Although

these methods have a rapid rate of convergence, they require a sufficiently accurate

initial guess to converge [45]. Also, these methods have been used only for small

model systems.

9



The RCCE method is based on describing the dynamical evolution of the

reactive system via the kinetics of the species associated with the slower time

scales. The remaining species are calculated via a constrained extremization of the

appropriate classical thermodynamics quantity, e.g. Gibbs free energy, Helmhoiltz

free energy, or entropy. It assumes that the reactive system evolves through a series

of pseudo-equilibrium states, which are determined by the local constraints posed

from the system’s thermodynamic state. Thus, the resulting manifold from RCCE

is composed of compositions in constrained chemical equilibrium, i.e. it depends

solely on classical thermodynamics. Although this method is computationally

efficient, the generated manifolds are not invariant [37].

The MIM method employ an arbitrary thermodynamic projector to construct

the reactive system’s SIM. It is based on formulating an equation to account for

the condition of invariance, and by solving this equation iteratively, an invariant

manifold is identified.

The MEPT is based on the optimization of trajectories subject to given con-

straints. The resulting trajectories are supposed to be maximally relaxed with

respect to an optimization criterion; which is the minimal entropy production

rate. Thus, the MEPT approach relies on the concept of minimum entropy pro-

duction [74]. The validity of this principle has been called into question in other

fields, e.g. heat diffusion [75]. Moreover, this approach assures that at least an

approximation of slow attracting manifolds is found even in regions where there

is no SIM [76].

The ICE-PIC method is developed based on the RCCE strategy to construct

a constrained equilibrium manifold (CEM); by locally minimizing the appropriate

thermodynamics variable, a subspace within the composition phase space is iden-
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tified. But this method is computationally expensive, and it is not more accurate

than the ILDM.

In general, MEPT, MIM, RCCE, and ICE-PIC methods employ classical ther-

modynamics far from the equilibrium state to construct the attractive manifolds.

Such a speculation to elucidate the reactive systems’ slow dynamics has been

shown to have inherent flaws [76]. Moreover, while results from these methods

may seem intuitive, a comparisons of two of them with the actual SIMs show that

they are inaccurate in describing the reactive systems’ slow dynamics.

Also, within this group, the Davis and Skodje method [45, 46], which is based

on a global composition space analysis of the full dynamics of a reactive system,

was able to construct the actual SIMs. However, such construction has been done

only for small model systems. With the exceptions of the iterative algorithms and

the technique presented by Davis and Skodje, all previously discussed methods,

and any other method based on them, only approximate the reactive systems’

actual SIMs or parts of them.

For completeness, most of the chemically reacting systems are spatially inho-

mogeneous. Several strategies have been developed to reduce the computational

cost of modeling such systems. The majority of these reduction techniques are

based on extending one of the previous methods, which approximate the SIM, to

include the diffusion effect [28, 72, 77–90]. Some of these methods identify the

reaction-based manifolds, and then project the transport processes onto it [37, 77–

79]. Such an approach cannot account for the coupling between transport and

chemistry. The second approach relies on incorporating the transport when the

manifold is constructed [72, 81–83, 85–90], to retain the coupling between chem-

istry and transport.
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On the other hand, fewer approaches have been developed to reduce the com-

putational cost associated with transport. Most of them rely on adopting simple

diffusion forms based on Fick’s law [90, 91]. Mathematically, employing Fick’s

law causes the mixture mass not to be conserved [92]. To solve this issue, an

equal diffusivity is used which may produce a significant error [93], or a correction

term is added which is a first order approximation [94]. Another new approach is

based on grouping species with similar diffusivity, such as species bundling [95].

Although this approach causes relatively small error, the computational time is

not affected.

The effect of adopting simplified transport models has been clarified in the

literature [15, 96–98]. Neglecting the thermal diffusion terms causes a significant

change in the structure of two-dimensional flames [96]. Also, it leads to a large

error in the calculation of flame speed [98]. Utilizing detailed heat flux description

is a necessity in simulating confined flames [97], and simplifying mass fluxes is

inaccurate [98]. So, to obtain accurate predictions it is important to employ the

multicomponent transport model [15].

In general, with current computational capabilities, calculating the diffusion

components is computationally inexpensive, but to draw a correct conclusion

based on our expected predictions, the full multicomponent model will be em-

ployed, wherever it applicable, in this work.

1.3 Outline

This dissertation is organized as follows. In Chapter 2, the required mathe-

matical foundation and the complete system of equations in a general form are

presented for an unsteady spatially inhomogeneous reactive flow problem modeled
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by detailed mass-action kinetics and multicomponent transport. This is followed

by a reduction of the general mathematical form of the complete system into

a simple mathematical form that describes a one–dimensional unsteady spatially

inhomogeneous reactive flow problem under the low-Mach number limit. In Chap-

ter 3, the reactive flow problems scales are identified. First, the time evolution

of the spatially homogeneous version of the reactive system is obtained, and the

time scale spectrum over which the system evolves is calculated. Then, a robust

method to rigorously calculate the finest length scale for a steady laminar pre-

mixed flame propagating freely in a mixture of calorically imperfect ideal gases is

developed. This followed by a fine scale analysis of the laminar premixed flame,

and the coupling between temporal and spatial scales is investigated. Chapter

4 offers the first construction of a SIM for a realistic detailed kinetics system.

First, the proposed method to construct the actual SIM for a closed, isothermal,

spatially homogenous reacting system is presented in a geometric frame. Then,

several model cases are introduced, and their actual SIMs are constructed. In

Chapter 5, the relation between the isothermal reactive systems slow dynamics

and notions from the thermodynamics, equilibrium and non-equilibrium, is ad-

dressed and revealed. Finally, specific conclusions and suggestions of promising

areas for future research are stated in Chapter 6.
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CHAPTER 2

MATHEMATICAL BACKGROUND

A complete exposition of the fundamental definitions, axioms, relations, and

constraints that will be used throughout this dissertation are given in this chapter.

The superscripts (o) and (f) denote evaluation at reference conditions and at

formation, respectively, and quantities with an overbar (̄ ) denote the evaluation

of quantities on a molar basis.

2.1 Preliminary analysis

Consider a volume V in which a reactive mixture consisting of N molecular

species composed of L atomic elements is contained. The chemical interaction

between the species within V is described by a reaction mechanism which consists

of J reversible reaction steps. A compact notation of a reaction mechanism is

given by
N∑

i=1

ν ′ijχi ⇋

N∑

i=1

ν ′′ijχi, j = 1, . . . , J. (2.1)

Here, χi is the chemical symbol of the ith species, and for the jth reaction, ν ′ij and

ν ′′ij are the stoichiometric coefficients of species i, denoting the number of moles

of reactants and products, respectively.
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2.1.1 Element constraints

Each molecular species is composed of at most L atomic elements, and each

element has an elemental mass m̄l. Thus, the molecular mass of the ith species,

m̄i, is given by

m̄i =

L∑

l=1

m̄lφli, i = 1, . . . , N. (2.2a)

Here, φli is the element index matrix which provides the number of moles of

element l in the ith species. The total number of moles of the lth element in the

mixture nl is given by

nl =
N∑

i=1

φlini, l = 1, . . . , L. (2.2b)

Here, ni is the number of moles of species i in the mixture. Subsequently, the

molecular mass of each species mi is given by

mi = nim̄i, i = 1, . . . , N. (2.2c)

Throughout any chemical reaction process, in the absence of nuclear reactions,

the number of moles of each element in each reaction is a conserved quantity. This

molar balance is enforced by the following stoichiometric constraint on element l

in reaction j,
N∑

i=1

φliνij = 0, l = 1, . . . , L, j = 1, . . . , J. (2.3)

Here, νij = ν ′′ij−ν ′ij is the stoichiometric matrix, which gives the net stoichiometric

coefficient for species i in reaction j. Equation (2.3) demands that νij lie in the

right null space of φli, and physically means that the mass and number of moles of

each element are conserved in each reaction. In general, φli and νij are non-square
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matrices of dimensions L × N and N × J , respectively. However, φli is of full

rank, while νij is of rank R ≤ (N −L). This implies that the chemical interaction

between the N species can be described using R species.

2.1.2 Thermodynamic properties

Attention will be restricted to mixtures of calorically imperfect ideal gases

obeying Dalton’s model for ideal mixtures. This implies that the thermal equation

of state is given by [99]

p =
N∑

i=1

pi =
ℜ̄T
V

N∑

i=1

ni, (2.4)

where p is the mixture pressure, pi is the partial pressure of species i, T is the mix-

ture temperature, and ℜ̄ = 8.314 × 107 erg/mol/K is the universal gas constant.

Also, for the ith species, the mass-based specific internal energy ei, enthalpy hi,

and entropy si are given, respectively, by the following constitutive relations,

ei (T ) = hi (T ) − ℜ̄T
m̄i

, i = 1, . . . , N, (2.5a)

hi (T ) = ho
i (T ) = hf

i +

∫ T

T o

cpi(T̂ ) dT̂ , i = 1, . . . , N, (2.5b)

si (T, pi) = sf
i +

∫ T

T o

cpi(T̂ )

T̂
dT̂

︸ ︷︷ ︸
so
i (T )

− ℜ̄
m̄i

ln

(
pi

po

)
, i = 1, . . . , N. (2.5c)

In Eqs. (2.5), T o = 298 K is the reference state temperature, po = 1 atm

is the reference pressure, and for the ith species, hf
i , s

f
i , and cpi are the mass-

based specific enthalpy of formation, entropy of formation, and specific heat at

constant pressure, respectively. These thermodynamic properties in molar-based

units can be obtained by multiplying Eqs. (2.5) with the species molecular mass;

ēi = eim̄i, h̄i = him̄i, s̄i = sim̄i. Moreover, the molar-based chemical potential µ̄i
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of species i is given by

µ̄i (T, pi) = ḡi (T, p, ni) = µ̄o
i (T ) + ℜ̄T ln

(
pi

po

)
, i = 1, . . . , N, (2.6a)

µ̄o
i (T ) = h̄o

i (T ) − T s̄o
i (T ) , i = 1, . . . , N, (2.6b)

where for the ith species µ̄o
i and ḡi = gim̄i are the molar-based chemical potential

at the reference pressure and specific Gibbs free energy, respectively.

2.1.3 Gas mixture properties

Now, we denote the total mass of the mixture as m =
N∑

i=1

mi, and the total

number of moles in the mixture as n =

N∑

i=1

ni. So, m̄ = m/n is the mixture

molecular mass, and ρ = m/V is the mixture mass density. Subsequently, the

ith species in the mixture can be characterized by any of these variables: mass

fraction Yi = mi/m, mole fraction Xi = ni/n, or molar density ρ̄i = ni/V ,

i.e. concentration. The relation between these variables is

Yi

m̄i
=
ρ̄i

ρ
=
Xi

m̄
, i = 1, . . . , N, (2.7)

where it is clear from their definitions that

N∑

i=1

Yi = 1, (2.8a)

N∑

i=1

Xi = 1, (2.8b)

N∑

i=1

ρ̄i =
p

ℜ̄T . (2.8c)
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The mass-based mixture-average specific heat at constant pressure cp, internal

energy e, enthalpy h, entropy s, and Gibbs free energy g are given by

cp =

N∑

i=1

Yicpi. (2.9a)

e =
N∑

i=1

Yiei, (2.9b)

h =

N∑

i=1

Yihi, (2.9c)

s =

N∑

i=1

Yisi, (2.9d)

g =
N∑

i=1

Yigi, (2.9e)

and the mixture total internal energy E, enthalpy H , entropy S, and Gibbs free

energy G are given by

E = me =
N∑

i=1

miei =
N∑

i=1

niēi, (2.10a)

H = mh =

N∑

i=1

mihi =

N∑

i=1

nih̄i, (2.10b)

S = ms =

N∑

i=1

misi =

N∑

i=1

nis̄i, (2.10c)

G = mg =
N∑

i=1

migi =
N∑

i=1

niḡi =
N∑

i=1

niµ̄i. (2.10d)
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2.1.4 Chemical kinetic relations

Each of the reversible reaction steps in the mechanism described by Eq. (2.1)

consists of two irreversible reaction steps; the forward reaction step and the back-

ward reaction step. The molar rate of formation per unit volume of species i as

a result of the reaction mechanism is given by the following widely recognized

formula, cf. [99–103],

ω̇i =

J∑

j=1

νijrj, i = 1, . . . , N, (2.11)

where

rj = kj

(
N∏

i=1

ρ̄
ν′

ij

i − 1

Kc
j

N∏

i=1

ρ̄
ν′′

ij

i

)
, j = 1, . . . , J, (2.12)

is the reaction rate given by the law of mass action. Here, for the jth reaction, kj

and Kc
j are, respectively, the Arrhenius kinetic rates given by

kj = Aj T
βj exp

(−Ēj

ℜ̄T

)
, j = 1, . . . , J, (2.13a)

and the equilibrium constants given by

Kc
j =

(
po

ℜ̄T

)PN
i=1

νij

exp

(

−
∑N

i=1 µ̄
o
iνij

ℜ̄T

)

, j = 1, . . . , J. (2.13b)

For each reaction in Eqs. (2.13), the quantities Aj, βj , and Ēj represent the colli-

sion frequency factor, the temperature-dependency exponent, and the activation

energy, respectively.

In the case of third body M dependency, its concentration in the jth reaction

is given by [67]

ρ̄Mj =
N∑

i=1

αjiρ̄i, j = 1, . . . , J, (2.14)
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where αji are the coefficients of the collision efficiency of the ith species with the

third body, and these coefficients play a role only in the reactions that require a

third body. For the jth reaction, αji = 1, i = 1 . . . , N , if all the species have the

same efficiency as third bodies. Otherwise, αji values differ from unity and vary

between species for reaction j.

2.2 Reactive flow axioms

2.2.1 General mathematical model

The governing PDEs for a premixed reactive mixture of N gas phase molecular

species which undergo J reversible reactions are taken to be the unsteady reactive

Navier-Stokes equations. In conservative form, with no body force present, these

N + 4 equations are:

∂ρ

∂t
= −∇ · (ρu), (2.15a)

∂

∂t
(ρu) = −∇ · (ρuu + pI − τ ), (2.15b)

∂

∂t

(
ρ
(
e+

u · u
2

))
= −∇ ·

(
ρu
(
e+

u · u
2

)
+ Jq + (pI − τ ) · u

)
, (2.15c)

∂

∂t
(ρyl) = −∇ · (ρuyl + jml ), l = 1, . . . , L− 1, (2.15d)

∂

∂t
(ρYi) = −∇ · (ρuYi + Jm

i ) + ω̇im̄i, i = 1, . . . , N − L, (2.15e)

where ∇ ≡ { ∂
∂x1

, ∂
∂x2

, ∂
∂x3

} is the spatial gradient operator, and the independent

variables are the time t and the spatial coordinates x. Here, u is the mixture’s

velocity vector, I is the identity matrix, τ is the viscous stress tensor, Jq is the

energy flux vector, Jm
i is the diffusive mass flux vector of the ith species, and for

the lth element, yl and jml are, respectively, the element mass fraction and the
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element mass flux vector, which are defined as

yl = m̄l

N∑

i=1

φliYi

m̄i
, l = 1, . . . , L, (2.16a)

jml = m̄l

N∑

i=1

φliJ
m
i

m̄i
, l = 1, . . . , L. (2.16b)

Equations (2.15a)–(2.15c) describe the conservation of mass, linear momentum,

and energy. Together Eqs. (2.15a) and (2.15d) describe the conservation of the L

atomic elements, and in conjunction with Eq. (2.15e) they describe the evolution

of the N species in time.

Equation (2.15d) can be obtained by multiplying the evolution of species,

Eq. (2.15e), with m̄lφli/m̄i and summing from i = 1 to N to get

∂

∂t

(
ρ

N∑

i=1

m̄lφliYi

m̄i

)
= −∇ ·

(
ρu

N∑

i=1

m̄lφliYi

m̄i

+
N∑

i=1

m̄lφliJ
m
i

m̄i

)
+

N∑

i=1

m̄lφliω̇i,

which, by employing Eqs. (2.16a), (2.16b), and (2.11), can be rewritten as

∂

∂t
(ρyl) = −∇ · (ρuyl + jmi ) + m̄l

J∑

j=1

rj

N∑

i=1

φliνij .

Now, using Eq. (2.3) to eliminate the second term in the right hand side, one

recovers Eq. (2.15d).

Similarly, the conservation of mass, Eq. (2.15a), can be obtained by either one

of these two procedures: 1) summing the evolution of species, Eq. (2.15e), from

i = 1 to N , employing Eqs. (2.11) and (2.3), and insisting that the species mass
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fluxes be constrained by [100, 104]

0 =
N∑

i=1

Jm
i , (2.17a)

2) summing the conservation of elements, Eq. (2.15d), from l = 1 to L and insisting

that the element mass fluxes be constrained by

0 =
L∑

l=1

jml . (2.17b)

Now to describe the diffusive transport of momentum, mass, and energy within

a mixture, the fundamental equations for such processes are included. The fol-

lowing relations for τ , Jm
i , and Jq are adopted [105]:

τ = η

(
∇u + (∇u)T − 2

3
(∇ · u) I

)
, (2.18a)

Jm
i =

N∑

j=1
j 6=i

ρm̄iDijYj

m̄

(∇Xj

Xj

+
(
1 − m̄j

m̄

)∇p
p

)
−DT

i

∇T
T
, i = 1, . . . , N,

(2.18b)

Jq = q +

N∑

i=1

Jm
i hi − ℜ̄T

N∑

i=1

DT
i

m̄i

(∇Xi

Xi
+
(
1 − m̄i

m̄

)∇p
p

)
, (2.18c)

where

q = −k∇T , (2.18d)

In Eqs. (2.18), η is the mixture viscosity coefficient, q is the Fourier heat flux,

and the variables Dij, k, and DT
i are the diffusion coefficients between species i

and species j, the mixture isotropic thermal conductivity, and the thermal diffu-

sion coefficient of specie i, respectively. The last three variables, Dij , k, and DT
i ,

are functions of thermodynamic state and molecular composition, and they are
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computed from the solution of a linear system known as the detailed L-matrix

system [104, 106]. Further details about this system and the calculation of these

transport properties are presented in Appendix A.

Equation (2.18a) is the definition of the viscous stress tensor for a Newtonian

fluid that satisfies Stokes’ assumption. Equation (2.18b) states that the matter of

the ith species diffuses due to the existence of three driving forces. These driving

forces are the mole fraction gradient, the pressure gradient, and the temperature

gradient. Consequently, the first term in Eq. (2.18b) is called the material diffu-

sion, the second term is called the pressure diffusion, and the third term is called

the thermal diffusion; commonly known as Soret’s effect or thermophoresis. Sim-

ilarly, in Eq. (2.18c) the first term is Fourier’s law which represents the heat flux

due to heat diffusion, the second term is the heat flux due to mass diffusion, and

the the third term is Dufour’s effect which represents the heat flux due to pressure

and matter gradients [100].

The presented system of PDEs, Eqs. (2.15), in addition to Eqs. (2.4)–(2.14)

and Eqs. (2.16)–(2.18), as a constitutive relations, represent a complete system.

This system is a general mathematical model for simulating reactive flows.

2.2.2 Simple mathematical form

Here, a simplified version of the complete system is derived by adopting several

assumptions. The derived system of equations in this section will serve as the

governing equations throughout this dissertation unless otherwise specified.

As a first assumption, we consider only the one-dimensional version of Eqs.

(2.15)–(2.18). Then, we employ Eqs. (2.5a), (2.7), and (2.9b)–(2.9c) to rewrite

the conservation of energy, Eq. (2.15c), in terms of the mixture-average spe-
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cific enthalpy h. After that, by performing standard manipulations, multiply-

ing Eq. (2.15b) with mixture velocity and subtracting the resulting equation and

Eq. (2.15a) from Eq. (2.15c), the following set of equations is obtained:

∂ρ

∂t
+

∂

∂x
(ρu) = 0, (2.19a)

∂

∂t
(ρu) +

∂

∂x

(
ρu2 + p− τ

)
= 0, (2.19b)

∂

∂t
(ρh) +

∂

∂x
(ρuh+ Jq) =

∂p

∂t
+ u

∂p

∂x
+ τ

∂u

∂x
, (2.19c)

∂

∂t
(ρyl) +

∂

∂x
(ρuyl + jml ) = 0, l = 1, . . . , L− 1. (2.19d)

∂

∂t
(ρYi) +

∂

∂x
(ρuYi + Jm

i ) = ω̇im̄i, i = 1, . . . , N − L. (2.19e)

To simplify these equations, the low-Mach number M assumption [107], which

is reasonable for laminar premixed flame, i.e. deflagration wave, is adopted [108].

For that, a perturbation analysis with 1/M2 as a perturbation parameter is per-

formed. Subsequently, Eq. (2.19b) can be reduced at leading order to dp/dx =

0 [107]. Furthermore, for a spatially open system, one can assume that p is

time-independent [91, 109, 110], which has the consequence of rendering the ther-

modynamic pressure constant. Subsequently, all the thermodynamic properties

are evaluated at the surrounding thermodynamic pressure. As a result of adopting

this assumption, the momentum equation no longer need be considered, and the

viscous dissipation τ∂u/∂x and the advection of pressure u∂p/∂x in Eq. (2.19c) are
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suppressed. Thus, the governing equations, in a non-conservative form, become

∂ρ

∂t
+

∂

∂x
(ρu) = 0, (2.20a)

ρ
∂h

∂t
+ ρu

∂h

∂x
+
∂Jq

∂x
= 0, (2.20b)

ρ
∂yl

∂t
+ ρu

∂yl

∂x
+
∂jml
∂x

= 0, i = 1, . . . , L− 1. (2.20c)

ρ
∂Yi

∂t
+ ρu

∂Yi

∂x
+
∂Jm

i

∂x
= ω̇im̄i, i = 1, . . . , N − L. (2.20d)

Moreover, as a third assumption, the constitutive relations are simplified

furthermore by neglecting the thermal diffusion effects, Soret’s effect and Dufour’s

effect. So, Eqs. (2.18), after insisting that the species mass fluxes be constrained

Eq. (2.17a), become

Jm
i =

ρm̄i

m̄

N∑

j=1
j 6=i

DijYj

Xj

∂Xj

∂x
, i = 1, . . . , N − 1, (2.21a)

Jq = q +
N∑

i=1

Jm
i hi, (2.21b)

This system described by Eqs. (2.20)–(2.21) will serve as a mathematical model

for this dissertation.

In a particular calculation in Sec. 3.3.5.1, for verification purposes, the Soret’s

effect in the mass flux model is considered to match the the model in Ref. [111].

So, in that particular calculation, the employed mass flux equation is given by

Jm
i =

ρm̄i

m̄

N∑

j=1
j 6=i

DijYj

Xj

∂Xj

∂x
−DT

i

∇T
T
, i = 1, . . . , N − 1. (2.22)
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CHAPTER 3

REACTIVE FLOW SCALE ANALYSIS

Here, the temporal and the spatial scales of a reactive flow problem are inves-

tigated, and the lower bounds for time step and grid resolution are provided for

scenarios in which accurate knowledge of the spatio-temporal distribution of de-

tailed species concentrations is required. Then, to gain a better understanding of

the interaction between transport and chemistry, the coupling between temporal

and spatial scales is explored via conducting a spectral analysis of the reactive

flow problem.

The system under consideration is a standard multiscale problem: the un-

steady one-dimensional laminar premixed flame propagating freely in a mixture

of calorically imperfect ideal gases described by detailed kinetics and multicompo-

nent transport, see Fig. 3.1. Many researchers have simulated this problem over

the past decades, cf. [91, 111–116]. This problem is widely recognized as chal-

lenging [117], and part of its complexity is due to the non-linearity posed by the

reaction term. To accomplish this task, the problem is first split into two separate

problems that are treated independently. The first problem represents an un-

steady spatially homogeneous reactive system, and the second problem represents

a steady spatially inhomogeneous reactive system.

For the first problem, we identify the time scale spectrum over which the

system evoloves. Analogously, the length scale spectrum inherent in the second
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Figure 3.1. Illustration of a one-dimensional laminar premixed flame.

problem is identified. Finally, the time scales associated with each Fourier mode

of varying wavelength for the full unsteady spatially inhomogeneous system are

identified. We consider premixed mixtures of N calorically imperfect ideal gases

that react and diffuse at N widely disparate rates; we specifically consider a model

of hydrogen–air combustion.

In the first section of this chapter, a model problem is employed to present

the basic idea of this chapter gradually. Then, the methodology to determine

the temporal scales of the spatially homogeneous version of the governing equa-

tions is presented. This has been done briefly, since temporal scale analysis for

spatially homogeneous reactive system is a well recognized and understood con-

cept [27, 29, 67, 118]. Subsequently, this part will serve as an illustration of the

concept of scale analysis. In the third section, the freely propagating steady lami-

nar premixed flame is employed as a paradigm, and a robust method to rigorously

determine the required spatial discretization to formally capture all detailed con-
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tinuum physics in the reaction zone of a reactive flow is developed. This method

has been used to assure that the reactive flow’s structure is fully resolved. Fi-

nally, linear spectral analysis of the reactive flow problem is conducted, and the

time scales associated with each Fourier mode of varying wavelength for the full

unsteady spatially inhomogeneous reactive flow problem are identified.

3.1 Background

In order to acquire a better understanding of this chapter, a model problem is

employed to illustrate the basic ideas.

Consider the following linear advection-diffusion-reaction problem:

∂ψ(x, t)

∂t
+ u

∂ψ(x, t)

∂x
= D

∂2ψ(x, t)

∂x2
− aψ(x, t), (3.1a)

t = 0 : ψ(x) = ψu, (3.1b)

x = 0 : ψ(t) = ψu, (3.1c)

x→ ∞ :
∂ψ

∂x
→ 0, (3.1d)

where the independent variables are t > 0 and x ∈ (0,∞). Here, ψ(x, t) is a

general scalar, u > 0 is a constant wave speed for a right running wave, D > 0 is

a diffusion coefficient, and a > 0 is the consumption rate constant.

The spatially homogeneous version of Eqs. (3.1) is

dψh(t)

dt
= −aψh(t), ψh|t=0 = ψu, (3.2a)

which has the solution

ψh(t) = ψu exp (−at) . (3.2b)
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The time scale τ over which ψh evolves is τ = 1/a. This time scale serve as an

upper bound for the required time step to capture the dynamics in a numerical

simulation. Since there is only one dependent variable in this problem, the tem-

poral spectrum contains only one time scale. Consequently, this formulation of

the system is not temporally stiff.

A simple means to determine an upper bound for the required grid resolution

is to solve for the steady structure ψs(x), which is governed by

u
dψs(x)

dx
= D

d2ψs(x)

dx2
− aψs(x), ψs|x=0 = ψu,

dψs

dx

∣∣∣∣
x→∞

→ 0. (3.3a)

The solution of Eq. (3.3a) is

ψs(x) = ψu exp (λx) , (3.3b)

where

λ =
u

2D

(
1 −

√
1 +

4aD

u2

)
. (3.3c)

Here, there is one length scale in the system, ℓ ≡ 1/|λ|; this formulation of the

system is not spatially stiff. By examining Eq. (3.3c) in the limit aD/u2 ≫ 1, one

finds that

ℓ ≈
√
D

a
. (3.4)

So, this length scale ℓ reflects the inherent physics of coupled reaction-advection-

diffusion.

Now, for Eqs. (3.1), it is possible to find a simple analytic expression for the

continuous spectrum of time scales τ associated with a particular Fourier mode of

wavenumber κ. A Fourier mode with wavenumber κ has wavelength Λ = 2π/κ.
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Assume a solution of the form

ψ(x, t) = Ψ(t) exp (iκx) , (3.5)

where Ψ(t) is the time-dependent amplitude of the chosen Fourier mode. Substi-

tuting this into Eq. (3.1a) gives the following ODE:

dΨ(t)

dt
= −

(
iκu+Dκ2 + a

)
Ψ(t). (3.6)

This has a solution of the form

Ψ(t) = c exp
(
−(iκu+Dκ2 + a) t

)
, (3.7)

where c is an arbitrary constant. So, the continuous time scale spectrum is given

by

τ =
1

a
(
1 + iuκ

a
+ Dκ2

a

) , 0 < κ ∈ R. (3.8)

From Eq. (3.8), it is clear that for uκ/a≪ 1 and Dκ2/a ≪ 1, i.e. for sufficiently

small wavenumbers or long wavelengths, the time scales will be dominated by

reaction:

lim
κ→0

τ =
1

a
. (3.9a)

However, for uκ/a ≫ 1 and Dκ2/a ≫ 1, i.e. for sufficiently large wavenumbers

or small wavelengths, the time scales are dominated by diffusion:

lim
κ→∞

τ =
1

Dκ2
=

1

D

(
Λ

2π

)2

. (3.9b)

It is clear that advection does not play a role in determining the limiting values
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of the time scale spectrum; reaction and diffusion are the major players. Con-

sequently, from Eq. (3.8), we see that a balance between reaction and diffusion

exists for κ =
√
a/D. In terms of wavelength, and recalling Eq. (3.4), we see the

balance at

Λ

2π
=

√
D

a
= ℓ, (3.10)

where ℓ = 1/κ is proportional to the wavelength.

Let us now study how the magnitude of τ varies with κ as predicted by

Eq. (3.8); It can be easily checked that the magnitude of the complex τ is given

by

|τ | =
[(
a+Dκ2

)2
+ (uκ)2

]−1/2

. (3.11)

Additional insight is gained by examining how |τ | behaves in the short wavenum-

ber, i.e. long wavelength, limit. Taylor expansion of Eq. (3.11) in this limit reveals

that

|τ | =
1

a

(
1 − Dκ2

a
− u2κ2

2a2

)
+ O

(
κ4
)
. (3.12)

So in the small κ limit, |τ | is dominated by reaction effects, and we see that

advection and diffusion both decrease its magnitude.

We examine the behavior of the system quantitatively by choosing arbitrary

numerical values of a = 108 1/s, D = 101 cm2/s, u = 102 cm/s. For these values,

we find the estimate from Eq. (3.4) for the length scale where reaction balances

diffusion as ℓ = Λ/(2π) = 3.16228 × 10−4 cm. A plot of |τ | versus ℓ = Λ/(2π)

from Eq. (3.11) is given in Fig. (3.2). For long wavelengths, the time scales are

determined by reaction; for fine wavelengths, the time scale’s falloff is dictated

by diffusion, and our simple formula for the critical ℓ, illustrated as a dashed

line, predicts the transition well. Lastly, for large κ, it is seen that a one decade
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Figure 3.2. Time scale spectrum versus wavelength for the simple one
species reaction-advection-diffusion system.

decrease in ℓ induces a two decade decrease in |τ |, consistent with the prediction

of Eq. (3.9b),

lim
κ→∞

(ln τ) ∼ 2 ln (ℓ) − ln (D) . (3.13)

3.2 Temporal scales

Here, we confine our attention to unsteady spatially homogeneous mixtures of

calorically imperfect ideal gases described by detailed kinetics. Thus, the govern-
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ing equations (2.20) become

dh

dt
= 0, (3.14a)

dyl

dt
= 0, l = 1, . . . , L, (3.14b)

dYi

dt
=

ω̇im̄i

ρ
, i = 1, . . . , N − L. (3.14c)

Equation (3.14a) states that the mixture specific enthalpy is a conserved quantity,

which implies that the system is adiabatic and isobaric, i.e. constant pressure.

Moreover, Eq. (3.14b) implies that the L atomic elements are conserved; there

are L dependent variables. For the N − L dependent variables, i.e. species in

the mixture, there are N − L ODEs that describe the N − L species evolution

in time, Eqs. (3.14c). Further detail regards modeling spatially homogeneous

reactive systems are provided in Appendix B.

In a detailed chemical kinetics model, the use of a reaction mechanism that

contains several species and consists of several reaction steps will introduce a

spectrum of time scales. Since each reaction has a rate given by Eq. (2.12), it

will introduce its own time scale. The existence of a wide range of time scales

is manifested in temporal stiffness in the governing equations. This presents a

computational problem: to capture the dynamics and to assure numerical stability,

the fastest time scale has to be captured. On the other hand, in approaching the

equilibrium state, the slowest time scale must be achieved.

To obtain the time evolution of the spatially homogeneous reactive system,

Eqs. (3.14) are integrated, starting from an initial condition, until the system

comes to equilibrium. Equations (3.14) are a set of nonlinear autonomous ODEs

which exhibit stiffness. The DLSODE [119] code is used for solving this set of ODEs.
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In order to calculate the time scales over which Eqs. (3.14) evolve, a standard

eigenvalue analysis is performed. Starting from the initial condition, the set of

ODEs are lineraized at each time step about the local solution state, and the

temporally local Jacobian matrix J is calculated. The local time scales τi over

which the system evolves are given by the reciprocal of the real part of the local

J’s eigenvalues; τi = 1/ |Re(λi)|. Furthermore, the ratio between the largest and

the smallest time scales, i.e. the slowest time scale and fastest time scale, identifies

the system’s temporal stiffness,

St =
τslowest

τfastest
. (3.15)

In general, the eigenvalues are complex, where the reciprocals of the real parts

provide the scales of the amplitude growth, and the reciprocals of the imaginary

parts represent the period of oscillations. Further details regarding the lineariza-

tion technique are provided in Appendix C.

This work is focused on the hydrogen–air system described by the detailed

kinetics mechanism extracted from Miller et al. [120]; it has been widely used in the

literature [111, 121, 122]. This mechanism consists of J = 19 reversible reactions

involving N = 9 species which are composed of L = 3 elements, see Table D.1. In

this mechanism, the reactant species are H2, O2, H,O,OH,HO2, H2O2, and H2O.

The inert diluent for the mixture is N2. Here, a stoichiometric premixed mixture

is considered, where the initial molar ratio is given by 2H2 + O2 + 3.76N2. The

system was initially at p = 1 atm and T ∗ = 800K. Using DLSODE, the evolution

of species mass fractions and temperature is presented in Fig. 3.3.

In Fig. 3.3 (a), a power law growth of the minor species is clearly noted for

t < 10−8 s. For some minor species, this growth slightly modulates at t ≈ 10−8 s,
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Figure 3.3. The time evolution of (a) species mass fractions, and (b)
temperature for the stoichiometric hydrogen–air reactive system,

T ∗ = 800 K, p = 1 atm.
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which indicates that dissociation reactions are induced. At t ≈ 10−6 s, the minor

species growth rates change, which indicates that significant dissociation reactions

are induced. For 10−6 < t < 101 s, the minor species continue to increase with

disparate growth rates. On the other hand, the major species H2, O2, and N2 have

essentially constant concentrations. Just past t ≈ 101 s all the species undergo

significant change, and the radicals’ mass fractions reach their maximum values.

At t ≈ 2×101 s, an exothermic recombination of radicals commences forming the

predominant product H2O, which continues up to t ≈ 4 × 101 s, after which the

system approaches the equilibrium state, which is confirmed by Fig. 3.3 (b) that

shows the system’s temperature evolution in time.

The time scales over which the system evolves are presented in Fig. 3.4. There

are six time scales in the spectrum. This is because our reaction mechanism has

N = 9 species with L = 3 elements being conserved. Thus, we find N − L = 6

independent modes. A conserved quantity is time-independent. Thus, it has a zero

rate of change, i.e. an infinite time scale. The multiscale nature of this problem is

clearly seen. Near equilibrium the slowest time scale is 1.85×10−4 s, and the fastest

time scale is 1.03 × 10−8 s, giving rise to a stiffness of St ∼ O (104). The fastest

time scale is consistent with the time scale over which minor species evolve. Thus,

to capture the physical dynamics in a numerical simulation ∆t < τfastest ≈ 10−8 s,

needs to be employed.

In Table 3.1, precise values of various properties at the initial state and the

equilibrium state are listed.
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Figure 3.4. Time scales over which the stoichiometric hydrogen–air
reactive system evolves, T ∗ = 800 K, p = 1 atm.

3.3 Spatial scales

Here, a robust method to calculate with great accuracy the length scales for

gas phase laminar premixed flames, on a fundamental mathematical basis, is pre-

sented. The finest spatial scale which must be resolved in order for the mathe-

matical model to be verified is thus determined. To this end, analysis is given to

reduce the governing equations (2.20) to a highly refined, non-traditional system

of differential algebraic equations (DAEs) which is most convenient for a posteriori

determination of the length scales. Following this exposition, the more traditional

equation set is presented, which is the system actually solved in the well known

PREMIX [123] iterative technique to determine the reaction zone structure which

is necessary for the subsequent length scale analysis.
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TABLE 3.1

THERMOCHEMICAL AND DYNAMIC PROPERTIES FOR THE

STOICHIOMETRIC HYDROGEN–AIR REACTIVE SYSTEM.

Property Initial state Equilibrium

p [dyne/cm2] 1.01325× 106 1.01325 × 106

T [K] 8.00000× 102 2.61794 × 103

ρ [g/cm3] 3.18566 × 10−4 1.11336 × 10−4

YH2
2.85219 × 10−2 2.46789 × 10−3

YO2
2.26362 × 10−1 1.44476 × 10−2

YH 0.00000× 100 2.96014 × 10−4

YO 0.00000× 100 1.74472 × 10−3

YOH 0.00000× 100 1.22014 × 10−2

YHO2
0.00000× 100 5.49446 × 10−6

YH2O2
0.00000× 100 4.12847 × 10−7

YH2O 0.00000× 100 2.23721 × 10−1

YN2
7.45116 × 10−1 7.45116 × 10−1

τfastest [s] 3.10804 × 10−7 1.03309 × 10−8

τslowest [s] 1.63257× 104 1.84879 × 10−4
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3.3.1 Dynamical system form

First, Eqs. (2.20) are reduced into a system of ODEs by relaxing the time-

dependent behavior of the system to a steadily propagating flame front moving to

the left with constant, albeit unknown, flame speed SL. A Galilean transformation

is applied to the system with the frame speed equal to the flame speed,

x̃ = x+ SLt̃, (3.16a)

t̃ = t, (3.16b)

ũ = u+ SL. (3.16c)

The spatial coordinate x̃ is a flame front-attached coordinate, and ũ is the mix-

ture velocity in the Galilean frame. Consequently, the equations that govern the

structure of a steady flame are obtained,

d

dx̃
(ρũ) = 0, (3.17a)

d

dx̃
(ρũh+ Jq) = 0, (3.17b)

d

dx̃
(ρũyl + jml ) = 0, l = 1, . . . , L− 1, (3.17c)

d

dx̃
(ρũYi + Jm

i ) = ω̇im̄i, i = 1, . . . , N − L. (3.17d)

The system of ODEs that describes the steadily propagating laminar premixed

flame consists of 2N + 1 equations. Only N + 1 ODEs are listed explicitly in

Eqs. (3.17); these equations are supplemented by the N ODEs, which represent

the definition of Jq and Jm
i , i = 1, . . . , N − 1, Eqs. (2.21). So, 2N + 1 boundary
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conditions are required. An appropriate set of boundary conditions is [55, 118]

x̃ = 0 : T = Tu, Yi +
Jm

i

ρuSL

= Yiu, i = 1, . . . , N − 1, (3.18a)

x̃→ ∞ :
dT

dx̃
→ 0,

dYi

dx̃
→ 0, i = 1, . . . , N − 1, (3.18b)

x̃ = x̃f : T = Tf , (3.18c)

where x̃f is a specified spatial point, and Tf is the specified temperature at

that location [118]. These are commonly used to study laminar premixed flames,

though other formulations are possible. These boundary conditions are sufficient

for freely propagating flames, where for this type of flame the mass flow rate,

ṁ = ρũ, is unknown [124, 125], so the temperature at an interior spatial point has

to be specified. The point x̃f and temperature Tf have to be selected such that

all the gradients approach zero at the cold boundary, x = 0.

It will be useful to have additional values of variables at boundaries. Using

Eqs. (2.4), (2.5b), (2.9c), and (2.16a) the following expressions are derived

ρu =
p

ℜ̄Tu

∑N
i=1 Yiu/m̄i

, (3.19a)

hu =

N∑

i=1

Yiu

(
hf

i +

∫ Tu

T o

cpi(T̂ )dT̂

)
, (3.19b)

ylu = m̄l

N∑

i=1

φliYiu

m̄i

, l = 1, . . . , L. (3.19c)

By utilizing the boundary conditions (3.19), the homogeneous ODEs (3.17a)–
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(3.17c) can be integrated exactly. So, the governing equations become

ρũ = ρuSL, (3.20a)

ρũh+ Jq = ρuSLhu, (3.20b)

ρũyl + jml = ρuSLylu, l = 1, . . . , L− 1, (3.20c)

d

dx̃
(ρũYi + Jm

i ) = ω̇im̄i, i = 1 . . . , N − L. (3.20d)

At this stage the variable SL is considered a fixed parameter for a given calculation;

an iterative technique is used to determine SL so that all boundary conditions are

satisfied. The equations are most conveniently posed as a set of 2N + 2 DAEs in

terms of 2N + 2 state variables; species mass fraction Yi, (i = 1, . . . , N), species

mass flux Jm
i , (i = 1, . . . , N), temperature T , and Fourier’s heat flux q. This

system, in a compact representation and after dropping (r̃) for simplicity, is

A (z) · dz
dx

= f (z) . (3.21)
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Here,

A =





D 0 0

Ṁ I 0

0 0 Q




, z =





Y1

...

YN

Jm
1

...

Jm
N

T

q





, f =





Jm
1

m̄

ρ m̄1

...

Jm
N

m̄

ρ m̄N

ω̇1 m̄1

...

ω̇N−L m̄N−L

ρuy1 + jm1 − (ρuSLy1u)

...

ρuyL + jmL − (ρuSLyLu)

ρuh+ Jq − (ρuSLhu)

q





, (3.22a)

where,

Dik = Dik −
N∑

j=1
j 6=i

DijYjm̄

m̄k

, i = 1, . . . , N, k = 1, . . . , N, (3.22b)

Ṁ =




ρuSLI(N−L)×(N−L) 0(N−L)×L

0L×(N−L) 0L×L



 , (3.22c)

I =




I(N−L)×(N−L) 0(N−L)×L

0L×(N−L) 0L×L



 , (3.22d)

Q =




0 0

−k 0



 . (3.22e)

A is a singular matrix of dimension (2N +2)× (2N +2), and its rank is 2N −L,
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f is a set of (2N + 2) × 1 non-linear functions of the state variables z, also of

dimension (2N + 2) × 1, and I is the identity matrix. Here, the dimensions of

D, Ṁ, and I are N × N , while the dimension of Q is 2 × 2. In this system,

the number of variables is 2N + 2, though the number of dependent variables is

2N − L; there are L + 2 conserved quantities. In Eqs. (3.21)–(3.22), L + 1 of

these quantities can be clearly seen, and they account for the conservation of L

elements and the total energy. The additional conserved quantity in this system

is due to the constraint on the species mass fluxes, Eq. (2.17a).

3.3.2 Standard form of model equations

The dynamical system (3.21) and the boundary conditions (3.18) are useful for

length scale analysis. Direct solution of this system for the reaction zone structure

is possible, in principle. However, the problem can be shown to be a high order

shooting problem, rendering direct solution difficult.

Thus, to model stationary laminar premixed flames, the less refined, but more

compact, form which commonly appears in the literature, cf. [118, 124, 125], is

obtained. By including Eqs. (3.17c) into (3.17d), and substituting Eqs. (2.5b),

(2.9c), and (2.21b) into Eq. (3.17b), following the same approach as [100], one

arrives at, after dropping (r̃),

d

dx
(ρu) = 0, (3.23a)

ρucp
dT

dx
+
dq

dx
+

N∑

i=1

(
Jm

i

dhi

dx
+ ω̇im̄ihi

)
= 0, (3.23b)

ρu
dYi

dx
+
dJm

i

dx
= ω̇im̄i, i = 1, . . . , N − 1. (3.23c)

A solution for this boundary value problem, Eqs. (3.23) with the boundary
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conditions Eqs. (3.18) can be obtained numerically. First, a finite spatial domain of

length L is considered. Then, the system is spatially discretized using a difference

scheme. The resulting algebraic system of equations are solved iteratively, where

the solution iterate is brought into the convergence domain by using pseudo-time

integration [118].

3.3.3 Length scale analysis

To accurately determine the length scales over which the system evolves, an

eigenvalue analysis can be applied to Eq. (3.21). Since A is singular, the standard

eigenvalue analysis is not applicable. Instead, the generalized eigenvalues of this

dynamical system can be calculated [126]. Employing the generalized eigenvalue

method on a singular system is a robust method to distinguish small physically

based eigenvalues from those which are mathematically zero. Especially in mul-

tiscale problems, ordinary eigenvalue analysis often generates a set of eigenvalues

for which the distinction is either difficult or impossible.

Assume first that z = zs(x) has been determined by some appropriate numeri-

cal method, as discussed in Sec. 3.3.2, so that zs(x) satisfies Eqs. (3.18) and (3.21).

Consider then an arbitrary spatial point x = x∗ at which the state variables are

z = zs(x∗) = z∗. By defining the perturbation from zs(x) as z′(x) = z(x)− zs(x),

then linearizing Eq. (3.21) about x = x∗, one finds

(
A∗ + Ψ∗ · z′(x) + O

(
z′

2
(x)
)

+ . . .
)
·
(
dzs(x)

dx

∣∣∣∣
x=x∗

+
dz′(x)

dx

)
=

(
f∗ + J∗ · z′(x) + O

(
z′

2
(x)
)

+ . . .
)
, (3.24)

where A∗ = A(z∗) and f∗ = f(z∗) are now locally constant, J∗ and Ψ∗ are,
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respectively, the locally constant Jacobian and a third-order tensor evaluated as

J∗ik =
∂fi

∂zk

∣∣∣∣
z=z∗

, i, k = 1, . . . , 2N + 2, (3.25a)

Ψ∗ijk =
∂Aij

∂zk

∣∣∣∣
z=z∗

, i, j, k = 1, . . . , 2N + 2. (3.25b)

By considering only linear terms in Eq. (3.24) and employing the fact that

A∗ · dzs(x)/dx|x=x∗
= f∗, one can see that

A∗ ·
dz′(x)

dx
= J∗ · z′(x) −Ψ∗ · z′(x) ·

dzs(x)

dx

∣∣∣∣
x=x∗

, (3.26)

which can be compactly written as

A∗ ·
dz′

dx
= B∗ · z′, (3.27a)

where

B∗ik =

(
J∗ik − Ψ∗ijk

dzsj

dx

∣∣∣∣
x=x∗

)
, i, k = 1, . . . , 2N + 2. (3.27b)

Next, adopt the standard assumption that

z′ = υ exp (λx) , (3.28)

where λ is in general a complex number denoting the generalized eigenvalue, and

υ is the corresponding generalized eigenvector. Substitution of Eq. (3.28) into

Eq. (3.27a) yields the generalized eigenvalue problem

λA∗ · υ = B∗ · υ. (3.29)
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Solving for λi, i = 1, . . . , 2N − L, then using Eq. (3.28), it is easily seen that

the length scales ℓi over which the dependent variables evolve are given by the

reciprocal of the real part of these eigenvalues,

ℓi =
1

|Re (λi)|
, i = 1, . . . , 2N − L. (3.30)

By evaluating the eigenvalues at each spatial point, the length scales over

which the system evolves through the reaction zone are determined. As a result,

the minimum size of discretization to capture the finest scale of the system can be

determined. In general, the eigenvalues are complex, where the reciprocals of the

real parts provide the length scales of the amplitude growth, and the reciprocals

of the imaginary parts represent the oscillatory length scale. Furthermore, the

ratio of the largest to the smallest length scale identify the spatial stiffness,

Sx =
ℓcoarsest

ℓfinest

. (3.31)

As an alternative approach, it is possible to overcome the singularity of A by

removing linear dependencies, and then differentiating the non-linear algebraic

constraints (3.20b)–(3.20c), and recover a non-singular system of ODEs in the

standard form. Then, the method described in Ref. [122] can be used to estimate

the standard eigenvalues, where L of them are zeros, albeit corrupted by numerical

roundoff error. These two approaches, the ordinary and the generalized eigenvalue

methods, both accurately estimate the finest length scale. Nevertheless, since it

has been constructed based on a (L+ 1)-degrees lower dimensional space, the gen-

eralized eigenvalue method is more refined than the standard eigenvalue method.
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3.3.4 Computational method

A double precision FORTRAN-77 code has been developed and linked with the

International Mathematical and Statistical Libraries (IMSL) routines DFDJAC for

Jacobian evaluation, DEVLRG for eigenvalues estimation, DGVLRG for generalized

eigenvalues estimation, and a double precision version of the public domain edi-

tion of the CHEMKIN package [127, 128] to obtain kinetic rates and thermody-

namics properties, a double precision version of the public domain edition of

the TRANSPORT package [129] to calculate multicomponent transport properties

of species, and a double precision version of the public domain edition of the

PREMIX algorithm [123] to obtain the steady structure of the adiabatic laminar

premixed flames.

A second order central difference scheme has been employed to discretize all the

spatial derivatives in (3.23). The mass and heat fluxes have been estimated at in-

termediate grid points to maintain second order accuracy. The resulting algebraic

system of equations are solved using a damped modified Newton’s method [123].

In all cases studied in this section, the relative and absolute error tolerances for

iterative convergence are 10−9 and 10−14, respectively. These values are five orders

of magnitude more stringent than the default values; moreover, the absolute tol-

erance is approaching the machine precision error. All the calculations presented

in this section were performed on a single processor 3.2 GHz Hewlett–Packard

workstation, and typical calculations were completed within one minute.

3.3.5 Model problem

An adiabatic steady one-dimensional laminar premixed flame freely propagat-

ing in a stoichiometric hydrogen–air mixture at p = 1 atm has been considered.
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The utilized kinetic model is identical to that of Sec. 3.2, see Table D.1. In this

section, except for the systematic grid convergence studies in Sec. 3.3.5.1, all re-

sults are obtained on a grid that has been adaptively refined to control the error

and capture regions of steep gradient; the minimum utilized grid sizes are listed

in Table 3.2. The adaptive refinement algortithm is seen to demand that the

finest grid sizes range from 1× 10−6 to 9× 10−4 cm, depending on p and mixture

composition.

3.3.5.1 Verification and validation

Before presenting our predictions, we need to verify our computations. Two

types of verification are performed: 1) we compare our results to those previously

reported in a previous study, and 2) we conduct a formal grid convergence study.

For the first verification, a calculation is performed to reproduce the temper-

ature and species profiles of a stoichiometric, atmospheric-pressure hydrogen–air

flame found in Smooke et al. [111]. Equations (3.23) with the boundary condi-

tions (3.18) are solved, where this mathematical model is identical to the one

described in Ref. [111]. The specified spatial point is xf = 5× 10−2 cm, the spec-

ified temperature is Tf = 400 K, and the temperature of the unburned mixture

is Tu = 298 K. In this particular calculation, the Dufour’s effect in the heat flux

model is neglected, while the Soret’s effect in the mass flux model is considered

to match the model in Ref. [111]; the mass flux is modeled by Eq. (2.22) instead

of Eq. (2.21a). Although considering one of these terms and neglecting the other

violates Onsager’s reciprocity [104, 105], this is done here for verification pur-

poses only. The results are illustrated in Fig. 3.5; visual inspection shows that the

stationary flame structure is identical to that of Ref. [111].
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TABLE 3.2

THE MINIMUM GRID SIZE EMPLOYED FOR LAMINAR

PREMIXED FLAMES.

p [atm]
∆x [cm]

H2 − air CxHy − air

1 × 10−1 9 × 10−4 -

2 × 10−1 6 × 10−4 -

5 × 10−1 2 × 10−4 2 × 10−5

1 × 100 6 × 10−5 1 × 10−5

2 × 100 5 × 10−5 8 × 10−6

5 × 100 3 × 10−5 3 × 10−6

1 × 101 1 × 10−5 1 × 10−6

However, modeling atmospheric-pressure laminar premixed flame at such un-

burned mixture’s temperature, Tu = 298 K, cause some of the reactive species

mass fractions near the cold boundary, 1) artificially converge to negative values,

and 2) show oscillations. Nevertheless, the behavior away from the neighborhood

of the cold boundary has no obvious errors. This computational phenomenon is

known as the cold-boundary difficulty [108]; a physical description for this prob-

lem is given in Ref. [55]. Consequently, to overcome this difficulty, the unburned

mixture’s temperature is raised up to Tu = 800 K; the specified temperature is

assigned Tf = 900 K at xf = 2.30 cm.

For the second more rigorous verification, the stationary structures of one-

dimensional, stoichiometric, adiabatic, 2H2+O2+3.76N2 laminar premixed flames
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Figure 3.5. Temperature and species profiles versus distance in the
stoichiometric hydrogen–air flame for numerical verification, equivalent

to predictions of Smooke et al. Tu = 298 K and p = 1 atm.
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at p = 1 atm and Tu = 800 K are obtained over a wide range of uniform grid

sizes: 3 × 10−2 ≤ ∆x ≤ 6.25 × 10−5 cm. Thus, the error-control mechanism in

the adaptive refinement algorithm of PREMIX has been suppressed for this case to

enable this standard calculation.

In this formal grid convergence study, for all dependent variables z, the relative

errors throughout the entire domain, E∞, are calculated by using the following

formula:

E∞ = maxxu≤x≤xb

∣∣∣∣
zexact (x) − z (x)

zexact (x)

∣∣∣∣ . (3.32)

The result for one dependent variable, the mass fraction of species OH , is

presented in Fig. 3.6. Results for all other variables bear remarkable similarity

to that for YOH . Solutions are obtained on eight different uniform grids. The

“exact” solution is estimated using Richardson’s extrapolation from the three

finest grids [9]. In computing the error via Eq. (3.32), points with species mass

fraction below 10−10 were excluded because of potential roundoff corruption in the

double precision calculations.

Figure 3.6 shows that to obtain a desirable E∞ OH < 0.1 in this problem, a

spatial resolution of ∆x ≤ 2 × 10−4 cm has to be utilized. Larger discretization

sizes can induce unacceptably large relative errors; e.g. for ∆x = 10−2 cm the

relative error in YOH is 40, (4000%). In addition, it is found that the error at

the finest two spatial discretizations is converging towards the exact solution at a

rate of O(∆x1.64). It appears in Fig. 3.6 that the rate of convergence is increasing

as ∆x decreases. Finite computational resources prevented the use of finer grids;

it is expected that on even finer grids, a convergence rate of O(∆x2), consistent

with the truncation error of the finite difference discretization, would have been

achieved.
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Figure 3.6. Relative error of YOH versus the discretization size for the
hydrogen–air flame simulation with Tu = 800 K and p = 1 atm.

In contrast, for this problem, the relative errors in laminar flame speed are not

as sensitive. Figure 3.7 shows the relative error in laminar flame speed,

ESL
=

∣∣∣∣
SL − Sexact

L

Sexact
L

∣∣∣∣ ,

as a function of ∆x. To keep the relative error in SL below 0.1, one need only

employ a ∆x ∼ 2×10−3 cm. For ∆x = 10−2 cm, the relative error in SL is around

0.3, much lower than that for species mass fractions. This result is in agreement

with our adopted characterization of a resolved solution.

Consideration of the spatial distributions of two minor species’ mass fractions,

YOH and YHO2
, at four different grid resolutions, shown in Figs. 3.8–3.9, provides

additional insight. Here, attention is focused on a region at the onset of flame

ignition. In Fig. 3.8, clearly one sees that for ∆x = 3× 10−2 cm and 1× 10−2 cm,
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Figure 3.7. Convergence of the relative error in laminar flame speed with
grid size ∆x for the hydrogen–air flame simulation with Tu = 800 K and

p = 1 atm.

relative to calculations on a finer grid, there are orders of magnitude difference

in the predictions of YOH. Only for the finer grid resolution is YOH seen to be

converging to have a small relative error. Figure 3.9 shows a close view of how the

HO2 mass fraction profile varies with the grid resolution. The accurate capture

of the peak values of species which are highly active only in the flame zone poses

a computational challenge. Clearly the peak, and the behavior near the peak, is

under-resolved for ∆x ≥ 10−2 cm. Most of the structure near the peak is well

resolved for ∆x = 10−3 cm; for ∆x = 1.25×10−4 cm, the error is very small. The

peak values of YHO2
and the error in these values as a function of ∆x are listed

in Table 3.3. Assuming the value obtained on the finest grid to be “exact” allows

calculation of EHO2
; here the calculation of E is restricted to peak values. Figures

3.8–3.9 do not display the results for ∆x = 6.25 × 10−5 cm as on this scale they
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Figure 3.8. Spatial distribution of YOH at various discretization sizes for
the hydrogen–air flame simulation with Tu = 800 K and p = 1 atm.

are indistinguishable from those found for ∆x = 1.25 × 10−4 cm.

Next, a comparison with the experimental results addresses the question as to

whether the model well represents the observable physics. For validation purposes,

a series of calculations is performed on an atmospheric-pressure hydrogen–air lam-

inar premixed flame initially at Tu = 298 K. For different equivalence ratios Φ,

the flame speed is determined; see Table 3.4. A comparison between the calculated

flame speeds and a set of experimental data [130–138] is given in Fig. 3.10. It is

clear that the computational predictions lie within the scatter of the experimental

data, and they are as good as have been found by others [111, 139].
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Figure 3.9. Spatial distribution of YHO2 at various discretization sizes for
the hydrogen–air flame simulation with Tu = 800 K and p = 1 atm.

TABLE 3.3

PEAK VALUE OF YHO2
AND RELATIVE ERROR AS FUNCTION

OF ∆x FOR THE HYDROGEN–AIR FLAME SIMULATION WITH

Tu = 800 K AND p = 1 atm.

∆x [cm] Peak of YHO2
EHO2

3.0 × 10−2 1.33366 × 10−4 2.23 × 10−1

1.0 × 10−2 1.60060 × 10−4 6.71 × 10−2

1.0 × 10−3 1.69659 × 10−4 1.11 × 10−2

1.25 × 10−4 1.71143 × 10−4 2.47 × 10−3

6.25 × 10−5 1.71566 × 10−4 -
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TABLE 3.4

THE COMPUTED FLAME SPEEDS OF LAMINAR PREMIXED

HYDROGEN–AIR FLAMES FOR DIFFERENT EQUIVALENCE

RATIOS, Tu = 298 K, p = 1 atm.

Φ 0.595 0.793 1.000 1.282 1.587

SL [cm/s] 101.12 170.26 238.40 275.62 286.90

Φ 1.947 2.380 2.909 3.570 4.420

SL [cm/s] 274.47 246.76 201.45 156.14 105.29
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Figure 3.10. Comparison of predictions of flame speed versus the
equivalence ratio with the experimental data, Tu = 298 K, p = 1 atm.
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3.3.5.2 Resolved structure

The fully resolved steady species and temperature profiles are shown in Figs.

3.11–3.12. Although linear scales are usually used in the literature, here log–log

and semi–log scales have been employed to better illustrate the disparate scales.

Figure 3.11 shows the spatial distribution of species mass fractions throughout

the entire flame zone. At x ≈ 10−4 cm, the minor species growth rates change

slightly, which reveals that significant dissociation reactions at this scale are in-

duced. Another increase in the minor species mass fraction growth rates is noted

at x ≈ 10−2 cm, which indicates the occurrence of more vigorous chemical inter-

action of the minor species. For 10−2 < x < 2.30×100 cm, the minor species mass

fractions continue to increase rapidly with different growth rates. On the other

hand, the major species H2, O2, and N2 have essentially constant mass fractions.

Just past x = 2.20 × 100 cm, which is near the end of the preheat zone, all the

species mass fractions undergo significant change, and the radicals’ mass fractions

reach their maximum values. At x = 2.40 × 100 cm, exothermic recombination

of radicals commences forming the predominant product H2O. This zone extends

up to x = 1.39× 101 cm; after that, the system comes to its chemical equilibrium

state where all the spatial gradients vanish. To confirm this, the spatial domain

was extended to x = 1.00 × 102 cm, but no further changes were noted.

In Fig. 3.12, the temperature profile is presented. At x ≈ 2.20 × 100 cm,

the reaction undergoes a particularly vigorous stage in which the change in the

temperature is significant. Thus, the ignition point can be assigned; it is defined as

the point where the temperature gradient dT/dx reaches a maximum value. Also,

this particular point defines the end of the preheat zone and the beginning of the

reaction zone. For this case the ignition point is assigned at x = 2.315 × 100 cm.
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hydrogen–air flame, Tu = 800 K, p = 1 atm.
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We adopt the simple estimate for the characteristic reaction length scale, i.e. flame

thickness, given by Williams [108]:

ℓreaction =
k

ρocpSL
, (3.33)

where for this case ℓreaction = 1.60 × 10−3 cm.

3.3.5.3 Length scale spectrum

Having the fully resolved structure in hand, the local Jacobian and the spatial

generalized eigenvalues are calculated throughout the entire domain. As a result,

the local length scales ℓi are predicted throughout the domain, Fig. 3.13. The

multiscale nature of the problem and the length scales over which the species

evolve are clearly shown; the system exhibits a spatial stiffness. Because the

reaction mechanism has N = 9 species with L = 3 elements being conserved, there

are 2N − L = 15 length scales in the spectrum. Thus, there are 15 independent

modes. This almost twice the number of time scales for the spatially homogeneous

version. It would be exactly twice if element conservation were not a feature of this

system. The finest length scale and the largest length scale for this system vary

from 7.60×10−4 cm and 1.62×107 cm in the preheat zone to 2.41×10−4 cm and

2.62 × 100 cm in the hot far-field region, respectively. Thus, the spatial stiffness

in the hot region is Sx ∼ O(104).

In addition to the values reported in Fig. 3.13, the eigenvalues were checked

by calculation with other standard algorithms. All algorithms returned equivalent

eigenvalues corresponding to fine length scales. However, numerical errors induced

some discrepancies in the less important coarse length scale estimates. The least

numerical error in the physical eigenvalues was noted in the direct calculation
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Figure 3.13. Predicted length scales over which the stoichiometric
hydrogen–air flame evolves versus distance, Tu = 800 K, p = 1 atm.

of the eigenvalues; however, this algorithm returned L = 3 spurious eigenvalues,

which were overruled by the more robust generalized eigenvalue method.

The evolution of a particular species is not associated with a particular length

scale, since the species mass fractions depend on local linear combinations of all

eigenmodes. So, the species mass fractions vary on these scales through the entire

domain. The important finest scale is ℓfinest = 2.41×10−4 cm, which occurs at the

system’s chemical equilibrium. The predicted finest length scale and the smallest

scale over which the species vary, x = 10−4 cm, are nearly identical. Moreover,

the finest length scale effect in the preheat zone can be observed in the variation

of the minor species mass fractions, which ensures the consistency between the

eigenvalue-determined finest length scale and the smallest scale over which the

species vary. As the system approaches its equilibrium, all of the eigenvalues are
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real: half are positive, and half are negative. Thus, the chemical equilibrium point

for this advection-reaction-diffusion system is a saddle node.

As a summary of our results for the one-dimensional atmospheric-pressure

freely propagating laminar premixed hydrogen–air flame, a precise list of several

properties’ values at the cold boundary, i.e. unburned mixture, and at the hot

boundary, i.e. burned mixture, is given in Table 3.5.

A comparison between the predicted finest length scale ℓfinest and the flame

thickness ℓreaction over a wide range of pressures is presented in Fig. 3.14. It reveals

that the finest length scale is well correlated with the flame thickness and that

both of them decrease as pressure is increased. On the other hand, ℓfinest is at

least one order of magnitude smaller than ℓreaction, which indicates the presence

of scales smaller than the flame thickness.

3.3.5.4 Estimate from collision theory

We next explore the possibility that there may be a more fundamental underly-

ing explanation for the finest length scales revealed by the eigenvalue analysis. We

thus report an ad hoc but plausible analysis based on straightforward estimates

from standard molecular collision theory. We find that a remarkably simple for-

mula is able to accurately predict the length scales obtained by the preceding

eigenvalue analysis. We believe this formula will be accurate for any collision-

based kinetic model. However, an analytical proof of the connection between the

eigenvalue prediction from detailed kinetics and the mean free path calculation is

intractable.

In a totally independent calculation, the mean free path ℓmfp for the mixture
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TABLE 3.5

THERMOCHEMICAL AND DYNAMIC PROPERTIES FOR THE

ONE-DIMENSIONAL LAMINAR PREMIXED HYDROGEN–AIR

FLAME.

Property Cold boundary Hot boundary

p [dyne/cm2] 1.01325× 106 1.01325 × 106

T [K] 8.00000× 102 2.61940 × 103

u [cm/s] 1.44081× 103 4.11965 × 103

ρ [g/cm3] 3.18971 × 10−4 1.11557 × 10−4

m̄ [g/mol] 2.09380× 101 2.39769 × 101

YH2
2.84030 × 10−2 2.30040 × 10−3

YO2
2.27712 × 10−1 1.66143 × 10−2

YH 1.26367 × 10−13 2.87103 × 10−4

YO 2.70429 × 10−14 1.88089 × 10−3

YOH 3.04969 × 10−13 1.26441 × 10−2

YHO2
9.89474 × 10−13 6.10909 × 10−6

YH2O2
2.37593 × 10−16 4.42107 × 10−7

YH2O 1.25667 × 10−12 2.22471 × 10−1

YN2
7.45116 × 10−1 7.45116 × 10−1

ℓcoarsest [cm] 1.61618× 107 2.62236 × 100

ℓfinest [cm] 7.59517 × 10−4 2.41237 × 10−4
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Figure 3.14. The flame thickness and the finest length scale predicted by
eigenvalue analysis versus pressure for the stoichiometric hydrogen–air

flame, Tu = 800 K.
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studied is estimated based on a simple relation given by Vincenti and Kruger [140]:

ℓmfp =
m̄√

2πd2ρN
, (3.34)

where d is the molecular collision cross-section diameter, and N = 6.02250 ×

1023 mol−1 is Avogadro’s number. For the calculation of ℓmfp, estimated at the

equilibrium state, the estimate of d = 3.70 × 10−8 cm for air is adopted from

Ref. [140]. This estimate of d is close in magnitude to the mixture average collision

diameter dmix = 3.60778×10−8 cm, which can be calculated as the average of the

species Lennard-Jones collision diameters, given by TRANSPORT [129],

dmix =
1

N

N∑

i=1

ςi. (3.35)

Also, m̄ = 23.98 g/mol and ρ = 1.12× 10−4 g/cm3 were obtained for the mixture

from PREMIX calculations. The estimate (3.34) reveals that ℓmfp = 5.87×10−5 cm,

which is roughly one order of magnitude smaller than the continuum-based ℓfinest.

A comparison between ℓfinest and ℓmfp over a wide range of pressures is pre-

sented in Fig. 3.15. Although this comparison should not be considered as formal

proof of the existence of a relation between these scales, it is intriguing to note

that ℓfinest is always close to, and slightly above, ℓmfp. This is consistent with the

fact that the parameters used in the constitutive models for the continuum the-

ory have as their foundation a rational average of the more fundamental collision

theory. Moreover, the same comparison between ℓfinest, ℓreaction, and ℓmfp for the

hydrogen–air mixture has been conducted for a wide range of Φ. The results are

consistent with the previous one, and clearly show that the finest length scale is

not a function of the fuel–air ratio, see Fig. 3.16.
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the mean free path versus the equivalence ratio for a hydrogen–air flame,

Tu = 800 K, p = 1 atm.
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3.3.6 Hydrocarbon–air mixtures

The approach presented in Sec. 3.3.5 is extended to several other stoichiometric

reactive mixtures: 1) methane–air, 2) ethane–air, 3) propane–air, 4) ethylene–air,

and 5) acetylene–air. The GRI-3.0 mechanism [141] with L = 5 elements, N = 53

species, and J = 325 reversible reactions has been adopted as a kinetic model.

For each mixture, the pressure is p = 1 atm, the mixture temperature at the

cold boundary is Tu = 298 K, the specified temperature location is assigned at

xf = 2.30 cm, and the specified temperature is Tf = 400 K.

The calculated ℓfinest, ℓreaction, and the estimated ℓmfp over a wide range of

pressures are presented, Figs. 3.17–3.21. It is clearly shown that the predicted

finest length scale is well correlated with the mean free path for all the calculations

performed; in all cases ℓfinest is slightly above ℓmfp, fully consistent with the

continuum assumption. So, the finest length scale can be easily estimated a priori

using Eq. (3.34). Moreover, it can be said with confidence that the finest scale is

not a strong function of a particular mixture, a detailed kinetic mechanism, or a

particular numerical method. It seems then that one may be able to claim that

in order to accurately compute a reactive flow problem with bi- and tri-molecular

collision-based detailed kinetic rates such as considered here, one has to resolve a

spatial scale slightly above the mean free path scale.

However, it should be noted that there are other reaction mechanisms which

are not collision-based and may involve uni-molecular decay attributable to some

external source which excites vibrational frequencies [142]. Such scales may be

faster or slower than collision-based scales. If, then, the reaction mechanism in-

volves uni-molecular reactions, depending on the details of such reactions, resolu-

tion either above, at, or below the mean free path level may be required; if below,
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Figure 3.17. The flame thickness, the finest length scale predicted by
eigenvalue analysis, and the mean free path versus pressure for a laminar
premixed flame in a stoichiometric methane–air mixture, Tu = 298 K.

the continuum model is certainly inappropriate!

Remarkably then, it seems to be possible to use ℓmfp as a simple a priori

estimate for ℓfinest predicted a posteriori. Such an estimate is useful in providing

a lower bound for the computational grid resolution necessary to guarantee fully

resolved continuum calculations. Further evidence on the existence of a relation

between these scales are provided in Appendices E–F.

In Appendix E, the predicted finest length scale and the mean free path length

scale in the reaction zone of a Chapman–Jouguet (CJ) detonation [143] have been

calculated for several gas-phase mixtures over wide ranges of Φ and p. Similar to

laminar premixed flames, a correlation between ℓfinest and ℓmfp has been noted.

In Appendix F, we were able to show analytically a connection between ℓmfp and

ℓfinest for a simpler kinetic scheme, the isothermal dissociation of diatomic oxygen.
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Figure 3.18. The flame thickness, the finest length scale predicted by
eigenvalue analysis, and the mean free path versus pressure for a laminar

premixed flame in a stoichiometric ethane–air mixture, Tu = 298 K.
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Figure 3.19. The flame thickness, the finest length scale predicted by
eigenvalue analysis, and the mean free path versus pressure for a laminar

premixed flame in a stoichiometric propane–air mixture, Tu = 298 K.
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Figure 3.20. The flame thickness, the finest length scale predicted by
eigenvalue analysis, and the mean free path versus pressure for a laminar

premixed flame in a stoichiometric ethylene–air mixture, Tu = 298 K.
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Figure 3.21. The flame thickness, the finest length scale predicted by
eigenvalue analysis, and the mean free path versus pressure for a laminar
premixed flame in a stoichiometric acetylene–air mixture, Tu = 298 K.
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3.3.7 Comparison with previously published results

Here, a comparison between the predicted finest length scale and the uti-

lized discretization in some of the best calculations of flames in hydrogen–air and

methane–air mixtures is presented. The results of these calculations are summa-

rized in Table 3.6, which is organized such that for each study initial mixture

molar ratio, temperature, pressure, flame thickness ℓreaction, estimated mean free

path length ℓmfp, finest length scale ℓfinest predicted by the generalized eigenvalue

analysis, and employed grid resolution ∆x are listed, respectively. In all cases,

the predicted ℓfinest are at the micron-level, and they are well correlated with the

associated cutoff length scales admitted by the continuum theory.

Katta and Roquemore [144] investigated the structure of an axi-symmetric

premixed hydrogen–air jet flame using a time-dependent two-dimensional algo-

rithm. The utilized discretization was nonuniform, and the minimum grid size in

the axial direction was 2.50 × 10−2 cm. The detailed kinetics model consisted of

N = 11 species and J = 20 reversible reactions. It has a typographical error in

reaction 5 − 6 which is unbalanced. This error is corrected by returning to the

work of Westbrook [145] and adopting the corresponding reactions.

Thiele et al. [146] used a time-dependent two-dimensional model to simulate

the spark-ignition in a quiescent hydrogen–air mixture described by a detailed

kinetics. The reaction mechanism consists of N = 9 species and J = 38 irre-

versible reactions, adopted from the work of Warnatz et al. [67]. Although the

grid discretization in this study is not mentioned, the predicted required length

scale, 7.56 × 10−4 cm, to fully resolve such a system was beyond the existing

computational capabilities.

Patnaik and Kailasanath [147] used a detailed kinetics model extracted from
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the work of Burks and Oran [148] to simulate a two-dimensional burner stabilized

hydrogen–air flame [118]. The extracted model consists of J = 48 elementary

reactions involving N = 9 species, but the original model has typographical errors

in reactions 4 and 12, which were unbalanced. These errors are corrected by

returning to the work of Baulch et al. [149] and Hampson et al. [150] and adopting

the corresponding reactions. The spatial resolution in this study was nonuniform,

though the average grid size was ∆x = 3.54 × 10−2 cm.

Knio and Najm [151] and Najm and Wyckoff [152] investigated the interac-

tion of a premixed methane–air flame with a two-dimensional vortex pair using

an operator–splitting technique. In the first study, the detailed GRI-1.2 mecha-

nism [153] is used with N = 32 species and J = 177 reversible reactions. And

the utilized discretization was uniform with a grid size 1.5625 × 10−3 cm. In the

second study, the chemical mechanism is a skeletal C1−reaction set consisting of

N = 16 species and J = 27 reversible reactions, such mechanisms are obtained by

removing all the species that contain more than one carbon atom and eliminating

the associated reaction steps from the detailed mechanism. Here, the utilized dis-

cretization is not clear, but the computational domain is 0.4 cm ×1.6 cm, which

makes it beyond the existing computational capabilities to be fully resolved with

ℓfinest = 6.12 × 10−4 cm.

Katta et al. [154] used a detailed kinetics model from the work of Katta and

Roquemore [155] to simulate a two-dimensional partially-premixed methane–air

flame inside an idealized boiler. The kinetic model consists of J = 81 elementary

reactions involving N = 24 species. Two different uniform spatial resolutions are

used in this study. For the finest one, the grid size was ∆x = 5.00 × 10−3 cm.
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TABLE 3.6

COMPARISON OF LENGTH SCALES AMONG VARIOUS MODELS

THAT USE DETAILED KINETICS TO DESCRIBE A LAMINAR

PREMIXED HYDROGEN–AIR FLAME.

Ref. Mixture molar ratio Tu [K] p [atm] ℓreaction [cm] ℓmfp [cm] ℓfinest [cm] ∆x [cm]

[144] 1.26H2 +O2 + 3.76N2 4 × 102 1 × 100 2.93 × 10−3 4.33 × 10−5 8.05 × 10−4 2.50 × 10−2

[146] 1.19H2 +O2 + 3.76N2 3.05 × 102 9.87 × 10−1 4.83 × 10−3 3.99 × 10−5 7.56 × 10−4 —

[147] 0.59H2 +O2 + 3.76N2 3.50 × 102 1 × 100 7.24 × 10−2 7.84 × 10−6 4.35 × 10−5 3.54 × 10−2

[151] CH4 + 2O2 + 10N2 2.98 × 102 1 × 100 1.16 × 10−2 6.68 × 10−6 2.89 × 10−5 1.56 × 10−3

[152] CH4 + 2O2 + 10N2 2.98 × 102 1 × 100 2.45 × 10−2 4.33 × 10−5 6.12 × 10−4 —

[154] CH4 + 2O2 + 7.52N2 2.98 × 102 1 × 100 3.48 × 10−3 6.68 × 10−6 5.21 × 10−5 5.00 × 10−3
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The main result from Table 3.6 is that none of these studies have utilized

a grid resolution ∆x that is less than or equal to the finest length scale ℓfinest

which is required to have unambiguously resolved detailed species concentration

predictions for a steady one-dimensional laminar premixed flame in comparable

mixture under the same conditions. Moreover, the utilized grid resolution ∆x

is at least two orders of magnitude greater than ℓfinest. In each study, different

physical phenomena are simulated, and the mathematical models that are used

vary, but the commonality in all studies is the usage of a detailed kinetics model

to simulates flame in a reactive mixture.

3.4 Spatio-temporal spectrum

We next study the time spectrum of the full reacting flow system governed

by Eqs (2.20). In principle, we would perturb the steady laminar flame structure

of Sec. 3.3.5.2, and calculate the system’s eigenvalue spectrum. However, this

presents overwhelming computational demands in solving for eigenvalues of very

large matrices.

As a useful alternative, we instead find the time scale spectrum associated with

a system initially near a spatially homogeneous chemical equilibrium state. This

is certainly relevant for laminar flame structure, as it represents the hot end. A

spatially homogeneous system at chemical equilibrium is subjected to a spatially

inhomogeneous perturbation, and its spatio-temporal response is predicted. To

achieve this, the governing equations are most conveniently posed as a set of 2N+2

partial differential algebraic equations (PDAEs) in terms of 2N +2 state variables

z, composed of species mass fraction Yi, species mass flux Jm
i , mixture specific
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enthalpy h, and Fourier heat flux q. This system, in a compact representation, is

A(z) · ∂z
∂t

+ B(z) · ∂z
∂x

= f(z). (3.36)

When z = ze, a constant vector, the system is in its equilibrium state, such that

f(ze) = 0. At this state, A(z), B(z) take on constant values, A(ze) ≡ Ae, B(ze) ≡

Be. We next define perturbations from the equilibrium state as z′ ≡ z − ze. We

next eliminate z in favor of z′ and linearize f about ze in Eq. (3.36) to obtain

Ae · ∂z
′

∂t
+ Be · ∂z

′

∂x
= Je · z′. (3.37)

Now, we address the problem via spatial discretization of the spatial derivative

operators. Equation (3.37) is spatially discretized using a second order finite dif-

ference approximation on a spatially uniform grid. Then, the resulting equations

are cast as a standard dynamical system of the form

Ae · dZ
dt

= (J e − Be) · Z , Z ∈ R
2N (N+1) (3.38)

where Ae and J e−Be are singular matrices of dimensions 2N (N+1)×2N (N+1),

Z is the set of state variables, and N =
L

∆x
+ 1 > 3 is the total number of spa-

tial points. Since Ae is singular, standard eigenvalue analysis is not applicable.

Instead, the generalized eigenvalues are calculated [126]; the system’s time scales

are the reciprocals of its generalized eigenvlaues. Moreover, each time scale is as-

sociated with a particular Fourier mode of wavenumber κ, which has a wavelength

Λ = 2π/κ. Simultaneously, the associated generalized eigenvectors, i.e. discrete

approximations of the continuous eigenfunctions which are normal modes of this

dynamical system, are calculated. Figure 3.22 illustrates a portion of the first five
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n=1
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n=4

n=2

n=5

Figure 3.22. Portion of the first five discrete approximations of the
continuous eigenfunctions for the hydrogen–air reaction-diffusion system.

generalized eigenvectors, since for each generalized eigenvector, the same pattern

shown in Fig. 3.22 appears N + 1 times.

For the system resulting from perturbing the chemical equilibrium state of the

one-dimensional laminar premixed hydrogen–air flame, the time scale spectrum is

presented in Fig. 3.23. Here, for the numerical results, the modified wavelength

Λ̂ has been defined based on the number of zero crossings n, i.e. normal mode

nodes, such that

Λ̂ =
4L

2n − 1
, n = 1, 2, 3, . . . (3.39)

The unperturbed state is identical to the equilibrium state of Sec. 3.2; T e =

2617.95 K, p = 1 atm, and Y e
i = [2.47×10−3, 1.44×10−2, 2.96×10−5, 1.74×10−3,

1.22×10−2, 5.49×10−6, 4.13×10−7, 2.24×10−1, 7.45×10−1]T , where i = {1, . . . , 9}

corresponds to the species {H2, O2, H,O,OH,HO2, H2O2, H2O,N2}, respectively.
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Figure 3.23. Time scale spectrum for the hydrogen–air
reaction-advection-diffusion system versus the modified wavelength,

L = 100 cm.

Because of the difficulty in calculating the generalized eigenvalues and eigenvectors

of large systems, we were unable to present a window that contains more than one

decade wavelength of the system’s Fourier modes. Figure 3.23 clearly shows that

the time scales associated with long wavelength modes match with the chemical

time scales at the equilibrium state shown in Fig. 3.4; they are dictated by reaction.

Moreover, the diffusion effect starts to appear through the slowest time scales

associated with small wavelength modes.

By focusing on the fundamental mode and varying L, a better understanding

can be realized. In Fig. 3.24, the system’s times scales associated with the funda-

mental modes, i.e. eigenfunctions with n = 1, are tracked as we vary the system’s

length. Because for n = 1, Λ̂ = 4L from Eq. (3.39), we have Λ̂/(2π) = 2L/π, and

we use this for the abscissa. For large L, the reaction-advection-diffusion system’s
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Figure 3.24. Time scales associated with the fundamental modes for the
hydrogen–air reaction-advection-diffusion system versus the length 2L/π.

time scales and the reaction-only system’s time scales at equilibrium are identical;

compare Fig. 3.4 with Fig. 3.24 at large L. However, for 2L/π ∼ 10−1 cm the

effect of diffusion can be noted; it increases monotonically as L decreases. Also,

the balance between reaction and diffusion is clear: short wavelength modes are

dominated by diffusion, and large wavelength modes are dominated by reaction.

Furthermore, the effect of adopting non-uniform diffusion coefficients, the multi-

component diffusion coefficients Dij in Eqs. (2.21a), is noted in the time scale’s

falloff region, L ≤ 10−4 cm. In this region where diffusion is dominant, one can

note that the slope of each τfundamental is the same, but their intercepts are dif-

ferent. Also, it is obvious that in the diffusion-dominated region, there is a two

decade drop in τ for every one decade drop in L. Thus, one would expect that in

this region τ ∼ L2/Dij, which is consistent with our observations.
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It is clear from Figs. 3.23–3.24 that the branch associated with the slowest

chemical time scales starts to become influenced by diffusion before branches as-

sociated with the faster chemical time scales; the turning point for the fastest

chemical time scale branch is 2L/π ∼ 10−3 cm and for the slowest chemical time

scale branch is 2L/π ∼ 10−1 cm. These turning points represent the length scale

where diffusion starts to balance reaction.

Now we can also try to independently predict the turning points by employing

an ad hoc formula to estimate the length scales,

ℓsmallest =
√
Dmixτfastest, (3.40a)

ℓlargest =
√
Dmixτslowest, (3.40b)

where τfastest, τslowest are, respectively, the slowest and fastest time scales of the

unsteady spatially homogeneous version of the problem, and Dmix is the mixture

average diffusion coefficient. This is subject to greater error because we actually

have a multicomponent diffusion process, coupled with diffusion of energy as well.

Let us estimate the mixture average diffusion coefficient Dmix and take it to be

the average of the species mass diffusion coefficients,

Dmix =
1

N2

N∑

i=1

N∑

j=1

Dij. (3.41)

Our computational prediction gives Dmix ≈ 61.25 cm2/s. As a result, we estimate

the turning points for fast and slow reactions to be

ℓsmallest = 7.94 × 10−4 cm, (3.42a)

ℓlargest = 1.06 × 10−1 cm, (3.42b)
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where τfastest = 1.03×10−8 s and τslowest = 1.85×10−4 s are presented in Sec. 3.2.

Both of these estimates, illustrated as dashed lines in Fig. 3.24, predict well the

turning points.

For the more rigorous calculation of the system’s finest length scale, presented

in Sec. 3.3, it has been found that the finest length scale admitted by the steady

spatially homogeneous version is ℓfinest = 2.41×10−4 cm. Interestingly, the simple

estimate, Eq. (3.42a), is close in magnitude to ℓfinest obtained by spatial eigenvalue

analysis. Subsequently, it is clear that the reactive systems’ temporal and spatial

scales are coupled, and for a resolved structure, Fourier modes of varying wave-

length are associated with time scales which are dictated by a balance between

transport and chemistry. Another realistic problem, the ozone decomposition, is

given in Appendix G.
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CHAPTER 4

SLOW INVARIANT MANIFOLDS FOR SPATIALLY HOMOGENEOUS

REACTIVE SYSTEMS

In this chapter, one-dimensional (1-D) slow invariant manifolds (SIMs) for

unsteady, closed, isothermal, spatially homogeneous, reactive systems described

by detailed kinetics are calculated. Here, dimensionality refers to the dimension of

the composition space and not to the ordinary spatial dimension, as the systems

we consider have no spatial inhomogeneity. The SIM for a reactive system is a

subset of the species composition space. It describes the asymptotic structure

of the invariant attracting reactive system’s trajectories during their relaxation

toward equilibrium. Here, only the 1-D SIMs will be constructed, although for

each reactive system, there are SIMs of different dimensions.

A heteroclinic orbit is defined as a trajectory that connects two critical points.

A 1-D SIM is defined here as a heteroclinic orbit that is locally attractive along

the complete trajectory. The method is based on global analysis of the composi-

tion space of the reactive system. The identification of all the reactive system’s

critical points plays a major role in calculating the system’s SIM. The SIMs are

constructed by connecting the systems’ critical points with each other via trajec-

tories. The method will be applied to several realistic and model reactive systems,

including a detailed hydrogen–air kinetics model.
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4.1 Model equations

By confining our attention to unsteady spatially homogeneous mixtures of

calorically imperfect ideal gases described by detailed kinetics, the governing equa-

tions presented in Sec. 2.2.2 are reduced to

dYi

dt
=
ω̇im̄i

ρ
, i = 1, . . . , N. (4.1)

Thus, using Eqs. (2.7) and (2.11), the change in the number of moles of species i

with t due to chemical reaction is described by the following system [99]:

dni

dt
= V

J∑

j=1

νijrj , i = 1, . . . , N, (4.2a)

ni|t=0 = n∗
i , i = 1, . . . , N. (4.2b)

This system defines an N -dimensional composition space RN . But, as described

in Sec. 2.1.1, in any closed reactive system the total number of moles of each

element is conserved. Moreover, additional constraints could arise as a result

of considering special cases. So, by multiplying both sides of Eq. (4.2a) by φli,

summing the result from i = 1 to N , one gets

d

dt

(
N∑

i=1

φlini

)
= V

J∑

j=1

rj

N∑

i=1

φliνij . (4.3)

By employing Eq. (2.3) to set the right side to zero, integrating the resulting

homogeneous differential equation, and applying the initial condition, Eq. (4.2b),

one obtains
N∑

i=1

φlini =

N∑

i=1

φlin
∗
i , l = 1, . . . , L. (4.4)
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Generally, Eq. (4.4) is an underconstrained linear system of L equations for

the N values of ni [156]. This implies that it has solutions of the following form

ni = n∗
i +m

(
R∑

k=1

Dikzk

)
, i = 1, . . . , N. (4.5)

Here,

zk =
nk

m
, k = 1, . . . , R, (4.6)

is a reduced composition variable which physically represents the number of moles

of species k per total mass, and

Dik ≡ D : R
N → R

R, (4.7)

is a dimensionless constant matrix of size N × R and has a full rank R. Each

column vector of D is linearly independent of the remaining column vectors, and

span the same column space as νij . This can be illustrated by the following relation

N∑

i=1

φliDik = 0, l = 1, . . . , L, k = 1, . . . , R. (4.8)

However, Dik is not unique; it can be constructed in several ways. Further infor-

mation is given in Appendix H.

Equation (4.5) allows the N species to be represented in terms of R dependent

variables. First, take the time derivative of Eq. (4.5) to get

dni

dt
= m

(
R∑

k=1

Dik
dzk

dt

)
, i = 1, . . . , N. (4.9a)
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Now, by substituting Eq. (4.2a) into Eq. (4.9a), one obtains

V

m

N∑

i=1

νijrj

︸ ︷︷ ︸
1

ρ
ω̇i

=
R∑

k=1

Dik
dzk

dt
, i = 1, . . . , N. (4.9b)

In Gibbs notation, Eq. (4.9b) is written as

1

ρ
ω̇ = D · dz

dt
, z ∈ R

R, ω̇ ∈ R
N . (4.9c)

We take the matrix product of both sides of Eq. (4.9c) with D
T to obtain

1

ρ
D

T · ω̇ = D
T · D · dz

dt
, z ∈ R

R, ω̇ ∈ R
N . (4.9d)

Then, to remove D from the right hand side of Eq. (4.9d), we take the matrix

product of both sides by
(
D

T · D
)−1

,

1

ρ

(
D

T · D
)−1

D
T · ω̇ =

(
D

T · D
)−1 ·

(
D

T · D
)

︸ ︷︷ ︸
=I

·dz
dt
, z ∈ R

R, ω̇ ∈ R
N , (4.9e)

where I is the identity matrix.

Consequently, the rate of evolution of the species in the reactive mixture is

governed by

dzk

dt
= ẇk, k = 1, . . . , R, (4.10a)

zk|t=0 = z∗k , k = 1, . . . , R, (4.10b)
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where

ẇk =
1

ρ

R∑

j=1




(

N∑

i=1

DikDij

)−1( N∑

i=1

Dij ω̇i

)

 , k = 1, . . . , R, (4.11)

is the molar production rate of species k in the reduced composition space. So, the

reactive system’s solutions, represented as trajectories, move within the reduced

composition space RR where RR ⊂ RN .

From a geometric point of view, the species specific moles z correspond to a

vector in the Euclidian composition space RR. This vector is given by the following

relation

z = L (n)
∣∣ L :

(
R

N → R
R
)
, (4.12)

where

L (n) =
1

m

(
D

T · D
)−1 · DT · (n − n∗) , (4.13)

is a linear operator that accounts for all the system’s linear constraints. The

evolution of z in time is described as an autonomous dynamical system of the

standard form

dz

dt
= f (z) , z ∈ R

R, f : R
R → R

R, (4.14)

where f is a set of R non-linear coupled algebraic functions. For an isothermal

system, these functions are polynomials of degree q connected with a given reaction

mechanism. Generally, the kth polynomial is given by the following form

fk (z) =

q∑

i=1

Pki (z), (4.15)

where Pki (z) are a homogeneous ith degree term in the kth polynomial, e.g. the
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second degree term in the kth polynomial is Pk2 (z) ≡
R∑

l=1

R∑

j=l

akljzjzl, where aklj

is a constant.

4.2 Methodology

The construction method of the SIM is based on identifying all the equilibria of

the dynamical system that describes the species evolution, Eq. (4.14). In general,

the set of equilibria ze of such functions is complex;

ze ∈ C
R | f (ze) = 0 . (4.16)

Also, as demonstrated by Perko [157], the set of equilibria ze contains finite equi-

libria and infinite equilibria; i.e. equilibria located at infinity. Both classes of

equilibria will be of interest. Furthermore, the equilibria can be positive dimen-

sional continua [158, 159]; i.e. high-dimensional equilibria. Such equilibria have

dimension larger than zero; 0-D equilibria are points, 1-D equilibria are curves,

2-D equilibria are surfaces, 3-D equilibria are volumes, etc. Then, the equilib-

ria are connected via heteroclinic orbits obtained by numerical integration of the

species evolution equations using any computationally inexpensive scheme. Recall

that a heteroclinic orbit is a trajectory that connects two critical points. Finally,

the 1-D SIM that describes the asymptotic structure of the invariant attracting

trajectories is identified.

4.2.1 Computational remarks

Here, all calculations have been performed to 100 significant digits. However,

all the listed results have been rounded to six significant digits. Integer values indi-
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cate that the reported numbers are exact. The fourth-order Runge-Kutta scheme

has been used to construct all the heteroclinic orbits. The thermodynamic prop-

erties are obtained from the public domain edition of the CHEMKIN package [128].

Subsequently, the property values are treated as having infinite precision.

Identifying all of the equilibria is the major task of constructing the reactive

system’s SIM. So, BERTINI [160], which is a free software package designed to

compute the equilibria of polynomial systems over the field of complex numbers

C using homotopy continuation [158], is used to obtain the system’s finite and

infinite equilibria to any desired accuracy. However, polynomial systems that

arise from reactive systems modeling are poorly scaled; the differences between the

equations’ coefficients are several orders of magnitude. This can lead to numerical

difficulties when the equilibria are computed. Thus, prior to the use of BERTINI,

the polynomial systems have to be rescaled to assure robust behavior of BERTINI.

Brief descriptions of BERTINI and polynomial scaling are provided in Appendix I.

4.2.2 Finite equilibria

First, finite equilibria of Eq. (4.14) are obtained by finding all the ze that

satisfy f (ze) = 0. One of these finite equilibria is the reactive system’s physi-

cal equilibrium point, which is defined, for closed spatially homogeneous reactive

systems, by the following relation [161]

N∑

i=1

νijµ̄i = 0, j = 1, . . . , J, (4.17)

which can be derived from Eq. (2.13b), see Appendix J. Equation (4.17) implies

that the equilibrium of a reactive system is defined as the thermodynamic state

at which there is no change in the mixture chemical potential, i.e. the mixture
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chemical potential is extremum. Also, Eq. (4.17) implies that all the reaction

steps in a mechanism have to halt at the system’s physical equilibrium point.

This critical point is of special interest; it is the only critical point located inside

the physically accessible domain, S [156], which is defined as a subspace within

the reduced composition space where all the species are positive semi-definite and

finite;

S ⊂ R
R ⊂ R

N | ni ≥ 0, i = 1, . . . , N. (4.18)

The rest of the finite equilibria are located outside S; they are non-physical since

at least one of the species has negative numbers of moles, ni < 0, i ∈ {1, . . . , N}.

Moreover, S represents the minimum of the mixture associated thermodynamic

potential function. This function is the Gibbs free energy G in the case of an

isothermal-isobaric system, and Helmholtz free energy A = E − TS in the case of

an isothermal-isochoric system.

4.2.3 Infinite equilibria

Second, the dynamical system’s infinite equilibria are calculated by using a

projective geometry technique. Two of these techniques are employed in this

work: 1) the Poincaré sphere technique [157, 162], and 2) the projective space

technique [158, 163]. These techniques map the equilibria at infinity into the

finite domain where they can be easily computed. However, as a constraint, to

employ one of these techniques, all the polynomials f (z) in Eq. (4.14) must be of

the same degree, q.
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4.2.3.1 Poincaré sphere technique

The Poincaré sphere is a central projection technique which maps the phase

space onto the surface of a unit sphere S, which is defined as

S =

{

U ∈ R
R+1

∣∣∣∣∣

R+1∑

i=1

U
2
i = 1

}

. (4.19a)

where

Ui =
zi√

1 +
∑R

j=1 z
2
j

, i = 1, . . . R, (4.19b)

UR+1 =
1√

1 +
∑R

j=1 z
2
j

. (4.19c)

Figure 4.1 illustrates the Poincaré sphere technique for a 2-D system from a

geometric point of view. To employ ths technique, the origin of the original phase

space is placed at the north pole of S, and every point in the z space is connected

with the center of S by a line. The intersection of the line with the surface of S

assigns the location of the point in the transformed space, U. However, as shown

in Fig. 4.1, each point z∗ in the z space will be represented on the surface of S

as two points; the point U∗ and the antipodal point U∗. The antipodal point,

or image, appears as a consequence of not using a one-to-one mapping, and its

dynamical behavior is equivalent to U∗ with a reversed flow direction; i.e. if U∗ is

a sink, then U∗ is source.

As a result of this mapping, the equilibria at infinity are mapped onto the

equator of S, where they can identified as the roots of following R− 1 equations,

Gk ≡ UiPjq − UjPiq = 0, i 6= j, i, j = 1, . . . , R, k = 1, . . . , R− 1. (4.20)
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Figure 4.1. Sketch of the Poincaré sphere mapping. The point z∗,
located in z space, is mapped onto the surface of S, the U space, as

point U∗ and as antipodal point U∗.

Recall that Pjq is the highest degree terms in the jth polynomial of the system

f . This technique has been used before in the literature to analyze the global

dynamics of small, N = 2, reactive systems [45, 50]. The major disadvantages

of this technique are: 1) it is not a one-to-one transformation, and 2) for high-

dimensional systems, N ≥ 3, it is computationally inefficient and algorithmically

complex. But, it remains a useful tool for analyzing low dimensional systems;

N ≤ 2. Thus, in this work, use of this technique will be restricted to cases where

better understanding of the low-dimensional reactive systems is needed.
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4.2.3.2 Projective space technique

The projective space technique is a mapping approach to identify the equilibria

located at infinity. It is defined as

P (Z) : R
R → R

R, (4.21)

Generally, it consists of the following two step one-to-one transformation:

Zk =
1

∑R
j=1 ajzj

, k ∈ {1, . . . , R}, (4.22a)

Zi =
zi∑R

j=1 ajzj

, i 6= k, i = 1, . . . , R, (4.22b)

where aj ∈ [0, 1] is a set of random numbers such that
∑R

j=1 aj = 1, Z are

the state variables in the projective space, and Zk is any arbitrarily selected new

dependent variable. However, forms other than Eqs. (4.22) of this mapping exist.

As a result of employing the projective space technique, the infinite equilibria are

mapped onto the line Zk = 0.

Here, to illustrate how the original dynamical system, Eq. (4.14), is recast in

the projective space, the following simple form of the transformation, Eqs. (4.22),

will be employed,

Zk =
1

zk

, k ∈ {1, . . . , R}, (4.23a)

Zi =
zi

zk
, i 6= k, i = 1, . . . , R. (4.23b)

where zk is any arbitrarily selected dependent variable. Equations (4.23) are a
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special form of Eqs. (4.22) that can be obtained by choosing aj as,

aj =






0, j 6= k,

1, j = k.
(4.24)

However, in certain cases there is a degeneracy in employing this simple form.

Choosing certain dependent variables to serve as zk in Eqs. (4.23) can cause one

infinite equilibrium point to be missed. Explicitly, if there is an infinite equilib-

rium point located at zj = ∞, j ∈ {1, . . . , R}, the dependent variable zk has to be

selected such that j = k to identify that particular equilibrium. In other words,

that specific infinite equilibrium point is located at Zk = ∞. Although the ex-

istence of such an equilibrium point is not known a priori, checking at least two

projective spaces will overcome this issue.

We start the mapping process by rewriting the relation between the dependent

variables in the original composition space z, and the dependent variables in the

transformed space Z. From Eqs. (4.23), one gets

zk =
1

Zk
, k ∈ {1, . . . , R}, (4.25a)

zi =
Zi

Zk

, i 6= k, i = 1, . . . , R. (4.25b)
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Thus, the original dynamical system, Eq. (4.14), becomes

d

dt





Z1/Zk

...

Zk−1/Zk

1/Zk

Zk+1/Zk

...

ZR/Zk





=





f1 (Z1/Zk, . . . , Zk−1/Zk, 1/Zk, Zk+1/Zk, . . . , ZR/Zk)

...

fk−1 (Z1/Zk, . . . , Zk−1/Zk, 1/Zk, Zk+1/Zk, . . . , ZR/Zk)

fk (Z1/Zk, . . . , Zk−1/Zk, 1/Zk, Zk+1/Zk, . . . , ZR/Zk)

fk+1 (Z1/Zk, . . . , Zk−1/Zk, 1/Zk, Zk+1/Zk, . . . , ZR/Zk)

...

fR (Z1/Zk, . . . , Zk−1/Zk, 1/Zk, Zk+1/Zk, . . . , ZR/Zk)





.

(4.26a)

Using the chain rule, the left hand side of Eq. (4.26a) can be written as

d

dt





Z1/Zk

...

Zk−1/Zk

1/Zk

Zk+1/Zk

...

ZR/Zk





≡ 1

Zk

d

dt





Z1

...

Zk−1

0

Zk+1

...

ZR





− 1

Z2
k





Z1

...

Zk−1

1

Zk+1

...

ZR





dZk

dt
. (4.26b)
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By substituting Eq. (4.26b) in Eq. (4.26a), one gets

1

Zk

d

dt





Z1

...

Zk−1

0

Zk+1

...

ZR





− 1

Z2
k





Z1

...

Zk−1

1

Zk+1

...

ZR





dZk

dt
=





f1 (Z1, . . . , Zk, . . . , ZR)

...

fk−1 (Z1, . . . , Zk, . . . , ZR)

fk (Z1, . . . , Zk, . . . , ZR)

fk+1 (Z1, . . . , Zk, . . . , ZR)

...

fR (Z1, . . . , Zk, . . . , ZR)





,

(4.26c)

where it is obvious that

fi

(
Z1

Zk

, . . . ,
Zk−1

Zk

,
1

Zk

,
Zk+1

Zk

, . . . ,
ZR

Zk

)
≡ fi (Z1, . . . , Zk, . . . , ZR) , i = 1, . . . , R.

Here, the kth row in Eq. (4.26c) states that

1

Z2
k

dZk

dt
= −fk (Z1, . . . , ZR) . (4.26d)

Thus, Eq. (4.26a) can be rearranged, using Eqs. (4.26b) and (4.26d), to get

1

Zk

d

dt





Z1

...

Zk−1

Zk

Zk+1

...

ZR





+fk (Z1, . . . , ZR)





Z1

...

Zk−1

Zk

Zk+1

...

ZR





=





f1 (Z1, . . . , ZR)

...

fk−1 (Z1, . . . , ZR)

0

fk+1 (Z1, . . . , ZR)

...

fR (Z1, . . . , ZR)





. (4.26e)
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So, the original dynamical system, Eq. (4.14), is recast in the projective space,

defined by Eqs. (4.25), in the following form:

d

dt





Z1

...

Zk−1

Zk

Zk+1

...

ZR





= Zk





f1 (Z1, . . . , ZR) − Z1fk (Z1, . . . , ZR)

...

fk−1 (Z1, . . . , ZR) − Zk−1fk (Z1, . . . , ZR)

−Zkfk (Z1, . . . , ZR)

fk+1 (Z1, . . . , ZR) − Zk+1fk (Z1, . . . , ZR)

...

fR (Z1, . . . , ZR) − ZRfk (Z1, . . . , ZR)





. (4.26f)

In general, the projective space technique has the disadvantage of introducing

a singularity in the dynamical system. By substituting Z in the polynomials f ,

as described in the left hand side of Eq. (4.26f), and recalling Eqs. (4.15) and

(4.25), it is clear that the highest degree terms in polynomials f have a Zq

k in their

denominators. To overcome this difficulty, we define a transformed independent

variable t in the projective space which is related to t in the original space as

follows:

dt

dt
= (Zk)

q−1 , (4.27)

where we recall that q is the maximum degree of the polynomials in f . By em-
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ploying this transformation, Eq. (4.26f) becomes

d

dt





t

Z1

...

Zk−1

Zk

Zk+1

...

ZR





=





Zq−1
k

Zq

k · (f1 (Z1, . . . , ZR) − Z1fk (Z1, . . . , ZR))

...

Zq

k · (fk−1 (Z1, . . . , ZR) − Zk−1fk (Z1, . . . , ZR))

−Zq+1
k · fk (Z1, . . . , ZR)

Zq

k · (fk+1 (Z1, . . . , ZR) − Zk+1fk (Z1, . . . , ZR))

...

Zq

k · (fR (Z1, . . . , ZR) − ZRfk (Z1, . . . , ZR))





, (4.28)

The finite equilibria of the resulting dynamical system, Eq. (4.28), represent the

infinite equilibria of the original dynamical system, Eq. (4.14). We note here that

Z ∈ R
R+1, though the value of Ze

0 is irrelevant; Ze
0 = 0.

Now, following the same presented procedure to obtain Eq. (4.28), one can

show that the original dynamical system described by Eq. (4.14) is recast in the

projective space, defined by Eqs. (4.22), in the following compact form:

dZ

dt
= F (Z) , (4.29a)
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where

Z =





Z0

Z1

...

Zk−1

Zk

Zk+1

...

ZR





, F (Z) =





Zq−1
k

Zq

k ·
(
f1 (Z) − Z1

∑R
j=1 ajfj (Z)

)

...

Zq

k ·
(
fk−1 (Z) − Zk−1

∑R
j=1 ajfj (Z)

)

−Zq+1
k

∑R
j=1 ajfj (Z)

Zq

k ·
(
fk+1 (Z) − Zk+1

∑R
j=1 ajfj (Z)

)

...

Zq

k ·
(
fR (Z) − ZR

∑R
j=1 ajfj (Z)

)





, (4.29b)

and we denote Z0 = t.

4.2.4 Equilibria’s dynamical character

After identifying all the system’s, Eq. (4.14), equilibria, the local dynamic

behavior of the system within the neighborhood of each equilibrium is investigated

by employing standard linearization techniques. The stability of each equilibrium

is determined by examining the eigenvalue spectrum λi and the corresponding

eigenvectors υi of the constant Jacobian matrix evaluated at the equilibrium Je.

Further details regarding linearization technique are provided in Appendix C.

The physical equilibrium point must be a stable node [164]; i.e. all the eigen-

values of its Je are real and negative. Furthermore, the ratio between the largest

and smallest time scales identifies the system’s temporal stiffness St. In addition,

the eigenvector associated with the least negative eigenvalue represents the sys-

tem’s slowest mode or direction in composition space along which the trajectories

approach the physical equilibrium. Similarly, the eigenvector associated with the
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largest eigenvalue in magnitude represents the system’s fastest mode.

Physically, since all its eigenvalues are negative, a spatially homogeneous closed

reactive system is a dissipative system [102]. Such a system, has to reach in infinite

time its physical equilibrium point as a final state. From a geometrical viewpoint,

this final state is a 0-D attractor. Since every attractor has its own basin of

attraction [165], the reactive system’s unique physical equilibrium point has a

basin of attraction, which all the trajectories inside of it approach.

4.2.5 Construction method

Here, the procedure for constructing the closed spatially homogeneous reactive

system’s 1-D SIM is presented. In this, the following conjecture has been found

to be useful, although there is no formal proof for it.

Conjecture:

Only the system’s isolated non-physical real finite and infinite equilibria are

relevant to the construction of a 1-D SIM connecting to the physical equilib-

rium. Furthermore, among these non-physical equilibria, only those with one

unstable eigenvector direction can be candidate members of the 1-D SIM.

As a consequence of the first part of the conjecture, the high-dimensional equilibria

and the complex equilibria are not relevant. Furthermore, as a consequence of the

second part of the conjecture, the real critical points with the following dynam-

ical character are excluded: sinks, sources, saddles with more than one positive

eigenvalue, and non-hyperbolic equilibria with more than one positive eigenvalue.

The system’s finite and infinite equilibria that satisfy our conjecture will be

called candidate equilibria. Starting from each one of these equilibria, a hete-

roclinic orbit is generated tangent to the equilibria unstable direction, i.e. the
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eigenvector associated with the positive eigenvalue. Only heteroclinic orbits that

connect to the physical equilibrium are relevant to the construction of the 1-D

SIM. In general, the 1-D SIM consists of at most two branches. Among the het-

eroclinic orbits, two such orbits represent the branches of the system’s 1-D SIM.

These orbits can be identified since they are the only ones that approach the

physical equilibrium point tangent to its slowest mode, and they are attractive.

First, the candidate points are categorized based on their location; the first

category contains the finite candidate points, and the second category contains the

candidate points located at infinity. Within each category the candidate points

are ordered based on the magnitude of their positive eigenvalue. In each category,

the first candidate point is taken as the one with the least positive eigenvalue

among all the candidate points in that category. The second candidate point is

taken as the one with the second least positive eigenvalue among all the candidate

points in that category, and so on.

Next, we start the process of SIM construction by generating a heteroclinic

orbit from the first candidate point in the first category; the finite candidate

point with the least positive eigenvalue. To generate such an orbit, Eq. (4.14) is

integrated in the direction of the eigenvector associated with the positive eigen-

value pointing towards the reactive system’s physical equilibrium. Then, we check

whether the generated orbit approaches the physical equilibrium point in the di-

rection of its slowest mode, i.e. the eigenvector associated with the least negative

eigenvalue at the physical equilibrium point. Subsequently, if the physical equi-

librium is not located at the origin, another orbit is generated starting from the

finite candidate point with the second lowest positive eigenvalue. If both of these

orbits approach the physical equilibrium point in the direction of its slowest mode,
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then these two orbits correspond to the SIM’s two branches. Otherwise, we gener-

ate a new heteroclinic orbit from the finite candidate point with the third lowest

eigenvalue, and so on. After using all finite candidate points, we follow the same

procedure using the infinite candidate points. This procedure halts as soon as we

construct two heteroclinic orbits that approach the physical equilibrium point in

the direction of its slowest mode, see Fig. 4.2.

R1

R2

SIM

R3

is a stable node; sink.R1

are unstable nodes; saddles.R ,2 R3

Figure 4.2. Sketch illustrating the construction method of a 1-D SIM.
The thick line represents the constructed 1-D SIM. R1 is the reactive
system’s unique physical equilibrium point. R2 and R3 are candidate
points. The open arrows indicate the equilibria’s local stability. The

dashed simplex represents S.
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Finally, the attractiveness of the constructed 1-D SIM is examined locally along

the complete manifold. Here, we pose the following criteria to hold along each

branch of the 1-D SIM. The eigenvalues λi of J are computed locally along the

heteroclinic orbit. Call λ1 the largest eigenvalue. Then we require that for i > 1

λi < 0 and S ≡ |λ1|
|λi|

< 1. (4.30)

The constraints ensure that the composition field contracts along the 1-D SIM,

and S is the contraction factor. Note that these criteria are more restrictive than

the requirement for a contraction mapping, i.e.
∑R

i=1 λi < 0. Furthermore, the

criteria preclude the SIM from emanating from a source. To summarize, we take

the 1-D SIM to consist of at most two heteroclinic orbits that are locally attractive

along their complete trajectories.

At this point, we note a fundamental question with regard to the existence of

the actual SIM. Such a question has various interpretations in the literature [166–

169]. The cause of such discussion is due to the difference in defining the SIM,

in particular, whether it has to be locally invariant and slow or globally invariant

and slow. Reference [169] states that for high dimensional dynamical systems:

“A manifold that is locally invariant and locally slow exists but one
that is globally invariant and globally slow does not.”

This statement seems legitimate in the context of limit cycle type of character

dynamical systems. However, our work is confined to closed reactive systems

where limit cycles will not be exhibited. Moreover, the constructed 1-D SIM is a

heteroclinic orbit, which implies that it is globally invariant.

100



4.3 Model problems

In this section, we illustrate our strategy for constructing a 1-D SIM using

four problems. The first problem is a simple but realistic reactive system. The

next two systems have been used in the literature as prototypes for illustrating

alternate techniques of constructing SIMs. The last problem is a realistic reactive

system, which has been used in Ref. [45] to construct a 1-D SIM using Poincaré

sphere technique.

4.3.1 Zel’dovich mechanism

A common reaction kinetics model is the Zel’dovich mechanism of nitric oxide

formation [67]. This mechanism consists of N = 5 species, L = 2 elements, and

J = 2 reversible reactions. Kinetic data are adopted from Baulch et al. [170], see

Table D.2. A special case in which the system is isochoric will be considered, and

the assigned mixture temperature and volume are T = 4000 K and V = 103 cm3,

respectively. For convenience, the assigned initial number of moles of each species

is n∗ = 10−3 mol.

Here, i = {1, 2, 3, 4, 5} correspond to the species {NO,N,O,O2, N2}, and l =

{1, 2} correspond to the elements {N,O}, respectively. For this system φ has

dimension 2 × 5:

φ =




1 1 0 0 2

1 0 1 2 0



 ,
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and ν has dimension 5 × 2:

ν =





1 −1

−1 −1

1 1

−1 0

0 1





.

For the constraint of element conservation for each reaction, Eq. (2.3), we have

φ · ν =




0 0

0 0



 .

Thus, there are two element constraints in this model.

We start by formulating the set of ODEs that describes this kinetic model.

Following Eq. (4.2a), we get

d

dt





n1

n2

n3

n4

n5





= V





1 −1

−1 −1

1 1

−1 0

0 1








r1

r2



 , (4.31a)

where, from Eq. (2.12),

r1 =
A1T

β1

V 2
exp

(−Ē1

ℜ̄T

)(
n2n4 −

n1n3

Kc
1

)
,

r2 =
A2T

β2

V 2
exp

(−Ē2

ℜ̄T

)(
n2n1 −

n5n3

Kc
2

)
.
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Now, Eq. (4.31a) defines a real RN composition space. To reduce the dimension

of this composition space, we construct the matrix D, following one of the methods

described in Appendix H. Here, method-I will be employed to construct D. First,

we perform a series of row operations on Eq. (4.31a) to find all of the system’s

linear constraints; i.e. we generate the row-echelon form of ν. For that reason, we

add the first row to the second and the fourth rows. Then, multiply the first row

by −1 and add it to the third row. This gives

d

dt





n1

n2 + n1

n3 − n1

n4 + n1

n5





= V





1 −1

0 −2

0 2

0 −1

0 1








r1

r2



 . (4.31b)

Next, add the second row to the third row, multiply the second row by −1
2

and

add it to the fourth row, and multiply the second row by 1
2

and add it to the fifth

row. This gives

d

dt





n1

n2 + n1

n2 + n3

1
2
n1 − 1

2
n2 + n4

1
2
n1 + 1

2
n2 + n5





= V





1 −1

0 −2

0 0

0 0

0 0








r1

r2



 , (4.31c)
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which is rewritten as





1 0 0 0 0

1 1 0 0 0

0 1 1 0 0

1
2

−1
2

0 1 0

1
2

1
2

0 0 1





d

dt





n1

n2

n3

n4

n5





= V





1 −1

0 −2

0 0

0 0

0 0








r1

r2



 , (4.31d)

or in Gibbs notation,

L · dn
dt

= V (U · r) .

We note that the rank of ν is R = 2 which corresponds to the number of the

non-zero rows of U = L · ν.

In Eq. (4.31d) the last three equations are homogeneous, so this model contains

three linear constraints. Moreover, it implies that the behavior of n as a function

of time is described by the evolution of only two variables: n1 and n2. The

remaining variables, {n3, n4, n5}, can be expressed in terms of n1 and n2. These

expressions are obtained by integrating the three homogeneous equations in the

system to obtain

n2 + n3 = c1, (4.32a)

1

2
n1 −

1

2
n2 + n4 = c2, (4.32b)

1

2
n1 +

1

2
n2 + n5 = c3, (4.32c)

where c1, c2 and c3 are constants that are determined from n∗. Further elementary
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row operations on Eqs. (4.32) reveal the following set:

n1 + n3 + 2n4 = c1 + 2c2 = n∗
1 + n∗

3 + 2n∗
4, (4.33a)

n1 + n2 + 2n5 = 2c3 = n∗
1 + n∗

2 + 2n∗
5, (4.33b)

N∑

i=1

ni = c1 + c2 + c3 =

N∑

i=1

n∗
i . (4.33c)

Equations (4.33a) and (4.33b) indicate that the total number of moles of elemental

oxygen and nitrogen are conserved. Equation (4.33c) states that the total number

of molecules is constant. This last constraint is a consequence of including only

bimolecular reactions in this kinetic model, which is not the case in general.

Now, by including the dependent variables, Eqs. (4.32) can be rearranged to

obtain 



n1

n2

n3

n4

n5





=





0

0

c1

c2

c3





+





1 0

0 1

0 −1

−1
2

1
2

−1
2

−1
2








n1

n2



 , (4.34a)

and by introducing the reduced composition space variables as zk = (nk − n∗
k) /m,

k = 1, 2, we get





n1

n2

n3

n4

n5





=





n∗
1

n∗
2

c1 − n∗
2

c2 − 1
2
n∗

1 + 1
2
n∗

2

c3 − 1
2
n∗

1 − 1
2
n∗

2





+m





1 0

0 1

0 −1

−1
2

1
2

−1
2

−1
2








z1

z2



 . (4.34b)
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Using Eqs. (4.33), this system can be rewritten as

n =





n1

n2

n3

n4

n5





=





n∗
1

n∗
2

n∗
3

n∗
4

n∗
5





+m





1 0

0 1

0 −1

−1
2

1
2

−1
2

−1
2








z1

z2



 = n∗ +mD · z. (4.34c)

As we can see, this model problem is now described in the R = 2 dimensional

reactive composition space. Using Eqs. (4.10a) and (4.11), the non-linear ODE

that describes the reactive system evolution is:

dz

dt
= ẇ = f(z), (4.35a)

where

ẇ =
−1

ρ




r2 − r1

r1 + r2



 . (4.35b)

The mixture total mass is obtained by summing Eq. (2.2c) from i = 1 to N ,

m = 1.20024×10−1 g. So, the mixture mass density is ρ = 1.20024×10−4 g/cm3.

Explicitly, the evolution of the system is

dz1
dt

= 2.50545 × 102 + 1.16148 × 107z2 + 6.98833 × 108z2
2 − 9.97639 × 104z1

−3.22221 × 109z2z1, (4.36a)

dz2
dt

= 2.50545 × 102 − 1.16599 × 107z2 − 6.97930 × 108z2
2 + 8.47281 × 104z1

−1.83651 × 109z2z1, (4.36b)

where we note that the maximum degree of Eq. (4.36) is q = 2.
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4.3.1.1 Finite equilibria

The procedure described in Sec. 4.2.2 is used to find the finite equilibria of the

autonomous dynamical system, Eq. (4.35a), which describes the evolution of z.

By equilibrating the left hand side of Eqs. (4.36) and using BERTINI to find all

the ze that satisfy f(ze) = 0, we find the following finite equilibria,

R1 ≡ (ze) =
(
−1.78335 × 10−5,−1.66808 × 10−2

)
mol/g,

R2 ≡ (ze) =
(
−4.19501 × 10−3,−2.66414 × 10−5

)
mol/g,

R3 ≡ (ze) =
(
3.04740 × 10−3, 2.94464 × 10−5

)
mol/g.

Here, all the finite equilibria are real isolated critical points. The rest of the species

are obtained from Eq. (4.34c):

R1 ≡ (ne) =
(
−2.14046 × 10−6,−2.00211 × 10−3, 4.00217× 10−3,

1.69579 × 10−8, 3.00212 × 10−3
)
mol,

R2 ≡ (ne) =
(
−5.03503 × 10−4,−3.19762 × 10−6, 2.00320× 10−3,

1.25015 × 10−3, 2.25335 × 10−3
)
mol,

R3 ≡ (ne) =
(
3.65762 × 10−4, 3.53428× 10−6, 1.99647× 10−3,

8.18886 × 10−4, 1.81535 × 10−3
)
mol.

It is clear that R1 and R2 are non-physical equilibria, while R3 is a physical root

that satisfies Eq. (4.18); R3 is the reactive system’s unique physical equilibrium

point.

To investigate the dynamical character of each critical point, first Eqs. (4.36)
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are linearized to find Je. Following Eq. (C.2) we obtain

Je = 109×



−9.97639 × 10−5 − 3.22221ze

2 1.16148 × 10−2 + 1.39767ze
2 − 3.22221ze

1

8.47281 × 10−5 − 1.83651ze
2 −1.16599 × 10−2 − 1.39586ze

2 − 1.83651ze
1



 .

(4.37)

By substituting R1, R2, and R3 into Je, linear analysis in the neighborhood of

each critical point reveals that R1 is a source, R2 is a saddle, and R3 is a sink.

The system’s eigenvalues and the corresponding eigenvectors associated with each

finite critical point are:

R1 : (λ,υ) =
(
4.17748 × 107, 2.35315× 107

)
,

(
[7.00082 × 10−1, 7.14063× 10−1]T , [3.60549 × 10−1, 9.32740 × 10−1]T

)
,

R2 : (λ,υ) =
(
7.10632 × 105,−4.64305 × 106

)
,

(
[9.99583 × 10−1, 2.88607× 10−2]T , [−9.83408 × 10−1, 1.81406 × 10−1]T

)
,

R3 : (λ,υ) =
(
−1.91355 × 105,−1.73009 × 107

)
,

(
[9.99998 × 10−1, 1.79171× 10−3]T , [−1.06750 × 10−1, 9.94286 × 10−1]T

)
.

The eigenvalues’ and eigenvectors’ units are 1/s and mol/g, respectively.

Since the finite root R2 has only one unstable mode, it is a candidate point

for the 1-D SIM construction. Moreover, the system’s physical fast and slow

time scales are the ones associated with its physical equilibrium; R3. These are,

respectively, 5.78006 × 10−8 s and 5.22588 × 10−6 s, which give rise to a St =

O(102). So, even the two-step Zel’dovich mechanism retains temporal stiffness at

T = 4000 K. The multiscale nature of this system is clearly shown in Fig. 4.3,
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Figure 4.3. The time evolution of number of moles of each species for
the Zel’dovich model problem.

where the full dynamics of the evolution of the species are presented. Here, the

first reaction commences at t ∼ 10−8 s, and the system enters its last relaxation

toward the physical equilibrium state after t ∼ 10−5 s.

4.3.1.2 Infinite equilibria

In addition to its three finite critical points, this system has equilibria at

infinity. They can be identified using the projective space technique described in

Sec. 4.2.3.2. For simplicity, the simple form of the transformation is employed,

Eqs. (4.23).

Arbitrarily, we select k = 1, so the Zel’dovich reactive system in the projective

space is realized by the following transformation: Z0 = t, Z1 = 1/z1, Z2 = z2/z1.
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Subsequently, following Eq. (4.28), we have

dZ0

dt
= Z1, (4.38a)

dZ1

dt
= 9.97639 × 104Z2

1 − 2.50545 × 102Z3
1 + 3.22221 × 109Z1Z2

− 1.16148 × 107Z2
1Z2 − 6.98833 × 108Z1Z

2
2 , (4.38b)

dZ2

dt
= 8.47281 × 104Z1 + 2.50545 × 102Z2

1 (1 − Z2) − 1.83651× 109Z2

− 1.16148 × 107Z1Z2 + 2.52428 × 109Z2
2 − 1.16148 × 107Z1Z

2
2

− 6.98833 × 108Z3
2 . (4.38c)

By using BERTINI to find all the Ze that satisfy F (Ze) = 0, equilibrating the

right hand side of Eqs. (4.38), we find three equilibria:

I1 ≡ (Ze) = (0, 0) ,

I2 ≡ (Ze) = (0, 1.00989) ,

I3 ≡ (Ze) = (0, 2.60224) ,

and they represent the infinite equilibria of the original system, Eqs. (4.36). Here,

all the infinite equilibria are real isolated critical points.

To investigate the dynamical character of each critical point, Eqs. (4.38b) and

(4.38c) are linearized to find Je, and the eigenvalues and corresponding eigenvec-
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tors are calculated:

I1 : (λ,υ) =
(
0,−1.83651 × 109

)
,
(
[1.00000, 4.61353× 10−5]T , [0, 1]T

)
,

I2 : (λ,υ) =
(
2.54135 × 109, 1.12379 × 109

)
,

(
[9.99863 × 10−1,−1.65300 × 10−2]T , [0, 1]T

)
,

I3 : (λ,υ) =
(
3.65270 × 109,−2.89575 × 109

)
,

(
[9.99862 × 10−1,−1.65893 × 10−2]T , [0, 1]T

)
,

where the eigenvalues’ units are g/(mol s2), the units of the first component of

each eigenvector are g/mol, and the second component is dimensionless.

It is clear that I2 is a source, I3 is a saddle with one positive eigenvalue, and I1

is a non-hyperbolic critical point. Consequently, the Hartman-Grobman theorem

is not applicable at I1. The normal form theory [171] is utilized to investigate the

dynamical character of I1, for further details see Appendix C. It is found that

I1 is a saddle-node [172], which consists of two hyperbolic sectors, one parabolic

sector, and three separatrices, in the nomenclature of Ref. [157]. Only one of these

separatrices is unstable. Thus, I1 and I3 are candidate points for constructing the

system’s 1-D SIM.

4.3.1.3 The construction of the SIM

Following our 1-D SIM construction procedure, the candidate points are seg-

regated into two categories. The first category contains only one candidate point;

R2. The second category contains two candidate points: I1 and I3. So, the can-

didate points are ordered as follows: first R2, second I1, and third I3, since R2

is the only point in the first category, I1 is infinite and it has the least positive
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eigenvalue among the infinite candidate points.

Now, starting from the unstable direction of the candidate point R2 that points

toward the reactive system’s physical equilibrium, Eqs. (4.36) are numerically in-

tegrated to generate a heteroclinic orbit. This orbit approaches R3, the reactive

system’s physical equilibrium point, along its slowest mode. So, the generated

orbit represents the first branch of the 1-D SIM. Then, starting from the un-

stable direction of the candidate point I1 pointing towards the reactive system’s

physical equilibrium, Eqs. (4.38) are numerically integrated to generate another

heteroclinic orbit. Also, this orbit approaches R3 along its slowest mode, So,

it represents the second and last branch of the reactive system’s 1-D SIM, see

Fig. 4.4. Subsequently, there is no need to check the third candidate point, I3.

However, to examine the described methodology, Eqs. (4.38) are numerically inte-

grated starting from the unstable direction of the third candidate point I3 pointing

towards R3 to generate a third heteroclinic orbit, illustrated in Fig. 4.4 as a dotted

line. It is clearly shown that the heteroclinic orbit emanating from I3 is attracted

to the heteroclinic orbit that emanating from I1.

In Fig. 4.5, part of the system’s composition space and the SIM are shown.

Upon visual examination of the attractiveness of the constructed SIM, it is clearly

seen that all trajectories inside S, and some outside of it, are attracted to the

constructed 1-D SIM. Moreover, along the SIM’s two branches, including the

three equilibria R3, R2, and I1, the criteria defined by Eq. (4.30) are satisfied, and

S decreases monotonically along the 1-D SIM; its maximum value is S = 0.153053

at R2.
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Figure 4.4. The constructed 1-D SIM for the Zel’dovich model problem.
The SIM is illustrated as a thick line. The thin lines represent

trajectories. The solid dots represent finite critical points. The open
circles represent infinite critical points. The arrows indicate the flow

directions. R3 represents the system’s physical equilibrium state.

4.3.2 Lebiedz’s pedagogical mechanism

The second example here is identical to the second example presented by

Lebiedz [41]. A simple closed reactive system contains three species given by

the following kinetics model:

A+ A ⇋ B ⇋ C.

Using the same argument, described in the original work [41], that the total mass

is conserved, the dimension of the composition space of this model problem is

reduced from N = 3 to N − 1 = 2. Also, for convenience, the dimensionless

variables cA and cB in the original work [41] are denoted here by z1 and z2,
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respectively. The evolution of the reactive system is described by [41]

dz1
dt

= 10−5z2 − z2
1 , (4.39a)

dz2
dt

= z2
1 + (1 − 1002z2 − z1) × 10−5, (4.39b)

which is in the form of Eq. (4.14), and it is clear that q = 2.

To construct the actual SIM for this system, we use the procedure of Sec. 4.2.

For this system, two finite equilibria are found,

R1 ≡ (ze) =
(
9.99450× 10−5, 9.98901 × 10−4

)
,

R2 ≡ (ze) =
(
−9.99550 × 10−5, 9.99101 × 10−4

)
.
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The two finite equilibria are isolated points with real coordinates. Also, linear

analysis in the neighborhood of each equilibrium reveals that R1 is a sink and R2

is a saddle. The eigenvalues and the associated eigenvectors at the equilibria are:

R1 : (λ,υ) =
(
−1.99697 × 10−4,−1.00198 × 10−2

)
,

(
[9.99813 × 10−1, 1.93329× 10−2]T , [−1.01830 × 10−3, 9.99999 × 10−1]T

)
,

R2 : (λ,υ) =
(
1.99705 × 10−4,−9.78501 × 10−3

)
,

(
[9.99789 × 10−1,−2.05354 × 10−2]T , [−9.78501 × 10−4, 1.00000]T

)
.

It is clear that R1 is the system’s unique equilibrium point, and R2 is a candidate

saddle; its eigenvalue spectrum contains only one positive eigenvalue.

To investigate the existence of an equilibrium at infinity, the simple form of

the projective space technique is employed. By choosing k = 2, the projective

space is realized by the following transformation: Z0 = t, Z1 = z1/z2, Z2 = 1/z2.

Thus, the reactive system’s behavior at infinity is described by the following set

of ODEs,

dZ0

dt
= Z2, (4.40a)

dZ1

dt
= 10−5Z2 − Z2

1 + 10−5Z1Z2 (1002 + Z1 − Z2) − Z3
1 , (4.40b)

dZ2

dt
= −Z2

1Z2 + 10−5Z2
2 (1002 + Z1 − Z2) . (4.40c)

For this system there are two equilibria,

I1 ≡ (Ze) = (0, 0) ,

I2 ≡ (Ze) = (−1, 0) .

115



Stability analysis in the neighborhood of these equilibria reveals that I2 is a stable

proper node [157], with λ1 = λ2 = −1, while I1 is a non-hyperbolic critical point

with λ1 = λ2 = 0. Using the normal form theory [171], we find that I1 is a

non-hyperbolic node which consists of two hyperbolic sectors and two parabolic

sectors, in the nomenclature of Ref. [157], for further details see Appendix C.

Since R2 is the only critical point with one unstable direction, it is the only

candidate point for this system. Consequently, the system’s SIM has only one

branch. In Fig. 4.6(a), the system’s 1-D SIM is presented and several trajectories

have been generated away from it to examine the attractiveness of the SIM. Also,

along the SIM’s branches, including R1 and R2, criteria (4.30) hold, and the

maximum value of S = 1.99310 × 10−2 occurs at R2.

Figure 4.6(a) shows what might be considered as a second branch for the

system’s 1-D SIM, although our criteria indicate that this system’s 1-D SIM has

only one branch. A wider range of the system’s composition space is shown in

Fig. 4.6(b). It is apparent that there is an attractive small region that extends

horizontally to the right of R1. However, this apparent “attractive manifold,”

does not satisfy our global criteria (4.30) and it is not unique.

To obtain a better understanding of the dynamics of this system, sketches of

the global phase portrait are illustrated in Fig. 4.7. Because of scaling effects,

it is difficult to graphically illustrate the global dynamical behavior. First, in

Fig. 4.7(a), the view of the projective space in the transformed coordinates is

shown. Since there are two sinks for this system, R1 and I2, there are two basins

of attraction [165]. Each basin contains only one sink, which all the trajectories

inside of it approach. The shaded area represents part of the basin of attraction

for R1. Also, illustrated in dashed lines, the fast invariant manifolds of R2 and
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R1 define the boundary between the two basins and the two parts of the basin of

attraction for R1, respectively.

Next, a projection of the system’s Poincaré sphere onto a 2-D plane is presented

in Fig. 4.7(b). Here, the circle’s boundary represents infinity in the untransformed

space and the shaded area is the basin of attraction for R1. Also, I1 and I2 are

antipodal points to the infinite critical points I1 and I2 [157].

Figure 4.7 clearly shows that the constructed 1-D SIM gives an accurate de-

scription of the asymptotic behavior of the system’s trajectories, though it consists

of only one branch. Moreover, it shows that the horizontal attractive submanifold

near R1, which might appear to be a second branch of the system’s 1-D SIM, is

not unique. This apparent attractive manifold consists of heteroclinic orbits that

initiate from I2. However, none of these orbits are attractive along their complete

trajectories; near I2 all orbits have S ≥ 1, since I2 is a source.

4.3.3 Simple hydrogen–air reactive system

This example is adopted from Sec. II of Ren et al. [37], where it serves as a

model problem for illustrating how to construct the invariant constrained equilib-

rium edge preimage curve (ICE-PIC) manifold. Here, it is used to demonstrate

the simplicity of extending our proposed technique to higher-dimensional reactive

systems.

The reaction mechanism contains N = 6 species, L = 3 elements, and J = 6

reversible reactions, see Table D.3. A special case in which the system is isobaric,

identical to Ren et al. [37], will be considered. The assigned mixture temperature

and pressure are T = 3000 K and p = 1 atm, respectively. The initial conditions

are (n∗
1 = 3.02827×10−4, n∗

2 = 1.00942×10−4, n∗
3 = 3.02827×10−4, n∗

4 = 2.32167×
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10−5, n∗
5 = 1.11037 × 10−4, n∗

6 = 3.32151 × 10−3) mol. Here, i = {1, 2, 3, 4, 5, 6}

corresponds to the species {H2, O,H2O,H,OH,N2}, respectively. This gives rise

to m = 1.00942 × 10−1 g.

The reactive system in this model problem is described in the R = N −L = 3

dimensional reactive composition space. The system’s only constraints are the

conservation of elements; thus, the ODEs that describe the system evolution are

of the form

dz

dt
= f(z), z ∈ R

3. (4.41)

The dynamics are fully described by {H2, O,H2O}, and the rest of the species,

{H,OH,N2}, are given by the system’s constraints, Eq. (4.5),

2n1 + 2n3 + n4 + n5 = 1.24563 × 10−3 mol, (4.42a)

n2 + n3 + n5 = 4.14873 × 10−4 mol, (4.42b)

2n6 = 6.64302 × 10−3 mol, (4.42c)

which are identical to those given by Ren et al. [37].

The time evolution of the species is shown in Fig. 4.8. The multiscale nature

of this system is clearly seen. Also, it can be noted that the times at which

the first reaction event commences and that at which the system relaxes onto its

equilibrium are approximately t = 10−9 s and t ∼ 10−3 s, respectively.

We use the method described in Sec. 4.2 to construct the SIM for this system.

First, all the system’s finite equilibria are identified. There are fifteen isolated
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Figure 4.8. The time evolution of number of moles of each species for the
simple hydrogen–oxygen reactive system, identical to that of Ren et al.

critical points; eight of them are complex and seven are real. The real ones are:

R1 ≡ (ze) =
(
−1.67204 × 10−1, 3.03617 × 10−3, 3.53209 × 10−3

)
mol/g,

R2 ≡ (ze) =
(
6.44204× 10−2, 1.20566× 10−2,−7.12337 × 10−3

)
mol/g,

R3 ≡ (ze) =
(
−6.47244 × 10−3,−2.00868 × 10−2,−2.19220 × 10−3

)
mol/g,

R4 ≡ (ze) =
(
1.97888× 10−3, 5.03888× 10−3, 9.41881 × 10−3

)
mol/g,

R5 ≡ (ze) =
(
−1.21290 × 10−3,−4.44837 × 10−3, 5.03482 × 10−3

)
mol/g,

R6 ≡ (ze) =
(
2.72293× 10−3, 3.34454× 10−4, 4.71857 × 10−3

)
mol/g,

R7 ≡ (ze) =
(
2.02552× 10−3, 3.10118× 10−4, 3.06770 × 10−3

)
mol/g.

It is clear that R1, R2, R3, and R5 are non-physical equilibria. Moreover, R4

and R6 are also non-physical critical points; this can be shown by computing the
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values of other species using the system’s constraints, Eqs. (4.42). Thus, R7 is the

system’s unique physical equilibrium point, consistent with the results in Fig. 4.8.

Figure 4.9 shows part of the system’s finite composition space, all the finite

equilibria, and the system’s S within the dashed simplex. The dynamical analysis

within the neighborhood of each critical point reveals that R3 and R7 are sinks,

and R1, R2, R4, R5 and R6 are saddles. The eigenvalue spectrum associated with

each finite critical point is:

R1 : (λ) =
(
2.92495 × 103,−6.66878 × 106 ± i1.00392 × 108

)
s−1,

R2 : (λ) =
(
1.84203 × 1014,−1.27257 × 1012,−1.69944 × 1014

)
s−1,

R3 : (λ) =
(
−1.02554 × 105,−2.97288 × 107 ± i2.63895 × 107

)
s−1,

R4 : (λ) =
(
1.61839 × 107, 8.94446 × 106,−4.64945 × 104

)
s−1,

R5 : (λ) =
(
3.22464 × 104,−2.12785 × 106 ± i6.70905 × 106

)
s−1,

R6 : (λ) =
(
1.57132 × 104,−6.27795 × 106 ± i4.37013 × 106

)
s−1,

R7 : (λ) =
(
−5.59456 × 103,−9.08383 × 106,−1.77047 × 107

)
s−1.

The fastest and slowest time scales associated with the physical equilibrium

R7 are 5.64822 × 10−8 s and 1.78745 × 10−4 s, respectively. This will give rise to

St = O(103), which indicates that the system’s trajectories, inside the physical

domain, will relax onto the SIM at a steep angle; the fast modes will be exhausted

rapidly.

To explore the existence of equilibria at infinity, the projective space technique

is employed. We select k = 2, though other choices would work as well. So, the

reactive system in the projective space is realized by the following transformation:

Z0 = t, Z1 = z1/z2, Z2 = 1/z2, and Z3 = z3/z2. For this system there are two
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Figure 4.9. A region of the finite composition space for the simple
hydrogen–oxygen reactive system. The dashed simplex represents S.

The solid dots represent finite equilibria. The unique critical point inside
the polygon, R7, represents the physical equilibrium point.

equilibria located at infinity, but neither of them are isolated. One is a 1-D

equilibrium, and the other is a 2-D equilibrium. Consequently, R1, R2, R5 and R6

are the only candidate points, since the eigenvalue spectra of the corresponding

Jacobians each contain only one unstable mode.

To construct the SIM, the dynamical system, Eq. (4.41), is numerically inte-

grated, starting from the candidate points, in the direction of the unstable mode

pointing towards R7. First, we generate a heteroclinic orbit starting from R1, since

it has the slowest unstable mode among the candidate points. The generated orbit

connects with R7 along its slowest mode. Thus, it represents the first branch of the

system’s 1-D SIM. Then, we generate another heteroclinic orbit starting from R6.

This orbit also approaches R7 along its slowest mode to form the second branch

of the 1-D SIM. Subsequently, there is no need to generate trajectories starting
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from the other candidate points R2 and R5. However, to check the methodology,

Eq. (4.41) is numerically integrated starting from the unstable direction of the

candidate points R2 and R5 to generate two more heteroclinic orbits. These two

heteroclinic orbits approaches R3, which is another unphysical sink for the system;

R3 /∈ S.

The system’s 1-D SIM is presented in Fig. 4.10. Although the SIM has been

constructed and it can be illustrated, the right branch of the SIM is not pre-

sented entirely due to scaling effects. Some trajectories in Fig. 4.10 have been

generated from inside S, while others have been initiated from its boundary. The

attractiveness of the SIM is revealed by visually examining the relaxation of sev-

eral trajectories rapidly onto it. This observation is consistent with our previous

prediction that has been obtained based on the temporal stiffness of the system.

In addition, it has been verified that along the SIM’s two branches the criteria

(4.30) hold, and the maximum value of S along the 1-D SIM is approximately

2.50292 × 10−3 at R6. Thus, the SIM is highly attractive; this is consistent with

observation and our previous prediction.

4.3.4 Hydrogen oxidation mechanism

As a fourth example, the Michael mechanism [173] for the oxidation of hy-

drogen is employed to illustrate the 1-D SIM construction method presented in

Sec. 4.2. This mechanism contains N = 6 species, L = 2 elements, and J = 8 ele-

mentary reactions; see Table D.4. A special case in which the system is isochoric

is considered. The chosen mixture temperature and volume are T = 1200 K

and V = 103 cm3. The initial number of moles of all species are taken to be

n∗
i = 10−3 mol, i = 1, . . . , N . Thus, the mixture mass is m = 8.60448 × 10−2 g,
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represents S. The thin lines illustrate several trajectories.

and using Eq. (2.4), the initial mixture pressure is p∗ = 5.90816×10−1 atm. Here,

i = {1, 2, 3, 4, 5, 6} corresponds to the species {H2, O,O2, H,OH,H2O}, respec-

tively.

In this system, the total number of moles remain constant, as a consequence of

the fact that the kinetics mechanism includes only bimolecular reactions. Conse-

quently, one algebraic constraint, in addition to element conservation, is provided

to the system. Thus, the reactive system is described in the R = N − L − 1 = 3

dimensional reactive composition space,

dz

dt
= f(z), z ∈ R

3. (4.43)

Subsequently, the dynamics are fully described by {H2, O,O2}, and the rest of the
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species, {H,OH,H2O}, are given by the systems constraints, Eq. (4.5),

n1 − n3 + n4 = 1 × 10−3 mol, (4.44a)

n1 − n2 − n3 + n6 = 5 × 10−3 mol, (4.44b)

2n2 + 3n3 − n1 + n5 = 0 mol. (4.44c)

The full time evolution of species is shown in Fig. 4.11. The multiscale nature

of this system is clearly shown. Also, it can be visually noted that the times at

which the first reaction event commences and that at which the system relaxes

onto its equilibrium are approximately t = 10−9 s and t = 10−5 s, respectively.
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Figure 4.11. The time evolution of number of moles of each species for
the oxidation of hydrogen reactive system.
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The dynamical system, Eq. (4.43), has eight finite critical isolated points; six

of them are real. The real ones are:

R1 ≡ (ze) =
(
−5.84827 × 10−2, 6.84851 × 10−4,−3.52417 × 10−4

)
mol/g,

R2 ≡ (ze) =
(
4.64874 × 10−2, 0, 3.48656× 10−2

)
mol/g,

R3 ≡ (ze) =
(
3.72687 × 10−3, 6.31637× 10−3, 1.60689× 10−2

)
mol/g,

R4 ≡ (ze) =
(
6.32982 × 10−3,−1.85982 × 10−3, 2.49265 × 10−2

)
mol/g,

R5 ≡ (ze) =
(
1.27629 × 10−3,−5.97920 × 10−2, 6.00416 × 10−2

)
mol/g,

R6 ≡ (ze) =
(
1.43296 × 10−3,−7.58236 × 10−2, 7.08086 × 10−2

)
mol/g.

It is clear that R1, R4, R5 and R6 are non-physical equilibria. Moreover, R2 is also

a non-physical critical point; this can be shown by computing the other species

using Eqs. (4.44). Thus, R3 is the system’s unique physical equilibrium point,

consistent with the results in Fig. 4.11. Figure 4.12 shows part of the system’s

finite composition space, the finite equilibria, and S within the dashed simplex,

where it is clear that R3 is the only critical point inside it.

The dynamical behavior analysis within the neighborhood of each critical point

reveals that R1, R2, and R5 are saddles, R4 and R6 are sources, and R3 is a sink.
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The system’s eigenvalues associated with each finite critical point are:

R1 : (λ) = (5.92648× 106 ± i5.13071 × 105,−1.17997 × 106) 1/s,

R2 : (λ) = (7.92868× 105,−3.35464 × 106,−1.00600 × 107) 1/s,

R3 : (λ) = (−4.29725 × 105,−1.22549 × 106,−1.01802 × 107) 1/s,

R4 : (λ) = (6.87704× 106, 3.51397 × 106, 1.56608 × 106) 1/s,

R5 : (λ) = (5.65080× 107, 3.56085 × 106,−1.05552 × 104) 1/s,

R6 : (λ) = (7.19214× 107, 4.46684 × 106, 1.05214 × 104) 1/s.

The slowest and fastest time scales associated with the physical equilibrium R3

are 2.32707 × 10−6 s and 9.82303× 10−8 s respectively. Thus, St = 23.6899.

In addition to the system’s finite equilibria, this reactive system has seven

isolated infinite equilibria. They are obtained using the projective space method,

in which we select k = 2 arbitrarily. The real ones are:

I1 ≡ (Ze) = (−9.77396, 0,−4.58666) ,

I2 ≡ (Ze) = (0.60213, 0,−0.47874) ,

I3 ≡ (Ze) = (−0.01228, 0,−0.67333) .

The eigenvalue spectra of these critical points are:

I1 : (λ) = (6.09587 × 1012,−5.74260 × 1012 ± i7.82642 × 1012) g/(mol s),

I2 : (λ) = (7.34957 × 1011, 6.32121 × 1011,−1.18980 × 1013) g/(mol s),

I3 : (λ) = (7.61722 × 109,−6.50356 × 1011,−1.12237 × 1013) g/(mol s).
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Figure 4.12. A region of the finite composition space for the hydrogen
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dots represent finite equilibria. The unique critical point inside the
polygon, R3, represents the physical equilibrium point.

All of the dynamical system’s infinite equilibria are saddles.

Now, among the system’s equilibria, the eigenvalue spectra of three critical

points contain only one positive eigenvalue. These equilibria, ordered as described

in Sec. 4.2.5, are R2, I1 and I3. To construct the SIM, the dynamical system is

numerically integrated, starting from these three critical points, in the direction

of the unstable mode pointing toward R3. Subsequently, three heteroclinic orbits

are generated. Although all of them reach R3, two of these orbits connect to R3

along its slowest mode. Thus, they represent the two branches of the 1-D SIM.

These two heteroclinic orbits are the ones that have been initiated from R2 and

I3. In Fig. 4.13, the 1-D SIM for the reactive system is shown.

The attractiveness of the SIM is revealed by visually examining the relaxation
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thin lines illustrate several trajectories.

of several trajectories onto it. In addition, it has been verified that along the

SIMs two branches the criteria (4.30) hold, and the maximum value of S along

the 1-D SIM is 3.50656× 10−1 at R3. Thus, the SIM is not highly attractive; this

is consistent with observation from Fig. 4.13, and the value of St = O(101).

4.4 1-D SIM for detailed hydrogen–air mechanism

In this section, the 1-D SIM for a detailed hydrogen–air kinetic system is

constructed. The reactive system is based on the detailed kinetic mechanism listed

in Table D.1. The system is an isochoric stoichiometric hydrogen–air mixture,

where the molar ratio is given by 2H2 + (O2 + 3.76N2), and initially it is at p∗ =

107 dyne/cm2 and T = 1500 K.

Utilizing the conservation of the three elements {H,O,N}, the H2 − Air re-
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active system can be described by the following autonomous dynamical system,

dz

dt
= f(z), z ∈ R

6. (4.45)

Here, i = {1, 2, 3, 4, 5, 6} correspond to the species {H2, O2, H,O,OH,H2O}, re-

spectively. The rest of the species, {HO2, H2O2, N2}, are recast using Eq. (4.5).

The full dynamics of species evolution are obtained by integrating Eq. (4.45),

see Fig. 4.14. At t ≈ 10−8 s, the species growth rates change slightly, which indi-

cates that significant dissociation reactions are induced. For 10−7 < t < 10−6 s,

the minor species continue to increase rapidly with different growth rates. On the

other hand, the major species H2, O2, and N2 have essentially constant specific

moles. Just past t ≈ 10−6 s all the species undergo significant change, and the

radicals’ specific moles reach their maximum values. At t ≈ 10−5 s, an exother-

mic recombination of radicals commences forming the predominant product H2O,

which continues up to t ≈ 5 s, after which the system approaches the equilibrium

state. Figure 4.14 clearly illustrates the multiscale nature of this system.

The first step in constructing the SIM, following the methodology presented

in Sec. 4.2, is to find all of the system’s real isolated equilibria, finite and infinite.

For this system 284 finite equilibria and 42 infinite equilibria are found. Of the

finite equilibria, one is 3-D, one is 2-D, six are 1-D, and 276 are 0-D. Of the 276

0-D equilibria, 90 are real, and 186 are complex. Of the 42 infinite equilibria,

six are 1-D, and 36 are 0-D. Of the latter 0-D equilibria, 18 are complex, and 18

are real. One of the 90 real finite critical points represents the unique physical
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Figure 4.14. The time evolution of number of moles of each species for
the detailed hydrogen–air reactive system.

equilibrium state of the system. This corresponds to

R19 ≡ (ze) =
(
1.98329 × 10−6, 9.00337 × 10−7, 1.72092× 10−9,

2.66737 × 10−10, 3.66249 × 10−7, 1.44126 × 10−2
)
mol/g.

Then, the dynamical character of each of the 108 isolated real finite and infinite

critical points is determined. It is found that among them there are only 14

candidate points for constructing the SIM; all of them are finite. The other critical

points are either sources, sinks, or saddles with more than one unstable direction.

By examining the trajectories that emanate from the candidate points, only two

are connected with R19 tangent to its slowest mode via heteroclinic orbits. These
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system’s physical equilibrium state.

two candidate points are:

R74 ≡ (ze) =
(
6.26283 × 10−5, 3.42557× 10−5,−2.29776 × 10−6,

4.80374× 10−7,−1.54421 × 10−5, 1.43609× 10−2
)
mol/g,

R79 ≡ (ze) =
(
−3.34038 × 10−6,−1.50262 × 10−6, 5.26822× 10−9,

8.81723× 10−10,−6.65954 × 10−7, 1.44185× 10−2
)
mol/g,

and these two heteroclinic orbits combine to provide the two branches of the 1-

D SIM. Figure 4.15 shows a 3-dimensional projection of the 1-D SIM embedded

inside the 6-dimensional composition space. The 1-D SIM is attractive along the

complete trajectories; criteria (4.30) hold along the SIM’s branches. Subsequently,

it provides the best description of the system’s slow dynamics.

133

Figures/chap_5/fig12.eps


CHAPTER 5

THERMODYNAMICS OF CLOSED REACTIVE SYSTEMS

In this chapter, the relation between the isothermal reactive systems’ slow

dynamics, described by the actual SIMs, and notions from thermodynamics is ad-

dressed. In addition to a mathematical proof, a realistic reactive system is utilized

to show that other than identifying the physical equilibrium point, traditional ther-

modynamic potentials provide no guidance in determining a system’s actual SIM.

Finally, a comparison between several published classical thermodynamics-based

manifolds and the actual SIMs is presented.

5.1 Background

Recently, several methods employing equilibrium thermodynamics to construct

attractive manifolds have been developed [33, 37, 40, 41]. These methods employ

classical thermodynamics far from the equilibrium state to explore reactive sys-

tems’ dynamics. While results from this class of methods may seem intuitive,

they have not been fully compared to the exact SIM. Moreover, some of these

methods relies on the concept of minimum entropy production [74]. The validity

of this principle has been called into question in other fields [75]. In Ref. [75],

Müller and Weiss employ an expression for the dissipative entropy source in a

heat-conducting fluid to disprove the principle of minimum entropy production.
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By considering one-dimensional stationary heat conduction in a fluid at rest, they

show that this principle contradicts the first law of thermodynamics as long as

Fourier’s law holds.

In Chapter 4, a procedure to construct the actual one-dimensional SIMs for

reactive systems has been provided. Such manifolds are defined as heteroclinic or-

bits that are locally attractive along their complete trajectories, and they describe

the asymptotic structures of the invariant attracting reactive systems’ trajectories

during their relaxation toward equilibrium. Utilizing this procedure to construct

reactive systems’ actual 1-D SIMs makes it possible to examine the relation be-

tween thermodynamics and reactive systems’ slow dynamics.

5.2 Analysis

Similar to Chapter 4, we confine our attention to closed, isothermal, spatially

homogeneous reactive mixtures of calorically imperfect ideal gases described by

detailed mass-action kinetics. For such reactive systems, it shown that the sys-

tems’ dynamics are govern by

dz

dt
= ẇ(z), {z, ẇ} ∈ R

R, R
R ⊂ R

N . ((4.10a))

All the mixture thermodynamic properties are scaler functions that are only

defined in S. In this chapter, the entropy S, the Helmholtz free energy A, and the

Gibbs free energy G are of special interest. Each one of them is a convex function

with a unique global extremum inside S [156]; maximum for S and minima for

G and A. For an isolated system, i.e. closed and adiabatic, the maximum of S

corresponds to the reactive system’s unique physical equilibrium state ze. While,

in the case of isothermal-isobaric and isothermal-isochoric systems, the minimum
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of G and A correspond to ze, respectively.

The mixture entropy is given by

S =

N∑

i=1

nis̄i. ((2.10c))

The differential change of S is postulated by the second law of thermodynam-

ics [161]. This changes occur as a results of heat transfer between the system

and its surrounding, as well as irreversible processes within the system. However,

this change is stated differently in non-equilibrium thermodynamics and classical

thermodynamics [140].

In classical thermodynamics, the second law of thermodynamics states that

the change of S, for a closed system, is constrained by [103, 161, 174]

dS ≥ δQ

T
, (5.1a)

where δQ is the sum of the heat supplied to the system at temperature T by its

surroundings. Equation (5.1a) can be rewritten using the first law of thermody-

namics,

dE = δQ− δW, (5.1b)

as

dS ≥ 1

T
(dE + δW ) , (5.1c)

TdS ≥ dE + pdV, (5.1d)

dE − TdS + pdV ≤ 0, (5.1e)

where δW = pdV is the reversible work done by the system. Now, for a multi-
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component system, the Gibbs’ equation states that [140]

dE = TdS − pdV +
N∑

i=1

µ̄idni. (5.1f)

By substituting Eq. (5.1f) into Eq. (5.1e), one finds that the second law of ther-

modynamics implies
N∑

i=1

µ̄idni ≤ 0. (5.1g)

So, for closed reactive mixture of ideal gases, the only source of irreversibility is

the chemical reaction. At equilibrium state, the equality in Eq. (5.1g) applies.

In non-equilibrium thermodynamics, the differential change of S consists of

two parts [74, 99, 175],

dS = deS + diS, (5.2a)

where

deS =
δQ

T
, (5.2b)

is the change in S due to the system’s exchange of matter and energy with its

surroundings, and

diS = − 1

T

N∑

i=1

µ̄idni, (5.2c)

is the irreversibility, which is the change in entropy due to irreversible processes

within the system boundary. Contrary to classical equilibrium thermodynam-

ics, the second law, as it stated in Eqs. (5.2), can be applied to systems not at

their equilibrium state [140]. Furthermore, by introducing time into both sides

of Eq. (5.2c), we get an expression for the irreversibility production rate σ, also
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known as the entropy production rate [176],

σ ≡ diS

dt
= − 1

T

N∑

i=1

µ̄i
dni

dt
. (5.3)

Similar to all other thermodynamic functions, σ is a scalar convex function de-

fined only within S. Furthermore, it has a global minimum that corresponds to

ze, whether the system is an isothermal, isochoric, isobaric, adiabatic, or any

combination of these conditions [177].

5.3 Thermodynamics and SIM

All the reactive system’s, Eq. (4.10a), trajectories within the physically acces-

sible domain S approach the unique equilibrium point ze in infinite time. Near

equilibrium, the system’s dynamics relax onto the eigenvector associated with the

slowest time scale. At the equilibrium point, the eigenvector associated with the

smallest eigenvalue in magnitude of the Jacobian,

Je =
∂ẇ

∂z

∣∣∣∣
z=ze

, ((C.2b))

defines the direction of the system’s slowest mode.

Only in this paragraph and for simplicity, the argument will be presented for

a 2-D reactive system. However, it can be easily extended to a higher dimensional

reactive system. In a 2-D composition space, σ and the appropriate thermody-

namic scalar field can be represented by iso-contours. The major/minor axes of

these thermodynamics quantities’ contours identify the thermodynamically pre-

ferred paths toward ze. Near equilibrium these contours approach ellipses. For

each of these functions, the major axes of these ellipses are aligned with the
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eigenvector associated with the largest eigenvalue of that function’s local Hessian

matrix, e.g.

He
σ =

∂2σ

∂zi∂zj

∣∣∣∣
z=ze

. ((C.2c))

Similarly, the minor axes are aligned with the eigenvector associated with the

smallest eigenvalue of He. Note that He is symmetric and real.

Thus, by investigating the relation between the principal direction of the re-

active system’s Je and the ultimate paths to ze assigned by σ and the system’s

appropriate thermodynamic potential, the relation between reactive system’s slow

dynamics and thermodynamics is revealed.

5.3.1 Isothermal-isobaric reactive mixtures

To analyze a reactive system under isothermal-isobaric conditions, the appro-

priate thermodynamic potential is the Gibbs free energy [161], defined as

G = E + pV − TS. (5.4a)

The differential change of G is given by

dG = dE + V dp+ pdV − SdT − TdS. (5.4b)

Thus, for an isothermal-isobaric system, the second law of thermodynamics (5.1e)

can be written as

dG ≤ V dp− SdT︸ ︷︷ ︸
=0, isothermal-isobaric

. (5.4c)
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Furthermore, using Gibbs’ relation (5.1f), we get

dG = V dp︸︷︷︸
=0, isobaric

− SdT︸︷︷︸
=0, isothermal

+
N∑

i=1

µ̄idni, (5.4d)

Thus, at the equilibrium state we have

dG =

N∑

i=1

µ̄idni = 0. (5.4e)

Now, in the vicinity of ze, the deviations of G and σ from their equilibrium

values are described by

G = G|
ze +

∂G

∂z

∣∣∣∣
z=ze

· z′ + 1

2
z′

T · He
G · z′ + . . . , (5.5a)

σ = σ|
ze +

∂σ

∂z

∣∣∣∣
z=ze

· z′ + 1

2
z′

T · He
σ · z′ + . . . , (5.5b)

Here, z′ = z − ze is the perturbation from equilibrium, further details about this

standard lineariztion are given in Appendix C. However, the gradients of G and σ

vanish at the physical equilibrium; G and σ have minima at ze. Moreover, at the

equilibrium σ = 0 [177]. So, the deviations from equilibrium values are described

by

G− G|
z=ze =

1

2
z′

T · He
G · z′ + . . . , (5.6a)

σ =
1

2
z′

T · He
σ · z′ + . . . . (5.6b)

Now, let focus on Eq. (5.6b), though the following argument is also valid for

Eq. (5.6a). Since He
σ is symmetric and real, it can be diagonalized to take the
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following simple form:

He
σ = Q

T · Π · Q, (5.7)

where Q is an orthogonal matrix. Its column vectors are orthonormal, and each

of them represents an eigenvector of He
σ. Also, Π is a real and diagonal matrix

that has the eigenvalues of He
σ on its diagonal. Subsequently, Eq. (5.6b) can be

rewritten as

σ ≈ 1

2
z′

T · QT · Π · Q · z′. (5.8)

From a geometric perspective, Q is a rotation matrix. Now, by defining the new

dependent variables as Z = Q · z′, Eq. (5.8) can be rewritten as a quadratic forms

in RR,

σ =
1

2
Z

T · Π · Z, Z ∈ R
R. (5.9)

From a geometric perspective, Eq. (5.9) is that of an ellipsoid, since it is the

sum of R squares. In the composition space, the principal axes of Eq. (5.9) are

aligned with the Z axes, and they are spanned by the column vectors of Q.

Now, the eigenvectors of He
G and He

σ define, respectively, the directions of the

major/minor axes of the convex functions G and σ; the eigenvector associated with

the largest eigenvalue assigns the direction of greatest curvature [178]. However,

it is easy to show that at equilibrium there is a relationship between these three

matrices, He
G,H

e
σ, and Je. To find this relation, we start by recalling the definition

of G,

G =
N∑

i=1

µ̄ini. ((2.10d))

However, n are not linearly independent as described in Sec. 4.1. To represent G

by the dependent reduced variables z, we substitute Eq. (4.5) into Eq. (2.10d) to
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obtain

G =
N∑

i=1

µ̄i

(
n∗

i +m
R∑

k=1

Dikzk

)
, (5.10a)

=

N∑

i=1

µ̄in
∗
i

︸ ︷︷ ︸
G∗

+m

R∑

k=1

zk

N∑

i=1

µ̄iDik. (5.10b)

So, the gradient of G with respect to the reduced composition variables z is given

by

∂G

∂zk
= m

N∑

i=1

µ̄iDik, k = 1, . . . , R. (5.11)

Also, by substituting Eq. (4.9a) into Eq. (5.3), we get

σ = −m
T

N∑

i=1

R∑

k=1

µ̄iDik
dzk

dt
, (5.12a)

which can be rearranged as

σ = − 1

T

R∑

k=1

dzk

dt
m

N∑

i=1

µ̄iDik. (5.12b)

Now, by substituting Eqs. (4.10a) and (5.11) into Eq. (5.12b), the irreversibility

production rate can be written as

σ = − 1

T

R∑

k=1

ẇk
∂G

∂zk

. (5.12c)

Subsequently, the gradient of σ with respect to z is given by

∂σ

∂zj
= − 1

T

R∑

k=1

∂G

∂zk

∂ẇk

∂zj
+

∂2G

∂zj∂zk
ẇk, (5.13)
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and Hσ is

∂2σ

∂zi∂zj

= − 1

T

R∑

k=1

(
∂G

∂zk

∂2ẇk

∂zi∂zj

+
∂2G

∂zi∂zk

∂ẇk

∂zj

+
∂2G

∂zj∂zk

∂ẇk

∂zi

+
∂3G

∂zi∂zj∂zk

ẇk

)
.

(5.14)

At equilibrium, G is minimized, and thus

ẇk|z=ze = 0, k = 1, . . . , R, (5.15a)

∂G

∂zk

∣∣∣∣
z=ze

= 0, k = 1, . . . , R. (5.15b)

Subsequently,

∂2σ

∂zi∂zj

∣∣∣∣
z=ze

= − 1

T

R∑

k=1

(
∂2G

∂zi∂zk

∂ẇk

∂zj
+

∂2G

∂zj∂zk

∂ẇk

∂zi

)

z=ze

, (5.16a)

or in Gibbs notation, and using Eq. (C.2b),

He
σ = − 1

T

[
(He

G · Je) + (He
G · Je)T

]
. (5.16b)

In the highly unusual case in which He
G is diagonal with identical eigenvalues,

the SIM can be identified by consideration of the eigenvectors of He
σ. In that

case, the eigenvectors of Je are aligned with those of He
σ. However, essentially

all practical reactive systems have He
G which is not diagonal and does not have

identical eigenvalues. Thus, He
G operates on Je in a non-uniform way, such that

the eigenvalues and the eigenvectors of He
σ are not the same as those of Je. So, the

system’s dynamics cannot be deduced from σ or G. In conclusion, we can state

that any approach that employes equilibrium thermodynamic potentials alone to

deduce a reactive system’s slow dynamics has inherent flaws.
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5.3.2 Isothermal-isochoric reactive mixtures

To analyze a reactive system under isothermal-isochoric conditions, the ap-

propriate thermodynamic potential is the Helmholtz free energy [161], defined as

A = E − TS. (5.17a)

Similar to the analysis presented in Sec. 5.3.1, it is easy to show that for an

isothermal-isochoric system, the second law of thermodynamics (5.1e) can be writ-

ten as

dA ≤ 0. (5.17b)

Thus, at the equilibrium state we have

dA =

N∑

i=1

µ̄idni = 0. (5.17c)

Now, using

ni = n∗
i +m

(
R∑

k=1

Dikzk

)

, i = 1, . . . , N, ((4.5))

the differential change of ni can be written as

dni = m

R∑

k=1

Dikzk, i = 1, . . . , N. (5.18)

By substituting Eq. (5.18) into Eq. (5.17c), we get

dA = m

N∑

i=1

µ̄i

R∑

k=1

Dikzk. (5.19)
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Consequently, the gradient of A with respect to z is given by

∂A

∂zk
= m

N∑

i=1

µ̄iDik, k = 1, . . . , R. (5.20)

Then, following the same procedure presented in Sec. 5.3.1, one can easily verify

the following relation,

He
σ = − 1

T

[
(He

A · Je) + (He
A · Je)T

]
, (5.21)

where He
A is the local Hessian matrix of the Helmholtz free energy at the equilib-

rium state.

In the highly unusual case in which He
A is diagonal with identical eigenvalues,

the SIM can be identified by consideration of the eigenvectors of He
σ. In that

case, the eigenvectors of Je are aligned with those of He
σ. However, essentially

all practical reactive systems have He
A which is not diagonal and does not have

identical eigenvalues. Thus, He
A operates on Je in a non-uniform way, such that

the eigenvalues and the eigenvectors of He
σ are not the same as those of Je. So,

the system’s dynamics cannot be deduced from σ or A. Consequently, our conclu-

sion from Sec. 5.3.1 holds for isothermal-isochoric systems; employing equilibrium

thermodynamic potentials to elucidate reactive systems’ dynamic behavior is in-

correct.

5.4 Model problem: Zel’dovich mechanism

Here, the Zeldovich mechanism employed in Sec. 4.3.1 will be used as a model

problem to examine the relation between slow dynamics and thermodynamics.

Although, this reactive system is taken to be isothermal-isochoric, the pressure
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remains constant throughout the reaction process as a consequence of including

only bimolecular reactions in the kinetic model. This can be easily verified; from

the thermal equation of state,

pV = nℜ̄T, ((2.4))

and the third constraint for this system,

n =

N∑

i=1

ni =

N∑

i=1

n∗
i , ((4.33c))

it is clear that this system is isobaric, too. Thus, in addition to the irreversibility

production rate, the Gibbs free energy is the appropriate thermodynamic function

to analyze this reactive system.

From Chapter 4, this system’s slow dynamics is described by the system’s one-

dimensional SIM, which was constructed using the procedure described in Sec. 4.2.

Figures 4.4–4.5, show the system’s 1-D SIM.

Now, to examine the relationship between system’s slow dynamics and ther-

modynamics, σ and G are calculated within S and are illustrated in Figs. 5.1.

Figure 5.2 shows several contours of the system’s Gibbs free energy and irre-

versibility production rate along with the constructed 1-D SIM for the Zel’dovich

mechanism. Figure 5.2(a) is far from R3, while Fig. 5.2(b) is an expansion in

the vicinity of R3. In Fig. 5.2(b) stretching has been employed to expose the

difference between the contours’ major/minor axes and the SIM. Even within

the close neighborhood of R3 the contours’ axes are not aligned with the 1-D

SIM. So, here equilibrium thermodynamic quantities cannot explain the 1-D SIM,

which describes the system’s preferred path toward equilibrium. Subsequently,

the gradients of these thermodynamic scalar functions do not drive the system’s
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dynamics. Explicitly,

He
σ =




1.49361 × 1015 −2.09205 × 1016

−2.09205 × 1016 1.17635 × 1019



 , (5.22a)

He
G =




1.52205 × 1013 −8.02837 × 1011

−8.02837 × 1011 1.36005 × 1015



 , (5.22b)

Je =




−1.94646 × 105 1.83659 × 106

3.06494 × 104 −1.72976 × 107



 . (5.22c)

So, it can be easily verified that Eq. (5.16) holds for this model problem;

He
σ = − 1

T

[
(He

G · Je) + (He
G · Je)T

]
. ((5.16b))

Moreover, the two terms on the right side of Eq. (5.16) are identical. Thus,

Eq. (5.16) can be rewritten as

He
σ = − 2

T
(He

G · Je) . (5.23)

Now, the eigenvalues λi and the associated eigenvectors υ of He
σ,H

e
G, and Je,
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Eqs. (5.22), are given by

He
σ : (λ,υ) =

(
1.17635 × 1019, 1.45640× 1015

)
,

(
[1.77864 × 10−3,−9.99998 × 10−1]T , [−9.99998 × 10−1,−1.77864 × 10−3]T

)
,

He
G : (λ,υ) =

(
1.36005 × 1015, 1.52201× 1013

)
,

(
[5.96981 × 10−4,−1.00000]T , [−1.00000,−5.96981× 10−4]T

)
,

Je : (λ,υ) =
(
−1.73009 × 107,−1.91355 × 105

)
,

(
[−1.06750 × 10−1, 9.94286× 10−1]T , [−9.99998 × 10−1, 1.79171× 10−3]T

)
,

where for each matrix the second eigenvector yields the direction of the slow mode.

It is clear that these eigenvectors are not aligned with each other. For Je, the arc-

tangent of the ratio between the second component and the first component of υ2

defines the angle θe
SIM at which the 1-D SIM approaches R3. Similarly, the same

ratio between the second component and the first component of υ2 of He
G and He

σ

defines, respectively, the angles θe
G and θe

σ at which each scalar field approaches

R3. These angles are

θe
σ = tan−1

(
1.77864× 10−3

−9.99998 × 10−1

)
= 1.77864 × 10−3 rad,

θe
G = tan−1

(−5.96981 × 10−4

−1.00000

)
= 5.96981 × 10−4 rad,

θe
SIM = tan−1

(
1.79171× 10−3

−9.99998 × 10−1

)
= 1.79171 × 10−3 rad.

Thus, even at R3, the reactive system’s SIM cannot be identified using G or

σ. Indeed, at R3 the error in σ is small; the difference between θe
SIM and θe

σ is

O (10−5 rad). But, this error grows as we move away from R3.

Moreover, other choices of dependent variables would lead to larger differences,
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e.g. in the chemical potential composition space, (µ̄1, µ̄2), the difference between

θe
SIM and θe

σ is O (100 rad). Furthermore, as is shown in Table 5.1, the difference

between θe
SIM and θe

σ increases monotonically as the system temperature increases,

i.e. stiffness decreases.

TABLE 5.1

THE RELATIVE DIFFERENCE BETWEEN THE ANGLE AT

WHICH THE 1-D SIM APPROACHES THE PHYSICAL

EQUILIBRIUM POINT AND THE ANGLES AT WHICH σ AND G

APPROACH THAT POINT FOR ZEL’DOVICH MECHANISM.

T [K] |θe
SIM − θe

σ/θ
e
SIM | |θe

SIM − θe
G/θ

e
SIM |

1000 1.60 × 10−9 1.00 × 100

1500 2.60 × 10−6 9.99 × 10−1

2000 8.26 × 10−5 9.94 × 10−1

2500 5.77 × 10−4 9.76 × 10−1

3000 1.98 × 10−3 9.30 × 10−1

3500 4.47 × 10−3 8.33 × 10−1

4000 7.29 × 10−3 6.67 × 10−1

7000 3.00 × 10−2 2.92 × 10−1

10000 5.44 × 10−2 2.45 × 10−1
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5.5 Comparison with published results

Here, a comparison between previously published reactive systems’ low dimen-

sional manifolds and their actual 1-D SIMs is performed.

5.5.1 The invariant constrained equilibrium manifold

Here, the system described in Sec. 4.3.3 has been employed by Ren et al. [37]

to present the ICE-PIC method. This system’s 1-D SIM was constructed using

the procedure described in Sec. 4.2, and illustrated in Fig. 4.10.

In this section, we compare the constructed SIM with the previously pub-

lished [37] invariant constrained equilibrium (ICE) manifold. Calculations are

first performed to reproduce the ICE manifold for the considered reactive system.

Generation of the ICE manifold is based on minimizing a classical thermodynam-

ics potential. First, the constrained equilibrium manifold (CEM) is developed by

varying one dependent variable to minimize the system’s Gibbs potential for each

combination of the rest of the dependent variables. The intersection between the

CEM and S defines a closed curve. Then, starting from several points located on

the closed curve, trajectories are generated. The collection of all these trajecto-

ries represents the ICE manifold. Figure 5.3 shows the 1-D SIM and the 2-D ICE

manifold. The computed ICE manifold is identical to that illustrated in Fig. 4 of

Ren et al. [37].

From Fig. 5.3, it is clear that there are trajectories within S which are not

attracted to the 2-D ICE manifold. However, all the trajectories are attracted

to the 1-D SIM. Although it is difficult to visualize in Fig. 5.3, the 2-D ICE

manifold does not contain the system’s SIM: the 1-D SIM is not a subset of the

2-D ICE manifold. The error of the ICE manifold grows as we move away from
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R7. Consequently, the 2-D ICE manifold cannot fully identify the system’s SIM.

Furthermore, for this reactive system Eq. (5.16) holds, where

He
σ =





3.45619 × 1017 1.41689× 1017 8.64077 × 1016

1.41689 × 1017 1.06515× 1018 5.52281 × 1017

8.64077 × 1016 5.52281× 1017 2.87142 × 1017




,

He
G =





8.26606 × 1013 −3.48042 × 1013 3.48042 × 1013

−3.48042 × 1013 1.32663 × 1014 1.72953 × 1013

3.48042 × 1013 1.72953 × 1013 5.96845 × 1013




,

Je =





−1.08285 × 107 −4.44165 × 106 −2.70247 × 106

−5.17866 × 106 −1.21977 × 107 −6.46233 × 106

5.64353 × 106 −7.75527 × 106 −3.76793 × 106




.

Moreover, similar to our model problem, the Zel’dovich mechanism for nitric

oxide formation,

He
σ = − 2

T
(He

G · Je) , ((5.23))

which implies that He
G operates on Je in a non-uniform way, such that the eigen-

values and the eigenvectors of He
σ are not the same as those of Je. Thus, neither

σ nor G can elucidate the reactive system’s dynamics.

5.5.2 The minimal entropy production trajectory method

The system described in Sec. 4.3.2 by Eqs. (4.39) has been employed by Lebiedz

[41] to present the MEPT method. This system’s 1-D SIM was constructed using

the procedure described in Sec. 4.2, and illustrated in Fig. 4.6. However, the

system’s 1-D SIM has only one branch.
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Figure 5.3. A comparison between the actual 1-D SIM, illustrated as
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reactive system. The solid dots represent finite critical points. R7

represents the system’s physical equilibrium state. The dashed simplex
represents S. Thin lines represent trajectories inside S. The ICE

manifold is identical to the one presented in Ren et al.

The MEPT method is based on minimizing a classical thermodynamic quan-

tity, which is in this case σ. To compare the system’s actual 1-D SIM to its MEPT,

a series of calculations was performed to reproduce the MEPT. By following the

same procedure described in the original work [41], we were able to reconstruct the

MEPT for this system. This is given by the dashed line in Fig. 5.4, and is identical

to the one presented in Ref. [41]. Further details regarding the construction of the

MEPT for this problem are given in Appendix K.

Figure 5.4(a) is identical to Fig. 4 of Ref. [41]; Fig 5.4(b) shows a wider range

of the system’s finite composition space, and Fig. 5.4(c) is a closer look at the

system’s dynamical behavior near the physical equilibrium point R1. Figure 5.4
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Figure (a) is identical to Fig. (4) in the original work of Lebiedz, (b) is a
wider range of its finite composition space, and (c) is a blow-up near its

equilibrium, R1. Different sets of trajectories are illustrated in each
figure.
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clearly shows that the MEPT is not an attractive manifold, though near R1 it

seems attractive. However, any trajectory approaching R1 from the right side is

as attractive as the MEPT near R1. Moreover, by recalling Fig. 4.6, the MEPT is

a subset of a heteroclinic orbit that connects I2 with R1, where I2 is the antipodal

point of I2. From Sec. 4.3.2, I2 is a stable node with λ1 = λ2 = −1, which implies

that I2 is a source with λ1 = λ2 = 1. Thus, near I2 the S ≥ 1. Subsequently,

the MEPT is not attractive along its complete trajectory, and thus does not

correspond to the actual SIM of the system.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

A dynamical system approach based on standard/generalized eigenvalue anal-

ysis was presented and implemented to identify all the physical, temporal and

spatial, scales inherent in a reactive flow model. The coupling between the scales

and the implications for the very fine scales necessary to claim a resolved simu-

lation of a combustion process were illustrated. To this end, a robust method of

constructing the SIMs of reactive systems was developed to rationally reduce the

computational cost of their modeling.

Chemically reacting systems are multiscale problems that admit wide spectra

of temporal and spatial scales. A standard eigenvalue analysis was employed to

determine the smallest time scale over which an unsteady spatially homogeneous

reacting system modeled by detailed mass–action kinetics evolves in time. For

accurate simulation of a reactive system, this scale serves as a lower bound for the

employed time step. To determine the finest length scale in a reactive flow struc-

ture, a rigorous method based on generalized eigenvalue analysis was developed.

This method accurately calculates the required spatial discretization to formally

capture all the detailed continuum physics in the reaction zone. This result was

verified by performing a formal grid convergence study. The length scale pre-

dictions are fully reflective of the underlying physics of advection and diffusion

coupled with detailed kinetics and not the particular numerical method chosen.
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This has been verified by showing that the finest length scale is well–correlated

with the mean free path cutoff length scale estimated from kinetic theory. Thus,

it is possible to use a simple mean free path calculation as a priori estimate of

the lower bound for grid discretization. This finest length scale for a laminar pre-

mixed flame is nearly identical to the finest length scale for a Chapman–Jouguet

detonation in a comparable mixture. Furthermore, it was shown that when the

reaction zone structure is resolved, the small wavelength modes critical in the

thin reaction zone structures induced by fast reaction have associated with them

time scales which are dictated by a balance between chemistry and transport.

Moreover, it was revealed that short wavelength modes have very fast time scales

which are dominated by diffusion, modes which have wavelengths ranging from

the finest combustion length scale to the coarsest combustion length scale have

time scales which are dictated by a combination of reaction and diffusion effects,

and modes which have coarse wavelengths have time scales which are reaction

dominated. These results have been achieved by conducting a spectral analysis of

one–dimensional premixed reactive mixtures of calorically imperfect ideal gases.

The slow invariant manifold provides an effective way to overcome the presence

of a wide range spectrum when modeling a closed reactive system. It corresponds

to the exact description of the slow dynamics in the composition space of the re-

acting system. The presented method for constructing a slow invariant manifold

is based on a geometrical approach that relies upon finding and examining the dy-

namical behavior of all of the system’s critical points. It has been shown that the

construction method is algorithmically easy and computationally efficient. The re-

sulting procedure provides a useful tool to significantly reduce the computational

cost associated with modeling reactive systems. Furthermore, it has been demon-
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strated that a reactive system’s one–dimensional slow invariant manifold cannot be

identified by consideration of the topology of a classical thermodynamic function,

such as entropy, Gibbs free energy, or irreversibility production rate, even near the

equilibrium state. This point has been confirmed by a mathematical proof that

shows that equilibrium thermodynamic potentials do not alone determine reactive

systems’ dynamics during their approach towards the equilibrium.

This work provides a potential for several possibilities of future work, some of

them are straightforward extensions of the work presented here. For example, we

can work on obtaining and analyzing the eigenvalue spectrum for a fully resolved

laminar flame structure. Although it is an overwhelming computational task, it

might be performed by employing parallel computational resources. Exploring this

issue and getting a better understanding of it will provide us with a good tool to

develop an efficient algorithm that predicts all scales of reactive flow modeling with

a detailed chemical kinetics. Moreover, this approach might be extended to other

problems such as combustion instability and pollutant formation. Slow invariant

manifold for non-isothermal reactive system are yet to be constructed; modeling

the exponential term in the Arrhenius kinetic rates, Eq. (2.13a), as a polynomial

would allow for the temperature evolution equation, Eq. (B.6) or (B.12), to be

augmented with species evolution equation in the construction procedure for a

slow invariant manifold. Finally, constructing two–dimensional slow invariant

manifolds should be considered by extending the presented conjecture in Sec. 4.2.5

to account for equilibria with two unstable eigenvector directions as candidate

members of the two–dimensional slow invariant manifold.
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APPENDIX A

MULTICOMPONENT GAS PHASE SPECIES TRANSPORT PROPERTIES

Here, a description of the calculation of the transport properties of a N species

gaseous mixture is presented. For such a multicomponent mixture, the mass dif-

fusion coefficients, the thermal diffusion coefficients, and the thermal conductivity

are given by [104, 106, 129]

Dij =
16 T m̄ Xi

25 p m̄j
(Pij − Pii) , i, j = 1, . . . , N, (A.1)

DT
i =

8 m̄iXi

5 ℜ̄ ci00, i = 1, . . . , N, (A.2)

k = −
N∑

i=1

(Xici10 +Xici01), (A.3)

where c00, c10, and c01 are vectors of dimensions N that represent the solution of

the L-matrix system, and P is an N ×N matrix defined as the inverse of the first

sub-matrix in the L-matrix system; P=
(
L

00,00
)−1

. Following Ref. [106], the linear

system known as the detailed L-matrix system is given by





L
00,00

L
00,10

L
00,01

L
10,00

L
10,10

L
10,01

L
01,00

L
01,10

L
01,01




·





c00

c10

c01




=





0

X

X




, (A.4)
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where the sub-matrices L
M,N, {M, N} = 00, 10, or 01, are constant matrices of size

N ×N defined as

L
00,00
ij =

N∑

k=1

16 T Xk

25 p m̄i Dik
(m̄j Xj (1 − δik) − m̄i Xj (δij − δjk)), (A.5)

L
00,10
ij =

N∑

k=1

8 T m̄k Xk Xj

5 p (m̄j + m̄k) Djk

(δij − δik) (1.2 Cjk − 1), (A.6)

L
00,01
ij = 0, (A.7)

L
10,00
ij =

N∑

k=1

8 T m̄k Xk Xj

5 p (m̄j + m̄k) Djk

(δij − δik) (1.2 Cjk − 1), (A.8)

L
10,10
ii = −16m̄iX

2
i

ℜ̄ηi

(
1 +

10crot
pi

Kξii

)
− 16T

25p

N∑

k=1
k 6=i

XkXi

(m̄i + m̄k)
2
Dik

(
7.5m̄2

i + 6.25m̄2
k

− 3 m̄2
k Bik + 4 m̄i m̄k Aik

(
1 +

5

3π

(
crot
pi

ξikK
+
crot
pk

ξkiK

)))
, (A.9)

L
10,10
ij =

N∑

k=1

16 T m̄i Xk Xi

25 p m̄j (m̄i + m̄k)
2
Dik

(
(δjk − δij)

(
7.5 m̄2

j + 6.25 m̄2
k − 3 m̄2

k Bik

)

− 4 m̄j m̄k Aik (δjk + δij)

(
1 +

5

3π

(
crot
pi

ξikK
+

crot
pk

ξkiK

)))
, i 6= j, (A.10)

L
10,01
ii =

16 m̄i X
2
i c

rot
pi

3 π ℜ̄ ηi ξii cint
pi

+
N∑

k=1
k 6=i

32 T m̄i Xk Xi Aik c
rot
pi

5 π p (m̄i + m̄k) Dik ξik c
int
pi

, (A.11)

L
10,01
ij =

N∑

k=1

32 T m̄j Xk Xj Ajk c
rot
pj

5 π p (m̄j + m̄k)Djk ξjk K cint
pj

(δik + δij), i 6= j, (A.12)

L
01,00
ij = 0, (A.13)

L
01,10
ij = L

10,01
ji , (A.14)

L
01,01
ij = 0, i 6= j, (A.15)

L
01,01
ii = −8 K m̄i X

2
i c

rot
pi

π ℜ̄ ηi ξii cint
pi

2 − 4 T K

p cint
pi

( N∑

k=1

Xi Xk

D int
ik

+

N∑

k=1
k 6=i

12 Xi Xk m̄i Aik c
rot
pi

5 π Dik m̄k ξik cint
pi

)
.

(A.16)
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Here, δij is Kronecker delta, K = 1.381 × 10−16 erg/K is Boltzman’s constant,

ξij are the relaxation collision numbers, and crot
pi = 2/3 and cint

pi = cpi − crot
pi

are the rotational and internal parts of the ith species molecular specific heats,

respectively. Also, D int
ij are the internal energy binary diffusion coefficients, Dij

are the binary diffusion coefficients, ηi is the viscosity of species i, Aij,Bij , and

Cij are three ratios of the collision integrals. These variables are calculated using

the following relations:

ηi =
5
√
π m̄i K T

16 π ς2i Ω2,2
, i = 1, . . . , N, (A.17)

D
int
ij =

Dij

1 + 2985 T−3/2
, i, j = 1, . . . N, (A.18)

Dij =
3
√

2 π K3 T 3 (m̄i + m̄j) / (m̄im̄j)

4 p π (ςi + ςj)
2 Ω1,1

ij

, i, j = 1, . . .N, (A.19)

Aij =
Ω2,2

ij

2Ω1,1
ij

, i, j = 1, . . .N, (A.20)

Bij =
5Ω1,2

ij − Ω1,3
ij

3Ω1,1
ij

, i, j = 1, . . . N, (A.21)

Cij =
Ω1,2

ij

3Ω1,1
ij

, i, j = 1, . . .N, (A.22)

where ςi is the Lennard-Jones collision diameter and ΩI,J are the collision inte-

grals [104, 105, 140].

The transport data, the collision integrals, and the relaxation collision numbers

for the ith species are adopted from TRANSPORT [129].
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APPENDIX B

MODELING SPATIALLY HOMOGENEOUS REACTIVE SYSTEMS

Here, the set of equations that describe the time evolution of a spatially ho-

mogeneous closed reactive system is provided. Consistent with the rest of this

dissertation, we restrict the analysis in this appendix to mixtures of calorically

imperfect ideal gases that obey Dalton’s law, and a detailed mass-action kinetics

model describes the chemical interaction between the species.

In general, the equation that governs the evolution of species in a reactive

mixture can be derived from the definition of ω̇i, the molar production rate per

unit volume [99],

dni

dt
= V ω̇i, i = 1, . . . , N. (B.1)

By multiplying this equation, Eq. (B.1), with m̄i/m, and employing Eq. (2.2c)

and the definitions of ρ and Yi from Sec. 2.1.3, one gets [100, 103]

dYi

dt
=
ω̇im̄i

ρ
, i = 1, . . . , N. (B.2)

Furthermore, by multiplying Eq. (B.2) with m̄lφli/m̄i, summing from i = 1 to N ,
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and employing Eqs. (2.3), (2.16a), (2.16b), and (2.11), one recovers

dyl

dt
= 0, l = 1, . . . , L, ((3.14b))

dYi

dt
=
ω̇im̄i

ρ
, i = 1, . . . , N − L. ((3.14c))

For isothermal, i.e. constant temperature, reactive systems, solving for the

reaction dynamics is performed by integrating the time evolution of species ODEs,

Eq. (3.14c), constrained by Eq. (3.14b) and T = T ∗. However, for non-isothermal

systems the conservation of energy is need to be augmented.

B.1 Adiabatic isobaric systems

For an adiabatic isobaric system, the first law of thermodynamics states that

the total enthalpy is a conserved quantity [161, 179],

dH

dt
= 0. (B.3)

Using Eq. (2.10b), recalling that the system is closed, one gets

dh

dt
= 0. ((3.14a))

This equation in addition to the species evolutions can be employed to solve for

the reaction dynamics. However, an iterative scheme needs to be used at each

time step in order to solve Eq. (3.14a) and find the mixture temperature.

As an alternative and more convenient way to solve for the reactive system

evolution, an explicit equation in temperature is derived from Eq. (3.14a). By

164



using Eq. (2.9c), one can get

N∑

i=1

(
hi
dYi

dt
+ Yi

dhi

dt

)
= 0, (B.4)

which can be rewritten, by employing Eqs. (2.5b) and (3.14c), as

N∑

i=1

(
hiω̇im̄i

ρ

)
+

N∑

i=1

(
Yicpi

dT

dt

)
= 0. (B.5)

After rearrangements, and employing Eq. (2.9a), the following ODE which rep-

resents the evolution of temperature for an adiabatic isobaric reactive system is

derived,

dT

dt
= − 1

ρcp

N∑

i=1

him̄iω̇i. (B.6)

B.2 Adiabatic isochoric systems

Similarly, for an adiabatic isochoric system, i.e. fixed volume, the first law of

thermodynamics states that the total internal energy is a conserved quantity [161,

179],

dE

dt
= 0. (B.7)

Using Eq. (2.9b), recalling that the system is closed, one gets

de

dt
= 0. (B.8)

Similar to adiabatic isobaric systems, this equation in addition to the species

evolutions can be employed to solve for the reaction dynamics. However, an

iterative scheme needs to be used at each time step in order to solve Eq. (B.8)

and find the mixture temperature. To derive an explicit equation in temperature
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for the adiabatic isochoric reactive mixture, Eq. (2.9b) is substituted in Eq. (B.8)

to get
N∑

i=1

(
ei
dYi

dt
+ Yi

dei

dt

)
= 0. (B.9)

By employing Eqs. (2.5a), (2.5b), and (3.14c), one gets

N∑

i=1

(
eiω̇im̄i

ρ

)
+

N∑

i=1

Yi
dT

dt

(
cpi −

ℜ̄
m̄i

)
= 0. (B.10)

which can be rewritten, after rearrangements and employing Eq. (2.9a), as

dT

dt
= −

∑N
i=1 eim̄iω̇i

ρ
(
cp − ℜ̄∑N

i=1
Yi

m̄i

) . (B.11)

Furthermore, by employing the definition of the mass-based mixture-average spe-

cific heat at constant volume [161, 180], cv = cp − ℜ̄/m̄, the following equation is

derived,

dT

dt
= − 1

ρcv

N∑

i=1

eim̄iω̇i. (B.12)
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APPENDIX C

PARTIAL REVIEW OF DYNAMICAL SYSTEMS THEORY

In this appendix, we briefly review several elements from dynamical systems

theory that are essential for this work. This include description of the stan-

dard linerazation technique, the linear stability analysis of a critical point, the

Hartman-Grobman theorem, the normal form theory, and definitions of the fol-

lowing terms: hyperbolic/non-hyperbolic critical points, a dynamical system sep-

aratrix, and parabolic/elleptic/hyperbolic sectors. Further details can be found

in Refs. [157, 171, 172, 181].

C.1 Standard linearization

Consider a standard nonlinear dynamical system described by

dz

dt
= f (z) , z ∈ R

R, t ∈ R
1, f : R

R → R
R. (C.1)

This system is called an autonomous dynamical system [181] since f (z) is a not

an explicit function of t. The dynamic behavior of f (z) is revealed by analyzing

the stability of its equilibria. A point ze is called an equilibrium point, i.e. critical

point, of the system if f (ze) = 0. The dynamical behavior of ze is explored by

conducting a standard linear analysis. Using Taylor series, the nonlinear functions
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f can be approximated near ze by

f (z) = f (ze)︸ ︷︷ ︸
=0

+Je · (z − ze) +
1

2
(z − ze)T · He · (z − ze) + . . . , (C.2a)

where

Je =
∂f

∂z

∣∣∣∣
z=ze

(C.2b)

and

He =
∂

∂z

(
∂f

∂z

)∣∣∣∣
z=ze

(C.2c)

are the local Jacobian and Hessian matrices, respectively, evaluated at ze. By

defining the perturbation from the equilibrium as z′ = z − ze, z ∈ RR, the

system’s dynamics is described locally, in the neighborhood of ze, as

dz′

dt
= Je · z′ + 1

2
(z′)

T · He · z′ + O
(
z′

3
)
. (C.3)

Consequently,

1. The point ze is a hyperbolic equilibrium point of the system, if none of

the eigenvalues of Je evaluated at ze has zero real part. Otherwise, ze is a

non-hyperbolic equilibrium point of the system f [171].

2. A sector in the composition space of this system is an open region in the

neighborhood of any ze. Any sector is one of three types: elliptic, parabolic,

or hyperbolic, see Fig. C.1. If the trajectories within the sector are homo-

clinic orbits, it is an elliptic sector. If the trajectories within the sector are

heteroclinic orbits that connect ze with another equilibrium point, it is a

parabolic sector. Otherwise, it is a hyperbolic sector [157].
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(b)
(a)

(c) (d)

Figure C.1. A sketch illustrating sectors in a dynamical system
composition space, where (a) and (b) are parabolic sectors, (c) is an

elliptic sector, and (d) is a hyperbolic sector. Here, the separatrices are
represented as thick lines.

3. The trajectories that represent the boundaries of a hyperbolic sector are

called separatrices. These separatrices approach ze as t→ ±∞.

C.2 Hartman-Grobman theorem

For a hyperbolic equilibrium [157], the Hartman-Grobman theorem is used to

reveal its dynamical character. If Eq. (C.1) has a hyperbolic equilibrium point

ze, then the theorem states that the local behavior of the dynamical system in

the vicinity of ze is qualitatively the same as the behavior of the following linear

system

dz

dt
= Je · (z − ze) . (C.4)
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In other words, the local behavior of the dynamical system in the vicinity of ze is

approximated by the leading term of its Taylor series. Moreover, the real parts of

the eigenvalues (λ) of Je determine the dynamical character of ze, where

1. ze called a sink, if all the eigenvalues of Je have negative real parts.

2. ze called a source, if all eigenvalues have positive real parts.

3. If at least one of the eigenvalues has negative real part and another has

positive real part, ze called a saddle.

The only stable critical point among these equilibria is the sink; the saddle

and the source are unstable equilibria. Thus, for dissipative systems, every sink

is a 0-D attractor. However, there is no globally accepted definition for the term

attractor, and from a geometrical viewpoint, an attractor can be a point, a curve,

or a manifold. Lichtenberg and Liberman [165] state that for a dissipative system,

“The stable, steady state motion for an N -dimensional system must lie
on a surface of dimension less than N . Loosely speaking, this surface
is called an attractor.”

But, it is globally accepted that every attractor has its own basin of attraction [162,

165]. So, every sink has its own basin of attraction, which all the trajectories inside

of it has to approach the sink in infinite time.

C.3 Non-hyperbolic equilibria

For a non-hyperbolic equilibrium, the Hartman-Grobman theorem is not ap-

plicable, so the normal form theory has to be employed to reveal the dynamical

character of the non-hyperbolic equilibrium, see Fig. C.2. This theory is used
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Figure C.2. A sketch illustrating the non-hyperbolic saddle-node. The
thick lines are the separatrices.

to identify the local behavior of a standard dynamical system in the neighbor-

hood of a non-hyperbolic equilibrium point based on the center manifold theo-

rem [157, 171, 172].

Now, if Eq. (C.1) has a non-hyperbolic equilibrium point ze, then the local

behavior of the dynamical system in the vicinity of ze is qualitatively the same as

the behavior of the following non-linear system

dz′

dt
= Je · z′ + 1

2
(z′)

T ·He · z′. (C.5)

In order to analyze this system, the normal form theory states that a local non-

linear coordinate transformation, in the following form

Z = z′ + F (Z) , {Z, z′} ∈ R
R, F : R

R → R
R, (C.6)
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has to be made, where F are non-linear functions and Z are the new depen-

dent variables. Such that, the non-linear part of the original dynamical system,

Eq. (C.5), is brought to a canonical form.

Reference [172], provides a detailed list contains several non-hyperbolic equi-

libria that have been analyzed, e.g. saddle-node.
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APPENDIX D

CHEMICAL REACTION MECHANISMS

In this appendix, all the utilized chemical reaction mechanisms in this work

are listed. The elements, species, and reaction steps in the reaction mechanisms

are presented in the tables. The third bodies are denoted by M, and their collision

efficiencies coefficients αji with respect to all the species are unity unless otherwise

specified.
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TABLE D.1

HYDROGEN–AIR REACTION MECHANISM.

Elements: H,O, and N .

Species: H2, O2, H,O,OH,HO2, H2O2, H2O, and N2.

j Reaction
Aj βj Ēj[

(mol/cm3)(
1−

PN
i=1

ν′ij)

s Kβj

]
[

cal
mol

]

1 H2 +O2 ⇋ OH +OH 1.70 × 1013 0.0 47780

2 OH +H2 ⇋ H2O +H 1.17 × 109 1.3 3626

3 H +O2 ⇋ OH +O 5.13 × 1016 −0.816 16507

4 O +H2 ⇋ OH +H 1.80 × 1010 1.0 8826

5 H +O2 + M ⇋ HO2 + M
1 2.10 × 1018 −1.0 0

6 H +O2 +O2 ⇋ HO2 +O2 6.70 × 1019 −1.42 0

7 H +O2 +N2 ⇋ HO2 +N2 6.70 × 1019 −1.42 0

8 OH +HO2 ⇋ H2O +O2 5.00 × 1013 0.0 1000

9 H +HO2 ⇋ OH +OH 2.50 × 1014 0.0 1900

10 O +HO2 ⇋ O2 +OH 4.80 × 1013 0.0 1000

11 OH +OH ⇋ O +H2O 6.00 × 108 1.3 0

12 H2 + M ⇋ H +H + M2 2.23 × 1012 0.5 92600

13 O2 + M ⇋ O +O + M 1.85 × 1011 0.5 95560

14 H +OH + M ⇋ H2O + M3 7.50 × 1023 −2.6 0

15 H +HO2 ⇋ H2 +O2 2.50 × 1013 0.0 700

Continued on next page
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TABLE D.1

Continued

j Reaction
Aj βj Ēj[

(mol/cm3)(
1−

PN
i=1

ν′ij)

s Kβj

]
[

cal
mol

]

16 HO2 +HO2 ⇋ H2O2 +O2 2.00 × 1012 0.0 0

17 H2O2 + M ⇋ OH +OH + M 1.30 × 1017 0.0 45500

18 H2O2 +H ⇋ HO2 +H2 1.60 × 1012 0.0 3800

19 H2O2 +OH ⇋ H2O +HO2 1.00 × 1013 0.0 1800

The non-unity third body collision efficiency coefficients αji are:

1 for reaction 5, α5,H2
= 3.3, α5,H2O = 21.

2 for reaction 12, α12,H2
= 3, α12,H2O = 6, α12,H = 2.

3 for reaction 14, α14,H2O = 20.
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TABLE D.2

ZEL’DOVICH MECHANISM OF NITRIC ACID FORMATION.

Elements: N and O.

Species: NO,N,O,O2, and N2.

j Reaction
Aj βj Ēj[

(mol/cm3)(
1−

PN
i=1

ν′ij)

s Kβj

]
[

cal
mol

]

1 N +O2 ⇋ NO +O 5.841 × 109 1.01 6195.6

2 N +NO ⇋ N2 +O 21.077 × 1012 0.00 0.0
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TABLE D.3

SIMPLE HYDROGEN–AIR KINETICS MECHANISM.

Elements: H,O, and N .

Species: H2, H,O,OH,H2O, and N2.

j Reaction
Aj βj Ēj[

(mol/cm3)(
1−

PN
i=1

ν′ij)

s Kβj

]
[

cal
mol

]

1 O +H2 ⇋ H +OH 5.08 × 104 2.7 6290

2 H2 +OH ⇋ H2O +H 2.16 × 108 1.5 3430

3 O +H2O ⇋ OH +OH 2.97 × 106 2.0 13400

4 H2 + M ⇋ H +H + M1 4.58 × 1019 −1.4 104380

5 O +H + M ⇋ OH + M1 4.71 × 1018 −1.0 0

6 H +OH + M ⇋ H2O + M1 3.80 × 1022 −2.0 0

1The non-unity third body collision efficiency coefficients are:

αj,H2
= 2.5, αj,H2O = 12, j = 4, 5, 6.
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TABLE D.4

MICHAEL’S MECHANISM FOR HYDROGEN OXIDATION.

Elements: H and O.

Species: H2, O2, H,O,OH, and H2O.

j Reaction1
Aj βj Ēj[

(mol/cm3)(
1−

PN
i=1

ν′ij)

s Kβj

]
[

cal
mol

]

1 H +O2 −→ O +OH 9.76 × 103 0.0 14842.5

2 O +OH −→ O2 +H 3.26 × 1011 0.375 −2208.4

3 O +H2 −→ OH +H 5.08 × 104 2.67 6289.3

4 OH +H −→ H2 +O 2.28 × 104 2.67 4420.6

5 H +H2O −→ OH +H2 9.39 × 108 1.52 18367.5

6 H2 +OH −→ H2O +H 2.14 × 108 1.52 3447.5

7 O +H2 −→ OH +OH 4.50 × 104 2.70 14542.7

8 OH +OH −→ O +H2O 4.33 × 103 2.70 −2484.3

1A reduced version of this mechanism is obtained by

eliminating the first two elementary reactions.
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TABLE D.5

OZONE DECOMPOSITION REACTION MECHANISM.

Elements: O.

Species: O,O2, and O3.

j Reaction
Aj βj Ēj[

(mol/cm3)(
1−

PN
i=1

ν′ij)

s Kβj

]
[

cal
mol

]

1 O3 + M ⇋ O +O2 + M 6.76 × 106 2.50 24123

2 O +O3 ⇋ O2 +O2 4.58 × 106 2.50 6000

3 O2 + M ⇋ O +O + M 5.71 × 106 2.50 117350

179



APPENDIX E

DETONATION LENGTH SCLAES

Here, the robust method developed by Powers and Paolucci [122] to calcu-

late the length scales for a gas phase Chapman–Jouguet (CJ) detonation [143] is

used. Detailed kinetic models identical to the ones that have been employed in

Sec. 3.3: the GRI 3.0 mechanism [141] for hydrocarbon–air reactive mixtures,

and the hydrogen–air mechanism extracted from Ref. [120], are adopted. At

the unshocked state, the initial pressure is p∗ = 1 atm, and the temperature

is T ∗ = 800 K for hydrogen–air mixtures, and T ∗ = 298 K for hydrocarbon–

air mixtures. The standard code DLSODE [119], which utilizes an implicit Adams

scheme, is used to obtain a resolved reaction zone structure. The spatial step sizes

are adapted to achieve the absolute error tolerance of 10−14; the minimum utilized

grid sizes are listed in Table E.1.

First, a comparison between ℓfinest, ℓinduction, and ℓmfp for the hydrogen–air

mixture has been conducted for a wide range of Φ and pressures, see Figs. E.1–

E.2. The results are consistent with Figs. 3.14–3.16 for laminar premixed flames,

and clearly show that the finest length scale is not a function of the fuel–air ratio.

Then, for each hydrocarbon–air reactive mixture, the calculated finest length scale

ℓfinest, induction zone length ℓinduction, and the estimated mean free path ℓmfp over

a wide range of pressures are presented, Figs. E.3–E.7.
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TABLE E.1

THE MINIMUM GRID SIZE EMPLOYED FOR DETONATION

PROBLEMS.

p [atm]
∆x [cm]

H2 − air CxHy − air

5 × 10−1 9 × 10−5 1 × 10−5

1 × 100 6 × 10−5 6 × 10−6

2 × 100 1 × 10−5 3 × 10−6

5 × 100 6 × 10−5 1 × 10−6

1 × 101 3 × 10−6 6 × 10−7

It is clearly shown that the predicted ℓfinest is well correlated with the mean

free path for all the calculations performed; in all cases ℓfinest is slightly above

ℓmfp, fully consistent with the continuum assumption. So, similar as laminar

premixed flames, ℓfinest for CJ detonations can be easily estimated a priori using

Eq. (3.34).
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Figure E.1. The induction zone length, the predicted finest length scale,
and the mean free path versus the equivalence ratio for a CJ detonation

in a hydrogen–air mixture, T ∗ = 800 K and p∗ = 1 atm.

10
−6

10
−4

10
−2

10
 0

[c
m

]
i

10
 0

10
 1

p      [atm]

finest

induction

mfp

Figure E.2. The induction zone length, the finest length scale, and the
mean free path versus pressure for a CJ detonation in a stoichiometric

hydrogen–air mixture, T ∗ = 800 K.
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Figure E.3. The induction zone length, the finest length scale, and the
mean free path versus pressure for a CJ detonation in a stoichiometric

methane–air mixture, T ∗ = 298 K.
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Figure E.4. The induction zone length, the finest length scale, and the
mean free path versus pressure for a CJ detonation in a stoichiometric

ethane–air mixture, T ∗ = 298 K.
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Figure E.5. The induction zone length, the finest length scale, and the
mean free path versus pressure for a CJ detonation in a stoichiometric

propane–air mixture, T ∗ = 298 K.
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Figure E.6. The induction zone length, the finest length scale, and the
mean free path versus pressure for a CJ detonation in a stoichiometric

ethylene–air mixture, T ∗ = 298 K.
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APPENDIX F

SCALE ANALYSIS FOR OXYGEN DISSOCIATION

Here, the possibility of the existence of a direct connection between the finest

length scale predicted by the eigenvalue analysis and that predicted by a sim-

ple collision theory estimate is further explored. Such an analysis is analytically

tractable for a simple kinetic system in conjunction with a small number of as-

sumptions.

Consider an isothermal dissociation-recombination oxygen system with no dif-

fusion at T = 5000 K. The reaction mechanism for this system is given by

O2 + M ⇋ 2O + M, (F.1)

where from Table D.1 the reaction rate coefficients are β = 0.5, A = 1.85 ×

1011 cm3/
(
mol K1/2

)
, and Ē = 95560.0 cal/mol. For this simple problem, the

initial conditions are set to ρ̄∗O2
= ρ̄∗O = 10−3 mol/cm3, and a constant advection

velocity u = 10 cm/s is considered. Consequently, the species evolution equations

are

∂ρ̄O

∂t
+ u

∂ρ̄O

∂x
= ω̇O, (F.2a)

∂ρ̄O2

∂t
+ u

∂ρ̄O2

∂x
= ω̇O2

. (F.2b)
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Let us further restrict attention to a steady wave so that all time derivatives

are zero. Thus, the system of PDEs (F.2) is reduced to a system of ODEs:

u
dρ̄O

dx
= ω̇O = 2AT β exp

(−Ē
ℜ̄T

)(
ρ̄O2

(ρ̄O2
+ ρ̄O) − ρ̄2

O (ρ̄O2
+ ρ̄O)

Kc

)
, (F.3a)

u
dρ̄O2

dx
= ω̇O2

= −AT β exp

(−Ē
ℜ̄T

)(
ρ̄O2

(ρ̄O2
+ ρ̄O) − ρ̄2

O (ρ̄O2
+ ρ̄O)

Kc

)
. (F.3b)

By summing two times (F.3b) with (F.3a) and integrating, an algebraic relation

representing the conservation of element O is obtained:

ρ̄O2
= ρ̄∗O2

+
1

2
ρ̄∗O − 1

2
ρ̄O. (F.4)

The system can then be recast as a single ODE by using (F.4) to eliminate

ρ̄O2
in (F.3a) to form,

dρ̄O

dx
= f (ρ̄O)

=
2AT β exp

(
−Ē
ℜ̄T

)

u

(
ρ̄∗O2

+
1

2
ρ̄∗O +

1

2
ρ̄O

)(
ρ̄∗O2

+
1

2
ρ̄∗O − 1

2
ρ̄O − ρ̄2

O

Kc

)
. (F.5)

The equilibrium point is found by setting the right hand side of (F.5) equal to

zero, which yields

ρ̄e
O =

√
Kc
(
16ρ̄∗O2

+ 8ρ̄∗O +Kc
)
−Kc

4
. (F.6)

To determine the length scale ℓfinest over which this particular system evolves,

standard eigenvalue analysis is applied to Eq. (F.5). The eigenvalue for this system

is the derivative of the right hand side of Eq. (F.5), df/dρ̄O, and ℓfinest is given
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by the reciprocal of this eigenvalue, see Eq. (3.30). For this particular system,

ℓfinest =
C

A
, (F.7a)

where

C ≡
u T−β exp

(
Ē
ℜ̄T

)
Kc

ρ̄O

(
4ρ̄∗O2

+ 2ρ̄∗O +Kc + 3ρ̄O

) (F.7b)

and at the equilibrium point,

ℓfinest =
−16 u T−β exp

(
Ē
ℜ̄T

)√
Kc
(√

Kc −√16ρ̄∗O2
+ 8ρ̄∗O +Kc

)−1

A

(
16ρ̄∗O2

+ 8ρ̄∗O +Kc +
√

9 Kc
(
16ρ̄∗O2

+ 8ρ̄∗O +Kc
) ) (F.8)

Now, the collision frequency factor A can be related to molecular collision

parameters. A simple relation is given by [140] in p. 223, which can be easily

reduced to the following form

A ≈ 2Nd2

√
2πℜ̄
m̄

(F.9a)

where [140]’s P and s have been approximated as unity, following the same as-

sumption made by [103]. As a result, A can be related directly to ℓmfp by substi-

tuting (3.34) into (F.9a),

A ≈ 2

ρℓmfp

√
ℜ̄m̄
π

(F.9b)

and ℓfinest can be related to ℓmfp by substituting (F.9b) into (F.7a), which yields

ℓfinest ≈ ℓmfp

(
ρC

2

√
π

ℜ̄m̄

)
(F.10)

where it is found by substitution of numerical parameters for oxygen dissociation
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that ρC

2

√
π

ℜ̄m̄
∼ O(1), with a maximum value of approximately 4.82114. This sim-

ple analysis, which is not dependent on any discrete numerical method, provides

a proof of a direct connection between ℓfinest and ℓmfp for this simple example.

We believe it is reasonable to speculate that this result extends to systems with

more complex kinetics, based on our earlier numerical analysis.

The spatial distribution of this system’s species concentrations is shown in

Fig. F.1(a). This fully resolved structure, consistent with our previous method-

ology, has been calculated by integrating Eq. (F.5) and employing Eq. (F.4). In

addition, the length scale over which the system evolves, found from Eq. (F.7a), is

shown in Fig. F.1(b). It is clearly seen that ℓfinest is of the same order of magni-

tude, albeit slightly larger, as ℓmfp through the entire domain. Thus, ℓmfp can be

considered as a lower bound for ℓfinest, although they are calculated independently.
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Figure F.1. Isothermal oxygen dissociation at T = 5000 K, (a) species
concentration versus distance, (b) finest length scale obtained

analytically and mean free path versus distance.
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APPENDIX G

FINE SCALE ANALYSIS OF LAMINAR PREMIXED OZONE FLAME

Here, the ozone decomposition in a one-dimensional unsteady laminar pre-

mixed flame, which is governed by Eqs. (2.20), is considered. The employed ki-

netic mechanism is consists of J = 3 reversible reactions involving N = 3 species;

an irreversible version of the employed kinetic model has been widely used in the

literature [72, 91, 116], see Table D.5.

G.1 Time scale spectrum

For the unsteady spatially homogeneous version, the considered system is adi-

abatic, isobaric, and initially at T ∗ = 1200 K with an initial mass fraction com-

position of YO = 0, YO2
= 2/3, and YO3

= 1/3, at p = 0.821 atm. Using the

methodology described in Sec. 3.2, the time evolution of species mass fractions

and the time scale spectrum over which the unsteady spatially homogeneous re-

active system evolves are determined, see Figs. G.1–G.2.

In Fig. G.1, a power law growth of the O species is clearly noted for t < 10−8 s.

This growth modulates at t ∼ 2 × 10−8 s, which indicates that significant disso-

ciation reactions are induced. At t = 5 × 10−7 s, the species undergo significant

change that indicates a vigorous reaction has commenced. Just past t = 1×10−6 s

the system relaxes to a metastable state for two decades. Finally, at t = 1×10−4 s,
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Figure G.1. Time evolution of species mass fractions for the ozone
decomposition reactive system, T ∗ = 1200 K, p = 0.821 atm.

recombination of O and dissociation of O3 commences forming more of the pre-

dominant product O2 before the system relaxes to equilibrium near t = 10−2 s.

In Fig. G.2, two time scales are seen in the spectrum. Because our reaction

mechanism has N = 3 species with L = 1 elements being conserved, we find

N − L = 2 independent modes. The multiscale nature of this problem is clearly

seen. Initially, the fast time scale and the slow time scale are 2.43 × 10−8 s and

6.17 × 10−7 s, respectively. The fast time scale correlates well with the time at

which the first significant reaction commences. Near equilibrium the slowest time

scale is 4.16 × 10−3 s, and the fastest time scale is 5.42 × 10−8 s, giving rise to

St ∼ O(105).

In Table G.1, values of various properties at the initial state and the equilib-

rium state are listed.
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Figure G.2. Time scales over which the ozone decomposition reactive
system evolves, T ∗ = 1200 K, p = 0.821 atm.

TABLE G.1

THERMOCHEMICAL AND DYNAMIC PROPERTIES FOR THE

OZONE DECOMPOSITION REACTIVE SYSTEM.

Property Initial state Equilibrium

p [dyne/cm2] 8.31878× 105 8.31878 × 105

T [K] 1.20000× 103 2.06145 × 103

ρ [g/cm3] 3.00161 × 10−4 1.55242 × 10−4

YO 0.00000× 100 4.66188 × 10−4

YO2
6.66667 × 10−1 9.99534 × 10−1

YO3
3.33333 × 10−1 8.81467 × 10−8

τfastest [s] 2.43865 × 10−8 5.41894 × 10−8

τslowest [s] 6.17324 × 10−7 4.16430 × 10−3
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G.2 Length scale spectrum

For the one-dimensional steady planar flame, the methodology presented in

Sec. 3.3 is employed to calculate the spatial distribution of the dependent variables,

and to determine the system’s length scales.

Here, an adiabatic steady one-dimensional laminar premixed flame freely prop-

agating in a O −O2 −O3 mixture at p = 0.821 atm is considered. The unburned

mixture’s mass fractions are YO = 0, YO2
= 2/3, and YO3

= 1/3, temperature

is Tu = 300 K, and the specified temperature is assigned at xf = 2.30 cm as

Tf = 400 K. These working conditions, Tu, p,Y , are similar to that of [72, 91].

However, the multicomponent transport model is employed in this work, while

in Refs. [72, 91] the calculations have been performed using constant transport

coefficients and Lewis number Le = k/ (ρcpD).

Using a grid that has been adaptively refined to control the error and capture

regions of steep gradient, a fully resolved steady species profile is obtained and

presented in Fig. G.3. Note that the cold boundary temperature here is lower

than the initial condition temperature of the unsteady spatially homogeneous

ozone mixture in Sec. G.1; we were unable to obtain a laminar premixed flame in

an ozone mixture at Tu = 1200 K.

The local length scales ℓi are predicted throughout the domain, Fig. G.4. The

multiscale nature of the problem and the length scales over which the species

evolve are shown. Since there are 2N − L = 5 independent variables, there are

2N − L = 5 length scales in the spectrum. The length scale analysis reveals that

the fine length scale and the coarse scale for this system vary from 1.38× 108 cm

and 1.32× 10−3 cm in the preheat zone to 8.69× 10−1 cm and 1.12× 10−8 cm in

the hot far-field region, respectively. Thus, the spatial stiffness in the hot region
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Figure G.3. Species mass fraction versus distance for the steady laminar
premixed ozone flame, Tu = 300 K, p = 0.821 atm.

is Sx ∼ O(108).

The important finest length scale is ℓfinest = 1.12×10−8 cm, which occurs at the

system’s chemical equilibrium. This scale is close in magnitude to the analogous

finest length scale in an inviscid CJ detonation in a comparable mixture [182],

ℓfinest = 6.4 × 10−8 cm.

Now, to estimate the mixture ℓmfp, Eq. (3.34) is employed. Here, similar

to Sec. 3.3.5.4, the molecular cross-section diameter is adopted from Ref. [140],

d = 3.70×10−8 cm. Although this estimate of d is for air, it is close in magnitude

to the mixture average collision diameter dmix = 3.43600×10−8 cm, which can be

calculated using Eq. (3.35). Here, a problem can be easily noted; the predicted

ℓfinest is smaller than the mixture molecular cross-section diameter and the average

collision diameter. Now, using Eq. (3.34), it reveals that ℓmfp = 3.40947×10−5 cm,

which is three orders of magnitudes larger than the predicted ℓfinest for the laminar
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TABLE G.2

THERMOCHEMICAL AND DYNAMIC PROPERTIES FOR THE

ONE-DIMENSIONAL LAMINAR PREMIXED OZONE FLAME.

Property Cold boundary Hot boundary

p [dyne/cm2] 8.31878× 105 8.31878 × 105

T [K] 3.00000× 102 1.24963 × 103

u [cm/s] 4.53500× 101 2.12546 × 102

ρ [g/cm3] 1.20065 × 10−3 2.56177 × 10−4

YO 1.75055 × 10−14 1.43724 × 10−4

YO2
6.66667 × 10−1 9.99855 × 10−1

YO3
3.33333 × 10−1 1.10602 × 10−6

ℓcoarsest [cm] 1.37602× 108 8.68965 × 10−1

ℓfinest [cm] 1.32227 × 10−3 1.11729 × 10−8

premixed ozone decomposition flame! Such a result implies that there is a contra-

diction with the continuum model. Further investigation is needed to elucidate

this inconsistency.

A precise list of several properties’ values at the cold boundary and at the hot

boundary is given in Table G.2.

G.3 Spatially discretized spatio-temporal spectrum

Following the procedure presented in Sec. 3.4, the time scale spectrum, for the

system resulting from perturbing the chemical equilibrium state of the spatially
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homogeneous ozone decomposition reactive system, is presented in Fig. G.5, where

the modified wavelength is defined by Eq. (3.39). Here, the unperturbed state is

identical to the equilibrium state of Sec. G.1.

Figure G.5 is generated from combining four small windows of the system’s

Fourier modes. Each window contains about three decades of wavelength and has

been calculated for a specific spatial length, L = {102, 100, 10−3, 10−6} cm. Also,

a plot of the system’s times scales associated with the fundamental modes versus

2L/π is given in Fig. G.6.

Figures G.5–G.6 clearly show that the time scales associated with long wave-

length modes match with the chemical time scales shown in Fig G.2; they are

dictated by reaction. However, at Λ̂/2π = 2L/π ∼ 10−1 cm the diffusion effect

starts to appear through the slowest time scales associated with moderate wave-

length modes. Also, the balance between reaction and diffusion is clear: short

wavelength modes, Λ̂/2π = 2L/π < 10−7 cm, are dominated by diffusion, and

large wavelength modes, Λ̂/2π = 2L/π > 100 cm, are dominated by reaction.

Furthermore, the effect of adopting non-uniform diffusion coefficients, the mul-

ticomponent diffusion coefficients Dij in Eqs. (2.21a), is noted in the diffusion

dominated region, Λ/2π = 2L/π ≤ 10−7 cm. Similar to the hydrogen–air mixture,

one would expect τ ∼ L2/Dij, so that the slope of each should be the same, but

the intercept is different for each Dij. It is obvious that in the diffusion-dominated

region, there is a two decade drop in τ for every one decade drop in L, consistent

with our prediction.

It is clear from Figs. G.5–G.6 that the branch associated with the slowest chem-

ical time scales starts to become influenced by diffusion before branches associated

with the faster chemical time scales; the turning point for the fastest chemical time
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scale branch is 2L/π ∼ 10−3 cm and for the slowest chemical time scale branch is

2L/π ∼ 10−1 cm. Furthermore, another turning point for the fastest time scale is

located at Λ/2π = 2L/π = 10−7 cm. This turning point represents the system’s

shortest wavelength where a balance between reaction and diffusion exist; for a

resolved structure this length length scale need to be captured.

From Fig. G.6, it is clear that the first two turning points are predicted well

by a formula similar to Eq. (3.40),

ℓsmallest =
√
Dmixτfastest = 6.38 × 10−4 cm, (G.1a)

ℓlargest =
√
Dmixτslowest = 1.77 × 10−1 cm. (G.1b)

Here, the mixture average diffusion coefficient, given by Eq. (3.41), is Dmix ≈

7.5 cm2/s, and the reaction-only fast and slow time scales, from Sec. G.1, are

τfastest = 5.42 × 10−8 s and τslowest = 4.16 × 10−3 s, respectively. Moreover, the

finest length scale calculated, in Sec. G.2, by spatial eigenvalue analysis under-

predicts the second turning point of the fastest reaction-advection-diffusion time

scale by one order of magnitude.

Reasons for the discrepancies are unclear, but could be related to the difference

in temperatures; the unperturbed state in this section is at T e = 2061.45 K, while

ℓfinest is calculated in Sec. G.2 at T e = 1249.63 K. However, the location of

the turning point for the slowest time scale, where the reaction-diffusion balance

exists, is higher than our prediction in Sec. G.2 for the ozone decomposition flame.

This may be due to the full laminar flame being composed of Fourier modes of

smaller wavelengths which have more demanding time constants.

200



APPENDIX H

CONSTRUCTION OF PROJECTION MATRICES

Here, two different ways to construct the D matrix will be provided. As it has

been mentioned in Sec. 4.1, the D matrix is not unique.

H.1 Method–I

First, a row-echelon form of the νij matrix is obtained by performing a series

of row operations on Eq. (4.2a). The number of non-zero rows in the row-echelon

form of νij is the rank of νij and Dik, since νij and Dik span the same column space.

Then, we use elementary row operations to identify the N × N lower triangular

matrix L which, when matrix multiplied with Eq. (4.2a) yields L ·dn/dt = VU ·r,

where U = L · ν is an upper triangular matrix of dimension N × R.

This non-unique matrix describes the system’s linear constraints, which are

obtained by integrating the N − R homogeneous ODEs that are obtained as a

result of reduction to the row-echelon form. Finally, the D matrix is constructed

such that the first R row vectors of it are set in the reduced row-echelon form,

while the other row vectors are obtained using L to reflect the system’s constraints.
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H.2 Method–II

First, the LUP-decomposition of the νT matrix is obtained, [126] such that

P · νT = L ·U, (H.1a)

where the lower triangular matrix L and the permutation matrix P are square

matrices of dimension N × N , but the upper triangular matrix U is non-square

and has the same dimension and rank as ν; N×R. Consequently, ν is decomposed

as the product of three matrices,

(
P · νT

)T
= (L · U)T , (H.1b)

ν ·PT = UT · LT , (H.1c)

ν = UT · LT ·
(
PT
)−1

. (H.1d)

Now, all the independent row vectors of ν are the non-zero column vectors of UT ;

the D is the first R column vectors of UT ,

UT =

[
D

... 0

]
. (H.2)

Although method II is simpler than method I in constructing the D matrix,

the resulting R dependent variables using method II are linear combinations of

the original N dependent variables. However, in the case of using method I to

constructing the D matrix, the resulting R dependent variables are a subset of the

original N dependent variables. Thus, in this work, method I will be employed to

construct the D matrix. A detailed example is given in Sec. 4.3.1 to illustrate the

construction of D for a realistic reactive system.
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APPENDIX I

ELEMENTS OF ALGEBRAIC GEOMETRY

I.1 Homotopy continuation

Homotopy continuation is a mathematical approach for solving a system of

equations by tracking the solutions of another systems of equations. In other

words, define a system of equations g whose equilibria can be easily calculated.

Then, track those equilibria as one deforms g into the system f that one wants to

solve [183].

Basically, a homotopy is a mapping given by the following relation,

H (z; t) = (1 − t)f (z) + tg, z ∈ R
R, {f , g} : R

R → R
R, 0 ≤ t ≤ 1, (I.1)

where t is a parameter. Start with t = 1 and find the equilibria of H1 that

satisfies H = 0. Then, decrease t by a small step size and find the new H∆t that

satisfies H = 0. As t runs from 1 to 0, the homotopy mapping H ends at f (z),

and the equilibria of H0 that satisfies H = 0 are the desired solutions.

In BERTINI, the path ze (t) is tracked using a predictor/corrector scheme;

the Euler prediction with Newton correction. Reference [158] provides a detailed

description of using homotopy continuation to describe all solutions to a given

polynomial system, see Fig. I.1.
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Figure I.1. A sketch illustrating the homotopy continuation.

I.2 Polynomial scaling

Scaling is an essential requirement for the robust behavior of numerical meth-

ods to find nonlinear systems’ equilibria. The basic idea of polynomial scaling

algorithms is to use both a change of variables and equation scaling to rescale

the original polynomials into a new system of polynomials that has coefficients

centered about unity [163]. In other words, if f1 (z1, . . . , zR) , . . . , fR (z1, . . . , zR)

are polynomials, and the differences between the coefficients of f are several orders

of magnitude, one can computes real constants a1, . . . , aR and b1, . . . , bR to define

a new scaled system of polynomials Γ1(ζ1, . . . , ζR), . . . , ΓR(ζ1, . . . , ζR) by

Γ (ζ) = b · f (a · z) , {ζ, z, a,b} ∈ R
R. (I.2)

To demonstrate the scaling method, a simple example will be presented. Con-
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sider the following polynomials:

f1 (z) = 1 × 1012z2
1 − 1 × 10−6z2,

f2 (z) = 1 × 109z2
2 − 1 × 10−3z1.

To rescale this system, define Γ and ζ as

z1 = 1 × 10−16ζ1,

z2 = 1 × 10−14ζ2,

Γ1 = 1 × 1020f1,

Γ2 = 1 × 1019f2.

By substituting Γ and ζ in the original system of polynomials, f (z), a new scaled

system is obtained. This system is given by

Γ1 = ζ2
1 − ζ2,

Γ2 = ζ2
2 − ζ1,

which can be solved easily, and numerically it is very stable.

In realistic reactive system, computing the real constants a and b to define a

new scaled set of polynomials is a major task. In this work, the scaling algorithm

SCLGEN [163] is used to calculate a and b. Reference [163] provides a detailed

description of the polynomial system algorithm SCLGEN.
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APPENDIX J

REACTIVE SYSTEM’S EQUILIBRIUM CONDITION

It is clear, from Eqs. (4.2a) and (2.12), that in order for a closed spatially

homogenous reactive system to come onto an equilibrium state the following con-

dition has to be satisfy,

rj = 0 ⇒ Kc
j =

∏N
i=1 ρ̄

ν′′

ij

i
∏N

i=1 ρ̄
ν′

ij

i

=
N∏

i=1

ρ̄
νij

i , j = 1, . . . , J. (J.1)

This equation implies that at equilibrium all the reaction steps in the mechanism

have to come onto a state at which reactant and product molar concentrations

are in balance and no further reactions are commence.

Let start from Eq. (2.13b),

Kc
j =

(
po

ℜ̄T

)PN
i=1

νij

exp

(

−
∑N

i=1 µ̄
o
iνij

ℜ̄T

)

, j = 1, . . . , J. ((2.13b))

By substituting the definition of µ̄o
i , from Eq. (2.6a), into Eq. (2.13b), one gets

Kc
j =

(
po

ℜ̄T

)PN
i=1

νij

exp

(
N∑

i=1

νij ln

(
pi

po

)
−
∑N

i=1 νijµ̄i

ℜ̄T

)

, j = 1, . . . , J, (J.2)
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which can be written, after rearrangement and employing Eq. (2.4), as

Kc
j =

(
po

ℜ̄T

)PN
i=1

νij

exp

(

−
∑N

i=1 νijµ̄i

ℜ̄T

)

exp

(
N∑

i=1

ln

(ℜ̄T ρ̄i

po

)νij
)

, j = 1, . . . , J.

(J.3)

Furthermore, by a standard mathematical manipulations, interchanging the sum-

mation and the logarithm in the last term in the right hand side of Eq. (J.3), one

gets

Kc
j =

(
po

ℜ̄T

)PN
i=1

νij

exp

(
−
∑N

i=1 νijµ̄i

ℜ̄T

)
exp

(
ln

N∏

i=1

(ℜ̄T ρ̄i

po

)νij
)
, j = 1, . . . , J,

(J.4)

which can be rewritten, after further mathematical manipulations, as

Kc
j =

(
po

ℜ̄T

)PN
i=1

νij

exp

(
−
∑N

i=1 νijµ̄i

ℜ̄T

)(ℜ̄T
po

)PN
i=1

νij N∏

i=1

ρ̄
νij

i , j = 1, . . . , J.

(J.5)

Now, it is clear that the equilibrium constant for the jth reaction is given by

Kc
j =

N∏

i=1

ρ̄
νij

i exp

(
−
∑N

i=1 νijµ̄i

ℜ̄T

)
, j = 1, . . . , J. (J.6)

By comparing Eq. (J.6) and Eq. (J.1), we have

exp

(

−
∑N

i=1 νijµ̄i

ℜ̄T

)

= 1, (J.7)

at the system’s physical equilibrium point. Thus, the equilibrium condition for a

closed spatially homogeneous reactive system is

N∑

i=1

νijµ̄i = 0. (J.8)
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APPENDIX K

CONSTRUCTING THE MINIMAL ENTROPY PRODUCTION

TRAJECTORIES

Here, additional details on the construction of the MEPT of the following

reactive system,

A+ A ⇋ B, k
F
1 = 1, k

B
1 = 10−5,

B ⇋ C, k
F
2 = 10−2, k

B
2 = 10−5,

are presented. This system is identical to the second example presented by

Lebiedz [41], where kF
j and kB

j represent the forward and the backward Arrhenius

kinetic rate for the jth reaction, respectively. This mechanism contains N = 3

species that undergo J = 2 reversible reactions.

First, following Lebiedz [41], we define the entropy production due to irre-

versibility processes, i.e. the irreversibility production rate, within the system for

the jth reaction as

σj ≡
diSj

dt
= ℜ̄

(
rF
j − rB

j

)
ln

(
rF
j

rB
j

)
, j = 1, 2, (K.1)

where rF and rB are the reaction rate of the forward and backward reaction,
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respectively. Next, a variational problem is set, such that the following functional,

F =

∫
T

0

J∑

j=1

(
diS

dt

)2

dt, (K.2)

is minimized, under the following constraints,

dzA

dt
= k

B
1 zB − k

F
1 z

2
A,

dzB

dt
= k

F
1 z

2
A − zB

(
k

B
1 + k

F
2

)
+ k

B
2 zC .

dzC

dt
= k

F
2 zB − k

B
2 zC ,

zC (t = 0) = constant,

|zC (T) − ze
C | ≤ ǫ = 0.1,

where T is a free parameter that represent the final time of integration.

Using the same argument, described in the original work, that the total mass

is conserved; zA + zB + zC = 1, the evolution of the reactive system is described

by

dzA

dt
= 10−5zB − z2

A, (K.3a)

dzB

dt
= z2

A + (1 − 1001zB − zA) × 10−5. (K.3b)

Then, to accelerate the MEPT construction process, we adopted two numbers

from the original work [41]: the final time T = 260, and the initial concentration

zC(t = 0) = 0.1. Thus, the functional subject to minimization become

F =

∫ 260

0

(
σ2

1 + σ2
2

)
dt. (K.4)
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Explicitly, the minimization process commences by calculating Eq. (K.4) over

a wide range of zB and zC values. Then, the loci of the minimum values of F

associated with the adopted initial condition zC(0) = 0.1 is identified. It is found

that at zC(0) = 0.1, the minimum value of F is located at zB(0) = 8.53 × 10−1.

Consequently, the initial value of zA is 4.73 × 10−2. The computed MEPT is

presented in Fig. K.1, which is identical to Figs. 2 and 4 in Lebiedz [41].

Here, it is noted that there was a typographical error in the original work of

Lebiedz [41]. On page 6895, the last line in the second paragraph states that

zA(0) ≡“cA(0) = 0.0395”, although Fig. 2 on the same page in the original work

is consistent with our results, zA(0) ≡ cA(0) = 0.0473.
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Figure K.1. The MEPT for the system described by Eq. (K.3) with the
following initial condition: zA(0) = 4.732 × 10−2, zB(0) = 8.5268 × 10−1,

and zC(0) = 1.0 × 10−1.
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