AME 20214
Homework 10
Due: Thursday, 15 November 2012, in class
Throughout the term, we have been numerically solving ordinary differential equations, a critical predictive tool used widely in engineering. We developed the first and second order Runge-Kutta methods; in actuality a first order Runge-Kutta method is simply the forward Euler method. Let us consider here the widely used fourth order Runge-Kutta method. Let us say we are solving N non-linear ordinary differential equations of the form

$$
\begin{aligned}
\frac{d y_{i}}{d t} & =f_{i}\left(y_{j}\right), \quad i, j=1, \ldots, N \\
y_{i}\left(t_{o}\right) & =y_{i o}
\end{aligned}
$$

Then the fourth order Runge-Kutta algorithm to predict a solution at $t=t_{o}+\Delta t$ is as follows:

$$
\begin{aligned}
k_{1 i} & =\Delta t f_{i}\left(y_{j}^{n}\right) \\
k_{2 i} & =\Delta t f_{i}\left(y_{j}^{n}+\frac{k_{1 j}}{2}\right) \\
k_{3 i} & =\Delta t f_{i}\left(y_{j}^{n}+\frac{k_{2 j}}{2}\right), \\
k_{4 i} & =\Delta t f_{i}\left(y_{j}^{n}+k_{3 j}\right) \\
y_{i}^{n+1} & =y_{i}^{n}+\frac{1}{6}\left(k_{1 i}+2 k_{2 i}+2 k_{3 i}+k_{4 i}\right)
\end{aligned}
$$

1. Build a subroutine ode4, similar in structure to subroutine ode1 or subroutine ode 2 of the course notes, which implements the fourth order Runge-Kutta algorithm.
2. Construct a super-structure and infra-structure of main programs and subroutines for solving systems of ordinary differential equations by either i) directly using the codes commondata.f90, rhs.f90, ode1.f90, ode2.f90, solveode.f90, runode, along with the original code you write, ode4.f90, or ii) building your own super- and infra-structures. In either case, you should have a set of modular Fortran codes whose compilation and execution is coordinated by an executable script code.
3. Use your fourth order Runge-Kutta solver to estimate a solution to the problem considered in Section 22.3.1:

$$
\frac{d y_{1}}{d t}=-y_{1}, \quad y_{1}(0)=1
$$

Take $\Delta t=0.1$, estimate the solution for $t \in[0,1]$, and report the error of your method at $t=1$. Compare the error of the fourth order method to that of the first and second order methods at the same $t=1$. optional: Demonstrate your method is a fourth order method by studying how the error converges as $\Delta t \rightarrow 0$.
4. Consider next the problem of Section 22.3 .2 for a forced, damped Duffing equation:

$$
\begin{aligned}
\frac{d y_{1}}{d t} & =y_{2}, \quad y_{1}(0)=1 \\
\frac{d y_{2}}{d t} & =-\beta y_{1}-\delta y_{2}-\alpha y_{1}^{3}+f \cos y_{3}, \quad y_{2}(0)=0 \\
\frac{d y_{3}}{d t} & =1, \quad y_{3}(0)=0
\end{aligned}
$$

with $\alpha=1, \beta=-1, \delta=0.22$, and $f=0.3$. Using your fourth-order Runge-Kutta method, reproduce the results of Figs. 22.3 and 22.4.

Prepare your solution with the $\mathrm{AA}_{\mathrm{E}} \mathrm{X}$ text processor. The only code you need include is your new ode4.f90. As always, use at least one equation, use concise language, prepare beautiful figures. Because the codes may be a bit longer, take a four page maximum.

