AME 20214
Homework 12
Due: Thursday, 6 December 2012, in class

1. Use Mathematica alone to reproduce the results of Homework 10, Problem 4 via two methods:

- a second order Runge-Kutta method, and
- the Mathematica function NDSolve.

Note, you only need to reproduce the results of Homework 10, Problem 4. There is no need to introduce a complicated super-structure of subroutines within a Mathematica framework.
2. Use the online help to learn about the Mathematica function FindRoot and use it to identify all solutions, for $x \in[0,5]$ to the equation

$$
x=4 \sin (4 x)
$$

To aid in determining how many solutions exist, you may wish to plot x and $4 \sin (4 x)$ and look for intersections. Inclusion of the actual plot is optional.
3. Use the Mathematica function DSolve to get an exact solution to the mass-spring problem with a time-dependent spring coefficient

$$
\frac{d^{2} y}{d t^{2}}+\sqrt{t} y=0, \quad y(0)=1,\left.\quad \frac{d y}{d t}\right|_{t=0}=0
$$

You may wish to use the TexForm option to help in presenting the exact solution. Give two or three sentences discussing the mathematical meaning of the functions that arise in the exact solution. Use your sleuthing skills to find information on these unusual functions. Plot the solution for $t \in[0,50]$. Does the period of oscillation increase or decrease with t ? Give a physics-based explanation.

Prepare your report with the $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$ text processor. Make all plots with Mathematica. Include at least one equation, prepare beautiful figures, and include all programs that you wrote. Four page maximum.

