NAME:

AME 20214
Introduction to Engineering Computing
Examination 1
Prof. J. M. Powers
16 October 2014

1. (5) Write a short html script which builds a page that gives a link to the Notre Dame home page: http://www.nd.edu.
2. (5) Write $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$ script which generates the following equations with the given format:

$$
\begin{aligned}
\frac{d y}{d t} & =-y, \\
y(0) & =1 \\
y(t) & =e^{-t} .
\end{aligned}
$$

3. (10) Give the output of the following Fortran statements:
(a) print*, 1._4
(b) print*, $2 / 4 * 2$
(c) print*, 2/4.*2
(d) print*,2./4.+2
(e) print*,2/4+2
4. (5) Write the base 2 (sometimes known as binary) representation of the integer 21.
5. (10) Write the UNIX commands for
(a) changing the name of a file named program.f90 to new.program.f90,
(b) deleting a file named program.f90,
(c) listing to the screen the contents of a file named program.f90,
(d) copying a file named program.f90 into a file named new.program.f90,
(e) creating a directory named newdirectory.
6. (5) Which languages require a compiler?
(a) Fortran 2003
(b) MATLAB
(c) C
(d) C++
(e) Microsoft Excel
7. (15) You are given a text file named output.txt containing two columns of numbers. The first column represents discrete values of the variable t, which gives time in units of s . The second column represents corresponding values of the variable y, which gives distance in units of m . Write a short MATLAB program which reads the data and generates a continuous plot of y versus t. Use a plotting format recommended for graphs in this course.

TURN THE PAGE!

8. (40) Consider the mass-spring-damper problem

$$
m \frac{d^{2} y}{d t^{2}}+b \frac{d y}{d t}+k y=0, \quad y(0)=y_{0},\left.\quad \frac{d y}{d t}\right|_{t=0}=0, \quad t \in\left[0, t_{\text {stop }}\right],
$$

where y is the position (m), t is time (s), m is the mass (kg), b is the damping coefficient $(\mathrm{Ns} / \mathrm{m}), k$ is the spring constant (N / m), y_{0} is the initial position (m), and $t_{\text {stop }}$ is the final time (s). Compose
(a) an input file named input.txt which contains numerical values for $m=10000 \mathrm{~kg}$, $b=10 \mathrm{Ns} / \mathrm{m}, k=1 \mathrm{~N} / \mathrm{m}, y_{0}=1 \mathrm{~m}, t_{\text {stop }}=10000 \mathrm{~s}$; format the file in an easily understood fashion,
(b) a Fortran program named msd.f90 which
i. includes at least three useful comment statements,
ii. reads the input data from input.txt,
iii. reads from the screen the number of time steps n to be employed,
iv. uses the forward Euler method to get a numerical estimate of $y(t)$ for $t \in$ $\left[0, t_{\text {stop }}\right]$.
v . writes the output of the estimate for t and $y(t)$ to a file named output.txt.
9. (5) Write a short Fortran program which prints to the screen

Go Irish! Beat Seminoles!
Have the program also print to the screen an estimate of the final score.

