AME 20214
Homework 12
Due: Thursday, 10 December 2015, in class
Consider the problem of Section 19.3.2 for a forced, damped Duffing equation:

$$
\begin{aligned}
\frac{d y_{1}}{d t} & =y_{2}, \quad y_{1}(0)=1 \\
\frac{d y_{2}}{d t} & =-\beta y_{1}-\delta y_{2}-\alpha y_{1}^{3}+f \cos y_{3}, \quad y_{2}(0)=0 \\
\frac{d y_{3}}{d t} & =1, \quad y_{3}(0)=0
\end{aligned}
$$

with $\alpha=1, \beta=1, \delta=0.22$, and $f=0.3$. Reproduce the results of Fig. 19.6. Take $t \in[0,200]$. Obtain your approximate solution from two languages:

1. VBA, and
2. Mathematica.

For VBA, use use a first order forward Euler method and take $\Delta t=0.02$. For Mathematica, you can use either a first order Euler method with $\Delta t=0.02$, or the Mathematica intrinsic function NDSolve. Both are described in the course notes. Report for each of the two codes a single numerical value of the approximation of $y_{1}(t)$ at $t=200$ for each of the two languages. Provide source code for each language in your report. For VBA, you can provide screen shots of your plots and provide your code in the verbatim format.

Prepare your homework using the $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ text processor, include at least one equation, and adhere to a four page maximum. 50 points for æsthetics. 50 points for technical merit.

