AME 20214
Homework 2
Due: Thursday, 10 September 2015, in class
Consider the mathematics problem on the 20214 homepage,

$$
\frac{d y}{d t}=-y, \quad y(0)=1
$$

By inspection, the exact solution is $y(t)=e^{-t}$.
Now, using standard approximations of the derivative, $d y / d t \sim \Delta y / \Delta t$, we can write a discrete approximation of the differential equation as

$$
\frac{y_{n+1}-y_{n}}{\Delta t}=-y_{n}, \quad y_{0}=1
$$

Solving for y_{n+1}, we get

$$
y_{n+1}=y_{n}-\Delta t y_{n}, \quad y_{0}=1
$$

If this formula is repeated iteratively within a computer code, we get a discrete approximation for $y(t)$.

1. (10) Download the Fortran source code, identical to that on the 20214 primary homepage, http://www.nd.edu/~powers/ame.20214/euler.f90,
compile and execute it, so as to reproduce the results on the homepage. Plot $y(t)$ for $t \in[0,1]$ for the exact solution and the numerical approximation with $\Delta t=0.1$.
2. (70) Run the code for several different values of Δt and generate a log-log plot of the magnitude of the error in your prediction of y at $t=1$. That is, plot

$$
\left|y_{\text {exact }}(t=1)-y_{\text {num }}(t=1)\right| \quad \text { versus } \quad \Delta t
$$

For small values of Δt, you will probably wish to suppress the printing of intermediate values and only print the final values at $t=1$. See how small a value of Δt you can use before roundoff error corrupts the solution. Note, the exact value is

$$
y_{\text {exact }}(t=1)=e^{-1}=0.3678794411714423215955237701614608674458 \ldots
$$

3. (20) Repeat the previous exercise with double the precision and generate the equivalent plot. To adjust the precision from its default value is a tricky task, and several generalizations must be made to euler.f90. The many generalizations have already been made and are found in the modified file
http://www.nd.edu/~powers/ame.20214/euler2.f90
As written, the code euler2.f90 should give identical results as euler.f90. The precision in euler2.f90 can be doubled by simply changing the value of p from 4 to 8. For sufficiently small Δt, the error should be significantly lower than for the previous exercise. See how small a value of Δt you can effectively use before roundoff error corrupts the solution.

Adjusting the precision in Fortran can be a messy chore, fraught with machine-dependencies. The text of C\&S has an extended discussion of the kind specification, see pp. 67-84, whose difficulty reflects well the complexities of machine precision.

For this homework, there is a three page maximum. All plots must adhere to the standards described in the course notes. Though not required, you may wish to compare on your own the computation time for the equivalent MATLAB program with small Δt to convince yourself that compiled languages have real advantages for problems requiring high accuracy.

