NAME:
AME 20214
Introduction to Engineering Computing
Examination 1
Prof. J. M. Powers
15 October 2015

1. (5) Write $\mathrm{EA}_{\mathrm{E}} \mathrm{X}$ script which generates the following equations with the given format:

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

2. (10) Give the output of the following Fortran statements:
(a) print*, $1 / 2 * 2$
(b) print*, 1/2.*2.
(c) print*, 1./2.*2
(d) print*, 1./2./2.
(e) print*, 1._8/1
3. (5) The hexadecimal system is a base 16 system. It first sixteen numbers are

$$
0,1,2,3,4,5,6,7,8,9, a, b, c, d, e, f .
$$

Their base 10 equivalents are

$$
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
$$

Represent the base 10 number 64 in hexadecimal.
4. (10) Convert the following mathematical expression into Fortran code

$$
x=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} .
$$

5. (5) Write the UNIX commands for
(a) creating a directory named mydirectory,
(b) removing a directory named mydirectory.

TURN THE PAGE!

6. (20) Carl Friedrich Gauss (1777-1855) while in grade school was asked to add all of the integers between 1 and 100 (including 1 and 100). Write a Fortran code to achieve this end. You only need to write the code; however, if you are also able to report the numerical value (as Gauss famously and quickly did without the benefit of a computer) of the result, there will be a special award.
7. (10) Give the output of the following program
```
program test
integer :: i,j,k
do i=2,8,2
    do j=i,2
        do k = 1,j,2
            print*,i,j,k
            enddo
        enddo
        enddo
end program test
```

8. (30) Consider a matrix \mathbf{A} of dimension $N \times M$ and a vector \mathbf{x} of dimension M. All elements of \mathbf{A} and \mathbf{x} are to be real double precision numbers. Write a complete Fortran code that
(a) reads from the screen the variable array dimension N and M,
(b) reads from the screen each of the elements of \mathbf{x},
(c) reads from the screen each of the elements of \mathbf{A},
(d) builds a vector \mathbf{b} formed by the matrix multiplication $\mathbf{b}=\mathbf{A} \cdot \mathbf{x}$.
(e) prints each element of \mathbf{b} to the screen.

Use a do loop to compute $\mathbf{A} \cdot \mathbf{b}$. Do not use matmul.
9. (5) Write a short Fortran program which prints to the screen

```
Go Irish! Beat Trojans!
```

Have the program also print to the screen an estimate of the final score.

