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PREFACE.

IN preparing this version in English of Fourier’s
celebrated treatise on Heat, the translator has followed
faithfully the French original. He has, however, ap-
pended brief foot-notes, in which will be found references
to other writings of Fourier and modern authors on
the subject : these are distinguished by the initials A. F.
The notes marked R. L. E. are taken from pencil me-
moranda on the margin of a copy of the work that
formerly belonged to the late Robert Leslie Ellis,
Fellow of Trinity College, and is now in the possession
of St John's College. It was the translator’s hope to
have been able to prefix to this treatise a Memoir
of Fourier'’s life with some account of his writings;
unforeseen circumstances have however prevented its

completion in time to appear with the present work.

|5



ART.
1.

TABLE

OF

CONTENTS OF THE WORK!

PAGE
PRELIMINARY DISCOURSE . . . . . R . 1
CHAPTER 1.
Introduction.
BECTION I.
STATEMENT OF THE OBJECT OF THE WORK,
Obfect of the theoretical researches . . 1

2—10. Different examples, ring, cube, sphere, mﬁmte pnsm the vam.blo

11,

12.

temperature at any point whatever is a function of the coordinates

and of the time. The quantity of heat, which during unit of time
crosses & given surface in the interior of the solid, is also a fanction

of the time elapsed, and of quantities which determine the form and
position of the surface. The object of the theory is to discover these
functions . 156
The three specific elements wlnch mnst be observed, are the capactty, the
conducibility proper or permeability, and the external conducibility or

penetrability. The coefficients which express them may be regarded at

first ag constant numbers, independent of the temperatures . . . 19
First statement of the problem of the terrestrial temperatures . 20

13—15. Conditions necessary to a.pphoatmns of the theory Object of the

expenments . . 21

16—21. The rays of heat whxoh empe trom the same pomt of 8 surfaco

have not the same intensity. The intensity of each ray is proportional

! Each paragraph of the Table indicates the matter treated of in the articles

indicated at the left of that paragraph. The first of these articles begins at

the

page marked on the right.



vi TABLE OF CONTENTS.

ART.
to the cosine of the angle which its direotion makes with the normal to
the surface. Divers remarks, and considerations on the object and extent
of thermological problems, and on the relations of general snalysm with
the study of nature . . . .

SECTION II.

GENERAL NOTIONS AND PRELIMINARY DEFIRITIONS.

22—24. Permanent temperature, thermometer. The temperature denoted
by O is that of melting ice. The temperature of water boiling in &

given vessel under & given pressure is denoted by 1 . .. .
25. The unit which serves to measure quantities of heat, is the heat
required to liquify a certain mass of ice . . . . . . .

26. Bpecific capacity for heat . .

27—29. Temperatures measured by mcrements oi volume or by the sddx-
tional quantities of heat. Those cases only are here considered, in which
the increments of volume are proportional to the increments of the
quantity of heat. This condition does not in general exist in liquids ;
it is sensibly true for solid bodies whose temperatures differ very much
from those which cause the change of state . . . . .

80. Notion of external conducibility . .

81. We may at first regard the quantity of heat lost as proportxonal to the
temperature. This proposition is not sensibly true except for certain
limits of temperature . . . . .

32—86. The heat lost into the medium consmts of seveml parts, The effeot
is compound and variable. Luminous heat . . . . . .

36. Measure of the external conducibility . . . .
37. Notion of the conducibility proper. This property slno may be observed
in liquids . . .

38, 89. KEquilibrium of temperatures The eﬂ‘ect is independent o! oontact .

40—49, First notions of radiant heat, and of the equilibrium which is
established in spaces void of air; of the cause of the reflection of rays
of heat, or of their retention in bodies; of the mode of communication
between the internal molecules; of the law which regulates the inten.
sity of the rays emitted. The law is not disturbed by the reflection of
heat . . . . .

50, 61. First notxon of the eﬁects oi reﬁeoted hen.t . .

52—56. Remarks on the statical or dynamical properties of hest It is the
prinociple of elasticity. The elastic force of aeriform fluids exactly indi-
cgles their temperatures . . . . . . . B .

SECTION III.
PrinorpLE oF THE CoMMUNICATION OoF HeAT.

57—59. When two molecules of the same solid are extremely near and at
unequal temperatures, the most heated molecule communicates to that
which is less heated a quantity of heat exaotly expressed by the product
of the duration of the instant, of the extremely small difference of the
temperatures, and of a certain function of the distance of the molecules .

PAGE

26

27
ib.

28

b.

29

ib.
81

ib.
82

ib.
87

39

41



TABLE OF CONTENTS.

vii

ART. PAGE

60. When a heated body is placed in an aeriform medium at a lower tem-
perature, it loses at each instant a quantity of heat which may be
regarded in the first researches as proportional to the excess of the
temperature of the surface over the temperature of the medium . .

61—864. The propositions enunciated in the two preceding articles are founded
on divers observations. The primary object of the theory is to discover
all the exact consequences of these propositions. We can then measure
the variations of the coefficients, by comparing the results of caloulation
with very exact experiments . . . . . .

SECTION IV.
Or e UntrorM AND LiNear MovEMENT oF HEAT.

65. The permanent temperatures of an infinite solid included between two
parallel planes maintained at fixed temperatures, are expressed by the
equation (v-a)e=(b-a)z; a and b are the temperatures of the two
extreme planes, e their distance, and v the tempemture of the eectxon,
whose distance from the lower planeis z . . . .

66, 67. Notion and measure of the flow of heat . . . . . .

68, 69. Measure of the conducibility proper . .

70. Remarks on the case in which the direct action of the hea.t extends to
a semsible distance . .

71. State of the same solid when the upper plane is exposed to the air .

72. General conditions of the linear movement of heat . .

SECTION V.

Law or THE PERMANENT TEMPERATURES IN A PmisM oF Smann THICENESS.

73—80. Equation of the linear movement of heat in the prism. Different
‘consequences of this equation . . . .

SECTION VL

Tue HeatiNe or CLoSED SPACES.

81—84. The final state of the solid boundary which encloses the space
heated by a surface b, maintained at the temperature a, is expressed by
the following equation :

P
m—n:(a—n) m.

The value of P is — (ﬁ ‘;:, [I) m is the temperature of the internal

air, n the temperature of the external air, g, h, H measure respectively
the penetrability of the heated surface ¢, that of the inner surface of the
boundary ¢, and that of the external surface s; e is the thickness of the
boundary, and K its conducibility proper . . . . . .
85, 86. Remarkable consequences of the preceding eqnntmn . .
87—91. Measure of the quantity of heat requisite to retain at a constsnt
temperature a body whose surface is protected from the external air by

43

ib.

45
48
61

63
ib,
65

56

62
65



viii TABLE OF CONTENTS.

ART. PAGE
several successive envelopes. Remarkable effects of the separation of the
surfaces. These results applicable to many different problems . . 67

SECTION VII.

Or tHE UrirorM MovEMENT or HeAT IN THREE DIMENSIONS.

92, 93. The permanent temperatures of a solid enclosed between six rec-
tangular planes are expressed by the equation

v=A+az+by+ecs.

z, ¥, £ are the coordinates of any point, whose temperature isv; 4, a,

b, ¢ are constant numbers. If the extreme planes are maintained by any

causes at fixed temperatures which satisfy the preceding equation, the

final system of all the internal tempera.turen will be expressed by the

same equation . . . 73
94, 95. Meaenreoftheﬂowotheatmthmpnsm . . . . . . 76

SECTION VIII.
Mgasune or THE MoveMENT or Hxar AT A GivEx Poixr or A Given Souip.

96—99. The variable system of temperatures of a solid is supposed to be
expressed by the equation v=F (z, y, ¢, t), where v denotes the variable
temperature which would be observed after the time ¢ had elapsed, at the
point whose coordinates are z, y, z. Formation of the analytical expres-
sion of the flow of heat in a given direction within the solid . 78

100. Application of the preceding theorem to the case in which the functxon
Figse#ooszcosycoss . e e ... . 82

CHAPTER IIL
Equation of the Movement of Heat.

SECTION I
EquatioN oF THE Variep MovemeNT oF HEar IN A Rine.

101—105. The variable movement of heat in a ring is expressed by the
equation
dv_ K d%w M o
dt CDdx* " CD8™*
The aro « measures the distance of a section from the origin O; v is
the temperature which that section acquires after the lapse of the time ¢;
K, C, D, h are the specific coefficients; S is the area of the section, by
the revolution of which the ring is generated 1 is the perlmeter of
the section ., . . . . . . . 85



TABLE OF CONTENTS.

AET.
106—110. The temperatures at points situated at equal distances are
represented by the terms of a recurring series. Observation of the
temperatures v, v,, vg of three consecutive points gives the measure
otthemtio% we have 2 o —q wl-quw+1=0, md%:f(:?g;:) .
The distance between two consecutive points is A, and log w is the decimal
logarithm of one of the two valuesof w . . . .

SECTION IL
EquaTioN oF THE VaniEp MovemenT or HEaT 1N A SovLmp SpHERE.
111—113. 2 denoting the radius of any shell, the movement of heat in the
sphere is expressed by the equation
b X (2,20 L
R . . .

g~ CD
114—117. Conditions relative to the state of the surface and to the initial
state of the solid . . . . . . . . . . .

SECTION III.
Equatioxn or THE VARIED MovEMENT oF HEAT IN A SoLip CYLINDER.

118—120. The temperatures of the solid are determined by three equations;
the first relates to the internal temperatures, the second expresses the
continuous state of the surface, the third expresses the initial state of
theeoid . . . . . . . . . < . . .

S8ECTION IV.

EquatioNs or THE VARIED MovEMENRT oF HEaT IN A Sorip Prisx
or INrFINITE LENGTH.

121—128. The system of fixed temperatures satisfies the equation

,
d’v+dv+d’v

B rapt =%

v is the temperature at a point whose coordinates are 2, e . .
124, 125. Equation relative to the state of the surface and to that of the

first section . . . . . . . . . . .

SECTION V.
Equarions oF THE VARiED MovEMENT oF HEAT IN A Sorwn Cusk,

126—181. The system of variable temperatures is determined by three
equations ; one expresses the internal state, the second relates to the
state of.the surfaoce, and the third expresses the initial state . .

F. H. b

ix.

PAGE

86

92

95

97

99

101



ART.

TABLE OF CONTENTS.

SECTION VI

Gexerir Equation oF THE ProracatioN or HEAT IN THE INTERIOR
oF SoLIps.

182—139. Elementary proof of properties of the uniform movement of heat

in a solid enclosed betwean six orthogonal planes, the constant tem-
peratures being expressed by the linear equation,

v=A-az-by-cz

The temperatures cannot change, since each point of the solid receives
as much heat as it gives off. The quantity of heat which during the
unit of time crosses a plane at right angles to the axis of ¢ is the same,
through whatever point of that axis the plane passes. The value of this
common flow is that which would exist, if the coefficients a and &
were nul . . . . . . . .

140, 141. Analytical expresslon of the flow in the mtenor oi any sohd The

equation of the temperatures being v=F(z, y, ¢, ¢) the function —Kw%

expresses the quantity of heat which during the instant dt crosses an
infinitely small area w perpendicular to the axis of z, at the point whose
coordinates are z, ¥, 2, and whose temperature is v after the time ¢
has elapsed . . . . . .

142—145. It is easy to derive from the foregoing theorem the geneml

equation of the movement of heat, namely

dv K [d%w d%  d%
a=c—'—b(d—£—.+d—y—’+a—;)...(A)- ° . .

SECTION VIL

GENERAL EqQUaTIOR RELATIVE TO THE SURPACE.

146—154. It is proved that the variable temperatures at points on the

surface of a body, which is oooling in air, satisfy the equation

dv dv du
md_z+".?§ qu =0; mdz+ndy+pdz=0,

being the differential equation of the surface which bounds the solid,
and ¢ being equal to (m¥+n?+4 p’)?. To discover this equation we
consider a molecule of the envelop which bounds the solid, and we express
the fact that the temperature of this element does not change by a finite
magnitude during an infinitely small instant. This condition holds and
continues to exist after that the regular action of the medium has been
exerted during a very small instant. Any form may be given to the
element of the envelop. The case in which the molecule is formed by
rectangular sections presents remarkable properties. In the most simple
case, which is that in which the base is parallel to the tangent plane,
the truth of the equation is evident . .

. . ) o . o

PAGE

104

109

112

1156



TABLE OF CONTENTS. X1

SBECTION VIII

APPLICATION OF THE Gxnr.m EquaTioNs.
ART, PAGE

155, 156. In applying the general equation (A) to the case of the cylinder
and of the sphere, we find the same equations as those of Section III.
and of Section IL of this chapter . . . . o .o 123

SECTION IX.
GENERAL REMARKS,

157—162. Fundamental econsiderations on the nature of the quantities
z, t, v, K, h, C, D, which enter into all the analytical expressions of the
Theory of Heat. Each of these quantities has an exponent of dimension
which relates to the length, or to the duration, or to the temperature.
These exponents are found by making the units of measure vary . . 126

S CHAPTER IIL
Propagation of Heat in an infinite rectangular solid.

SECTION 1.
. . ’ . SraTEMENT OF THE ProBLEM.

163—166. The constant temperatures of a rectangular plate included be-
tween two parallel infinite aides, maintained at the temperature 0, aro
expressed by the equatxon :;':_0 . . . . . . . 181

167—170. If we consider the state of the plate at a very great distance from
the transverse edge, the ratio of the temperatures of two points whose
coordinates are z,, y and =z,,y changes according as the value of y
increases; z, and z, preserving their respective values. The ratio has
a limit to which it approaches more and more, and when y is infinite,
it is expressed by the product of a function of « and of a function of y.
This remark suffices to disclose the general form of v, namely,

v-Z - “age” V%, 08 (2i - 1).y.

It is easy to ascertain how the movement of heat in the plate is
effected: . . . . . . . . . . . . . 134
b2



xii TABLE OF CONTENTS.

SECTION II

First EXAMPLE OF THE USE OF TRIGONOMETRIC SERIES IN THE

TrEORY oF HEAT.
ART,
171—178. Investigation of the coefficients in the equation

1=a 008z +b 008 8z + 6008 6z +d co8 Tz + etc.

From which we conclude

or Ezoou- 008 8x+ =008 6x~-008Tz+ eto. . . . .

SECTION III.
REMARKS ON THESE SERIES.

179—181. To find the value of the series which forms the second member,
the number m of terms is supposed to be limited, and the series becomes
a function of z and m. This function is developed according to powers of
the reciprocal of m, and m is made infinite . . R B .

182—184. The same process is applied to several other series .

185—188. In the- preceding development, which gives the value ot the
function of x and m, we determine rigorously the limits within which the
sum of all the terms is included, starting from a given term . . .

189. Very simple process for forming the series

(-n(—l)‘
- i1

;-—-' 003(2‘—1)3’ . ° v .

SECTION IV,
GENERAL BOLUTION,

190, 191. Analytical expression of the movement of heat in & rectnngu!ar
slab; it is decomposed into simple movements . .

192—195. Measure of the quantity of heat which orosses an edge or side
parallel or perpendicular to the base. This expression of the flow suffices
to verify the solution .

196 -199. Consequences of this soluhon The rectangnlar slab must be
considered as forming part of an infinite plane; the solution expresses
the permanent temperatures at all points of this plane . .

200—204. It is proved that the problem proposed admits of no othet solu-
tion different from that which we have just stated . . o o .

PAGE

187

145
147

150

168

154

166

159

161



TABLE OF CONTENTS. x1i}

SECTION V.

Fivire ExprEssioN or THE REsunr or THE SOLUTION.
ART, PAGE

205, 206. The temperature at a point of the rectangular slab whose co-
ordinates are z and y, is expressed thus

§v—m . tang ‘2‘00:_!/’) . ° ° ° . ° . 166
SECTION VI.
DEVELOPMENT OF AN ARBITRARY FuncTION IN TRiGoNOMETRIC SBERIES.
207—214. The development obtained by determining the values of the un-
known coefficients in the following equations infinite in number :
A=a+2b+8c+4d+&o.,
B=a+2%+ 3%+ 4%d + &o.,
O=a+2%+8%+4°d + &o.,
D=a+2"b+8%c+47d + &o.,
&o., &o.
To solve these equations, we first suppose the number of equations to be
m, and that the number of unknowns a, b, ¢, d, &o. is m only, omitting
all the subsequent terms. The unknowns are determined for a certain
value of the number m, and the limits to which the values of the coeffi-
cients continually approach are sought; these limits are the quantities
which it is required to determine, Expression of the values of a, b, ¢, d,
&c. when m is infinite . .+ e« e 168
215,216, The function ¢(z) developed under the farm ’

@ sin 2+ b sin 2x + ¢ 8in 3z +d sin 4z + &o.,

which is first supposed to contain only odd powersof z . . . 179
217, 218. Different expression of the same development. Application to the
function e*-¢* , . . . . 181

219—221. Any function whatever ¢ (z) may be developed nndet the form
4, 8in z+ ag 6in2z+ a, 8in 8z + ... + ¢4 sin iz + &o.

The value of the general coefficient a; is g /;' dz ¢ (z) sin ¢z, Whenoe we

derive the very simple theorem

Fota=sinz [ da¢(a)sma+sm2:r,f da¢(a)sm2¢+sm3c/ da ¢ (a) sinBa +&o.,

L 3 o o T .
whence 3 ¢(z)_2‘_lmntz/; dagla)sinia . . . . 184
222, 223. Application of the theorem: from it is derived the remarkable
_ series,
r 2 4 [] 8
-;eosz_ﬁsm:u-a sm4x+5 7sm7x+7—95m92+&o. . . 188



X1v TABLE OF CONTENTS.

ART, PAGE
224, 225. Becond theorem on the development of functioms in trigono-
metrical series:

x e . .
§¢(z)-2ﬂoostzj; da 008 tay (a).
Applications : from it we derive the remarkable series

P S 1, cog2z cosdx oos 6z
4qrsm~.=_.§ 1.8 "85 5.7 -&o. . . . 190
226—230, The preceding theorems are applicable to discontinuous funetions,
and solve the problems which are based upon the analysis of Daniel
Bernoulli in the problem of vibrating cords, The value of the series,

gin 2 versin 3a + 1

sinzversina-i-l 3

3 gin 8z versin 8a+ &o.,

is g, if we attribute to z a quantity greater than 0 and less than a; and

the value of the series is 0, if x is any quantity included between a and .
Application to other remarkable examples; curved lines or surfaces which
coincide in a part of their course, and differ in all the other parts . . 193

231—238. Any function whatever, F(z), may be developed in the form

@, 008 -+ ay ¢08 2+ ay cos Bz + &o.,
b, sin z + b, sin 23+ b, sin 3z + &o.

Each of the coefficients is a definite integral. We have in general

+
ard= [ *"dz (), w= [ " dzP (@) oo iz,

Flz)=4+

e N T A (Ot
We thus form the general theorem, which is one of the chief elements of
our analysis :

9xFl)= z (oom [ daP(e) co8 ta+sinia [ daF(a.)smu)

or 2wP@)=2 f" daF(a)oos (ig—ia) . . . . . . 199

284, The values of F(z) which ocorrespond to values of z included
between — » and + = must be regarded as entirely arbitrary. We may
also choose any limits whatever for = . . . . . . . 204
285, Divers remarks on the use of developments in trigonometric series . 206

c e SECTION VI

APPLICATION TO THE ACTUAL PROBLEM,

236, 237. Expression of the permanent temperature in the infinite rectangular
slab, the state of the transverse edge bemg represented by an ubxtrury
function . . 209



TABLE OF CONTENTS.

CHAPTER 1IV.
Of the linear and varied Movement of Heat in a ring.

SECTION 1.

GEXERAL SOLUTION OF THE PROBLEM.

ART. -

238—241. The variable movement which we are considering is composed of
simple movements. In each of these movements, the temperatures pre-
serve their primitive ratios, and decrease with the time, as the ordinates v
of a line whose equation is v=4,e¢™. Formation of the geneml ex-

Presslon . . . . .
242 244. Application to some remarkable examples. leferent conseqnences
of the solution . . e e

245, 246, The system of tempemturea converges mpxdly towards a regula.r
and final state, expressed by the first part of the integral. The sum of
the temperatures of two points diametrically opposed is then the same,
whatever be the position of the diameter. It is equal to the mean tem-
perature. In each simple movement, the circumference is divided by
equidistant nodes. All these partial movements successively disappear,
except the first; and in general the heat distributed throughout the solid
assumes 8 regular disposition, independent of the initial state o e

SECTION I,
Or THR CoMMUNICATION oF HEAT BETWEEN SEPARATE MASSES.

247—250. Of the communication of heat between two masses, Expression
of the variable temperatures. Remark on the value of the coefficient
which measures the conducibility . . . . . . . .

251—255. Of the communication of heat between m separate masses, ar-
ranged in a straight line. Expression of the variable temperature of each
mass; it is given as a function of the time elapsed, of the coefficient
which measures the oonduoibility, and of all the initial temperatures
regarded as arbitrary . . . . . . o

256, 257. Remarkable oonsequenoes of this solution . . .

258, Application to the case in which the number of masses is inﬁmto. .

259—266. Of the communication of heat between n separate masses arranged
circularly. Differential equations suitable to the problem; integration of
these equations. The variable temperature of each of the masses is ex-
pressed as a function of the coefficient which measures the conducibility,
of the time which has elapsed since the instant when the communication
began, and of all the initial temperatures, which are arbitrary; but in
order tq determine these functions completely, it is necessary to effect
the elimination of the coefficients . . . . .

267—271, Elimination of the coefficients in the eqnatlons which contun
these unknown quantities and the given initial temperatures . . .

xV

PAGE

213

218

221

2256

228
236
237

238

247



xvi TABLE OF CONTENTS.

ABT.

272, 278. Formation of the general solution : analytical expression of the
result . . . . . .

274—276. Application md oonseqnenoee of thxs solutlon .« e

277, 278. Examination of the case in which the number n is supposed mﬁmte.
‘We obtain the solution relative to a solid ring, set forth in Article 241,
and the theorem of Article 234. We thus ascertain the origin of the
analysis which we have employed to solve the equa.txon relatmg to con-
tinuous bodies . . . . .

279. Analytical expression of the two precedmg resnlts . .

280—282. It is proved that the problem of the movement of heat in a nng

admits no other solution. The integral of the equation :—‘= kg is

evidently the most general which can be formed . . . . .

CHAPTER V.
Of the Propagation of Heat in a solid sphere.

SECTION 1L
GENERAL SOLUTIOR.

283——2.89. 'The ratio of the variable temperatures of two points in the solid
is in the first place oonsidered to approach continually a definite limit.
This remark leads to the equation v=4 —— $in nz e—Kn»*, which expresses
the simple movement of heat in the aphere. The number n has an
infinity of values given by the definite equation -ﬁ%{3= 1-AX. The

radius of the sphere is denoted by X, and the radius of any concentrie
sphere, whose temperature is v after the lapse of the time ¢, by z; A
and K are the specific coefficients; A is any constant. Constructions
adapted to disclose the nature of the definite equation, the limits and

values of its roots . . .
290—292. Formatxon of the general solutxon ﬁnal sta.te of the sohd . .
293. Apphoatlon to the case in which the sphere has been heated by & pro-

longed immersion . . . . . . . o .

SECTION IL

DIFFERENT REMARKS ON THIS SOLUTION.

294—296. Results relative to spheres of small radius, and to the final tem-
peratures of any sphere . . .
298—3800. Variable tempexature of @ thermometer plnnged mto a hqmd
which is cooling freely. Application of the results to the comparison and
use of thermometers . . . . . . . . . . .

PAGE

258
255

259
262

268

268
274

277

279

282



TABLE OF CONTENTS. xvii

ART. PAGR
301. Expression of the mean tempemture of the sphere as a function of the

time elapsed . . . . . . 286
302—304. Application to spheroa of very great radms, md to thono in which

the radius is very small . . . 287
305. Remark on the nature of the deﬁmte ethon whxeh nges all the values

of n » L] . [] . . . . . ° (] [] ® . 289

CHAPTER VI

Of the Movement of Heat in a solid cylinder.

808, 307. We remark in the first place that the ratio of the variable tem-
peratures of two points of the solid approaches oontinually a definite
limit, and by this we ascertain the expression of the simple movement.

The function of z which is one of the factors of this expression is given
by a differential equation of the second order. A number g enters into
this function, and must satisfy a definite equation . . . 291

808, 309. Analysis of this equation, By means of the principal theorems o!
algebra, it is proved that all the roots of the equation are real . . . 204

810. The function u of the variable z is expressed by

1 r* .
u=;j; dr 008 (zafg sinr);

and the definite equation is hu+ %:o, giving to z its complete value X. 296
811, 812, The development of the function ¢(z) being represented by

2 23
¢+bz+0§+d2—'3+&0..

the value of the series

cff et gts
Stgstmntamgpt®s

is 1 f' dug (¢t sin u).
TJo

Remark on this use of definite integrals . . . 298
313, Expression of the function u of the variable z as a oonhnued fraetxon . 800
314, Formation of the general solution . . 301
315—318. Statement of the analysis which determmes the vn.lnea of the 6o-

efficients . o e . . . . . . . . . . 803
319. General solution . e e e . . . . . . . 808

820. Consequences of the solution . . . . « e e e . 809



2viii TABLE OF CONTENTS.

CHAPTER VIIL
Propagation of Heat in a rectangular prism.

ART. . . . . PAGE

321—328. Expression of the simple movement determined by the general
properties of hegt, and by the form of the eolid. JInto fhis gxprepsion
enters an arc ¢ which satisfies a transcendental equation, all of whose

roots are real . . . . . . 811
824. All the unknown ooemcxents are determmed by deﬂmte mtegm!s . 813
325, General solution of the problem . . . . . 814
326, 327. The problem proposed admits no other solutzon . . . . 815
828, 829. Temperatures at points on the axis of the prism . . . 817
830. Application to the case in which the thickness of the prism is very

small . . . . . 818
331. The solution shews how the umfonn movement of heat is estabhshed

in the interior of the solid . . . . . . 819

832, Application to prisms, the dimensions of whose bases are latge . . 822

CHAPTER VIIL

Of the Movement of Heat in a solid cube.

338, 834. Expression of the simple movement. Into it enters an arec e
which must satisfy a trigonometric equation all of whose roots are real . 828

836, 336. Formation of the general solution . . . . . . . 824
387. The problem can admit no other solution . . . . . . 827
838, Consequence of the solution . . . e . . .. ib
339. Expression of the mean temperature . . . 828

840, Comparison of the final movement of heat in t.he oube thh the
movement which takes place in the sphere . .. . . .. 829
841, Application to the simple case considered in Art. 100 . . . . 8381

CHAPTER IX.
Of the Diffusion of Heat.

SBECTION 1.
.Or TEE FREE MovEMENT oF HEAT IN AN INFINITE LINE.

8423847, We consider the linear movement of heat in an infinite line, a
part of which has been heated; the initial state is represented by
v=F (z). The iollowmg theorem is proved :

—F(x) /dqcosq::f daF(u)cosqa



TABLE OF CONTENTS.

ART.
The function F(z) satisfles the condition F (z)=F(-z). Expression of
the variable temperatures . . . .
848. Application to. the .case.in which all the pomts of the put hea.bed
have received the same initial temperature. The integral

f gsinqcos«pa is g,
o ¢

if we give to z a value included between 1 and -1,
The definite integral has a nul value, if & is not included between
land -1 . . . . . .
849. Application to the case in wlneh the hen.tmg glven resnlta from the
final state which the action of a source of heat determines . .
850. Discontinuous values of the function expressed by the integral

© dg
o 1+¢
351—853. We consider the linea.r movement of heat in a line whose initial
temperatures are represented by v=s(z) at the distance z to the right
of the origin, and by v=~ f (z) at the distance z to the left of the origin,
Expression of the variable temperature at any point. The solution
derived from the analysis which expresses the movement of heat in an
infinite line . . .
354. Expression of the va.nsble tempemtnms when the 1mtml state of the
part heated is expressed by an entirely arbitrary function o e
355—358. The developments of functions in sines or cosines of multiple ares
are transformed into definite integrals . . . . . . .
359. The following theorem is proved :

2r0= [ dgsings [ das @) singe
The funetion f (x) satisfies the condition:

f(-)y=~f(®» . . . . .

860—362. Use of the preceding results. Proof of the theorem expressed
by the general equation :

v ()= [ da o [ dgcon gz-gu).

60BgZ . . . . . .

This equation is evidently included in equation (IT) stated in Art. 234.

(Bee Art. 897) . &« ¢« & e e e e e . .
863. The foregoing solution shews also the variable movement of hea.t in an
infinite line, one point of which is submitted to a constant temperature .
864. The same problem may also be solved by means of another form of the

integral. Formation of this integral . e o e
366, 366. Application of the solution to an infinite pnsm, whose untml
temperatures are nul. Remarkable consequences . .

867—369. The same integral applies to the problem of the dxﬁuswn of heat.
The solution which we derive from it agrees with that which has been
stated in Articles 347, 348 . . N . . . .

PAGE

838

338

839

ib.

843

846

348

ib.

852

854

356

362



XX TABLE OF CONTENTS.

ART. PAGR
870, 871. Remarks on different forms of the integral of the equation

du _d%
d’T—E’ L] . ° ° . ° 365

SECTION II.
Or THE FREE MovEMENT OoF HEAT IN Ax INFINITE SoLID.
872—376. The expression for the variable movement of heat in an infinite
solid mass, according to three dimensions, is derived immediately from
that of the linear movement. The integral of the equation
C v dw  dw dw
- artapt o
solves the proposed problem. It cannot have a more extended integral ;
it is derived also from the particular value
©v=¢"" 008 nz,

or from this:
sl
'}=—J—‘
. . . dyv d% . .
which both satisfy the eqnahqn i R The generality of the in-

tegrals obtained is founded upon the following proposition, which may be

regarded as. self-evident. Two functions of the variables z, y, s, ¢ are

negessarily identical, if they satisfy the differential equation

dv_dw d  d%
&~ awmtaptan;

and if at the same time they have the same value for a certain value

oft . . . 868
877—3882. The heat oonta.med in spart of an mﬁmte pnsm, all the ocher

points of which have nul initial temperature, begins to be distributed

throughout the whole mass; and after a certain interval of time, the

state of any part of the solid depends not upen the distributien of the

initial heat, but simply upon its quantity. The last result is not due

to the increase of the distance included between any point of the mass

and the part which has been heated; it is entirely due to the increase

of the time elapsed. In all problems submitted to analysis, the expo-

nents are absolute numbers, and not quantities. We ought not to omit

the parts of these exponents which are incomparably smaller than the

others, but only those whose absolute values are extremely small , . 876
383—385, The same remarks apply to the distribution of heat in an infinite

solid . . ° . . . . . . . . . e . 383

SECTION IIL
Tae Hicaest TEMPERATURES IN AN INFINITE SorLip.
386, 337. The heat contained in part of the prism distributes itself through.
out the whole mass. The temperature at a distant point rises pro-
gressively, arrives at its greatest value, and then decrcases. The time



TABLE OF CONTENTS.

ART.
after which this maximum occurs, is a function of the distance z.
Expression of this function for a prism whose heated points have re-

ceived the same initial temperature . . . .
388—391. Bolution of a problem ana.logous to the foregomg D:ﬂerent
results of the solution . . .

892—895. The movement of heat in an mﬂmte sohd is oonmdered md
the highest temperatures, at parts very distant from the part originally
beated, are determined . . . . . . . . B .

SECTION IV.

CoMPARISON OF THE INTEGRALS.

896. Birst integral (a) of the equation (;—': = g (a). This integral expresses
the movement of heat in a ring . . . . . .

897. Second integral (8) of the same equahon (a) It expresses the linear
movement of heat in an infinite solid .

898, Two other forms (y) and (3) of the integral, whlch are denved hke the
preceding form, from the integral (a) . . B .

899, 400. First development of the value of v aooordmg to mcreasmg powers
of the time t. Becond development according to the powers of v. The
first must contain & single arbitrary functionof ¢t . ., .

401. Notation appropriate to the representation of these developments. The
analysis which is derived from it dispenses with effecting the develop-

ment in series . . . . . o ° ° . o .
403. Application to the eqnatlons
dv_dw  dw d% db

a¢ = dat
403. Application to the equations :

d diw dY div
E‘i +d—?+gm’+ 2;;:0....‘.(3)'

dv _ d ,div_ d

+Ey—,..;...(c), and

and ——adx’*bd—;"l'cd“;"f&c .(f) " . 0 .
404. Useof the theorem E of Article 861, to form the integral of equation (f)
of the preceding Article . . .

405. Use of the same theorem to fonn the mtegral of eqnahon (d) whxch
belongs to elastioplates . ., , o+ . . . .

406. Second form of the same integral . e e e e e e .

407. Lemmas which serve to effect these transformations

408. The theorem expressed by equation (£), Art. 361, applies to sny number
of variables . . . . .

409. Use of this proposition to form the integral of equation (c) of Art. 402 .

410. Application of the same theorem to the equation

d’v av  dWw
dx, dy1+ =0. . ° ° ) .

887

892

896
898

b,

899

407
409
412
418
416
416

418



xxii TABLE OF CONTENTS.

ART. PAGR
411. Integral of equation (¢) of vibrating elastio surfaces . . . . 419
412, Beocond form of the integral . . . . . . 421

418. Use of the same theorem to obtain the integrals by summmg the
series which represent them. Application to the equation

dv d%
at = dn’
Integrgl under finite form containing two arbitrary functionsof ¢ . . 422
414. The expressions change form when we use other limits of the definite

integrals . . . . 425
415, 416, Construction wlnch serves to prave the general eqmmon

f@=g ":'aaf(a) [ apoospz-pa)t®) . . b

417. Any limits a and b may be taken for the integral with respect to a.
These limits are those of the values of x which correspond to existing
values of the function f(x). Every other value of = gives a nul result
for f(z) . . . . . .. 429

418. The same remark applies to the general equatnon

f(z)——z e j:+ daf(c)oos (x a),

the seoond member of which represents & periodic funotion . . 482
419. The chief character of the theorem expressed by equation (B) eonsists
in this, that the sign f of the function is transferred to another unknown
a, and $hat the chief variable x is only under the symbol cosine . . 433
420. Use of these theorems in the analysis of imaginary quantities . . 435
421. Apphcatxon to the equation g :’: 0o . . . . . . 436
422. General expression of the fluxion of the order i,
. f(z)
— . . 437

. . . .

423. Construction which serves to prove the general equation. Consequences
relativg fo fhe extent of equations of this kind, to the values of f(2)
which correspond to the limits of z, to the infinite values of f(x) . . 438

424—427. The method which consists in determining by definite integrals
the unknown coefficients of the development of a function of z under

the form
0 (1y) + b (ug) + 0 (uy) + &0.,

is derived from the elements of algebraic analysis. Example relative to
the distribution of heat in a solid sphere. By examining from this
point of view the process which serves to determine the coefficients, we
solve easily problems which may arise on the employment of all the terms
of the second member, on the discontinuity of functions, on singular or
infinite values. ' The equations which are obtained by this method ex-
press either the variable state, or the initial state of masses of infinite
dimensfons. * Thé form of the integrals which belong to the theory of



TABLE OF CONTENTS. xxiil

ART.
heat, represents at the same time the composition of simple movements,
and that of an infinity of partial effects, due to the action of all points of
the solid . o e . . . .

428. General remarks on the method whxch has served to solve the analytxca.l
problems of the theory of heat . . . .

429, General remarks on the principles from whloh we have denved the dx!-
ferential equations of the movement of heat . . e e . .

480. Terminology relative to the general properties of heat . . . .

431. Notations proposed .

433, 438, General remarks on the mtnre of the ooeﬁcxents whleh enter into
the differential equations of the movement of heat . . . , .

ERRATA.

Page 9, line 28, for III. read IV.

Pages 54, 65, for k read K.

Page 189, line 2, The equation should be denoted (A).
Page 205, last line but one, for x read X.

Pago 299, line 18, for 3¢ read oo

Page 299, line 16, for of read in.

” s last line, read

. , 8
j:duﬂtsxnu):mﬂs,‘p +L—g
Page 800, line 8, for 4,, 4,, 4,, read xdy, vd,, nd,.
Page 407, line 12, for d¢ read dp.

Page 432, line 18, read (z-a).

Sy¢” + &o.

PAGE

441
450
456
462
463

464



Digitized by GOOSIQ



PRELIMINARY DISCOURSE.

PRIMARY causes are unknown to us; but are subject to simple
and constant laws, which may be discovered by observation, the
study of them being the object of natural philosophy.

Heat, like gravity, penetrates every substance of the universe,
its rays occupy all parts of space. The object of our work is to
set forth the mathematical laws which this element obeys. The
theory of heat will hereafter form one of the most important
branches of general physics.

The knowledge of rational mechanics, which the most ancient
nations had been able to acquire, has not come down to us, and
the history of this science, if we except the first theorems in
harmony, is not traced up beyond the discoveries of Archimedes.
This great geometer explained the mathematical principles of
the equilibrium of solids and fluids. About eighteen centuries
elapsed before Galileo, the originator of dynamical theories, dis-
covered the laws of motion of heavy bodies. Within this new
science Newton comprised the whole system of the universe. The
successors of these philosophers have extended these theories, and
given them an admirable perfection: they have taught us that
the most diverse phenomena are subject to a small number of
fundamental laws which are reproduced in all the acts of nature,
It is recognised that the same principles regulate all the move-
ments of the stars, their form, the inequalities of their courses,
the equilibrinm and the oscillations of the seas, the harmonic
vibrations of air and sonorous bodies, the transmission of light,
capillary actions, the undulations of fluids, in fine the most com-
plex effects of all the natural forces, and thus has the thought

F. H. 1



2 THEORY OF HEAT.

of Newton been confirmed: quod tam paucis tam multa prestet
geometria gloriatur’,

But whatever may be the range of mechanical theories, they
do not apply to the effects of heat. These' make up a special
order of phenomena, which cannot be explained by the principles

"of motion and equilibrium. We have for a long time been in

possession of ingenious instruments adapted to measure many
of these effects; valuable observations have been collected; but
in this manner partial results only have become known, and
not the mathematical demonstration of the laws which include
them all.

I have deduced these laws from prolonged study and at-
tentive comparison of the facts known up to this time: all these
facts I have observed afresh in the course of several years with
the most exact instruments that have hitherto been used.

To found the theory, it was in the first place necessary to
distinguish and define with precision the elementary properties
which determine the action of heat. I then perceived that all the
phenomena which depend on this action resolve themselves into
a very small number of general and simple facts; whereby every
physical problem of this kind is brought back to an investiga-
tion of mathematical analysis. From these gencral facts I have
concluded that to determine numerically the most varied move-
ments of heat, it is sufficient to submit each substance to three
fundamental observations. Different bodies in fact do not possess
in the same degree the power to contain heat, to receive or transmit
it across their surfaces, nor to conduct it through the interior of
their masses. These are the three specific qualities which our
theory clearly distinguishes and shews how to measure.

It is easy to judge how much these researches concern the
physical sciences and civil economy, and what may be their
influence on the progress of the arts which require the employ-
ment and distribution of heat. They have also a necessary con-
nection with the system of the world, and their relations become
known when we consider the grand phenomena which take place
near the surface of the terrestrial globe.

1 Philosophie naturalis principia mathematica. Auctoris prefatio ad lectorem.
Ao gloriatur geometria quod tam paucis principiis aliunde petitis tam multa
preestet. [A. F.]
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In fact, the radiation of the sun in which this planet is
incessantly plunged, penetrates the air, the earth, and the waters;
its elements are divided, change in direction every way, and,
penetrating the mass of the globe, would raise its mean tem-
perature more and more, if the heat. acquired were not exactly
balanced by that which escapes in rays from all points of the
surface and expands through the sky.

Different climates, unequally exposed to the action of solar
heat, have, after an immense time, acquired the temperatures
proper to their situation. This effect is modified by several ac-
cessory causes, such as elevation, the form of the ground, the
neighbourhood and extent of continents and seas, the state of the
surface, the direction of the winds.

The succession of day and night, the alternations of the
seasons occasion in the solid earth periodic variations, which are
repeated every day or every year: but these changes become
less and less sensible as the point at which they are measured
recedes from the surface. No diurnal variation can be detected
at the depth of about three metres [ten feet]; and the annual
variations cease to be appreciable at a depth much less than
sixty metres. The temperature at great depths is then sensibly
fixed at a given place: but it is not the same at all points of the
same meridian ; in general it rises as the equator is approached.

The heat which the sun has communicated to the terrestrial
globe, and which has produced the diversity of climates, is now
subject to a movement which bhas become uniform. It advances
within the interior of the mass which it penetrates throughout,
and at the same time recedes from the plane of the equator, and
proceeds to lose itself across the polar regions.

In the higher regions of the atmosphere the air is very rare
and transparent, and retains but a minute part of the heat of
the solar rays: this is the cause of the excessive cold of elevated
places. The lower layers, denser and more heated by the land
and water, expand and rise up: they are cooled by the very
fact of expansion. The great movements of the air, such as
the trade winds which blow between the tropics, are not de-
termined by the attractive forces of the moon and sun. The .
action of these celestial hodies produces scarcely perceptible
oscillations in a fluid so rare and at so great a distance. It

1-2
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is the changes of temperature which periodically displace every
part of the atmosphere.

The waters of the ocean are differently exposed at their
surface to the rays of the sun, and the bottom of the basin
which contains them is heated very unequally from the poles
to the equator. These two causes, ever present, and combined
with gravity and the centrifugal force, keep up vast movements
in the interor of the seas. They displace and mingle all the
parts, and produce those general and regular currents. which
navigators have noticed. .

Radiant heat which escapes from the surface of all bodies,
and traverses elastic media, or spaces void of air, has special
laws, and occurs with widely varied phenomena. The physical
explanation of many of these facts is already known ; the mathe-
matical theory which I have formed gives an exact measure of
them. It consists, in a manner, in a new catoptrics which
has its own theorems, and serves to determine by analysis all
the effects of heat direct or reflected.

The enumeration of the chief objects of the theory sufficiently
shews the nature of the questions which I have proposed to
myself. What are the elementary properties which it is requisite
to observe in each substance, and what are the experiments
most suitable to determine them exactly? If the distribution
of heat in solid matter is regulated by constant laws, what is
the mathematical expression of those laws, and by what analysis
may we derive from this expression the complete solution of
the principal problems? Why do terrestrial témperatures cease
to be variable at a depth so small with respect to the radius
of the earth? Every inequality in the movement of this planet
necessarily occasioning an oscillation of the solar heat beneath
the surface, what relation is there between the duration of its
period, and the depth at which the temperatures become con-
stant ?

What time must have elapsed before the climates could acquire
the different temperatures which they now maintain; and what
are the different causes which can now vary their mean heat?
Why do not the annual changes alone in the distance of the
sun from the earth, produce at the surface of the earth very
considerable changes in the temperatures ?
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From what characteristic can we ascertain that the earth
has not euntirely lost its original heat; and what are the exact
laws of the loss? :

If, as several observations indicate, this fundamental heat
is not wholly dissipated, it must be immense at great depths,
and nevertheless it has no sensible influence at the present time
on the mean temperature of the climates. The effects which
are observed in them are due to the action of the solar rays.
But independently of these two sources of heat, the one funda-
mental and primitive, proper to the terrestrial globe, the other due
to the presence of the sun, is there not a more universal cause,
which determines the temperature of the heavens, in that part
of space which the solar system now occupies? Since the ob-
served facts necessitate this cause, what are the consequences
of an exact theory in this entirely new question; how shall we
be able to determine that constant value of the temperature of
- space, and deduce from it the temperature which belongs to each
planet ?

To these questions must be added others which depend on
the properties of radiant heat. The physical cause of the re-
flection of cold, that is to say the reflection of a lesser degree
of heat, is very distinctly known; but what is the mathematical
expression of this effect?

Ou what general principles do the atmosphenc temperatures
depend, whether the thermometer which measures them receives
the solar rays directly, on a surface metallic or unpolished,
or whether this instrument remains exposed, during the night,
under a sky free from clouds, to contact with the air, to radiation
from terrestrial bodies, and to that from the most distant and
coldest parts of the atmosphere ?

The intensity of the rays which escape from a point on the
surface of any heated body varying with their inclination ac-
cording to a law which experiments have indicated, is there not a
necessary mathematical relation between this law and the general
fact of the equilibrium of heat; and what is the physical cause of
this inequality in intensity ?

Lastly, when heat penetrates fluid masses, and determines in
them internal movements by continual changes of the temperature
and density of each molecule, can we still express, by differential



6 THEORY OF HEAT.

equations, the laws of such a compound effect ; and what is the
resulting change in the general equations of hydrodynamics ?

Such are the chief problems which I have solved, and which
have never yet been submitted to calculation. If we consider
further the manifold relations of this mathematical theory to
civil uses and the technical arts, we shall recognize completely
the extent of its applications. It is evident that it includes an
entire series of distinct phenomena, and that the study of it
cannot be omitted without losing a notable part of the science of
nature.

The principles of the theory are derived, as are those of

" rational mechanics, from a very small number of primary facts,
the causes of which are not considered by geometers, but which
they admit as the results of common observations confirmed by all
experiment.

The differential equations of the propagation of heat express
the most general conditions, and reduce the physical questions to
problems of pure analysis, and this is the proper object of theory.
They are not less rigorously established than the general equations
of equilibrium and motion. In order to make this comparison
more perceptible, we have always preferred demonstrations ana-
logous to those of the theorems which serve as the foundation
of statics and dynamics. These equations still exist, but receive
a different form, when they express the distribution of luminous
heat in transparent bodies, or the movements which the changes
of temperature and density occasion in the interior of fluids.
The coefficients which they contain are subject to variations whose
exact measure is not yet known; but in all the natural problems
which it most concerns us to consider, the limits of temperature
differ so little that we may omit the variations of these co-
efficients.

The equations of the movement of heat, like those which
express the vibrations of sonorous bodies, or the ultimate oscilla-
tions of liquids, belong to one of the most recently discovered
branches of analysis, which it is very important to perfect. After
having established these differential equations their integrals must
be obtained ; this process comsists in passing from a common
expression to a particular solution subject to all the given con-
ditions. This difficult investigation requires a special analysis
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founded on new theorems, whose object we could not in this
place make known. The method which is derived from them
leaves nothing vague and indeterminate in the solutions, it leads
them up to the final numerical applications, a necessary condition
of every investigation, without which we should only arrive at
useless transformations.

The same theorems which have made known to us the
equations of the movement of heat, apply directly to certain pro-
blems of general analysis and dynamics whose solution has for a
long time been desired.

Profound study of nature is the most fertile source of mathe-
matical discoveries. Not only has this study, in offering a de-
Terminate object to investigation, the advantage of excluding
vague questions and calculations without issue; it is besides a
sure method of forming analysis itself, and of discovering the
elements which it concerns us to know, and which natural science
ought always to preserve: these are the fundamental elements
which are reproduced in all natural effects.

We see, for example, that the same expression whose abstract
properties geometers had considered, and which in this respect
belongs to general analysis, represents as well the motion of light
in the atmosphere, as it determines the laws of diffusion of heat
in solid matter, and enters into all the chief problems of the
theory of probability.

The analytical equations, unknown to the ancient geometers,
which Descartes was the first to introduce into the study of curves
and surfaces, are not restricted to the properties of figures, and to
those properties which are the object of rational mechanics; they
extend to all general phenomena. There cannot be a language
more universal and more simple, more free from errors and from
obscurities, that is to say more worthy to express the invariable
relations of natural things.

Considered from this point of view, mathematical analysis is as
extensive as nature itself; it defines all perceptible relations,
measures times, spaces, forces, temperatures; this difficult science
is formed slowly, but it preserves every principle which it has once
acquired ; it grows and strengthens itself incessantly in the midst
of the many variations and errors of the human mind.

Its chief attribute is clearness ; it has no marks to express con-
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fused notions. It brings together phenomena the most diverse,
and discovers the hidden analogies which unite them. If matter
escapes us, as that of air and light, by its extreme tenuity, if
bodies are placed far from us in the immensity of space, if man
wishes to know the aspect of the heavens at successive epochs
separated by a great number of centuries, if the actions of gravity
and of heat are exerted in the interior of the earth at depths
which will be always inaccessible, mathematical analysis can yet
lay hold of the laws of these phenomena. It makes them present
and measurable, and seems to be a faculty of the human mind
destined to supplement the shortness of life and the imperfec-
tion of the senses; and what is still more remarkable, it follows
the same course in the study of all phenomena ; it interprets them
by the same language, as if to attest the unity and simplicity of
the plan of the universe, and to make still more evident that
unchangeable order which presides over all natural causes.

The problems of the theory of heat present so many examples
of the simple and constant dispositions which spring from the
general laws of nature; and if the order which is established in
these phenomena could be grasped by our senses, it would produce
in us an impression comparable to the sensation of musical sound.

The forms of bodies are infinitely varied ; the distribution of
the heat which penetrates them seems to be arbitrary and confused ;
but all the inequalities are rapidly cancelled and disappear as time
passes on. The progress of the phenomenon becomes more regular
and simpler, remains finally subject to a definite law which is the
same in all cases, and which bears no sensible impress of the initial
arrangement.

All observation confirms these consequences. The analysis
from which they are derived separates and expresses clearly, 1° the
general conditions, that is to say those which spring from the
natural properties of heat, 2° the effect, accidental but continued,
of the form or state of the surfaces; 3° the effect, not permanent,
of the primitive distribution.

In this work we have demonstrated all the principles of the
theory of heat, and solved all the fundamental problems. They
could have been explained more concisely by omitting the simpler
problems, and presenting in the first instance the most general
results; but we wished to shew the actual origin of the theory and
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its gradual progress. When this knowledge has been acquired
and the principles thoroughly fixed, it is preferable to employ at
once the most extended analytical methods, as we have done in
the later investigations. This is also the course which we shall
hereafter follow in the memoirs which will be added to this work,
and which will form in some manner its complement’; and by this
means we shall have reconciled, so far as it can depend on our-
selves, the necessary development of principles with the precision
which becomes the applications of analysis.

The subjects of these memoirs will be, the theory of radiant
heat, the problem of the terrestrial temperatures, that of the
temperature of dwellings, the comparison of theoretic results with
those which we have observed in different experiments, lastly the
demonstrations of the differential equations of the movement of
heat in fluids.

The work which we now publish has been written a long time
since; different circumstances have delayed and often interrupted
the printing of it. In this interval, science has been enriched by
important observations; the principles of our analysis, which had
not at first been grasped, have become better known; the results
which we had deduced from them have been discussed and con-
firmed. We ourselves have applied these principles to new
problems, and have changed the form of some of the proofs.
The delays of publication will have contributed to make the work
clearer and more complete. _

The subject of our first analytical investigations on the transfer
of heat was its distribution amongst separated masses; these have
been preserved in Chapter IIL, Section II. The problems relative
to continuous bodies, which form the theory rightly so called, were
solved many years afterwards; this theory was explained for the
first time in a manuscript work forwarded to the Institute of
France at the end of the year 1807, an extract from which was
published in the Bulletin des Sciences (Société Philomatique, year
1808, page 112). We added to this memoir, and successively for-
warded very extensive notes, concerning the convergence of series,
the diffusion of heat in an infinite prism, its emission in spaces

1 These memoirs were never collectively published as a sequel or complement
to the Théorie Analytique de la Chaleur. But, as will be seen presently, the author
had written most of them before the publication of that work in 1822. [A. F.]
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void of air, the constructions suitable for exhibiting the chief
theorems, and the analysis of the periodic movement at the sur-
face of the earth. Our second memoir, on the propagation of
heat, was deposited in the archives of the Institute, on the 28th of
September, 1811. It was formed out of the preceding memoir and
the notes already sent in; the geometrical constructions and
those details of analysis which had no necessary relation to the
physical problem were omitted, and to it was added the general
equation which expresses the state of the surface. This second
work was sent to press in the course of 1821, to be inserted in
the collection of the Academy of Sciences. It is printed without
any change or addition ; the text agrees literally with the deposited
manuscript, which forms part of the archives of the Institute.

In this memoir, and in the writings which preceded it, will be
found a first explanation of applications which our actual work

1 It appears as a memoir and supplement in volumes IV. and V. of the AM¢-
moires de ' Académie des Sciences. For convenience of comparison with the table
of contents of the Analytical Theory of Heat, we subjoin the titles and heads of
the chapters of the printed memoir :

THEORIE DU MOUVEMENT DE LA (HALEUR DANS LES CORPS BOLIDES, PAR M.
FouriEr. [Mémoires de VAcadémie Royale des Sciences de UInstitut de France.
Tome IV. (for year 1819). Paris 1824.] .
I. Ezposition.

II. Notions générales et définitions préliminaires.

II. Egquations du mouvement de la chaleur.

IV. Du mouvement linfaire et varié de la chaleur dans une armille,

V. De la propagation dela chaleur dans une lame rectangulaire dont les températures
sont constantes.

V1. De la communication de la chaleur entre des masses digjointes.

VI. Du mouvement varié de la chaleur dans une sphere solide.

VIII. Du mouvement varié de la chaleur dans un cylindre solide.

IX. De la propagation de la chaleur dans un prisme dort Vextrémité est assujettie
& une température constante.

X. Du mouvement varié de la chaleur dans un solide de forme cubique.

XI. Du mouvement linéaire et varié de la chaleur dans les corps dont une dimension
est infinie.

SUITE DU MEMOIRE INTITULE: THEORIE DU MOUVEMENT DE LA CHALEUR DANS
LES CORPS BOLIDES; PAB M. Founien. [Mémoires de U'Académie Royale des Sciences
de UInstitut de France. Tome V. (for year 1820). Paris, 1826.]

XII. Des températures terrestres, et du mouvement de la chaleur dans Uintérieur
d’une sphére solide, dont la surface est assujettie & des changemens périodiques
de température.

XIII. Des lois mathématiques de Uéquilibre de la chaleur rayonnante.

XIV. Comparaison des résultats de la théorie avec ceuz de diverses expériences.
[A. F)
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does not contain ; they will be treated in the subsequent memoirs*
at greater length, and, if it be in our power, with greater clear-
ness. The results of our labours concerning the same problems
are also indicated in several articles already published. The
extract inserted in the Annales de Chimie et de Physique shews
the aggregate of our researches (Vol. 111. page 350, year 1816).
We published in the Annales two separate notes, concerning
radiant heat (Vol. 1v. page 128, year 1817, and Vol. VI. page 259,
year 1817).

Several other articles of the same collection present the most
constant results of theory and observation ; the utility and the
extent of thermological knowledge could not be better appreciated
than by the celebrated editors of the Annales®.

In the Bulletin des Sciences (Société philomatique year 1818,
page 1, and year 1820, page 60) will be found an extract from
a memoir on the constant or variable temperature of dwellings,
and an explanation of the chief consequences of our analysis of
the terrestrial temperatures.

M. Alexandre de Humboldt, whose researches embrace all the
great problems of natural philosophy, has considered the obser-
vations of the temperatures proper to the different climates
from a novel and very important point of view (Memoir on Iso-
thermal lines, Societé d' Arcueil, Vol. 111 page 462) ; (Memoir on
the inferior limit of perpetual snow, Annales de Chimie et de
Physique, Vol. v. page 102, year 1817).

As to the differential equations of the movement of heat in
fluids® mention has been made of them in the annual history of
the Academy of Sciences. The extract from our memoir shews
clearly its object and principle. (Analyse des travauz de U Aca-
démie des Sciences, by M. De Lambre, year 1820.)

The examination of the repulsive forces produced by heat,
which determine the statical properties of gases, does not belong

) See note, page 9, and the notes, pages 11—13,

* (Gay-Lussac and Arago, See note, p. 18.

3 Mémoires de UAcadémie des Sciences, Tome XII., Paris, 1833, contain on pp.
507—b14, Mémoire d’analyse sur le mouvement de la chaleur dans les fluides, par M.
Fourier. Lu & VAcadémie Royale des Sciences, 4 Sep. 1820. It is followed on pp.
516—530 by Euxtrait des notes ma ites vées par Uauteur. The memoir
is signed Jh. Fourier, Paris, 1 Sep. 1820, but was published after the death of the
anthor. [A. F.]
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to the analytical subject which we have considered. This question
connected with the theory of radiant heat has just been discussed
by the illustrious author of the Mécanique céleste, to whom all
the chief branches of mathematical analysis owe important
discoveries. (Connasssance des Temps, years 1824-5.)

The new theories explained in our work are united for ever
to the mathematical sciences, and rest like them on invariable
foundations ; all the elements which they at preseut possess they
will preserve, and will continually acquire greater extent. Instru-
ments will be perfected and experiments multiplied. The analysis
which we have formed will be deduced from more general, that
is to say, more simple and more fertile methods common to many
classes of phenomena. For all substances, solid or liquid, for
vapours and permanent gases, determinations will be made of all
the specific qualities relating to heat, and of the variations of the
coefficients which express them'. At different stations on the
earth observations will be made, of the temperatures of the
ground at different depths, of the intensity of the solar heat and
its effects, constant or variable, in the atmosphere, in the ocean
and in lakes; and the constant temperature of the heavens proper
to the planetary regions will become known® The theory itself

1 Mémoires de U'Académie des Sciences, Tome VIII., Paris 1829, contain on
pp. 581—622, Mémoire sur la Théorie Analytique de la Chaleur, par M. Fourier.
This was published whilst the author was Perpetual Secretary to the Academy.
The first only of four parts of the memoir is printed. The contents of all are
stated. I. Determines the temperature at any point of a prism whose terminal
temperatures are functions of the time, the initial temperature at any point being
a function of its distance from one end. II. Examines the chief consequences of
the general solution, and applies it to two distinct cases, according as the tempe-
ratures of the ends of the heated prism are periodic or mot. III. Is historical,
enumerates the earlier experimental and analytical researches of other writers
relative to the theory of heat; considers the nature of the transcendental equations
appearing in the theory; remarks on the employment of arbitrary functions;
replies to the objections of M. Poisson; adds some remarks on a problem of the
motion of waves. IV. Extends the application of the theory of heat by taking
account, in the analysis, of variations in the specific coefficients which measure
the ocapacity of substances for heat, the permeability of solids, and the penetra-
bility of their surfaces. [A. F.]

2 Mémoires de U'Académie des Sciences, Tome VII., Paris, 1837, contain on
pp. 569—604, Mémoire sur les températures du globe terrestre et des espaces plané.
taires, par M. Fourier., The memoir is entirely descriptive ; it was read before the
Academy, 20 and 29 Sep. 1824 (dnnales de Chimie et de Physique, 1824, xxviL.
p- 136). [A.F.]
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will direct all these measures, and assign their precision. No
considerable progress can hereafter be made which is not founded
on experiments such as these; for mathematical analysis can
deduce from general and simple phenomena the expression of the
laws of nature; but the special application of these laws to very
complex effects demands a long series of exact observations.

The complete list of the Articles on Heat, published by M. Fourier, in the
Annales de Chimie et de Physique, Series 2, is as follows :

1816. III. pp. 350—375. Théorie de la Chaleur (Extrait). Description by the
author of the 4to volume afterwards published in 1822 without the chapters on
radiant heat, solar heat as it affects the earth, the comparison of analysis with
experiment, and the history of the rise and progress of the theory of heat.

1817. IV. pp. 128—145. Note sur la Chaleur rayonnante. Mathematical
sketch on the sine law of emission of heat from a surface. Proves the author’s
paradox on the hypothesis of equal intensity of emission in all directions.

1817. VL pp. 259—803. Questions sur la théorie physique de la chaleur
rayonnante. An elegant physical treatise on the discoveries of Newton, Pictet,
Wells, Wollaston, Leslie and Prevost.

1820. XIII. pp. 418—438. Sur le refroidissement séculaire de la terre (Extrait).
Sketech of a memoir, mathematical and descriptive, on the waste of the earth's
initial heat.

1824. XXVII. pp. 136—167. Remarques générales sur les températures du globe
terrestre et des espaces planitaires. This is the descriptive memoir referred to
above, Mém. Acad. d. Sc. Tome VII,

1824, XXVII. pp. 236—281. Résumé théorique des propne‘m de la chaleur
rayonnante. Elementary analytical account of surface-emission and absorption
based on the principle of equilibrium of temperature.

1825. XXVIIL, pp. 887—365. Remarques sur la théorie mathématique de la
chaleur rayonnante. Elementary analysis of emission, absorption and reflection
by walls of enclosure uniformly heated. At p. 364, M. Fourier promises a Théorie
physique de la chaleur to contain the applications of the Théorie Analytique
omitted from the work published in 1822,

1828. XXXVIIL pp. 291—3815. Recherches expérimentales sur la faculté con-
ductrice des corps minces soumis & Uaction de la chaleur, et description d'un nouveau
thermometre de contact. A thermoscope of contact intended for lecture demonstra.
tions is also described. M. Emile Verdet in his Conférences de Physique, Paris,
1872, Part L p. 22, has stated the practical reasons against relying on the
theoretical indications of the thermometer of contact. [A. F.]

Of the three notices of memoirs by M. Fourier, contained in the Bulletin des
Sciences par la Société Philomatique, and quoted here at pages 9 and 11, the first
was written by M. Poisson, the mathematical editor of the Bulletin, the other two by
M. Fourier. [A.F.]



THEORY OF HEAT.

Et ignem regunt numeri.—Praro’.

CHAPTER I

INTRODUCTION.

FIRST SECTION.
Statement of the Object of the Work.

1. THE effects of heat are subject to constant laws which
cannot be discovered without the aid of mathematical analysis.
The object of the theory which we are about to explain is to
demonstrate these laws; it reduces all physical researches on
the propagation of heat, to problems of the integral calculus
whose elements are given by experiment. No subject has more
extensive relations with the progress of industry and the natural
sciences; for the action of heat is always present, it penetrates
all bodies and spaces, it influences the processes of the arts,
and occurs in all the phenomena of the universe.

When heat is unequally distributed among the different parts
of a solid mass, it tends to attain equilibrium, and passes slowly
from the parts which are more heated to those which are less;
and at the same time it is dissipated at the surface, and lost
in the medium or in the void. The tendency to uniform dis-
tribution and the spontaneous emission which acts at the surface
of bodies, change continually the temperature at their different
points. The .problem of the propagation of heat consists in

1 Cf. Plato, Timeus, 53, B,

8re & éxwexeipeito xoouciofas 78 wdv, xlp wpdror xal yiw xal dépa xal Cdwp.........
Sieoxnuarioaro [3 Oeds] elBeol re xal dpfpois. [A. F.]



CH. I SECT. 1.] INTRODUCTION. 15

determining what is the temperature at each point of a body
at a given instant, supposing that the initial temperatures are
known. The following examples will more clearly make known
the nature of these problems.

2. If we expose to the continued and uniform action of a
source of heat, the same part of a metallic ring, whose diameter
is large, the molecules nearest to the source will be first heated,
and, after a certain time, every point of the solid will have
acquired very nearly the highest temperature which it can attain.
This limit or greatest temperature is not the same at different
points; it becomes less and less according as they become more
distant from that point at which the source of heat is directly
applied.

When the temperatures have become permanent, the source
of heat supplies, at each instant, a quantity of heat which exactly
compensates for that which is dissipated at all the points of the
external surface of the ring.

If now the source be suppressed, heat will continue to be
propagated in the interior of the solid, but that which is lost
in the medium or the void, will no longer be compensated as
formerly by the supply from the source, so that all the tempe-
ratures will vary and diminish incessantly until they have be-
come equal to the temperatures of the surrounding medium.

3. Whilst the temperatures are permanent and the source
remains, if at every point of the mean circumference of the ring
an ordinate be raised perpendicular to the plane of the ring,
whose length is proportional to the fixed temperature at that
point, the curved line which passes through the ends of these
ordinates will represent the permanent state of the temperatures,
and it is very easy to determine by analysis the nature of this
line. It is to be remarked that the thickness of the ring is
supposed to be sufficiently small for the temperature to be
sensibly equal at all points of the same section perpendicular
to the mean circamference. When the source is removed, the
line which bounds the ordinates proportional to the tcmperatures
at the different points will change its form continually. The
problem consists in expressing, by one equation, the variable
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form of this curve, and in thus including in a single formula
all the successive states of the solid.

4. Let z be the constant temperature at a point m of the
mean circumference, « the distance of this point from the source,
that is to say the length of the arc of the mean circumference,
included between the point m and the point o which corresponds
to the position of the source; z is the highest temperature
which the point m can attain by virtue of the constant action
of the source, and this permanent temperature z is-a function
Sf(z) of the distance z. The first part of the problem consists
in determining the function f(z) which represents the permanent
state of the solid.

Consider next the variable state which succeeds to the former
state as soon as the source has been removed ; denote by ¢ the
time which has passed since the suppression of the source, and
by v the value of the temperature at the point m after the
time ¢. The quantity v will be a certain function F' (z, t) of
the distance z and the time ¢; the object of the problem is to
discover this function F (z, ¢), of which we only know as yet
that the initial value is f (z), so that we ought to have the
equation f (x) = F (z, o).

5. If we place a solid homogeneous mass, having the form
of a sphere or cube, in a medium maintained at a constant tem-
perature, and if it remains immersed for a very long time, it will
acquire at all its points a temperature differing very little from
that of the fluid. Suppose the mass to be withdrawn in order
to transfer it to a cooler medium, heat will begin to be dissi-
pated at its surface; the temperatures at different points of the
mass will not be sensibly the same, and if we suppose it divided
into an infinity of layers by surfaces parallel to its external sur-
face, each of those layers will transmit, at each instant, a certain
quantity of heat to the layer which surrounds it. If it be
imagined that each molecule carries a separate thermometer,
which indicates its temperature at every instant, the state of
the solid will from time to time be represented by the variable
system of all these thermometric heights. It is required to
express the successive states by analytical formule, so that we
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may know at any given instant the temperatures indicated by
each thermometer, and compare the quantities of heat which
flow during the same instant, between two adjacent layers, or
into the surrounding medium.

6. If the mass is spherical, and we denote by x the distance
of a point of this mass from the centre of the sphere, by ¢ the
time which has elapsed since the commencement of the cooling,
and by v the variable temperature of the point m, it is easy to see
that all points situated at the same distance z from the centre
of the sphere have the same temperature v. This quantity visa
certain function F (z, t) of the radius  and of the timeg ¢; it must
be such that it becomes constant whatever be the value of &, when
we suppose ¢ to be nothing ; for by hypothesis, the temperature at
all points is the same at the moment of emersion. The problem
consists in determining that function of # and ¢ which expresses
the value of v.

7. In the next place it is to be remarked, that during the
cooling, a certain quantity of heat escapes, at each instant, through
the external surface, and passes into the medium. The value of
this quantity is not constant ; it is greatest at the beginning of the
cooling. If however we consider the variable state of the internal
spherical surface whose radius is «, we easily see that there must
be at each instant a certain quantity of heat which traverses that
surface, and passes through that part of the mass which is more
distant from the centre. This continuous flow of heat is variable
like that through the external surface, and both are quantities
comparable with each other ; their ratios are numbers whose vary-
ing values are functions of the distance z, and of the time ¢ which
has elapsed. It is required to determine these functions.

8. If the mass, which has been heated by a long immersion in
a medium, and whose rate of cooling we wish to calculate, is
of cubical form, and if we determine the position of each point m by
three rectangular co-ordinates z, y, z, taking for origin the centre
of the cube, and for axes lines perpendicular to the faces, we see
that the temperature v of the point m after the time ¢, is a func-
tion of the four variables z, y, 2z, and ¢. The quantities of heat

F. H 2
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which flow out at each instant through the whole external surface
of the solid, are variable and comparable with each other; their
ratios are analytical functions depending on the time ¢, the expres-
sion of which must be assigned.

9. .Let us examine also the case in which a rectangular prism
of sufficiently great thickness and of infinite length, being sub-
mitted at its extremity to a constant temperature, whilst the air
which surrounds it is maintained at a less temperature, has at last
arrived at a fixed state which it is required to determine. All the
points of the extreme section at the base of the prism have, by
hypothesis, 2 common and permanent temperature. It is not the
same with a section distant from the source of heat; each of the
points of this rectangular surface parallel to the base has acquired
a fixed temperature, but this is not the same at different points of
the same section, and must be less at points nearer to the surface
exposed to the air. We see also that, at each instant, there flows
across a given section a certain quantity of heat, which always
remains the same, since the state of the solid has become constant.
The problem consists in determining the permanent temperature
at any given point of the solid, and the whole quantity of heat
which, in a definite time, flows across a section whose position is
given.

10. Take as origin of co-ordinates z, y, z, the centre of the
base of the prism, and as rectangular axes, the axis of the prism
itself, and the two perpendiculars on the sides: the permanent
temperature v of the point m, whose co-ordinates are , y, z, is
a function of three variables F (z, y, z): it has by hypothesis a
constant value, when we suppose # nothing, whatever be the values
of y and z. Suppose we take for the unit of heat that quantity
which in the unit of time would emerge from an area equal to a
unit of surface, if the heated mass which that area bounds, and
which is formed of the same substance as the prism, were continu-
ally maintained at the temperature of boiling water, and immersed
in atmospheric air maintained at the temperature of melting ice.

We see that the quantity of heat which, in the permanent
state of the rectangular prism, flows, during a unit of time, across
a certain section perpendicular to the axis, has a determinate ratio
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to the quantity of heat taken as unit, This ratio is not the same
for all sections: it is a function ¢ (z) of the distance z, at which
the section is situated. It is required to find an analytical expres-
sion of the function ¢ (z).

11. The foregoing examples suffice to give an exact idea of
the different problems which we have discussed.

The solution of these problems has made us understand that
the effects of the propagation of heat depend in the case of every
solid substance, on three elementary qualities, which are, its capa-
city for heat, its own conducibility, and the exterior conducibility.

It has been observed that if two bodies of the same volume
and of different nature have equal temperatures, and if the same
quantity of heat be added to them, the increments of temperature
are not the same; the ratio of these increments is the ratio of
their capacities for heat. In this manner, the first of the three
specific elements which regulate the action of heat is exactly
defined, and physicists have for a long time known several methods
of determining its value. It is not the same with the two others;
their effects have often been observed, but there is but one exact
theory which can fairly distinguish, define, and measure them
with precision. ‘

The proper or interior conducibility of a body expresses the
facility with which heat is propagated in passing from one internal
molecule to another. The external or relative conducibility of a
solid body depends on the facility with which heat penetrates the
surface, and passes from this body into a given medium, or passes
from the medium into the solid. The last property is modified by
the more or less polished state of the surface ; it varies also accord-
ing to the medium in which the body is immersed; but the
interior conducibility can change only with the nature of the
solid. : R

These three elementary qualities are represented in our
formule by constant numbers, and the theory itself indicates
experiments suitable for measuring their values. As soon as they
are determined, all the problems relating to the propagation of
heat depend only on numerical analysis. The knowledge of these
specific properties may be directly useful in several applications of
the physical sciences; it is besides an element in the study and

2—2
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description of different substances. It is a very imperfect know-
ledge of bodies which ignores the relations which they have with
one of the chief agents of nature. In general, there is no mathe-
matical theory which has a closer relation than this with public
economy, since it serves to give clearness and perfection to the
practice of the numerous arts which are founded on the employ-
ment of heat.

12. The problem of the terrestrial temperatures presents
one of the most beautiful applications of the theory of heat; the
general idea to be formed of it is this. Different parts of the
surface of the globe are unequally exposed to the influence of the
solar rays; the intensity of their action depends on the latitude of
the place; it changes also in the course of the day and in the
course of the year, and is subject to other less perceptible in-
equalities. It is evident that, between the variable state of the
surface and that of the internal temperatures, a necessary relation
exists, which may be derived from theory. We know that, at a
certain depth below the surface of the earth, the temperature at a
given place experiences no annual variation: this permanent
underground temperature becomes less and less according as the
place is more and more distant from the equator. We may then
leave out of consideration the exterior envelope, the thickness of
which is incomparably small with respect to the earth’s radius,
and regard our planet as a nearly spherical mass, whose surface
is subject to a temperature which remains constant at all points
on a given parallel, but is not the same on another parallel. It
follows from this that every internal molecule has also a fixed tem-
perature determined by its position. The mathematical problem
consists in discovering the fixed temperature at any given point,
and the law which the solar heat follows whilst penetrating the
interior of the earth.

This diversity of temperature interests us still more, if we
consider the changes which succeed each other in the envelope
itself on the surface of which we dwell. Those alternations of
heat and cold which are reproduced every day and in the course of
every year, have been up to the present time the object of repeated
observations. These we can now submit to calculation, and from
a common theory derive all the particular facts which experience
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has taught us. The problem is reducible to the hypothesis that
every point of a vast sphere is affected by periodic temperatures;
analysis then tells us according to what law the intensity of these
variations decreases according as the depth increases, what is the
amount of the annual or diurnal changes at a given depth, the
epoch of the changes, and how the fixed value of the underground
temperature is deduced from the variable temperatures observed
at the surface.

13. The general equations of the propagation of heat are
partial differential equations, and though their form is very simple
the known methods® do not furnish any general mode of integrat-
ing them; we could not therefore deduce from them the values
of the temperatures after a definite time. The numerical inter-
pretation of the results of analysis is however necessary, and it
is a degree of perfection which it would be very important to give
to every application of analysis to the natural sciences. So long
as it is not obtained, the solutions may be said to remain in-
complete and useless, and the truth which it is proposed to
discover i8 no less hidden in the formul® of analysis than it was
in the physical problem itself. We have applied ourselves with
much care to this purpose, and we have been able to overcome
the difficulty in all the problems of which we have treated, and
which contain the chief elements of the theory of heat. There is
not one of the problems whose solution does not provide conve-
nient and exact means for discovering the numerical values of the
temperatures acquired, or those of the quantities of heat which

1 For the modern treatment of these equations consult

Partielle Differentialgleichungen, von B. Riemann, Braunschweig, 2nd Ed., 1876.
The fourth section, Bewegung der Wiirme in festen Kérpern.

Cours de physique mathématique, par E. Matthieu, Paris, 1873. The parts
relative to the differential equations of the theory of heat.

The Functions of Laplace, Lamé, and Bessel, by I. Todhunter, London, 1875.
Chapters XXI. XXV.—XXIX, which give some of Lamé’s methods.

Conférences de Physique, par E. Verdet, Paris, 1872 [Euvres, Vol. 1v. Part 1.].
Legons sur la propagation de la chaleur par conductibilité. These are followed by
a very extensive bibliography of the whole subject of conduction of heat.

For an interesting sketch and application of Fourier's Theory see

Theory of Heat, by Prof. Mazwell, London, 1875 [4th Edition]. Chapter XVIII.
On the diffusion of heat by conduction.

Natural Philosophy, by Sir W. Thomson and Prof. Tait, Vol. 1. Oxford, 1867.
Chapter VII. Appendix D, On the secular cooling of the earth. [A. F.]
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have flowed through, when the values of the time and of the
variable coordinates are known. Thus will be given not only the
differential equations which the functions that express the values
of the temperatures must satisfy; but the functions themselves

will be given under a form which facilitates the numerical
applications,

14. In order that these solutions might be general, and have
an extent equal to that of the problem, it was requisite that they
should accord with the initial state of the temperatures, which is
arbitrary. The examination of this condition shews that we may
develop in convergent series, or express by definite integrals,
functions which are not subject to a constant law, and which
represent the ordinates of irregular or discontinuous lines. This
property throws a new light on the theory of partial differen-
tial equations, and extends the employment of arbitrary functions
by submitting them to the ordinary processes of analysis.

15. It still remained to compare the facts with theory. With
this view, varied and exact experiments were undertaken, whose
results were in conformity with those of analysis, and gave them
an authority which one would have been disposed to refuse to
them in a new matter which seemed subject to so much uncer-
tainty. These experiments confirm the principle from which we
started, and which is adopted by all physicists in spite of the
diversity of their hypotheses on the nature of heat.

16. Equilibrium of temperature is effected not only by way
of contact, it is established also between bodies separated from
each other, which are situated fer a long time in the same region.
This effect is independent of contact with a medium; we have
observed it in spaces wholly void of air. To complete our theory
it was necessary to examine the laws wbich radiant heat follows,
on leaving the surface of a body. It results from the observations
of many physicists and from our own experiments, that the inten-
sities of the different rays, which escape in all directions from any
point in the surface of a heated body, depend on the angles which
their directions make with the surface at the same point. We
have proved that the intensity of a ray diminishes as the ray
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makes a smaller angle with the element of surface, and that it is
proportional to the sine of that angle'. This general law of
emission of heat which different observations had already indi-
cated, is a necessary consequence of the principle of the equilibrium
of temperature and of the laws of propagation of heat in solid
bodies.

Such are the chief problems which have been discussed in
this work; they are all directed to one object only, that is to
establish clearly the mathematical principles of the theory of heat,
and to keep up in this way with the progress of the useful arts,
and of the study of nature.

17. From what precedes it is evident that a very extensive
class of phenomena exists, not produced by mechanical forces, but
resulting simply from the presence and accumulation of heat.
This part of natural philosophy cannot be connected with dy-
namical theories, it has principles peculiar to itself, and is founded
on a method similar to that of other exact sciences. The solar
heat, for example, which penetrates the interior of the globe, dis-
tributes itself therein according to a regular law which does not
depend on the laws of motion, and cannot be determined by the
principles of mechanics. The dilatations which the repulsive
force of heat produces, observation of which serves to measure
temperatures, are in truth dynamical effects; but it is not these
dilatations which we calculate, when we investigate the laws of
the propagation of heat.

18. There are other more complex natural effects, which
depend at the same time on the influence of heat, and of attrac-
tive forces: thus, the variations of temperatures which the move-
ments of the sun occasion in the atmosphere and in the ocean,
change continually the density of the different parts of the air
and the waters. The effect of the forces which these masses obey
is modified at every instant by a new distribution of heat, and
it cannot be doubted that this cause produces the regular winds,
and the chief currents of the sea; the solar and lunar attractions
occasioning in the atmosphere effects but slightly sensible, and
not general displacements. It was therefore necessary, in order to

3 Mém. Acad. d. Sc. Tome V. Paris, 1826, pp. 179—213. [A. F.]
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submit these grand phenomena to calculation, to discover the
mathematical laws of the propagation of heat in the interior of
masses.

19. It will be perceived, on reading this work, that heat at-
tains in bodies a regular disposition independent of the -original
distribution, which may be regarded as arbitrary.

In whatever manner the heat was at first distributed, the
system of temperatures altering more and more, tends to coincide
sensibly with a definite state which depends only on the form of
the solid. In the ultimate state the temperatures of all the points
are lowered in the same time, but preserve amongst each other the
same ratios: in order to express this property the analytical for-
mule contain terms composed of exponentials and of quantities
analogous to trigonometric functions.

Several problems of mechanics present analogous results, such as
the isochronism of oscillations, the multiple resonance of sonorous
bodies. Common experiments had made these results remarked,
and analysis afterwards demonstrated their true cause. As to
those results which depend on changes of temperature, they could
not have been recognised except by very exact experiments; but
mathematical analysis has outrun observation, it has supplemented
our senses, and has made us in a manner witnesses of regular and
harmonic vibrations in the interior of bodies. '

20. These considerations present a singular example of the
relations which exist between the abstract science of numbers
and natural causes.

When a metal bar is exposed at one end to the constant action
of a source of heat, and every point of it has attained its highest
temperature, the system of fixed temperatures corresponds exactly
to a table of logarithms; the numbers are the elevations of ther-
mometers placed at the different points, and the logarithms are
the distances of these points from the source. In general heat
distributes itself in the interior of solids according to a simple law
expressed by a partial differential equation common to physical
problems of different order. The irradiation of heat has an evident
relation to the tables of sines, for the rays which depart from the
same point of a heated surface, differ very much from each other,
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and their intensity is rigorously proportional to the sine of the
angle which the direction of each ray makes with the element of
surface.

If we could observe the changes of temperature for every in-
stant at every point of a solid homogeneous mass, we should dis-
cover in- these series of observations the properties of recurring
series, as of sines and logarithms; they would be noticed for
example in the diurnal or annual variations of temperature of
different points of the earth near its surface.

We should recognise again the same results and all the chief
elements of general analysis in the vibrations of elastic media, in
the properties of lines or of curved surfaces, in the movements of
the stars, and those of light or of fluids. Thus the functions ob-
tained by successive differentiations, which are employed in the
development of infinite series and in the solution of numerical
equations, correspond also to physical properties. The first of
these functions, or the fluxion properly so called, expresses in
geometry the inclination of the tangent of a curved line, and in
dynamics the velocity of a moving body when the motion varies;
in the theory of heat it measures the quantity of heat which flows
at each point of a body across a given surface. Mathematical
analysis has therefore necessary relations with sensible phenomena ;
its object is not created by human intelligence; it is a pre-existent
element of the universal order, and is not in any way contingent
or fortuitous; it is imprinted throughout all nature.

21. Observations more exact and more varied will presently
ascertain whether the effects of heat are modified by causes which
have not yet been perceived, and the theory will acquire fresh
perfection by the continued comparison of its results with the
results of experiment; it will explain some important phenomena
which we have not yet been able to submit to calculation; it will
shew how to determine all the thermometric effects of the solar
rays, the fixed or variable temperature which would be observed at
different distances from the equator, whether in the interior of
the earth or beyond the limits of the atmosphere, whether in the
ocean or in different regions of the air. From it will be derived
the mathematical knowledge of the great movements which result
from the influence of heat combined with that of gravity. The
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same principles will serve to measure the conducibilities, proper or
relative, of different bodies, and their specific capacities, to dis-
tinguish all the causes which modify the emission of heat at the
surface of solids, and to perfect thermometric instruments.

The theory of heat will always attract the attention of ma-
thematicians, by the rigorous exactness of its elements and the
analytical difficulties peculiar to it, and above all by the extent
and usefulness of its applications; for all its consequences con-
cern at the same time general physics, the operations of the arts,
domestic uses and civil economy.

SECTION II.
Preliminary definitions and general notions.

22. OF the nature of heat uncertain hypotheses only could be
formed, but the knowledge of the mathematical laws to which its
effects are subject is independent of all hypothesis; it requires only
an attentive examination of the chief facts which common obser-
vations have indicated, and which have been confirmed by exact
experiments.

It is necessary then to set forth, in the first place, the general
results of observation, to give exact definitions of all the elements
of the analysis, and to establish the principles upon which this
analysis ought to be founded.

The action of heat tends to expand all bodies, solid, liquid or
gaseous; this is the property which gives evidence of its presence.
Solids and liquids increase in volume, if the quantity of heat which
they contain increases; they contract if it diminishes.

‘When all the parts of a solid homogeneous body, for example
those of a mass of metal, are equally heated, and preserve without
any change the same quantity of heat, they have also and retain
the same density. This state is expressed by saying that through-
out the whole extent of the mass the molecules have a common
and permanent temperature.

23. The thermometer is a body whose smallest changes of
volume can be appreciated ; it serves to measure temperatures by
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the dilatation of a fluid or of air. We assume the construction,
use and properties of this instrument to be accurately known.
The temperature of a body equally heated in every part, and
which keeps its heat, is that which the thermometer indicates
when it is and remains in perfect contact with the body in
question.

Perfect contact is when the thermometer is completely im-
mersed in & fluid mass, and, in general, when there is no point of
the external surface of the instrument which is not touched by one
of the points of the solid or liquid mass whose temperature is to be
measured. In experiments it is not always necessary that this con-
dition should be rigorously observed ; but it ought to be assumed
in order to make the definition exact.

24. Two fixed temperatures are determined on, namely : the
temperature of melting ice which is denoted by 0, and the tem-
perature of boiling water which we will denote by 1: the water is
supposed to be boiling under an atmospheric pressure represented
by a certain height of the barometer (76 centimetres), the mercury
of the barometer being at the temperature 0.

25. Different quantities of heat are measured by determining
how many times they contain a fixed quantity which is taken as
the unit. Suppose a mass of ice having a definite weight (a kilo-
gramme) to be at temperature 0, and to be converted into water at
the same temperature O by the addition of a certain quantity of
heat: the quantity of heat thus added is taken as the umit of
measure. Hence the quantity of heat expressed by a number C
contains C times the quantity required to dissolve a kilogramme
of ice at the temperature zero into a mass of water at the same
zero temperature.

26. To raise a metallic mass having a certain weight, a kilo-
gramme of iron for example, from the temperature 0 to the
temperature 1, a new quantity of heat must be added to that
which is already contained in the mass. The number C which
denotes this additional quantity of heat, is the specific capacity of
iron for heat; the number C has very different values for different
substances.



28 THEORY OF HEAT. [cHAP. 1.

27. If a body of definite nature and weight (a kilogramme of
mercury) occupies a volume V at temperature 0, it will oecupy a
greater volume V'+ A, when it has acquired the temperature 1,
that is to say, when the heat which it contained at the tempera-
ture 0 has been increased by a new quantity C, equal to the
specific capacity of the body for heat. But if, instead of adding
this quantity C, a quantity zC is added (z being a number
positive or negative) the new volume will be V' + & instead
of V+A. Now experiments shew that if z is equal to }, the
increase of volume & is only half the total increment A, and
that in general the value of & is zA, when the quantity of heat
added is 2C.

28. The ratio 2z of the two quantities zC and C of heat added,
which is the same as the ratio of the two increments of volume &
and A, is that which is called the temperature; hence the quantity
which expresses the actual temperature of a body represents the
excess of its actual volume over the volume which it would occupy
at the temperature of melting ice, unity representing the whole
excess of volume which corresponds to the boiling point of
water, over the volume which corresponds to the melting point
of ice.

29. The increments of volume of bodies are in general pro-
portional to the increments of the quantities of heat which
produce the dilatations, but it must be remarked that this propor-
tion is exact only in the case where the bodies in question are
subjected to temperatures remote from those which determine
their change of state. The application of these results to all
liquids must not be relied on; and with respect to water in
particular, dilatations do not always follow augmentations of
heat.

In general the temperatures are numbers proportional to the
quantities of heat added, and in the cases considered by us,
these numbers are proportional also to the increments of
volume,

30. Suppose that a body bounded by a plane surface having
-a certain area (a square metre) is maintained in any manner
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whatever at oonstant temperature 1, common to all its points,
and that the surface in question is in contact with air maintained
at temperature 0 : the heat which escapes continuously at the
surface and passes into the surrounding medium will be replaced
always by the heat which proceeds from the constant cause to
whose action the body is exposed; thus, a certain quantity of heat
denoted by & will flow through the surface in a definite time (a
minute).

This amount &, of a flow continuous and always similar to
itself, which takes place at a unit of surface at a fixed temperature,
is the measure of the external conducibility of the body, that is
to say, of the facility with which its surface transmits heat to the
atmospheric air.

The air is supposed to be continually displaced with a given
uniform velocity : but if the velocity of the current increased, the
quantity of heat communicated to the medium would vary also :
the same would happen if the density of the medium were
increased.

31. If the excess of the constant temperature of the body
over the temperature of surrounding bodies, instead of being equal
to 1, as has been supposed, had a less value, the quantity of heat
dissipated would be less than Ah. The result of observation is,
as we shall see presently, that this quantity of heat lost may be
regarded as sensibly proportional to the excess of the temperature
of the body over that of the air and surrounding bodies. Hence
the quantity h having been determined by one experiment in
which the surface heated is at temperature 1, and the medium at
temperature 0; we conclude that hz would be the quantity, if the
temperature of the surface were 2, all the other circumstances
remaining the same. This result must be admitted when zis a
small fraction. ’

32. The value h of the quantity of heat which is dispersed
across a heated surface is different for different bodies; and it
varies for the same body according to the different states of the
surface. The effect of irradiation diminishes as the surface
becomes more polished; so that by destroying the polish of the
surface the value of h is considerably increased. A heated
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metallic body will be more quickly cooled if its external surface is
covered with a black coating such as will entirely tarnish its
metallic lustre.

33. The rays of heat which escape from the surface of a body
pass freely through spaces void of air; they are propagated also
in atmospheric air: their directions are not disturbed by agitations
in the intervening air: they can be reflected by metal mirrors
and collected at their foci. Bodies at a high temperature, when
plunged into a liquid, heat directly only those parts of the mass
with which their surface is in contact. The molecules whose dis-
tance from this surface is not extremely small, receive no direct
heat; it is not the same with aériform fluids; in these the rays of
heat are borne with extreme rapidity to considerable distances,
whether it be that part of these rays traverses freely the layers of
air, or whether these layers transmit the rays suddenly without
altering their direction.

34. When the heated body is placed in air which is main-
tained at a sensibly constant temperature, the heat communicated
to the air makes the layer of the fluid nearest to the surface of the
body lighter; this layer rises more quickly the more intensely it is
heated, and is replaced by another mass of cool air. A current
is thus established in the air whose direction is vertical, and
whose velocity is greater as the temperature of the body is higher.
For this reason if the body cooled itself gradually the velocity of
the current would diminish with the temperature, and the law
of cooling would not be exactly the same as if the body were
exposed to a current of air at a constant velocity.

35. When bodies are sufficiently heated to diffuse a vivid light,
part of their radiant heat mixed with that light can traverse trans-
parent solids or liquids, and is subject to the force which produces
refraction. The quantity of heat which possesses this faculty
becomes less as the bodies are less inflamed ; it is, we may say,
insensiblefor very opaque bodies however highly they may be heated.
A thin transparent plate intercepts almost all the direct heat
which proceeds from an ardent mass of metal; but it becomes
heated in proportion as the intercepted rays are accumulated in
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it; whence, if it is formed of ice, it becomes liquid; but if this
plate of ice is exposed to the rays of a torch it allows a sensible
amount of heat to pass through with the light.

36. We have taken as the measure of the external conduci-
bility of a solid body a coefficient &, which denotes the quantity of
heat which would pass, in a definite time (a minute), from the
surface of this body, into atmospheric air, supposing that the sur-
face had a definite extent (a square metre), that the constant
temperature of the body was 1, and that of the air 0, and that
the heated surface was exposed to a current of air of a given in-
variable velocity. This value of k is determined by observation.
The quantity of heat expressed by the coefficient is composed of
two distinct parts which cannot be measured except by very exact
experiments. One is the heat communicated by way of contact to
the surrounding air: the other, much less than the first, is the
radiant heat emitted. We must assume, in our first investigations,
that the quantity of heat lost does not change when the tempera-
tures of the body and of the medium are augmented by the same
sufficiently small quantity.

37. Solid substances differ again, as we have already remarked,
by their property of being more or less permeable to heat; this
quality is their conducibility proper: we shall give its definition and
exact measure, after having treated of the uniform and linear pro-
pagation of heat. Liquid substances possess also the property of
transmitting heat from molecule to molecule, and the numerical
value of their conducibility varies according to the nature of the
substances : but this effect is observed with difficulty in liquids,
since their molecules change places on change of temperature. The
propagation of heat in them depends chiefly on this continual dis-
placement, in all cases where the lower parts of the mass are most
exposed to the action of the source of heat. If, on the contrary,
the source of heat be applied to that part of the mass which is
highest, as was the case in several of our experiments, the transfer
of heat, which is very slow, does not produce any displacement,
at least when the increase of temperature does not diminish the
volume, as is indeed noticed in singular cases bordering on changes
of state.
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38, To this explanation of the chief results of observation, a
general remark must be added on equilibrium of temperatures;
which consists in this, that different bodies placed in the same re-
gion, all of whose parts are and remain equally heated, acquire also
a common and permanent temperature.

Suppose that all the parts of a mass M have a common and
constant temperature @, which is maintained by any cause what-
ever: if a smaller body m be placed in perfect contact with the
mass M, it will assume the common temperature a.

In reality this result would not strictly occur except after an
infinite time : but the exact meaning of the proposition is that if
the body m had the temperature a before being placed in contact,
it would keep it without any change. The same would be the case
with a multitude of other bodies n, p, ¢, r each of which was
placed separately in perfect contact with the mass A: all would

" acquire the constant temperature . Thus a thermometer if suc-
cessively applied to the different bodies m, n, p, q, » would indicate
the same temperature.

39." The effect in question is independent of contact, and
would still occur, if every part of the body m were enclosed in
the solid A/, as in an enclosure, without touching any of its parts.
For example, if the solid were a spherical envelope of a certain
thickness, maintained by some external cause at a temperature a,
and containing a space entirely deprived of air, and if the body m
could be placed in any part whatever of this spherical space, with-
out touching any point of the internal surface of the enclosure, it
would acquire the common temperature a, or rather, it would pre-
serve it if it had it already. The result would be the same for
all the other bodies n, p, ¢, 7, whether they were placed separately
or all together in the same enclosure, and whatever also their sub-
stance and form might be.

'40. Of all modes of presenting to ourselves the action of
heat, that which seems simplest and most conformable to observa-
tion, consists in comparing this action to that of light. Mole-
cules separated from one another reciprocally communicate, across
empty space, their rays of heat, just as shining bodies transmit
their light.
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If within an enclosure closed in all directions, and maintained
by some external cause at a fixed temperature @, we suppose dif-
ferent bodies to be placed without touching any part of the bound-
ary, different effects will be observed according as the bodies,
introduced into this space free from air, are more or less heated.
If, in the first instance, we insert only one of these bodies, at the
same temperature as the enclosure, it will send from all points of
its surface as much heat as it receives from the solid which sur-
rounds it, and is maintained in its original state by this exchange
of equal quantities.

If we insert a second body whose temperature b is less than a,
it will at first receive from the surfaces which surround it on
all sides without touching it, a quantity of heat greater than that
which it gives out: it will be heated more and more and will
absorb through its surface more heat than in the first’instance.

The initial temperature b continually rising, will approach with-
out ceasing the fixed temperature a, so that after a certain time
the difference will be almost insensible. The effect would be op-
posite if we placed within the same enclosure a third body whose
temperature was greater than a.

"41. All bodies have the property of emitting heat through
their surface; the hotter they are the more they emit; the
intensity of the emitted rays changes very considerably with the
state of the surface.

"42. Every surface which receives rays of heat from surround-
ing bodies reflects part and admits the rest: the heat which is not
reflected, but introduced through the surface, accumulates within
the solid; and so long as it exceeds the quantity dissipated by
irradiation, the temperature rises.

" 43. The rays which tend to go out of heated bodies are
arrested at the surface by a force which reflects part of them into
the interior of the mass. The cause which hinders the incident
rays from traversing the surface, and which divides these rays into
two parts, of which one is reflected and the other admitted, acts in
the same manner on the rays which are directed from the interior
of the body towards external space.

F. H. 3
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If by modifying the state of the surface we increase the force
by which it reflects the incident rays, we increase at the same time
the power which it has of reflecting towards the interior of the
body rays which are tending to go out. The incident rays intro-
duced into the mass, and the rays emitted through the surface, are
equally diminished in quantity.

44. If within the enclosure above mentioned a number of
bodies were placed at the same time, separate from each other
and unequally heated, they would receive and transmit rays of heat
so that at each exchange their temperatures would continually
vary, and would all tend to become equal to the fixed temperature
of the enclosure.

This effect is precisely the same as that which occurs when
heat is propagated within solid bodies; for the molecules which
compose these bodies are separated by spaces void of air, and
have the property of receiving, accumulating and emitting heat.
Each of them sends out rays on all sides, and at the same time
receives other rays from the molecules which surround it.

"45. The heat given out by a point situated in the interior of
a solid mass can pass directly to an extremely small distance only;
it is, we may say, intercepted by the nearest particles; these parti-
cles only receive the heat directly and act on more distant points.
It is different with gaseous fluids; the direct effects of radiation
become sensible in them at very considerable distances.

"46. Thus the heat which escapes in all directions from a part
of the surface of a solid, passes on in air to very distant points; but
is emitted only by those molecules of the body which are extremely
near the surface. A point of a heated mass situated at a very
small distance from the plane superficies which separates the mass
from external space, sends to that space an infinity of rays, but
they do not all arrive there; they are diminished by all that quan-
tity of heat which is arrested by the intermediate molecules of the
solid. The part of the ray actually dispersed into space becomes
less according as it traverses a longer path within the mass. Thus
the ray which escapes perpendicular to the surface has greater in-
tensity than that which, departing from the same point, follows
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an oblique direction, and the most oblique rays are wholly inter-
cepted.

The same consequences apply to all the points which are near
enough to the surface to take part in the emission of heat, from
which it necessarily follows that the whole quantity of heat which
escapes from the surface in the normal direction is very much
greater than that whose direction is oblique. We have submitted
this question to calculation, and our analysis proves that the in-
tensity of the ray is proportional to the sine of the angle which
the ray makes with the element of surface. Experiments had
already indicated a similar result.

- 47. This theorem expresses a general law which has a neces-
sary connection with the equilibrium and mode of action of heat.
If the rays which escape from a heated surface had the same in-
tensity in all directions, a thermometer placed at one of the points
of a space bounded on all sides by an enclosure maintained at a
constant temperature would indicate a temperature incomparably
greater than that of the enclosure’. Bodies placed within this
enclosure would not take a common temperature, as is always
noticed; the temperature acquired by them would depend on the
place which they occupied, or on their form, or on the forms of
neighbouring bodies.

The same results would be observed, or other effects equally
opposed to common experience, if between the rays which escape
from the same point any other relations were admitted different
from those which we have enunciated. ~We have recognised this
law as the only one compatible with the general fact of the equi-
librium of radiant heat.

"48. If a space free from air is bounded on all sides by a solid
enclosure whose parts are maintained at a common and constant
temperature @, and if a thermometer, having the actual tempera-
ture g, is placed at any point whatever of the space, its temperature
will continue without any change. It will receive therefore at
each instant from the inner surface of the enclosure as much heat
as it gives out to it. This effect of the rays of heat in a given
space is, properly speaking, the measure of the temperature : but

! See proof by M. Fourier, 4nn. d. Ch. et Ph. Ser. 3, v. p. 128. [A.F.]
' 3—2
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this consideration presupposes the mathematical theory of radiant
heat.

If now between the thermometer and a part of the surface of
the enclosure a body M be placed whose temperature is a, the
thermometer will cease to receive rays from one part of the inner
surface, but the rays will be replaced by those which it will re-
ceive from the interposed body M. An easy calculation proves
that the compensation is exact, so that the state of the thermo-
meter will be unchanged. Tt is not the same if the temperature
of the body M is different from that of the enclosure. When
it is greater, the rays which the interposed bodj M sends to the
thermometer and which replace the intercepted rays convey more
heat than the latter; the temperature of the thermometer must
therefore rise.

If, on the contrary, the intervening body has a temperature
less than a, that of the thermometer must fall; for the rays which
this body intercepts are replaced by those which it gives out, that
is to say, by rays cooler than those of the enclosure; thus the
thermometer does not receive all the heat necessary to maintain
its temperature a.

'49. Up to this point abstraction has been made of the power
which all surfaces have of reflecting part of the rays which are
sent to them. If this property were disregarded we should have
only a very incomplete idea of the equilibrium of radiant heat.

Suppose then that on the inner surface of the enclosure, main-
tained at a constant temperature, there is a portion which enjoys,
in a certain degree, the power in question; each point of the re-
flecting surface will send into space two kinds of rays; the one go
out from the very interior of the substance of which the enclosure is
formed, the others are merely reflected by the same surface against
which they had been sent. But at the same time that the surface
repels on the outside part of the incident rays, it retains in the
inside part of its own rays. In this respect an exact compensation
is established, that is to say, every one of its own rays which the
surface hinders from going out is replaced by a reflected ray of
equal intensity.

The same result would happen, if the power of reflecting rays
affected in any degrec whatever other parts of the enclosure, or the
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surface of bodies placed within the same space and already at
the common temperature.

Thus the reflection of heat does not disturb the equilibrium
of temperatures, and does not introduce, whilst that equilibrium
exists, any change in the law according to which the intensity of
rays which leave the same point decreases proportionally to the
sine of the angle of emission.

" 50. Suppose that in the same enclosure, all of whose parts
maintain the temperature a, we place an isolated body M, and
a polished metal surface R, which, turning its concavity towards
the body, reflects great part of the rays which it received from the
body; if we place a thermometer between the body M and the re-
flecting surface R, at the focus of this mirror, three different effects
will be observed according as the temperature of the body M is
equal to the common temperature a, or is greater or less.

In the first case, the thermometer preserves the temperature
a; it receives 1°, rays of heat from all parts of the enclosure not
hidden from it by the body M or by the mirror; 2° rays given out
by the body; 3°, those which the surface B sends out to the focus,
whether they come from the mass of the mirror itself, or whether its
surface bas simply reflected them; and amongst the last we may
distinguish between those which have been sent to the mirror by
the mass M, and those which it has received from the emclosure.
All the rays in question proceed from surfaces which, by hypo-
thesis, have a common temperature @, so that the thermometer
is precisely in the same state as if the space bounded by the en-
closure contained no other body but itself.

In the second case, the thermometer placed between the heated
body M and the mirror, must acquire a temperature greater than
a. In reality, it receives the same rays as in the first hypothesis;
but with two remarkable differences: one arises from the fact that
the rays sent by the body M to the mirror, and reflected upon the
thermometer, contain more heat than in the first case. The other
difference depends on the fact that the rays sent directly by the
body M to the thermometer contain more heat than formerly.
Both causes, and chiefly the first, assist in raising the tempera-
ture of the thermometer.

In the third case, that is to say, when the temperature of the
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mass M is less than a, the temperature must assume also a tem-
perature less than a. In fact, it receives again all the varieties of
rays which we distinguished in the first case: but there are two
kinds of them which contain less heat than in this first hypothesis,
that is to say, those which, being sent out by the body A, are
reflected by the mirror upon the thermometer, and those which
the same body M sends to it directly. Thus the thermometer does
not receive all the heat which it requires to preserve its original
temperature a. It gives out more heat than it receives. It is
inevitable then that its temperature must fall to the point at
which the rays which it receives suffice to compensate those which
it loses. This last effect is what is called the reflection of cold,
and which, properly speaking, consists in the reflection of too
feeble heat. The mirror intercepts a certain quantity of heat, and
replaces it by a less quantity.

"51. If in the enclosure, maintained at a constant temperature
a, a body M be placed, whose temperature a’ is less than a, the
presence of this body will lower the thermometer exposed to its
rays, and we may remark that the rays sent to the thermometer
from the surface of the body Af, are in general of two kinds,
namely, those which come from inside the mass A, and those
which, coming from different parts of the enclosure, meet the sur-
face M and are reflected upon the thermometer. The latter rays
have the common temperature @, but those which belong to the
body M contain less heat, and these are the rays which cool the
thermometer. If now, by changing the state of the surface of the
body M, for cxample, by destroying the polish, we diminish the
power which it has of reflecting the incident rays, the thermo-
meter will fall still lower, and will assume a temperature a” less
than a. In fact all the conditions would be the same as in the
preceding case, if it were not that the body M gives out a greater
quantity of its own rays and reflects a less quantity of the rays
which it receives from the enclosure; that is to say, these last rays,
which have the common temperature, are in part replaced by
cooler rays. Hence the thermometer no longer receives so much
heat as formerly.

If, independently of the change in the surface of the body A,
we place a metal mirror adapted to reflect upon the thermometer
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the rays which have left M, the temperature will assume a value
a” less than a”. The mirror, in fact, intercepts from the thermo-
meter part of the rays of the enclosure which all have the tem-
perature a, and replaces them by three kinds of rays; namely,
1°, those which come from the interior of the mirror itself, and
which have the common temperature ; 2°, those which the different
parts of the enclosure send to the mirror with the same tempera-
ture, and which are reflected to the focus ; 3°, those which, coming
from the interior of the body M, fall upon the mirror, and are
reflected upon the thermometer. The last rays have a tempera-
ture less than a; hence the thermometer no longer receives so
much heat as it received before the mirror was set up.

Lastly, if we proceed to change also the state of the surface of
the mirror, and by giving it a more perfect polish, increase its
power of reflecting heat, the thermometer will fall still lower. In
fact, all the conditions exist which occurred in the preceding case.
Only, it happens that the mirror gives out a less quantity of its
own rays, and replaces them by those which it reflects. Now,
amongst these last rays, all those which proceed from the interior
of the mass M are less intense than if they had come from the
interior of the metal mirror; hence the thermometer receives still
less beat than formerly: it will assume therefore a temperature
a"” less than a”.

By the same principles all the known facts of the radiation of
heat or of cold are easily explained.

- 52. The effects of heat can by no means be compared with
those of an elastic fluid whose molecules are at rest.

It would be useless to attempt to deduce from this hypothesis
the laws of propagation which we have explained in this work,
and which all experience has confirmed, The free state of heat is
the same as that of light ; the active state of this element is then
entirely different from that of gaseous substances. Heat acts in
the same manner in a vacuum, in elastic fluids, and in liquid or
solid masses, it is propagated only by way of radiation, but its
sensible effects differ according to the nature of bodies,

53. Heat is the origin of all elasticity; it is the repulsive
force which preserves the form of solid masses, and the volume of
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liquids. In solid masses, neighbouring molecules would yield to
their mutual attraction, if its effect were not destroyed by the
heat which separates them.

This elastic force is greater according as the temperature is
higher; which is the reason why bodies dilate or contract when
their temperature is raised or lowered.

"54. The equilibrium which exists, in the interior of a solid
mass, between the repulsive Torce of heat and the molecular attrac-
tion, is stable ; that is to say, it re-establishes itself when disturbed
by an accidental cause. If the molecules are arranged at distances
proper for equilibrium, and if an external force begins to increase
this distance without any change of temperature, the effect of
attraction begins by surpassing that of heat, and brings back the
molecules to their original position, after a multitude of oscillations
which become less and less sensible.

A similar effect is exerted in the opposite sense when a me-
chanical cause diminishes the primitive distance of the molecules ;
such is the origin of the vibrations of sonorous or flexible bodies,
and of all the effects of their elasticity.

"~ 55. In the liquid or gaseous state of matter, the external
pressure is additional or supplementary to the molecular attrac-
tion, and, acting on the surface, does not oppose change of form,
but only change of the volume occupied. Analytical investigation
will best shew how the repulsive force of heat, opposed to the
attraction of the molecules or to the external pressure, assists in
the composition of bodies, solid or liquid, formed of one or more
elements, and determines the elastic properties of gaseous fluids;
but these researches do not belong to the object before us, and
appear in dynamic theories.

56. It cannot be doubted that the mode of action of heat
always consists, like that of light, in the reeiprocal communication
of rays, and this explanation is at the present time adopted by
the majority of physicists; but it is not necessary to consider the
phenomena under this aspect in order to establish the theory of heat.
In the course of this work it will be seen how the laws of equili-
brium and propagation of radiant heat, in solid or liquid #asses,
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can be rigorously demonstrated, independently of any physical
explanation, as the necessary consequences of common observations,

SECTION III
Principle of the communication of heat.

'57. We now proceed to examine what experiments teach us
concerning the communication of heat.

If two equal molecules are formed of the same substance and
have the same temperature, each of them receives from the other
as much heat as it gives up to it ; their mutual action may then be
regarded as null, since the result of this action can bring about no
change in the state of the molecules. If, on the contrary, the first
is hotter than the second, it sends to it more heat than it receives
from it ; the result of the mutual action is the difference of these
two quantities of heat. In all cases we make abstraction of
the two equal quantities of heat which any two magerial points
reciprocally give up; we conceive that the point most heated
acts only on the other, and that, in virtue of this action, the first
loses a certain quantity of heat which is acquired by the second.
Thus the action of two molecules, or the quantity of heat which
the hottest communicates to the other, is the difference of the two
quantities which they give up to each other.

'58. Suppose that we place in air a solid homogeneous body,
whose different points have unequal actual temperatures; each of
the molecules of which the body is composed will begin to receive
heat from those which are at extremely small distances, or will
communicate it to them. This action exerted during the same
instant between all points of the mass, will produce an infinitesi-
mal resultant change in all the temperatures: the solid will ex-
perience at each instant similar effects, so that the variations of
temperature will become more and more sensible.

Consider only the system of two molecules, m and n, equal and
extremely near, and let us ascertain what quantity of heat the
first can receive from the second during one instant: we may
then apply the same reasoning to all the other points which are
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near enough to the point m, to act directly on it during the first
instant.
The quantity of heat communicated by the point n to the
point m depends on the duration of the instant, on the very small
_distance betwecen these points, on the actual temperature of each
point, and on the nature of the solid substance ; that is to say, if
one of these elements happened to vary, all the other remaining
the same, the quantity of heat transmitted would vary also. Now
experiments have disclosed, in this respect, a general result: it
consists in this, that all the other circumstances being the same,
the quantity of heat which one of the molecules receives from the
other is proportional to the difference of temperature of the two
molecules. Thus the quantity would be double, triple, quadruple, if
everything else remaining the same, the difference of the tempera-
ture of the point n from that of the point m became double, triple,
or quadruple. To account for this result, we must consider that the
action of n onm is always just as much greater as there is a greater
difference between the temperatures of the two points: it is null,
if the temperatures are equal, but if the molecule n contains more
heat than the equal molecule m, that is to say, if the temperature
of m being v, that of n is v+ A, & portion of the exceeding heat
will pass from n to m. Now, if the excess of heat were double, or,
which is the same thing, if the temperature of n were v + 24, the
exceeding heat would be composed of two equal parts correspond-
ing to the two halves of the whole difference of temperature 2A;
each of these parts would have its proper effect as if it alone
existed : thus the quantity of heat communicated by n to m would
be twice as great as when the difference of temperature is only A.
This simultaneous action of the different parts of the exceeding
heat is that which constitutes the principle of the communication
of heat. It follows from it that the sum of the partial actions, or
the total quantity of heat which m receives from n is proportional
to the difference of the two temperatures.

'59. Denoting by v and v’ the temperatures of two equal mole-
cules m and n, by p, their extremely small distance, and by ¢, the
infinitely small duration of the instant, the quantity of heat which
m receives from n during this instant will be expressed by
(V —v) ¢ (p).dt. We denote by ¢ (p) a certain function of the
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distance p which, in solid bodies and in liquids, becomes nothing
when p has a sensible magnitude. The function is the same for
every point of the same given substance ; it varies with the nature
of the substance. ’

'60. The quantity of heat which bodies lose through their sur-
face is subject to the same principle. If we denote by o the area,
finite or infinitely small, of the surface, all of whose points have
the temperature v, and if @ represents the temperature of the
atmospheric air, the coefficient & being the measure of the ex-
ternal conducibility, we shall have oh (v — a) dt as the expression
for the quantity of heat which this surface o transmits to the air
during the instant dt.

When the two molecules, one of which transmits to the other
a certain quantity of heat, belong to the same solid, the exact
expression for the heat communicated is that which we have
given in the preceding article; and since the molecules are
extremely near, the difference of the temperatures is extremely
small. It is not the same when heat passes from a solid body into
a gaseous medium. But the experiments teach us that if the
difference is a quantity sufficiently small, the heat transmitted is
sensibly proportional to that difference, and that the number %
may, in these first researches’, be considered as having a constant
value, proper to each state of the surface, but independent of the
temperature,

"61. These propositions relative to the quantity of heat com-
municated have been derived from different observations. We
see first, as an evident consequence ‘of the expressions in question,
that if we increased by a common quantity all the initial tempe-
ratures of the solid mass, and that of the medium in which it is
placed, the successive changes of temperature would be exactly
the same as if this increase had not been made. Now this result
is sensibly in accordance with experiment; it has been admitted
by the physicists who first have observed the effects of heat.

1 More exact laws of cooling investigated experimentally by Dulong and Petit
will be found in the Journal de UEcole Polytechnique, Tome x1. pp. 284—294,
Paris, 1820, or in Jamin, Cours de Physique, Legon 47. [A.F.]
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"62. If the medium is maintained at a constant temperature,
and if the heated body which is placed in that medium has
dimensions sufficiently small for .the temperature, whilst falling
more and more, to remain sensibly the same at all points of the
body, it follows from the same propositions, that a quantity of heat
will escape at each instant through the surface of the body pro-
portional to the excess of its actual temperature over that of the
medium. Whence it is easy to conclude, as will be seen in the
course of this work, that the line whose absciss®e represent the
times elapsed, and whose ordinates represent the temperatures
corresponding to those times, is a logarithmic curve: now, ob-
servations also furnish the same result, when the excess of the
temperature of the solid over that of the medium is a sufficiently
small quantity.

"63. Suppose the medium to be mainfained at the constant
temperature 0, and that the initial temperatures of different
points a, b, ¢, d &c. of the same mass are a, 8, v, & &c., that at the
end of the first instant they have become o, 8, &/, & &c., that at
the end of the second instant they have become 2", 87, ¢", &" &c.,
and so on. We may easily conclude from the propositions enun-
ciated, that if the initial temperatures of the same points had
been g1, gB, gy, 98 &c. (g. being any number whatever), they
would have become, at the end of the first instant, by virtue of
the action of the different points, gz, g8, g7, g8 &c, and at the
end of the second instant, ga”, g8”, gv", 98" &c.,, and so on. For
instance, let us compare the case when the initial temperatures
of the points, a, b, ¢, d &c. were a, B, vy, 8 &c. with that in which
they are 2a, 23, 2y, 28 &c., the medium preserving in both cases
the temperature 0. In the second hypothesis, the difference of
the temperatures of any two points whatever is double what it
was in the first, and the excess of the temperature of each point,
over that of each molecule of the medium, is also double; con-
sequently the quantity of heat which any molecule whatever
sends to any other, or that which it receives, is, in the second
hypothesis, double of that which it was in the first. The change
of temperature which each point suffers being proportional to the
quantity of heat acquired, it follows that, in the second case, this
change is double what it was in the first case. Now we have
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supposed that the initial temperature of the first point, which was
a, became o' at the end of the first instant; hence if this initial
temperature had been 22, and if all the other_ temperatures had
been doubled, it would have become 22. The same would be the
case with all the other molecules 3, ¢, d, and a similar result
would be derived, if the ratio instead of being 2, were any number
whatever g. It follows then, from the principle of the communica-
tion of heat, that if we increase or diminish in any given ratio
all the initial temperatures, we increase or diminish in the same
ratio all the successive temperatures.

This, like the two preceding results, is confirmed by observa-

tion. It could not have existed if the quantity of heat which
passes from one molecule to another had not been, actually, pro-
portional to the difference of the temperatures,
"64. Observations have been made with accurate instruments,
on the permanent temperatures at different points of a bar or of a
metallic ring, and on the propagation of heat in the same bodies
and in several other solids of the form of spheres or cubes. The
results of these experiments agree with those which are derived
from the preceding propositions. They would be entirely differ-
ent if the quantity of heat transmitted from one solid molecule to
another, or to a molecule of air, were not proportional to the
excess of temperature. It is necessary first to know all the
rigorous consequences of this proposition; by it we determine the
chief part of the quantities which are the object of the problem.
By comparing then the calculated values with those given by
numerous and very exact experiments, we can easily measure the
variations of the coefficients, and perfect our first researches.

SECTION 1IV.
On the uniform and linear movement of heat.

" 65. We shall consider, in the first place, the uniform move-
ment of heat in the simplest case, which is that of an infinite
solid enclosed between two parallel planes.

We suppose a solid body formed of some homogeneous sub-
stance to be enclosed between two parallel and infinite planes;
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the lower plane 4 is maintained, by any cause whatever, at a
constant temperature a; we may imagine for example that the
mass is prolonged, and that the plane A is a section common to
the solid and to the enclosed mass, and is heated at all its points
by a constant source of heat; the upper plane B is also main-
tained by a similar cause at a fixed temperature b, whose value is
less than that of a; the problem is to determine what would be
the result of this hypothesis if it were continued for an infinite
time,

If we suppose the initial temperature of all parts of this body
to be b, it is evident that the heat which leaves the source 4 will
be propagated farther and farther and will raise the temperature
of the molecules included between the two planes: but the tem-
- perature of the upper plane being unable, according to hypothesis
to rise above b, the heat will be dispersed within the cooler mass,
contact with which keeps the plane B at the constant temperature
b. The system of temperatures will tend more and more to a
final state, which it will never attain, but which would have the
property, as we shall proceed to shew, of existing and keeping
itself up without any change if it were once formed.

In the final and fixed state, which we are considering, the per-
manent temperature of a point of the solid is evidently the same
at all points of the same section parallel to the base; and we
shall prove that this fixed temperature, common to all the points
of an intermediate section, decreases in arithmetic progression
from the base to the upper plane, that is to say, if we represent
the constant temperatures @ and b by the ordinates 4a and BB

B B
B \
I
y \
A \¢
Fig. 1.

(see Fig. 1), raised perpendicularly to the distance 4B between the
two planes, the fixed temperatures of the intermediate layers will
be represented by the ordinates of the straight line a8 which
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Jjoins the extremities a and 8; thus, denoting by z the height of

an intermediate section or its perpendicular distance from the

plane 4, by e the whole height or distance 4B, and by v the

temperature of the section whose height is 2z, we must have the
b—a )

equation v=a + 2.

In fact, if the temperatures were at first established in accord-
ance with this law, and if the extreme surfaces 4 and B were
always kept at the temperatures @ and b, no change would
happen in the state of the solid. To convince ourselves of this,
it will be sufficient to compare the quantity of heat which would
traverse an intermediate section 4’ with that which, during the
same time, would traverse another section B’.

Bearing in mind that the final state of the solid is formed
and continues, we see that the part of the mass which is below
the plane A’ must communicate heat to the part which is above
that plane, since this second part is cooler than the first.

Imagine two points of the solid, m and m/, very near to each
other, and placed in any manner whatever, the one m below the
plane 4’, and the other m’ above this plane, to be exerting their
action during an infinitely small instant: m the hottest point
will communicate to m' a certain quantity of heat which will
cross the plane A'. Let x, y, # be the rectangular coordinates
of the point m, and &/, 3, 2’ the coordinates of the point m’:
consider also two other points = and ' very near to each other,
and situated with respect to the plane B’, in the same manner
in which m and m’ are placed with respect to the plane 4’: that
is to say, denoting by ¢ the perpendicular distance of the two
sections 4 and B, the coordinates of the point #» will be z,y, 2+ ¢
and those of the point ', &, ¥, &'+ &; the two distances mm’
and nn’ will be equal: further, the difference of the temperature
v of the point m above the temperature v’ of the point m’ will
be the same as the difference of temperature of the two points
n and n'. In fact the former difference will be determined by
substituting first 5 and then 2 in the general equation

b—-a
v=a+—e— 2,

and subtracting the second equation from the first, whence the
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result v—o' = b : 2 (¢—2"). We shall then find, by the sub-

stitution of £+ ¢ and 2/ +¢, that the excess of temperature of
the point n over that of the point n’ is also expressed by
Il——e—‘—" (2=2").

It follows from this that the quantity of heat sent by the
point m to the point m’ will be the same as the quantity of heat
sent by the point n to the point ', for all the elements which
concur in determining this quantity of transmitted heat are the
same.

It is manifest that we can apply the same reasoning to every
system of two molecules which communicate heat to each other
across the section A’ or the section B'; whence, if we could
sum up the whole quantity of heat which flows, during the same
instant, across the section A’ or the section B’, we should find
this quantity to be the same for both sections.

From this it follows that the part of the solid included be-
tween A’ and B’ receives always as much heat as it loses, and
since this result is applicable to any portion whatever of the
mass included between two parallel sections, it is evident that
no part of the solid can acquire a temperature higher than that
which it has at present. Thus, it has been rigorously demon-
strated that the state of the prism will continue to exist just as it
was at first.

Hence, the permanent temperatures of different sections of a
solid enclosed between two parallel infinite planes, are represented
by the ordinates of a straight line a8, and satisfy the linear

. b—a
equation v=a + — &

"66. By what precedes we see distinctly what constitutes
the propagation of heat in a solid enclosed between two parallel
and infinite planes, each of which is maintained at a constant
temperature. Heat penetrates the mass gradually across the
lower plane: the temperatures of the intermediate sections are
raised, but can never exceed nor even quite attain a certain
limit which they approach nearer and nearer: this limit or final
temperature is different for different intermediate layers, and
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decreases in arithmetic progression from the fixed temperature
of the lower plane to the fixed temperature of the upper plane.

'~ The final temperatures are those which would have to be
given to the solid in order that its state might be permanent;
the variable state which precedes it may also be submitted to
analysis, as we shall see presently: but we are now considering
ouly the system of final and permanent temperatures. In the
last state, during each division of time, across a section parallel
to the base, or a definite portion of that section, a certain
quantity of heat flows, which is constant if the divisions of time
are equal. This uniform flow is the same for all the intermediate
sections ; it is equal to that which proceeds from the source, and
to that which is lost during the same time, at the upper surface
of the solid, by virtue of the cause which keeps the temperature
constant.

" 67. The problem now is to measure that quantity of heat
which is propagated uniformly within the solid, during a given
time, across a definite part of a section parallel to the base: it
depends, as we shall see, on the two extreme temperatures o
and b, and on the distance ¢ between the two sides of the solid;
it would vary if any one of these elements began to change, the
other remaining the same. Suppose a second solid to be formed
of the same substance as the first, and enclosed between two

b’
LT/H’ P /.4
| %
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Fig. 2.

infinite parallel planes, whose perpendicular distance is ¢’ .(see
fig. 2): the lower side is maintained at a fixed temperature a’,
and the upper side at the fixed temperature 4’ ; both solids are
considered to be in that final and permanent state which has
the property of maintaining itself as soon as it has been formed.

F. H. 4
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Thus the law of the temperatures is expressed for the first body
b—a
e

by the equation v=a+ 2, and for the second, by the equa-

tionu=a’'+ b ;a 2, v in the first solid, and u in the second, being

the temperature of the section whose height is z.

This arranged, we will compare the quantity of heat which,
during the unit of time traverses a unit of area taken on an
intermediate section L of the first solid, with that which during
the same time traverses an equal area taken on the section L’
of the second, e being the height common to the two sections,
that is to say, the distance of each of them from their own
base. We shall consider two very near points n and »' in the
first body, one of which n is below the plane L and the other
n’ above this plane: z, y, 2z are the co-ordinates of n: and &, ¥/, &
the co-ordinates of #/, e being less than 2, and greater than z.

We shall consider also in the second solid the instantaneous
action of two points p and p’, which are situated, with respect
to the section L/, in the same manner as the points n and n’ with
respect to the section L of the first solid. Thus the same co-
ordinates z, y, z, and &, ¥/, 2’ referred to three rectangular axes
in the second body, will fix also the position of the points p
and p.

Now, the distance from the point n to the point n’ is equal
to the distance from the point p to the point p’, and since the
two bodies are formed of the same substance, we conclude, ac-
cording to the principle of the communication of heat, that the
action of » on n’, or the quantity of heat given by n to »’, and
the action of p on p/, are to each other in the same ratio as the
differences of the temperature v— v’ and » —u'.

Substituting v and then ¢ in the equation which belongs to

e
have also by means of the second equation u —u' -—-b :,a' (8—2),

a(z-z'); we

the first solid, and subtracting, we find v—¢'=

whence the ratio of the two actions in question is that of a_;_-_b to

a -V
’

€
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We may now imagine many other systems of two molecules,
the first of which sends to the second across the plane L, a certain
quantity of heat, and each of these systems, chosen in the first
solid, may be compared with a homologous system situated in the
second, and whose action is exerted across the section L’; we
can then apply again the previous reasoning to prove that the
ratio of the two actions is always that of ig—b to 2 ;b .

Now, the whole quantity of heat which, during one instant,
crosses the section L, results from the simultaneous action of a
multitude of systems each of which is formed of two points;
hence this quantity of heat and tbat which, in the second solid,
crosses during the same instant the section L, are also to each

other in the ratio of q’-—%—’-’ to 2 ;b .

It is easy then to compare with each other the intensities of
the constant flows of heat which are propagated uniformly in the
two solids, that is to say, the quantities of heat which, during
unit of time, cross unit of surface of each of these bodies. The

ratio of these intensities is that of the two quotients a_:_b and

ﬁi—b—. If the two quotients are equal, the flows are the same,

whatever in other respects the values a, b, ¢, a/, ¥, €, may be;

in general, denoting the first low by F and the second by F",
a-b a-"¥

F
wesha.llhavej..—,z—?- s

'68. Suppose that in the second solid, the permanent tempera-
ture a’ of the lower plane is that of boiling water, 1; that the
temperature ¢’ of the upper plane is that of melting ice, 0; that
the distance ¢’ of the two planes is the unit of measure (a
metre); let us denote by K the constant flow of heat which,
during unit of time (a minute) would cross unit of surface in
this last solid, if it were formed of a given substance; K ex-
pressing a certain number of units of heat, that is to say a certain
number of times the heat necessary to convert a kilogramme
of ice into water: we shall have, in general, to determine the

4—2



52 THEORY OF HEAT. [cHAP. 1.

constant flow F, in a solid formed of the same substance, the
F a-b a- b
equation K= ¢ F—-K—— -

The value of F denotes the quantity of heat which, during
the unit of time, passes across a unit of area of the surface taken
on a section parallel to the base.

Thus the thermometric state of a solid enclosed between two
parallel infinite plane sides whose perpendicular distance is e,
and which are maintained at fixed temperatures @ and b, is
represented by the two equations:

a-b or F=—K v
dz’

The first of these equations expresses the law according to
which the temperatures decrease from the lower side to the
opposite side, the second indicates the quantity of heat which,
during a given time, crosses a definite part of a section parallel
to the base,

v=a+b—az, and F=K

"69. We have taken this coefficient K, which enters into
the second equation, to be the measure of the specific conduci-
bility of each substance; this number has very different values
for different bodies.

It represents, in general, the quantity of heat which, in a
homogeneous solid formed of a given substance and enclosed
between two infinite parallel planes, flows, during one minute,
across a surface of one square metre taken on a section parallel
to the extreme planes, supposing that these two planes are main-
tained, one at the temperature of boiling water, the other at
the temperature of melting ice, and that all the intermediate
planes have acquired and retain a permanent temperature.

We might employ another definition of conducibility, since
we could estimate the capacity for heat by referring it to unit
of volume, instead of referring it to unit of mass. All these
definitions are equally good provided they are clear and pre-
cise. .

We shall shew presently how to determine by observation the
value K of the conducibility or conductibility in different sub-
stances.
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"70. In order to establish the equations which we have
cited in Article 68, it would not be necessary to suppose the
points which exert their action across the planes to be at ex-
tremely small distances.

The results would still be the same if the distances of these
points had any maguitude whatever; they would therefore apply
also to the case where the direct action of heat extended within
the interior of the mass to very considerable distances, all the
circumstances which constitute the hypothesis remaining in other
respects the same.

We need only suppose that the cause which maintains the
temperatures at the surface of the solid, affects not only that
part of the mass which is extremely near to the surface, but that
a->b

its action extends to a finite depth. The equation v=a — z

will still represent in this case the permanent temperatures of
the solid. The true sense of this proposition is that, if we give
to all points of the mass the temperatures expressed by the
equation, and if besides any cause whatever, acting on the two
extreme laminaz, retained always every one of their molecules
at the temperature which the same equation assigns to them,
the interior points of the solid would preserve without any change
their initial state.

If we supposed that the action of a point of the mass could
extend to a finite distance e, it would be necessary that the
thickness of the extreme laminsge, whose state is maintained by
the external cause, should be at least equal to e. But the
quantity e having in fact, in the natural state of solids, only
an inappreciable value, we may make abstraction of this thick-
ness; and it is sufficient for the external cause to act on each
of the two layers, extremely thin, which bound the solid. This
is always what must be understood by the expression, to maintain
the temperature of the surface constant.

"71. We proceed further to examine the case in which the
same solid would be exposed, at one of its faces, to atmospheric
air maintained at a constant temperature.

Suppose then that the lower plane preserves the fixed_tem-
perature a, by virtue of any external cause whatever, and that
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the upper plane, instead of being maintained as formerly at a
less temperature b, is exposed to atmospheric air maintained
at that temperature b, the perpendicular distance of the two
planes being denoted always by e: the problem is to determine
the final temperatures.

Assuming that in the initial state of the solid, the common
temperature of its molecules is b or less than b, we can readily
imagine that the heat which proceeds incessantly from the source
A penetrates the mass, and raises more and more the tempera-
tures of the intermediate sections; the upper surface is gradually
beated, and permits part of the heat which has penetrated the
solid to escape into the air. The system of temperatures con-
tinually approaches a final state which would exist of itself if
it were once formed; in this final state, which is that which
we are considering, the temperature of the plane B has a fixed
but unknown value, which we will denote by B, and since the
lower plane A preserves also a permanent temperature a, the
system of temperatures is represented by the general equation

B -

v=a+2"% v denoting always the fixed temperature of the

section whose height is 2. The quantity of heat which flows
during unit of time across a unit of surface taken on any section

B

whatever is ka—; -, k denoting the interior conducibility.

We must now consider that the upper surface B, whose
temperature is B, permits the escape into the air of a certain
quantity of heat which must be exactly equal to that which
crosses any section whatever L of the solid. If it were not so,
the part of the mass included between this section L and the
plane B would not receive a quantity of heat equal to that
which it loses; hence it would not maintain its state, which is
contrary to hypothesis; the constant flow at the surface is there-
fore equal to that which traverses the solid : now, the quantity
of heat which escapes, during unit of time, from unit of surface
taken on the plane B, is expressed by h(8—25), b being the
fixed temperature of the air, and & the measure of the conduci-
bility of the surface B; we must therefore have the equation

-8 =h (8—-1b), which will determine the value of 8.
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he (a — b)
he+k ’
whose second member is known ; for the temperatures ¢ and b
are given, as are also the quantities 4, %, e.
Introducing this value of a— g8 into the general equation

From this may be derived a—8= an equation

v=a+ B :az, we shall have, to express the temperatures of any,
section of the solid, the equation a—v= 7_‘%_“;:;) , in which

known quantities only enter with the corresponding variables v
and z. ~

"72. So far we have determined the final and permanent state
of the temperatures in a solid enclosed between two infinite and
parallel plane surfaces, maintained at unequal temperatures.
This first case is, properly speaking, the case of the linear and
uniform propagation of heat, for there is no transfer of heat in
the plane parallel to the sides of the solid; that which traverses
the solid flows uniformly, since the value of the flow is the same
for all instants and for all sections.

We will now restate the three chief propositions which result
from the examination of this problem; they are susceptible of a
great number of applications, and form the first elements of our
theory. '

1st. If at the two extremities of the thickness ¢ of the solid
we erect perpendiculars to represent the temperatures a and b
of the two sides, and if we draw the straight line which joins
the extremities of these two first ordinates, all the intermediate
temperatures will be proportional to the ordinates of this straight
line ; they are expressed by the general equation a — v=a—§~b z,

v denoting the temperature of the section whose height is z.

2nd. The quantity of heat which flows uniformly, during
unit of time, across unit of surface taken on any section whatever
parallel to the sides, all other things being equal, is directly
proportional to the difference a—b of the extreme temperatures,
and inversely proportional to the distance e which separates

these sides. The quantity of heat is expressed by K q—:—b, or
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- K g, if we derive from the general equation the value of

Z—: which is constant; this uniform flow may always be repre-
sented, for a given substance and in the solid under examination,
by the tangent of the angle included between the perpendicular
e and the straight line whose ordinates represent the tempera-
tures.

3rd. One of the extreme surfaces of the solid being submitted
always to the temperature a, if the other plane is exposed to air
maintained at a fixed temperature b; the plane in contact with
the air acquires, as in the preceding case, a fixed temperature 8,
greater than 3, and it permits a quantity of heat to escape into
the air across unit of surface, during umit of time, which is ex-
pressed by A (8 —25), I denoting the external conducibility of
the plane,

The same flow of heat A(8—Db) is equal to that which
traverses the prism and whose value is K (a —8); we have there-

fore the equation A (8-8)=K a__-;ﬁ , which gives the value
of B.

SECTION V.

Law of the permanent temperatures in a prism of small
thickness.

'73. We shall easily apply the principles which have just
been explained to the following problem, very simple in itself,
but one whose solution it is important to base on exact theory.

A metal bar, whose form is that of a rectangular parallelo-
piped infinite in length, is exposed to the action of a source of
heat which produces a constant temperature at all points of its
extremity 4. It is required to determine the fixed temperatures
at the different sections of the bar.

The section perpendicular to the axis is supposed to be a
square whose side 2] is so small that we may without sensible
error consider the temperatures to be equal at different points
of the same section. The air in which the bar is placed is main-
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tained at a constant temperature 0, and carried away by a
current with uniform velocity.

Within the interior of the solid, heat will pass successively
all the parts situate to the right of the source, and not exposed
directly to its action; they will be heated more and more, but
the temperature of each point will not increase beyond a certain
limit. This maximum temperature is not the same for every
section ; it in general decreases as the distance of the section
from the origin increases: we shall denote by v the fixed tem-
perature of a section perpendicular to the axis, and situate at a
distance « from the origin 4.

Before every point of the solid has attained its highest degree
of heat, the system of temperatures varies continually, and ap-
proaches more and more to a fixed state, which is that which
we consider. This final state is kept up of itself when it has
once been formed. In order that the system of temperatures
may be permanent, it is necessary that the quantity of heat
which, during unit of time, crosses a section made at a distance z
from the origin, should balance exactly all the heat which, during
the same time, escapes through that part of the external surface
of the prism which is situated to the right of the same section.
The lamina whose thickness is dir, and whose external surface
is 8ldx, allows the escape into the air, during unit of time, of
a quantity of heat expressed by 8Alv. dx, h being the measure of
the external conducibility of the prism. Hence taking the in-
tegral [8hly.dx from =0 to # =, we shall find the quantity
of heat which escapes from the whole surface of the bar during
unit of time; and if we take the same integral from z=0 to
z=2x, we shall have the quantity of heat lost through the part
of the surface included between the source of heat and the section
made at the distance #. Denoting the first integral by C, whose
value is constant, and the variable value of the second by
[8hly.dx; the difference C— [8hlv.dx will express the whole
quantity of heat which escapes into the air across the part of
the surface situate to the right of the section. On the other
hand, the lamina of the solid, enclosed between two sections
infinitely near at distances z and z + dz, must resemble an in-
finite solid, bounded by two parallel planes, suhject to fixed
temperatures v and v+ dv, since, by hypothesis, the temperature
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does not vary throughout the whole extent of the same section.
The thickness of the solid is dz, and the area of the section is
40 : hence the quantity of heat which flows uniformly, during
unit of time, across a section of this solid, is, according to the

preceding principles, — 4l’k%, k being the specific internal con-
ducibility : we must therefore have the equation

d
- wk£= C- [8hiy.dx,

whence ki g—;’, = 2hv,

" 74. We should obtain the same result by considering the
equilibrium of heat in a single lamina infinitely thin, enclosed
between two sections at distances  and x+dx. In fact, the
quantity of heat which, during unit of time, crosses the first

section situate at distance , is —4l’k§£. To find that which

flows during the same time across the successive section situate
at distance x+ dx, we must in the preceding expression change z
into @+ dz, which gives — 4Tk, [%w(g)]. If we subtract
the second expression from the first we shall find how much
heat is acquired by the lamina bounded by these. two sections
during unit of time; and since the state of the lamina is per-
manent, it follows that all the heat acquired is dispersed into
the air across the external surface 8ldx of the same lamina: now
the last quantity of heat is 8hlvdz: we shall obtain therefore the
same equation .
dv dv 2h

8hlvdx = 4T'kd (d—a-:) , whence e m

'75. In whatever manner this equation is formed, it is
necessary to remark that the quantity of heat which passes into
the lamina whose thickness is dxz, has a finite value, and that
its exact expression is -4l’k§%. The lamina being enclosed

between two surfaces the first of which has a temperature v,



SECT. V.] STEADY TEMPERATURE IN A BAR. 59

and the second a lower temperature v', we see that the quantity
of heat which it receives through the first surface depends on
the difference v—¢', and is proportional to it: but this remark
is not sufficient to complete the calculation. The quantity in
question is not a differential : it has a finite value, since it is
equivalent to all the heat which escapes through that part of
the external surface of the prism which is situate to the right
of the section. To form an exact idea of it, we must compare
the lamina whose thickness is dz, with a solid terminated by
two parallel planes whose distance is ¢, and which are maintained
at unequal temperatures @ and b. The quantity of heat which
passes into such a prism across the hottest surface, is in fact
proportional to the difference a—5 of the extreme temperatures,
but it does not depend only on this difference: all other things
being equal, it is less when the prism is thicker, and in general
it is proportional to %=, This is why the quantity of heat
which passes through the first surface into the lamina, whose
v—1
pra

We lay stress on this remark because the neglect of it has
been the first obstacle to the establishment of the theory. If
we did not make a complete analysis of the elements of the
problem, we should obtain an equation not homogeneous, and,
a fortiori, we should not be able to form the equations which
express the movement of heat in more complex cases.

It was necessary also to introduce into the calculation the
dimensions of the prism, in order that we might not regard, as
general, consequences which observation had furnished in a par-
ticular case. Thus, it was discovered by experiment that a bar
of iron, heated at one extremity, could not acquire, at a distance
of six feet from the source, a temperature of one degree (octo-
gesimal'); for to produce this effect, it would be necessary for
the heat of the source to surpass considerably the point of fusion
of iron; but this result depends on the thickness of the prism
employed. If it had been greater, the heat would have been
propagated to a greater distance, that is to say, the point of
the bar which acquires a fixed temperature of one degree is

1 Reaumur’s Scale of Temperature. [A. F.]

thickness is dz, is proportional to
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much more remote from the source when the bar is thicker, all
other conditions remaining the same. We can always raise by
one degree the temperature of one end of a bar of iron, by heating
the solid at the other end; we need only give the radius of the
base a sufficient length: which is, we may say, evident, and
of which besides a proof will be found in the solution of the
problem (Art. 78).

"76. The integral of the preceding equation is
i %
v=Ae""/:+Be+’Jﬂ,

A and B being two arbitrary constants; now, if we suppose the

distance z infinite, the value of the temperature v must be
Y
infinitely small ; hence the term Be“*/ # does not exist in the in-

tegral : thus the equation v= 4e™* i represents the permanent
state of the solid; the temperature at the origin is denoted by
the constant A, since that is the value of v when z is zero.

This law according to which the temperatures decrease
is the same as that given by experiment; several physicists
have observed the fixed temperatures at differeut points of a
metal bar exposed at its extremity to the constant action of a
source of heat, and they have ascertained that the distances
from the origin represent logarithms, and the temperatures the
corresponding numbers.

" '77. The numerical value of the constant quotient of two con-
secutive temperatures being determined by observation, we easily

deduce the value of the ratio g; for, deioting by v,, v, the tem-
peratures corresponding to the distances x,, x,, we have
, [2h ;
Ut ‘/E, whence ,\/ 2h_logv, —logr, Vi
3 k T—,
As for the separate values of % and k, they cannot be deter-

mined by experiments of this kind: we must observe also the
varying motion of heat.

© 78. Suppose two bars of the same material and different
dimensions to be submitted at their extremities to the same tem-
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perature A4 ; let !, be the side of a section in the first bar, and /,
in the second, we shall have, to express the temperatures of these
two solids, the equations

A e
v, = Ae-x'“f’,"l and v,= de ”‘f“‘:,

v,, in the first solid, denoting the temperature of a section made
at distance z,, and v,, in the second solid, the temperature of a
section made at distance «,.

When these two bars have arrived at a fixed state, the tem-
perature of a section of the first, at a certain distance from the
source, will not be equal to. the temperature of a section of the
second at the same distance from the focus; in order that the
fixed temperatures may be equal, the distances must be different.
If we wish to compare with each other the distances z, and =z,
from the origin up to the points which in the two bars atfain
the same temperature, we must equate the second members of

'

these equations, and from them we conclude that ﬂ; = 7‘ Thus
] £ ]

the distances in question are to each other as the square roots of

the thicknesses.

°79. If two metal bars of equal dimensions, but formed of
different substances, are covered with the same coating, which
gives them the same external conducibility’, and if they are
submitted at their extremities to the same temperature, heat will
be propagated most easily and to the greatest distance from the
origin in that which has the greatest conducibility. To compare
with each other the distances «, and , from the common origin
up to the points which acquire the same fixed temperature, we
must, after denoting the respective conducibilities of the two
substances by k, and k,, write the equation

2h 2h 2
a2 z' k
e zl“/"x‘=e "/"", whence =} = g

x’ 2

Thus the ratio of the two conducibilities is that of the squares
of the distances from the common origin to the points which
attain the same fixed temperature.

! Ingenhousz (1789), Sur les métauzx comme conducteurs de la chaleur. Journal
de Physique, xxx1v., 68, 380. Gren's Journal der Physik, Bd. 1. [A.F.]
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"80. It is easy to ascertain how much heat flows during unit
of time through a section of the bar arrived at its fixed state:

this quantity is expressed by — 4kl‘%, or 44 /2kRP. e-'*ﬁ’s, and

if we take its value at the origin, we shall have 4A4,/2khP as the
measure of the quantity of heat which passes from the source
into the solid during unit of time; thus the expenditure of the
source of heat is, all other things being equal, proportional to the
square root of the cube of the thickness.

We should obtain the same result on taking the integral
[8hly. dx from z nothing to z infinite,

SECTION VL

On the heating of closed spaces.

'81. We shall again make use of the theorems of Article 72
in the following problem, whose solution offers useful applications;
it consists in determining the extent of the heating of closed
spaces.

Imagine a closed space, of any form whatever, to be filled with
atmospheric air and closed on all sides, and that all parts of the
boundary are homogeneous and have a common thickness e, so
small that the ratio of the external surface to the internal surface
differs little from unity. The space which this boundary termi-
nates is heated by a source whose aetion is constant; for example,
by means of a surface whose area is & maintained at a constant
temperature a.

We consider here only the mean temperature of the air con-
tained in the space, without regard to the unequal distribution of
heat in this mass of air; thus we suppose that the existing causes
incessantly mingle all the portions of air, and make their tem-
peratures uniform,

We see first that the heat which continually leaves the source
spreads itself in the surrounding air and penetrates the mass of
which the boundary is formed, is partly dispersed at the surface,
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and passes into the external air, which we suppose to be main-
tained at a lower and permanent temperature n. The inner air is
heated more and more: the same is the case with the solid
boundary: the system of temperatures steadily approaches a final
state which is the object of the problem, and has the property of
existing by itself and of being kept up unchanged, provided the
surface of the source & be maintained at the temperature «, and
the external air at the temperature ».
In the permanent state which we wish to determine the air
preserves a fixed temperature m; the temperature of the inner
“ surface s of the solid boundary has also a fixed value a; lastly, the
outer surface s, which terminates the enclosure, preserves a fixed
temperature b less than a, but greater than n. The quantities
g, a, 8, e and n are known, and the quantities m, @ and b are
unknown.
The degree of heating consists in the excess of the temperature
m over n, the temperature of the external air; this excess evi-
dently depends on the area & of the heating surface and on its
temperature a; it depends also on the thickness e¢ of the en-
closure, on the area s of the surface which bounds it, on the
facility with which heat penetrates the inner surface or that
which is opposite to it; finally, on the specific conducibility of
the solid mass which forms the enclosure : for if any one of these
elements were to be changed, the others remaining the same, the
degree of the heating would vary also. The problem is to deter-
mine how all these quantities enter into the value of m —n.

'82. The solid boundary is terminated by two equal surfaces,
each of which is maintained at a fixed temperature; every
prismatic element of the solid enclosed between two opposite por-
tions of these surfaces, and the normals raised round the contour
of the bases, is therefore in the same state as if it belonged to an
infinite solid enclosed between two parallel planes, maintained at
unequal temperatures. All the prismatic elements which com-
pose the boundary touch along their whole length. The points
of the mass which are equidistant from the inner surface have
equal temperatures, to whatever prism they belong ; consequently
there cannot be any transfer of heat in the direction perpendicular
to the length of these prisms. The case is, therefore, the same
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as that of which we have already treated, and we must apply
to it the linear equations which have been stated in former
articles. .

" 83, Thus in the permanent state which we are considering,
the flow of heat which leaves the surface ¢ during a unit of time,
is equal to that which, during the same time, passes from the
surrounding air into the inner surface of the enclosure; it is
equal also to that which, in a unit of time, crosses an inter-
mediate section made within the solid enclosure by a surface
equal and parallel to those which bound this enclosure; lastly,
the same flow is again equal to that which passes from the solid
enclosure across its external surface, and is dispersed into the air.
If these four quantities of flow of heat were not equal, some
variation would necessarily occur in the state of the temperatures,
which is contrary to the hypothesis.

The first quantity is expressed by o (a—m)g, denoting by
g the external conducibility of the surface o, which belongs to
the source of heat.

The second is 8 (m — a)k, the coefficient b being the measure
of the external conducibility of the surface s, which is exposed
to the action of the source of heat.

The third is s =

bK, the coefficient K being the measure of

the conducibility proper to the homogeneous substance which
forms the boundary

The fourth is s (b—n)H, denoting by H the external con-
ducibility of the surface s, which the heat quits to be dispersed
into the air. The coefficients A and H may have very unequal
values on account of the difference of the state of the two surfaces
which bound the enclosure ; they are supposed to be known, as
also the coefficient K : we shall have then, to determine the three
unknown quantities m, @ and b, the three equations:

g(a—m)g=s(m—a)h,

~b

a'(a-m)g=sa K,

g(a-m)g=s(b—n)H
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"84. The value of m is the special object of the problem. It
may be found by writing the equations in the form

m— a=-—(a m),
a——b—-——(a m),

b—n=;%(a—m);
adding, we have m—n=(a-m)P,

denoting by P the known quantity - % +Z+ H)

whence we conclude

p @=n (g +% H)

n) .
1+P g  ge ._)
1+;(']‘I+R+H

"85. The result shews how m-ﬁ, the extent of the heating,
depends on given quantities which constitute the hypothesis.
We will indicate the chief results to be derived from it*,

m—n=.(a-

1st. The extent of the heating m —n is directly proportional
to the excess of the temperature of the source over that of the
external air.

2nd. The value of m—n does not depend on the form of
the enclosure nor on its volume, but only on the ratiogof the

surface from which the heat proceeds to the surface which receives
it, and also on e the thickness of the boundary.

If we double o the surface of the source of heat, the extent
of the heating does not become double, but increases according
to a certain law which the equation expresses.

1 These results were stated by the author in a rather different manner in the
extract from his original memoir published in the Bulletin par la Société Philo-
matique de Paris, 1818, pp. 1—11. [A. F.]

F. H, 5
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3rd. All the specific coefficients which regulate the action
of the heat, that is to say, g, K, H and h, compose, with the

dimension ¢, in the value of m —n a single element "q;+g—;+ %,
whose value may be determined by observation.

If we doubled e the thickness of the boundary, we should
have the same result as if, in forming it, we employed a sub-
stance whose conducibility proper was twice as great. Thus the
employment of substances which are bad conductors of heat
permits us to make the thickness of the boundary small; the
effect which is obtained depends only on the ratio ‘% .

4th. If the conducibility K is nothing, we find m>si=a;
that is to say, the inmer air assumes the temperature of the
source : the same is the case if H is zero, or h zero. These con-
sequences are otherwise evident, since the heat cannot then be
dispersed into the external air,

5th. The values of the quantitics g, H, k, K and a, which
we supposed known, may be measured by direct experiments,
as we shall shew in the sequel; but in the actual problem, it
will be sufficient to notice the value of m —n which corresponds
to given values of o and of a, and this value may be used to

determine the whole coefficient  + %2 + & by means of the equa-

h K H’
tion m-;n=(a-n)§p+(l +gp) in which p denotes the co-
efficient sought. We must substitute in this equation, instead
of g and a—n, the values of those quantities, which we suppose

given, and that of m—mn which observation will have made
known. From it may be derived the value of p, and we may
then apply the formula to any number of other cases.

6th. The coefficient H enters into the value of m—n in
the same manner as the coefficient h; consequently the state of
the surface, or that of the envelope which covers it, produces
the same effect, whether it has reference to the inner or outer
surface.

We should have considered it useless to take notice of these
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different consequences, if we were not treating here of entirely
new problems, whose results may be of direct use.

"86. We know that animated bodies retain a temperature
sensibly fixed, which we may regard as independent of the tem-
perature of the medium in which they live. These bodies are,
after some fashion, constant sources of heat, just as inflamed
substances are in which the combustion has become uniform.
We may then, by aid of the preceding remarks, foresee and
regulate exactly the rise of temperature in places where a great
number of men are collected together. If we there observe the
height of the thermometer under given circumstances, we shall
determine in advance what that height would be, if the number
of men assembled in the same space became very much greater.

In reality, there are several accessory circumstances which
modify the results, such as the unequal thickness of the parts
of the enclosure, the difference of their aspect, the effects which
the outlets produce, the unequal distribution of heat in the air.
We cannot therefore rigorously apply the rules given by analysis;
nevertheless these rules are valuable in themselves, because they
contain the true principles of the matter: they prevent vague
reasonings and useless or confused attempts.

87. If the same space were heated by two or more sources
of different kinds, or if the first inclosure were itself contained
in a second enclosure separated from the first by a mass of air,
we might easily determine in like manner the degree of heating
and the temperature of the surfaces.

If we suppose that, besides the first source o, there is a second
heated surface 7, whose constant temperature is B, and external
conducibility j, we shall find, all the other denominations being '

retained, the following equafion :
/

(a—n)og+(B—n)dpjre 1 1 bAoA

s (K’Wﬁﬁ) |
men= gg+me 1 1
TCEE e

If we suppose only one source o, and if the first enclosure is

itself contained in a second, &, A, K', H', ¢, representing the
5—2
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elements of the second enclosure which correspond to those of
the first which were denoted by s, h, K, H, e; we shall find,
p denoting the temperature of the air which surrounds the ex-
ternal surface of the second enclosure, the following equation :

_la-pP
MmeP="14p "

The quantity P represents

g (9,9 g) z(g g9¢ i)
A (h+K+_H +s. h'+K'+.H' .
We should obtain a similar result if we had three or a greater
number of successive enclosures; and from this we conclude that
these solid envelopes, separated by air, assist very much in in-

creasing the degree of heating, however small their thickness
may be.

88. To make this remark more evident, we will compare the
quantity of heat which escapes from the heated surface, with
that which the same body would lose, if the surface which en-
velopes it were separated from it by an interval filled with air.

If the body 4 be heated by a constant cause, so that its
surface preserves a fixed temperature 3, the air being maintained
at a less temperature @, the quantity of heat which escapes into
the air in the unit of time across a unit of surface will be
expressed by A (b—a), b being the measure of the external con-
ducibility. Hence in order that the mass may preserve a fixed
temperature b, it is necessary that the source, whatever it may
be, should furnish a quantity of heat equal to AS (b—a), S de-
noting the area of the surface of the solid.

Suppose an extremely thin shell to be detached from the
body A4 and separated from the solid by an interval filled with
air; and suppose the surface of the same solid 4 to be still
maintained at the temperature 5. We see that the air contained
between the shell and the body will be heated and will take
a temperature a’ greater than a. The shell itself wiil attain
a permanent state and will transmit to the external air whose
fixed temperature is e all the heat which the body loses. It
follows that the quantity of heat escaping from the solid will
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be hS (b—a’), instead of being AS(b—a), for we suppose that
the new surface of the solid and the surfaces which bound the
shell have likewise the same external conducibility h. It is
evident that the expenditure of the source of heat will be less
than it was at first. The problem is to determine the exact ratio
of these quantities.

89. Let e be the thickness of the shell, m the fixed tempera-
ture of its inner surface, n that of its outer surface, and K its
internal conducibility. We shall have, as the expression of the
quantity of heat which leaves the solid through its surface,
LS (b—a).

As that of the quantity which penetrates the inner surface
of the shell, AS (a’ —m).

As that of the quantity which crosses any section whatever
of the same shell, KSme—n.

Lastly, as the expression of the quantity which passes through
the outer surface into the air, AS (n — a).

All these quantities must be equal, we have therefore the
following equations:

hn—a) =X (m—n)

h(n—a)="h(d —m),
h(n—a)=h(b-a)).
If moreover we write down the identical equation
k(n—a)=h(n—a),
and arrange them all under the forms

n—a=n-—a,
.m—n—jhg(n—a),

ad-m=n-—a,
b—a'=n-a,

we find, on addition,

b—a=(n-a)(3+'}—:;).
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The quantity of heat lost by the solid was 28 (b—a), when
its surface communicated freely with the air, it is now 48 (b —a’)

or b3 (n—a), which is equivalent to 4§ L=

+ —_—
K
The first quantity is greater than the second in the ratio of
he
3+ 1? to 1.

In order therefore to maintain at temperature b a solid whose
surface communicates directly to the air, more than three times
as much heat is necessary than would be required to maintain
it at temperature b, when its extreme surface is not adherent
but separated from the solid by any small interval whatever filled
with air,

If we suppose the thickness e to be infinitely small, the
ratio of the quantities of heat lost will be 3, which would also
be the value if K were infinitely great.

We can easily account for this result, for the heat being
unable to escape into the external air, without penetrating several
surfaces, the quantity which flows out must diminish as the
number of interposed surfaces increases; but we should have
been unable to arrive at any exact judgment in this case, if the
problem had not been submitted to analysis.

90. We have not considered, in the preceding article, the
effect of radiation across the layer of air which separates the
two surfaces; nevertheless this circumstance modifies the prob-
lem, since there is a portion of heat which passes directly across
the intervening air. We shall suppose then, to make the object
of the analysis more distinct, that the interval between the sur-
faces is free from air, and that the heated body is covered by
any number whatever of parallel lamin® separated from each
other.

If the heat which escapes from the solid through its plane
superficies maintained at a temperature b expanded itself freely
in vacuo and was received by a parallel surface maintained at
a less temperature a, the quantity which would be dispersed in
unit of time across unit of surface would be proportional to (b —a),
the difference of the two constant temperatures: this quantity
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would be represented by H (b —a), H being the value of the rela-
tive conducibility which is not the same as &.

The source which maintains the solid in its original state must
therefore furnish, in every unit of time, a quantity of heat equal
to HS (b—a).

We must now determine the new value of this expenditure
in the case where the surface of the body is covered by several
successive lamina separated by intervals free from air, supposing
always that the solid is subject to the action of any external
cause whatever which maintains its surface at the temperature b.

Imagine the whole system of temperatures to have become
fixed ; let m be the temperature of the under surface of the first
lamina which is consequently opposite to that of the solid, let n
be the temperature of the upper surface of the same lamina,
e its thickness, and K its specific conducibility ; denote also by
m,, n,, m,, n, m, n,, m,n,, & the temperatures of the under
and upper surfaces of the different lamin, and by K, e, the con-
ducibility and thickness of the same lamine; lastly, suppose all
these surfaces to be in a state similar to the surface of the solid,
so that the value of the coefficient H is common to them.

The quantity of heat which penetrates the under surface of
a lamina corresponding to any suffix ¢ is HS (n,_,—m,), that which

crosses this lamina is I—%g(m,— n,), and the quantity which escapes

from its upper surface is HS (n,—m,,,). These three quantities,
and all those which refer to the other lamina are equal; we may
therefore form the equation by comparing all these quantities
in question with the first of them, which is HS (b—m,); we shall
thus have, denoting the number of laminz by ;:

b-m=b-m,
o .
m,— n, =—Ee(b—m,),

n, —m,=b—m,

------------------------
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He
m=n=x (b—m),

n—a=b-m,
Adding these equations, we find
b-a)=@-m)j(1+%).

The expenditure of the source of heat necessary to maintain
the surface of the body 4 at the temperature b is HS (b—a),
when this surface sends its rays to a fixed surface maintained at
the temperature a. The expenditure is HS (b —m,) when we place
between the surface of the body 4, and the fixed surface maintained
at temperature @, & number ; of isolated laminee; thus the quantity
of heat which the source must furnish is very mmuch less in the
second hypotheses than in the first, and the ratio of the two

1

lamine to be infinitely small, the ratio is % The expenditure

quantities is If we suppose the thickness e of the

of the source is then inversely as the number of lamin® which
cover the surface of the solid.

91. The examination of these results and of those which we
obtained when the intervals between successive enclosures were
occupied by atmospheric air explain clearly why the separation
of surfaces and the intervention of air assist very much in re-
taining heat.

Analysis furnishes in addition analogous consequences when
we suppose the source to be external, and that the heat which
emanates from it crosses successively different diathermanous
envelopes and the air which they enclose. This is what has
happened when experimenters have exposed to the rays of the
sun thermometers covered by several sheets of glass within which
different layers of air have been enclosed.

For similar reasons the temperature of the higher regions
of the atmosphere is very much less than at the surface of the

earth.
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In general the theorems concerning the heating of air in
closed spaces extend to a great variety of problems. It would
be useful to revert to them when we wish to foresee and regulate
temperature with precision, as in the case of green-houses, drying-
houses, sheep-folds, work-shops, or in many civil establishments,
such as hospitals, barracks, places of assembly.

In these different applications we must attend to accessory
circumstances which modify the results of analysis, such as the
unequal thickness of different parts of the enclosure, the intro-
duction of air, &c.; but these details would draw us away from
our chief object, which is the exact demonstration of general
principles.

For the rest, we have considered only, in what has just been
said, the permanent state of temperature in closed spaces. We
can in addition express analytically the variable state which
precedes, or that which begins to take place when the source of
heat is withdrawn, and we can also ascertain in this way, how
the specific properties of the bodies which we employ, or their
dimensions affect the progress and duration of the heating ; but
these researches require a different analysis, the prineiples of
which will be explained in the following chapters.

" SECTION VIL
On the uniform movement of heat in three dimensions.

92, Up to this time we have considered the uniform move-
ment of heat in one dimension only, but it is easy to apply the
same principles to the case in which heat is propagated uniformly
in three directions at right angles.

Suppose the different points of a solid enclosed by six planes
at right angles to have unequal actual temperatures represented
by the linear equation v=4A4 + ax+ by + cz, z, y, 2, being the
rectangular co-ordinates of a molecule whose temperature is v.
Suppose further that any external causes whatever acting on the
six faces of the prism maintain every one of the molecules situated
on the surface, at its actual temperature expressed by the general

equation
v=A+ax+bytcz...cocornnnnnns cervenees (a),
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we shall prove that the same causes which, by hypothesis, keep -
the outer layers of the solid in their initial state, are sufficient
to preserve also the actual temperatures of every one of the inner
molecules, so that their temperatures do not cease to be repre-
- sented by the linear equation.

The examination of this question is an element of the
general theory, it will serve to determine the laws of the varied
movement of heat in the interior of a solid of any form whatever,
for every one of the prismatic molecules of which the body is
composed is during an infinitely small time in a state similar
to that which the linear equation (a) expresses. We may then,
by following the ordinary principles of the differential calculus,
easily deduce from the notion of uniform movement the general
equations of varied movement.

'93. In order to prove that when the extreme layers of the
solid preserve their temperatures no change can happen in the
interior of the mass, it is sufficient to compare with each other
the quantities of heat which, during the same instant, cross two
parallel planes.

Let b be the perpendicular distance of these two planes which
we first suppose parallel to the horizontal plane of # and y. Let
m and m’ be two infinitely near molecules, one of which is above
the first horizontal plane and the other below it: let z, y, z be
the co-ordinates of the first molecule, and &/, ', 2 those of the
second. In like manner let M and M’ denote two infinitely
pear molecules, separated by the second horizontal plane and
situated, relatively to that plane, in the same manner as m and
m’ are relatively to the first plane; that is to say, the co-ordinates
of M are z, y, 2+ b, and those of M are &, 3/, 2 + b. It is evident
that the distance mm’ of the two molecules m and m’ is equal
to the distance MM’ of the two molecules M and M’ ; further,
let v be the temperature of m, and o' that of m/, also let ¥ and
V’ be the temperatures of M and M, it is easy to see that the
two differences v—v" and ¥V — V' are equal; in fact, substituting
first the co-ordinates of m and =’ in the general equation

v=A +ax+by+ecs,
we find v—v=a(@z-2)+b(y—-y)+c(z-2),
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and then substituting the co-ordinates of M and M’, we find also
V-V=a@-a)+b(y—y)+c(z—2). Now the quantity of
heat which m sends to m’ depends on the distance mm’, which
separates these molecules, and it is proportional to the difference
v—1v" of their temperatures, This quantity of heat transferred
may be represented by

g (v—v)de;

the value of the coefficient ¢ depends in some manner on the
distance mm’/, and on the nature of the substance of which the
solid is formed, d¢ is the duration of the instant. The quantity
of heat transferred -from M to M’, or the action of M on M’ is
expressed likewise by ¢ (V' — V") dt, and the coefficient ¢ is the
same as in the expression ¢ (v— ') d¢, since the distance MM’ is
equal to mm’ and the two actions are effected in the same solid :
furthermore ¥V'— V' is equal to v —v/, hence the two actions are
equal.

If we choose two other points n and n, very near to each
other, which transfer heat across the first horizontal plane, we
shall find in the same manner that their action is equal to that
of two homologous points N and N' which communicate heat
across the second horizontal plane. We conclude then that the
whole quantity of heat which crosses the first plane is equal to
that which crosses the second plane during the same instant.
We should derive the same result from the comparison of two
planes parallel to the plane of  and 2, or from the comparison
of two other planes parallel to the plane of y and z. Hence
any part whatever of the solid enclosed between six planes at
right angles, receives through each of its faces as much heat as
it loses through the opposite face; hence no portion of the solid
can change temperature.

"94. From this we see that, across one of the planes in
question, a quantity of heat flows which is the same at all in-
stants, and which is also the same for all other parallel sections.

In order to determine the value of this constant flow we
shall compare it with the quantity of heat which flows uniformly
in the most simple case, which has been already discussed. The
case is that of an infinite solid enclosed between two infinite
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planes and maintained in a constant state. We have seen that
the temperatures of the different points of the mass are in this
case represented by the equation v= 4 + cz; we proceed to prove
that the uniform flow of heat propagated in the vertical direction
in the infinite solid is equal to that which flows in the same
direction across the prism enclosed by six planes at right angles,
This equality necessarily exists if the coefficient ¢ in the equation
v= A + cz, belonging to the first solid, is the same as the coeffi-
cient ¢ in the more general equation v = A4 + ax + by + cz which
represents the state of the prism. In fact, denoting by H a
plane in this prism perpendicular to z, and by m and u two
molecules very near to each other, the first of which m is below
the plane H, and the second above this plane, let v be the
temperature of m whose co-ordinates are =, y, z, and w the
temperature of 4 whose co-ordinates are z +a, y + 8, z+ . Take
a third molecule x’ whose co-ordinates are z —a, y— 3, z++, and
whose temperature may be denoted by . We see that x and
u are on the same horizontal plane, and that the vertical drawn
from the middle point of the line wu’, which joins these two
points, passes through the point m, so that the distances mu and
my’ are equal. The action of m on u, or the quantity of heat
which the first of these molecules sends to the other across the
plane H, depends on the difference v — w of their temperatures.
The action of m on u' depends in the same manner on the
difference v—w’ of the temperatures of these molecules, since
the distance of m from u is the same as that of m from u'. Thus,
expressing by ¢ (v —w) the action of m on w during the unit of
time, we shall have g (v — ') to express the action of m on u/,
¢ being a common unknown factor, depending on the distance
mp and on the nature of the solid. Hence the sum of the two
actions exerted during unit of time is ¢ (v —w + v —w’).
If instead of , y, and 2, in the general equation

v=A +ax + by +cz,

we substitute the co-ordinates of m and then those of w and 4/,
we shall find
v—w=—az—bB—cy,

v—w'=+ax+b8—cry.
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The sum of the two actions of m on u and of m on u’ is there-
fore — 2gcvy.

Suppose then that the plane H belongs to the infinite solid
whose temperature equation is v= 4 +cz, and that we denote
also by m, 4 and p' those molecules in this solid whose co-
ordinates are z, y, z for the first, z+ a, y + B, z +y for the second,
and z—a,y— B, z+v for the third: we shall have, as in the
preceding case, v—w+v—w =—2¢y. Thus the sum of the two
actions of m on p and of m on y/, is the same in the infinite solid
as in the prism enclosed between the six planes at right angles.

We should obtain a similar result, if we considered the action
of another point n below the plane H on.two others v and »’,
situated at the same height above the plane. Hence, the sum
of all the actions of this kind, which are exerted across the ‘plane
H, that is to say the whole quantity of heat which, during unit
of time, passes to the upper side of this surface, by virtue of the
action of very near molecules which it scparates, is always the
same in both solids.

"93. In the second of these two bodies, that which is bounded
by two infinite planes, and whose temperature equation is
v =A + cz, we know that the quantity of heat which flows during
unit of time across unit of area taken on any horizontal section
whatever is — cK, ¢ being the coefficient of z, and K the specific
conducibility ; hence, the quantity of heat which, in the prism
enclosed between six planes at right angles, crosses during unit
of time, unit of area taken on any horizontal section whatever,
is also — cK, when the linear equation which represents the tem-
peratures of the prism is

v=A+ar+by+eca

In the same way it may be proved that the quantity of heat
which, during unit of time, flows uniformly across unit of area
taken on any section whatever perpendicular to @, is expressed
by —aK, and that the whole quantity which, during unit of time,
crosses unit of area taken on a section perpendicular to ¥, is
expressed by — bK,

The theorems which we have demonstrated in this and the
two preceding articles, suppose the direct action of heat in the
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interior of the mass to be limited to an extremely small distance,
but they would still be true, if the rays of heat sent out by each
molecule could penetrate directly to a quite appreciable distance,
but it would be necessary in this case, as we have remarked in
Article 70, to suppose that the cause which maintains the tem-
peratures of the faces of the solid affects a part extending within
the mass to a finite depth.

- SECTION VIIIL
Measure of the movement of heat at a given point of a solid mass.

- 96. It still remains for-us to determine one of the principal
elements of the theory of heat, which consists in defining and in
measuring exactly the quantity of heat which passes through
every point of a solid mass across a plane whose direction is given.

If heat is unequally distributed amongst the molecules of the
same body, the temperatures at any point will vary every instant.
Denoting by ¢ the time which has elapsed, and by v the tem-
perature attained after a time ¢ by an infinitely small molecule
whose co-ordinates are z, y, 2 ; the variable state of the solid will be
expressed by an equation similar to the following v = F(x, y, 2, ¢).
Suppose the function F to be given, and that consequently we
can determine at every instant the temperature of any point
whatever; imagine that through the point m we draw a hori-
zontal plane parallel to that of z and g, and that on this plane
we trace an infinitely small circle , whose centre is at m ; it is
required to determine what is the quantity of heat which during
the instant d¢ will pass across the circle o from the part of the
solid which is below the plane into the part above it.

All points extremely near to the point m and under the plane
exert their action during the infinitely small instant d¢, on all
those which are above the plane and extremely near to the point
m, that is to say, each of the points situated on one side of this
plane will send heat to each of those which are situated on the
other side.

We shall consider as positive an action whose effect is to
transport a certain quantity of heat above the plane, and as
negative that which causes heat to pass below the plane. The
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sum of all the partial actions which are exerted across the circle
o, that is to say the sum of all the quantities of heat which,
crossing any point whatever of this circle, pass from the part
of the solid below the plane to the part above, compose the flow
whose expression is to be found.

It is easy to imagine that this flow may not be the same
throughout the whole extent of the solid, and that if at another
point m’ we traced a horizontal circle w equal to the former, the
two quantities of heat which rise above these planes w and o’
during the same instant might not be equal: these quantities are
comparable with each other and their ratios are numbers which
may be easily determined.

"97. We know already the value of the constant flow for the
case of linear and uniform movement; thus in the solid enclosed be-
tween two infinite horizontal planes, one of which is maintained at
the temperature a and the other at the temperature b, the flow of
heat is the same for every part of the mass; we may regard it as
taking place in the vertical direction only. The value correspond-
ing to unit of surface and to unit of time is K (a%Q), e denoting
the perpendicular distance of the two planes, and K the specific
conducibility : the temperatures at the different points of the
solid are expressed by the equation v =a — (ﬁ'_:_l’ ) 2.

When the problem is that of a solid comprised between six
rectangular planes, pairs of which are parallel, and the tem-
peratures at the different points are expressed by the equation

v=A+ar+dby+ecz,

the propagation takes place at the same time along the directions
of z,of y,of z; the quantity of heat which flows across a definite
portion of a plane parallel to that of # and y is the same through-
out the whole extent of the prism ; its value corresponding to unit
of surface, and to unit of time is — ¢K, in the direction of z it is
—bK, in the direction of y, and — aK in that of .

In general the value of the vertical flow in the two cases which
we have just cited, depends only on the coefficient of z and on

the specific conducibility K; this value is always equal to — K % .
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The expression of the quantity of heat which, during the in-
stant dt, flows across a horizountal circle infinitely small, whose area
is w, and passes in this manner from the part of the solid which is
below the plane of the circle to the part above, is, for the two cases
. . dv
in question, — K (Ewdt.

© 98. It is easy now to generalise this result and to recognise
that it exists in every case of the varied movement of heat ex-
pressed by the equation v=F (z, y, z, ).

Let us in fact denote by &, ¥/, 7, the co-ordinates of this point
m, and its actual temperature by v. Leta +§ y +1, 2 +¢ be
the co-ordinates of a point x infinitely near to the point m, and
whose temperature is w ; £ 1, { are quantities infinitely small added
to the co-ordinates &, y, z’; they determine the position of
molecules infinitely near to the point m, with respect to three
rectangular axes, whose origin is at m, parallel to the axes of
z,y, and z. Differentiating the equation

v=f(2,921)

and replacing the differentials by £, #, { we shall have, to express
the value of w which is equivalent to v+ dv, the linear equation
w=1v+ %E+ % q+% ¢; the coefficients v, %, ‘;%,%Z, are func-
tions of z, ¥, 2, ¢, in which the given and constant values 2/, ¥/, £,
which belong to the point m, have been substituted for z, y, =.

Suppose that the same point m belongs also to a solid enclosed
between six rectangular planes, and that the actual temperatures
of the points of this prism, whose dimensions are finite, are ex-
pressed by the linear equation w=A4 +af+bn+cl; and that
the molecules situated on the faces which bound the solid are
maintained by some external cause at the temperature which is
assigned to them by the linear equation. £, #, { are the rectangular
co-ordinates of a molecule of the prism, whose temperature is w,
referred to three axes whose origin is at m.

This arranged, if we take as the values of the constant coeffi-
cients 4, a, b, ¢, which enter into the equation for the prism, the
quantities v/, (%, %' %, which belong to the differential equa-

tion ; the state of the prism expressed by the equation
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dv
+ dz E+ dy " + dz C

will coincide as nearly as possible with the state of the solid ; that
is to say, all the molecules infinitely near to the point m will have
the same temperature, whether we consider them to be in the solid
or in the prism. This coincidence of the solid and the prism is
quite analogous to that of curved surfaces with the planes which
touch them.

It is evident, from this, that the quantity of heat which flows
in the solid across the circle o, during the instant dt, is the same
as that which flows in the prism across the same circle; for all the
molecules whose actions concur in one effect or the other, have
the same temperature in the two solids. Hence, the flow in

question, in one solid or the other, is expressed by — K dv mdt
It would be — K Z; wdt, if the circle w, whose centre is m, were

perpendicular to the axis of y, and — K g——: wdt, if this circle were

perpendicular to the axis of .

The value of the flow which we have just determined varies
in the solid from one point to another, and it varies also with
the time. We might imagine it to have, at all the points of a
unit of surface, the same value as at the point m, and to preserve
this value during unit of time; the flow would then be expressed
by — 3 , it would be - K g- in the direction of y, and — K g‘;
in that of . We shall ordmanly employ in calculation this
value of the flow thus referred to unit of time and to unit of
surface.

" 99. This theorem serves in general to measure the velocity
with which heat tends to traverse a given point of a plane
situated in any manner whatever in the interior of a solid whose
temperatures vary with the time. Through the given point m,
a perpendicular must be raised upon the plane, and at every
point of this perpendicular ordinates must be drawn to represent
the actual temperatures at its different points. A plane curve
will thus be formed whose axis of abscisse is the perpendicular.

F. H. 6
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The fluxion of the ordinate of this curve, answering to the point
m, taken with the opposite sign, expresses the velocity with
which heat is transferred across the plane. This fluxion of the
ordinate is known to be the tangent of the angle formed by
tke element of the curve with a parallel to the abscissa.

The result which we have just explained is that of which
the most frequent applications have been made in the theory
of heat. We cannot discuss the different problems without
forming a very exact idea of the value of the flow at every point
of a body whose temperatures are variable. It is necessary to
insist on this fundamental notion; an example which we are
about to refer to will indicate more clearly the use which has
been made of it in analysis,

* 100. Suppose the different points of a cubic mass, an edge
of which has the length mr, to have unequal actual temperatures
represented by the equation v =cosxcosycosz The co-
ordinates z, y, z are measured on three rectangular axes, whose
origin is at the centre of the cube, perpendicular to the faces.
The points of the external surface of the solid are at the actual
temperature 0, and it is supposed also that external causes
maintain at all these points the actual temperature 0. On this
hypothesis the body will be cooled more and more, the tem-
peratures of all the points situated in the interior of the mass
will vary, and, after an infinite time, they will all attain the
temperature O of the surface. Now, we shall prove in the sequel,
that the variable state of this solid is expressed by the equation

v=¢" oSz cosy oS 2,

3K
c.n
bility of the substance of which the solid is formed, D is the
density and C the specific heat; ¢ is the time elapsed.

We here suppose that the truth of this equation is admitted,
and we proceed to examine the use which may be made of it
to find the quantity of heat which crosses a given plane parallel
to one of the three planes at the right angles.

If, through the point m, whose co-ordinates are z, y, 2, we
draw a plane perpendicular to z, we shall find, after the mode

the coefficient g is equal to K is the specific conduci-
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of the preceding article, that the value of the flow, at this point
and across the plane, is— K g—g, or Ke™cosxz.cosy.sinz. The

quantity of heat which, during the instant d, crosses an infinitely
small rectangle, situated on this plane, and whose sides are
dz and dy, is

K e* cos z cos y sin zdz dy dt.

Thus the whole heat which, during the instant dt, crosses the
entire area of the same plane, is

K e sin z.dtf[coszcosyda:dy;
the double integral being taken from z= —}2—-# up to z =% T,
and from y=-— % m up to y=% m. We find then for the ex-
pression of this total heat,

4 Ke*sin z. dt.

If then we take the integral with respect to ¢, from ¢ =0 to
t=t, we shall find the quantity of heat which has crossed the
same plane since the cooling began up to the actual moment.

This integral is %K sin z (1 — ™), its value at the surface is

4K
— (1 —-e™),
g( )

so that after an infinite time the quantity of heat lost through
one of the faces is 4K. The same reasoning being applicable

to each of the six faces, we conclude that the solid has lost by its

complete cooling a total quantity of heat equal to %_I_i’ or 8CD,

CII() The total heat which is dissipated
during the cooling must indeed be independent of the special
conducibility K, which can only influence more or less the

velocity of cooling.

since g is equivalent to

6—2
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*100. A. We may determine in another manner the quantity
of heat which the solid loses during a given time, and this will
serve in some degree to verify the preceding calculation. In
fact, the mass of the rectangular molecule whose dimensions are
dz, dy, dz, is Ddxdydz consequently the quantity of heat
which must be given to it to bring it from the temperature 0 to
that of boiling water is CDdxzdy dz, and if it were required to
raise this molecule to the temperature v, the expenditure of heat
would be v CD dx dy dz.

It follows from this, that in order to find the quantity by
which the heat of the solid, after time ¢, exceeds that which
-it contained at the temperature 0, we must take the mul-

tiple integral j f f v CD dz dy dz, between the limits z = — % T,

w—-}.ln- —_1 = = ..1 =
_2 ,y_ 27}" y-—27r,z_—2—7r, 2—271'.

‘We thus find, on substituting for v its value, that is to say
€7 co8 Z oS Y CO8 2,

that the excess of actual heat over that which belongs to the
temperature 0 is 8CD (1 — ¢™); or, after an infinite time,
8CD, as we found before.

We have described, in this introduction, all the elements Whlch
it is necessary to know in order to solve different problems
relating to the movement of heat in solid bodies, and we have
given some applications of these principles, in order to shew
the mode of employing them in analysis; the most important
use which we have been able to make of them, is te deduce
from them the general equations of the propagation of heat,
which is the subject of the next chapter.

-

Note on Art. 76. The researches of J. D. Forbes on the temperatures of a long
iron bar heated at one end shew conclusively that the conducting power X is not con-
stant, but diminishes as the temperature increases.—ITransactions of the Royal
Society of Edinburgh, Vol. xxu1. pp. 133—146 and Vol. xx1v. pp. 73—110.

Note on Art. 98. General expressions for the flow of heat within a mass in
which the conductibility varies with the direction of the flow are investigated by
Lamé in his Théorie Analytique de la Chaleur, pp. 1—8, [A.F.]



CHAPTER IL

EQUATIONS OF THE MOVEMENT OF HEAT.

SECTION L
Equation of the varied movement of heat in a ring.

"101. 'WE might form the general equations which represent
the movement of heat in solid bodies of any form whatever, and
apply them to particular cases. But this method would often
involve very complicated calculations which may easily be avoided.
There are several problems which it is preferable to treat in a
special manner by expressing the conditions which are appropriate
to them; we proceed to adopt this course and examine separately
the problems which have been enunciated in the first section of
the introduction; we will limit ourselves at first to forming the
differential equations, and shall give the integrals of them in the
following chapters, "

‘102, We have already considered the uniform movement of
heat in a prismatic bar of small thickness whose extremity is
immersed in a constant source of heat. This first case offered no
difficulties, since there was no reference except to the permanent
state of the temperatures, and the equation which expresses them
is easily integrated. The following problem requires a more pro-
found investigation; its object is to determine the variable state
of a solid ring whose different points have received initial tempe-
ratures entirely arbitrary.

The solid ring or armlet is generated by the revolution of
a rectangular section about an axis perpendicular to the plane of
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the ring (see figure 3), [ is the perimeter of the section whose area
Fig, . is S, the coefficient 2 measures the external con-
" , ducibility, K the internal conducibility, C' the
specific capacity for heat, D the density. The line
oxz'x” represents the mean circumference of the
armlet, or that line which passes through the
centres of figure of all the sections; the distance
of a section from the origin o is measured by the
arc whose length is «; R is the radius of the mean circumference.
It is supposed that on account of the small dimensions and of
the form of the section, we may consider the temperature at the
different points of the same section to be equal.

X,

]

'103. Imagine that initial arbitrary temperatures have been
given to the different sections of the armlet, and that the solid is
then exposed to air maintained at the temperature 0, and dis-
placed with a constant velocity; the system of temperatures will
continually vary, heat will be propagated within the ring, and
dispersed at the surface: it is required to determine what will be
the state of the solid at any given instant.

Let v be the temperature which the section situated at distance
« will have acquired after a lapse of time ¢; v is a certain function
of « and ¢, into which all the initial temperatures also must enter:
this is the function which is to be discovered.

104. We will consider the movement of heat in an infinitely
small slice, enclosed between a section made at distance z and
another section made at distance z+dz. The state of this slice
for the duration of one instant is that of an infinite solid termi-
nated by two parallel planes maintained at unequal temperatures;
thus the quantity of heat which flows during this instant d¢ across
the first section, and passes in this way from the part of the solid
which precedes the slice into the slice itself, is measured according
to the principles established in the introduction, by the product of
four factors, that is to say, the conducibility K, the area of the

section S, the ratio —g, and the duration of the instant; its

expression is — KS‘%JL To determine the quantity of heat

d.
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which escapes from the same slice across the second section, and
passes into the contiguous part of the solid, it is only necessary
to change « into # + dz in the preceding expression, or, which is
the same thing, to add to this expression its differential taken
with respect to z; thus the slice receives through one of its faces

a quantity of heat equal to —KS% dt, and loses through the
opposite face a quantity of heat expressed by

dv &
-K8 I dt- K8 s
It acquires therefore by reason of its position a quantity of heat
equal to the difference of the two preceding quantities, that is
KS P daat,

On the other hand, the same slice, whose external surface is .
lde and whose temperature differs infinitely little from v, allows
a quantity of heat equivalent to hlvdzdt to escape into the air
during the instant d¢; it follows from this that this infinitely
small part of the solid retains in reality a quantity of heat
represented by K8 gdzdt — hlvdzdt which makes its tempe-

rature vary. The amount of this change must be examined.

dz dt.

'105. The coefficient C expresses how much heat is required
to raise unit of weight of the substance in question from tempe-
rature 0 up to temperature 1; consequently, multiplying the
volume Sdz of the infinitely small slice by the density D, to
obtain its weight, and by C the specific capacity for heat, we shall
have CDSdz as the quantity of heat which would raise the
volume of the slice from temperature 0 up to temperature 1.
Hence the increase of temperature which results from the addition
of a quantity of heat equal to KS %dxdt—hlvdzdt will be
found by dividing the last quantity by CDSdz. Denoting there-
fore, according to custom, the increase of temperature which takes

place during the instant d¢ by Zg dt, we shall have the equation
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& _Kdv hl

dt———C—D—d—;’—UDSU .......... (b)

We shall explain in the sequel the use which may be made of
this equation to determine the complete solution, and what the
difficulty of the problem consists in; we limit ourselves here to
a remark concerning the permanent state of the armlet.

106. Suppose that, the plane of the ring being horizontal,
sources of heat, each of which exerts a constant action, are placed
below different points m, n, p, ¢ etc.; heat will be propagated in
the solid, and that which is dissipated through the surface being
incessantly replaced by that which emanates from the sources, the
temperature of every section of the solid will approach more and
more to a stationary value which varies from ome section to
another. In order to express by means of equation (5) the law of
~ the latter temperatures, whigh would exist of themselves if they
were once established, we must suppose that the quantity v does

not vary with respect to ¢; which annuls the term %’ We thus

have the equation
Po_ W
dz*~ KS

M and N being two constants’.

-.u/i‘— +:s/E
v, whence v = Me "~V ES4 Ng' ~ &5,

1 This equation is the same as the equation for the steady temperature of a
finite bar heated gt one end (Art. 76), except that I here denotes the perimeter of
a section whose area is S. In the case of the finite bar we can determine two
relations between the comstants M and N: for, if ¥ be the temperature at the
source, where z=0, V=M + N ; and if at the end of the bar remote from the source,
where z = L suppose, we make a section at a distance dz from that end, the flow

through this section is, ia unit of time, - &S Z—: , and this is equal to the waste
of heat through the periphery and free end of the slice, Av (Idx+S) namely;
hence uliimately, dz vanishing,

hv+K@

dx

Mc_LJ‘ET% Ne 1\'.‘/‘“:;= ;\/g (Mc“"/z’ - Nc““/g—‘) .

Cf. Verdet, Conférences de Physique, p. 37. [A. F.]

=0, when z=1L,

that is
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107. Suppose a portion of the circumference of the ring,
situated between two successive sources of heat, to be divided
into equal parts, and denote by v, v, v,, v,, &c., the temperatures
at the points of division whose distances from the origin are
z, %, &, x, &c.; the relation between v and z will be given by
the preceding equation, after that the two constants have been
determined by means of the two values of v corresponding to

o
the sources of heat. Denoting by a the quantity e"’/“, and
by A the distance x,—x, of two consecutive points of division,
we shall have the equations:

v, = Ma™ + No™,
v,=Ma*.a" + Nua™,
v, = MaPa" + Na ™2™,

. . . v+ .
whence we derive the following relation —Lr' =ar+a,

:

]

We should find a similar result for the three points whose
temperatures are v,, v,, v,, and in general for any three consecutive
points. It follows from this that if we observed the temperatures
v, v, v, v, v, &c. of several successive points, all situated between
the saine two sources m and n and separated by a constant
interval A, we should perceive that any three consecutive tempe-
ratures are always such that the sum of the two extremes divided
by the mean gives a constant quotient a*+a™.

108. If, in the space included between the next two sources of
heat n and p, the temperatures of other different points separated
by the same interval A were observed, it would still be found that
for any three consecutive points, the sum of the two extreme
temperatures, divided by the mean, gives the same quotient
«*+a> The value of this quotient depends neither on the
position nor on the intensity of the sources of heat.

109. Let ¢ be this constant value, we have the equation
Yy =qUs—9;

we see by this that when the circumference is divided into equal
parts, the temperatures at the points of division, included between
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two consecutive sources of heat, are represented by the terms of
a recurring series whose scale of relation is composed of two terms
gand —1.

Experiments have fully confirmed this result. We have ex-
posed a metallic ring to the permanent and simultaneous action
of different sources of heat, and we have observed the stationary
temperatures of several points separated by constant intervals; we
always found that the temperatures of any three consecutive
points, not separated by a source of heat, were connected by the
relation in question. Even if the sources of heat be multiplied,
and in whatever manner they be disposed, no change can be

v+,

effected in the numerical value of the quotient *; it depends

2
only on the dimensions or on the nature of the ring, and not on

the manner in which that solid is heated.

110. When we have found, by observation, the value of the

constant quotient ¢ or v‘:,v’, the value of «* may be derived

from it by means of the equation a* +a™=¢. One of the roots
is a*, and other root is @™ This quantity being determined,

we may derive from it the value of the ratio I!%’ which is

—? (loga)". Denoting a* by @, we shall have &' — go +1=0. Thus

the ratio of the two conducibilities is found by multiplying ?

by the square of the hyperbolic logarithm of one of the roots of
the equation &' —gw + 1= 0, and dividing the product by A

SECTION 1IIL
Equation of the varied movement of heat tn a solid sphere.

111. A solid homogeneous mass, of the form of a sphere,
having been immersed for an infinite time in a medium main-
tained at a permanent temperature 1, is then exposed to air which
is kept at temperature 0, and displaced with constant velocity :
it is required to determine the successive states of the body during
the whole time of the cooling.
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Denote by x the distance of any point whatever from the
centre of the sphere, and by v the temperature of the same point,
- after a time ¢ has elapsed; and suppose, to make the problem
more general, that the initial temperature, common to all points
situated at the distance = from the centre, is different for different
values of z; which is what would have been the case if the im-
mersion had not lasted for an infinite time.

Points of the solid, equally distant from the centre, will not
cease to have a common temperature ; » is thus a function of «
and ¢. When we suppose =0, it is essential that the value of
this function should agree with the initial state which is given,
and which is entirely arbitrary.

112. We shall consider the instantaneous movement of heat
in an infinitely thin shell, bounded by two spherical surfaces whose
radii are « and z+dr: the quantity of heat which, during an
infinitely small instant d, crosses the lesser surface whose radius
is «, and so passes from that part of the solid which is nearest to
the centre into the spherical shell, is equal to the product of four
factors which are the conducibility K, the duration dt, the extent

4z’ of surface, and the ratio %, taken with the negative sign;

it is expressed by — 4K1rz’:—:dt.

To determine the quantity of heat which flows during the
same instant through the second surface of the same shell, and
passes from this shell into the part of the solid which envelops it,
« must be changed into z + dz, in the preceding expression : that

is to say, to the term — 4Kno' %dt must be added the differen-
tial of this term taken with respect to 2. We thus find

dv dy
— 4Kzt 5 o — 4Kd (z' d—x) .dt
as the expression of the quantity of heat which leaves the spheri-
cal shell across its second surface; and if we subtract this quantity
from that which enters through the first surface, we shall have
dv

4K~d (:c’ d—.r) dt. This difference is evidently the quantity of
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heat which accumulates in the intervening shell, and whose effect
is to vary its temperature.

113. The coefficient C denotes the quantity of heat which is
necessary to raise, from temperature 0 to temperature 1, a definite
unit of weight; D is the weight of unit of volume, 4wa’dx is the
volume of the intervening layer, differing from it only by a
quantity which may be omitted : hence 4wCDa’dx is the quantity
of heat necessary to raise the intervening shell from temperature
0 to temperature 1. Hence it is requisite to divide the quantity
of heat which accumulates in this shell by 4wCDz’dx, and we
shall then find the increase of its temperature v during the time
dt. We thus obtain the equation

dv
dv=~0%dt.d—(5;§”2,

do_ K (dv 2 dv) .
or %—Uj'(d—.c;-*-; d'—-x/...u-...(C).

-

- 114. The preceding equation represents the law of the move-
ment of heat in the interior of the solid, but the temperatures of
points in the surface are subject also to a special condition which
must be expressed. This condition relative to ‘the state of the
surface may vary according to the nature of the problems dis-
cussed : we may suppose for example, that, after having heated
the sphere, and raised all its molecules to the temperature of
boiling water, the cooling is effected by giving to all points in the
surface the temperature 0, and by retaining them at this tem-
‘perature by any external cause whatever. In this case we may
imagine the sphere, whose variable state it is desired to determine,
to be covered by a very thin envelope on which the cooling agency
exerts its action. It may be supposed, 1°, that this infinitely
thin envelope adheres to the solid, that it is of the same substance
as the solid and that it forms a part of it, like the other portions
of the mass; 2°, that all the molecules of the envelope are sub-
jected to temperature 0 by a cause always in action which prevents
the temperature from ever being above or below zero. To express
this condition theoretically, the function v, which contains « and ¢,
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must be made to become nul, when we give to z its complete
value X equal to the radius of the sphere, whatever else the value
of ¢ may be. We should then have, on this hypothesis, if we
denote by ¢ (z,¢) the function of # and ¢, which expresses the
value of v, the two equations

A
Further, it is necessary that the initial state should be repre-
sented by the same function ¢ (z,£): we shall therefore have as a
second condition ¢ (#,0) =1. Thus the variable state of a solid
sphere on the hypothesis which we have first described will be
represented by a function », which must satisfy the three preceding
equations. The first is general, and belongs at every instant to
all points of the mass; the second affects only the molecules at
the surface, and the third belongs only to the initial state.

115. If the solid is being cooled in air, the second equation is
different ; it must then be imagined that the very thin envelope
is maintained by some external cause, in a state such as to pro-
duce the escape from the sphere, at every instant, of a quantity of
heat equal to that which the presence of the medium can carry
away from it.

Now the quantity of heat which, during an infinitely small
instant dt, flows within the interior of the solid across the spheri-
dv dt; and
dz "’
this general expression is applicable to all values of z. Thus, by
supposing = X we shall ascertain the quantity of heat which in
the variable state of the sphere would pass across the very thin
envelope which bounds it ; on the other hand, the external surface
of the solid having a variable temperature, which we shall denote
by ¥, would permit the escape into the air of a quantity of heat
proportxona.l to that temperature, and to the extent of the surface,
which is 47 X* The value of this quantity is 47.X*Vdt.

To express, as is supposed, that the action of the envelope
supplies the place, at every instant, of that which would result from
the presence of the medium, it is sufficient to equate the quantity

4hwX*Vdt to the value which the expression —4K7wX* ‘—;2 dt

cal surface situate at distance , is equal to — 4Kwa® —
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receives when we give to z its complete value X; hence we obtain

the equation % =— %v, which must hold when in the functions

il and v we put instead of z its value X, which we shall denote

dz
e e av
by writing it in the form K%+kV=0.

116. The value of j—; taken when z = X, must therefore have

a constant ratio —}—’—‘(— to the value of v, which corresponds to the

same point. Thus we shall suppose that the external cause of
the cooling determines always the state of the very thin envelope,

in such a manner that the value of % which results from this
state, is proportional to the value of v, corresponding to z =X,

and that the constant ratio of these two quantities is — kh— . This
condition being fulfilled by means of some cause always present,

which prevents the extreme value of ‘—2——: from being anything else

but — 1_["; v, the action of the envelope will take the place of that

of the air.

It is not necessary to suppose the envelope to be extremely
thin, and it will be seen in the sequel that it may have an
indefinite thickness. Here the thickness is considered to be
indefinitely small, so as to fix the attention on the state of the
surface only of the solid.

117. Hence it follows that the three equations which are
required to determine the function ¢ (z, ¢) or v are the following,

dv_ K (d  2dv av
-JE—‘C—D(d—x,-F;’d;); K~—+hV=0, ¢(z,0)=1.

dz

The first applies to all possible values of = and ¢; the second
is satisfied when 2 =X, whatever be the value of ¢; and the-
third is satisfied when ¢ = 0, whatever be the value of z.
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It might be supposed that in the initial state all the spherical
layers have not the same temperature: which is what would
necessarily happen, if the immersion were imagined not to have
lasted for an indefinite time. In this case, which is more general
~ than the foregoing, the given function, which expresses the
initial temperature of the molecules situated at distance x from
the centre of the sphere, will be represented by F (z); the third
equation will then be replaced by the following, ¢ (z, 0) = F ().

Nothing more remains than a purely analytical problem,
whose solution will be given in one of the following chapters.
It counsists in finding the value of v, by means of the general
condition, and the two special conditions to which it is subject.

SECTION IIL
Equations of the varied movement of heat in a solid cylinder.

118. A solid cylinder of infinite length, whose side is per-
pendicular to its circular base, baving been wholly immersed
in a liquid whose temperature is uniform, has been gradually
heated, in such a manner that all points equally distant from
_ the axis have acquired the same temperature; it is then exposed
 to a current of colder air; it is required to determine the
temperatures of the different layers, after a given time.

x denotes the radius of a cylindrical surface, all of whose
points are equally distant from the axis; X is the radius of
the cylinder; v is the temperature which points of the solid,
situated at distance z from the axis, must have after the lapse
of a time denoted by #, since the beginning of the cooling.
Thus v is a function of « and ¢, and if in it ¢ be made equal to
0, the function of # which arises from this must necessarily satisfy
the initial state, which is arbitrary.

119. Consider the movement of heat in an infinitely thin
portion of the cylinder, included between the surface whose
radius is z, and that whose radius is #+ dz. The quantity of
heat which this portion receives during the instant dt, from the
part of the solid which it envelops, that is to say, the quantity
which during the same time crosses the cylindrical surface
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whose radius is «, and whose length is supposed to be equal
to unity, is expressed by

dv
dx

To find the quantity of heat which, crossing the second surface
whose radius is «+ dz, passes from the infinitely thin shell into
the part of the solid which envelops it, we must, in the foregoing
expression, change « into & +dx, or, which is the same thing,
add to the term

— 2Kne - dt.

dv
| —2Kwzx - o dt,
the differential of this term, taken with respect to . Hence
the difference of the heat received and the heat lost, or the
quantity of heat which accumulating in the infinitely thin shell
determines the changes of temperature, is the same differential
taken with the opposite sign, or

K. dt. d( ‘Z)

on the other hand, the volume of this intervening shell is 2wzdr,
and 2CDrzdx expresses the quantity of heat required to raise
it from the temperature O to the temperature 1, C being the
specific heat, and D the density. Hence the quotient

oK. dt. d(z@)
TCPrds

is the increment which the temperature receives durmg the
instant d¢. Whence we obtain the equation

dv K (d% 1dv
dt CT)(F ty (Z';) :
120. The quantity of heat which, during the instant d,
crosses the cylindrical surface whose radius is z, being expressed
in general by 2K1ra:zzdl we shall find that quantity which

escapes during the same time from the surface of the solid, by
‘making z=X in the foregoing value; on the other hand, the
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same quantity, dispersed into the air, is, by the principle of the
communication of heat, equal to 2wXkhodt; we must therefore

have at the surface the definite equation — K %—:=hv. The

nature of these equations is explained at greater length, either
in the articles which refer to the sphere, or in those wherein the
general equations have been given for a body of any form what-
ever. The function v which represents the movement of heat in
an infinite cylinder must therefore satisfy, 1st, the general equa-
. dv_ K (d’» 1ldv . .
tion 7 = ois (dj’ +2 2.70) , which applies whatever z and ¢ may
be; 2nd, the definite equation% v+ % =0, which is true, whatever

the variable ¢ may be, when & =X; 3rd, the definite equation
v=F(z). The last condition must be satisfied by all values
of v, when ¢ is made equal to 0, whatever the variable z may
be. The arbitrary function F'(z) is supposed to be known; it
corresponds to the initial state.

SECTION 1V.

Equations of the uniform movement of heat sn a solid prism
of infinite length.

121. A prismatic bar is immersed at one extremity in a
constant source of heat which maintains that extremity at the
temperature 4; the rest of the bar, whose length is infinite,
continues to be exposed to a uniform current of atmospheric air
maintained at temperature 0; it is required to determine the
highest temperature which a given point of the bar can acquire.

The problem differs from that of Article 73, since we now
take into consideration all the dimensions of the solid, which is
necessary in order to obtain an exact solution.

We are led, indeed, to suppose that in a bar of very small
thickness all points of the same section would acquire sensibly
equal temperatures; but some uncertainty may rest on the
results of this hypothesis. It is therefore preferable to solve the
problem rigorously, and then to examine, by analysis, up to what
point, and in what cases, we are justified in considering the
temperatures of different points of the same section to be equal.

F. H. 7
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122. The section made at right angles to the length of the
bar, is a square whose side is 2/, the axis of the bar is the axis
of z, and the origin is at the extremity 4. The three rectangular
co-ordinates of a point of the bar are z, y, z, and v denotes the
fixed temperature at the same point.

The problem consists in determining the temperatures which
must be assigned to different points of the bar, in order that
they may continue to exist without any change, so long as the
extreme surface 4, which communicates with the source of heat,
remains subject, at all its points, to the permanent tempera-
ture A4 ; thus v is a function of z, y, and 2.

123. Consider the movement of heat in a prismatic molecule,
enclosed between six planes perpendicular to the three axes
of z,y, and z. The first three planes pass through the point m
whose co-ordinates are z, y, 2, and the others pass through the
point m’ whose co-ordinates are « + dx, y +dy, z + dz.

To find what quantity of heat enters the molecule during
unit of time across the first plane passing through the point m
and perpendicular to z, we must remember that the extent of the
surface of the molecule on this plane is dydz, and that the flow
across this area is, according to the theorem of Article 98, equal
to — K e thus the molecule receives across the rectangle dydz
passing through the point m a quantity of heat expressed by
-K dydz%. To find the quantity of heat which crosses the

opposite face, and escapes from the molecule, we must substitute,
in the preceding expression, « +dzx for z, or, which is the same
thing, add to this expression its differential taken with respect
to « only; whence we conclude that the molecule loses, at its
second face perpendicular to z, a quantity of heat equal to

~ Kdyde % _ K dyds d(d")

we must therefore subtract this from that which enters at the
opposite face ; the differences of these two quantities is

K dydzd (‘j_g), or, Kdedydz35;
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this expresses the quantity of heat accumulated in the molecule
in consequence of the propagation in direction of z; which ac-
cumulated heat would make the temperature of the molecule
vary, if it were not balanced by that which is lost in some other
direction.

It is found in the same manner that a quantity of heat equal
to — K. dzd.v% enters the molecule across the plane passing
through the point m perpendicular to y, and that the quantity
which escapes at the opposite face is

dv dv
- Kdsdo g — Kdsdad (@),
the last differential being taken with respect to y only. Hence

2
the difference of the two quantities, or dedydzg—;, expresses

the quantity of heat which the molecule acquires, in consequence
of the propagation in direction of y.

Lastly, it is proved in the same manner that the molecule
acquires, in consequence of the propagation in direction of z,
a quantity of heat equal to Kdxdy dz%. Now, in order that
there may be no change of temperature, it is necessary for the
molecule to retain as much heat as it contained at first, so that
the heat it acquires in one direction must balance that which it
loses in another. Hence the sum of the three quantities of heat
acquired must be nothing; thus we form the equation

dv  dv  d
FERF PR

124. It remains now to express the conditions relative to the
surface. If we suppose the point m to belong to one of the faces
of the prismatic bar, and the face to be perpendicular to z, we
see that the rectangle dzdy, during unit of time, permits a
quantity of heat equal to Vh dzdy to escape into the air,
¥V denoting the temperature of the point m of the surface, namely
what ¢ (z, y, z) the function sought becomes when z is made
equal to [, half the dimension of the prism. On the other hand,
the quantity of heat which, by virtue of the action of the

7—2
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molecules, during unit of time, traverses an infinitely small surface
o, situated within the prism, perpendicular to z, is equal to

-K mg-:, according to the theorems quoted above. This ex-

pression is general, and applying it to points for which the co-
ordinate s has its complete value I, we conclude from it that the
quantity of heat which traverses the rectangle dzr dy taken at the

surface is — K dzdy %, giving to z in the function g—: its com-

plete value L Hence the two quantities — Kdr dy%, and

h dz dy v, must be equal, in order that the action of the molecules
may agree with that of the medium. This equality must also
dv
dz
which it has at the face opposite to that first considered. Further,
the quantity of heat which crosses an infinitely small surface o,
perpendicular to the axis of y, being — K wg—;, it follows that
that which flows across a rectangle dzdz taken on a face of the

exist when we give to z in the functions - and v the value —{,

prism perpendicular to y is -Kdzdxg-;, giving to y in the

function :—; its complete value I. Now this rectangle dzdr

permits a quantity of heat expressed by Avdz dy to escape into

the air; the equation hv=—K Z; becomes therefore necessary,
when v is made equal to [ or — in the functions v and dv .

dy

125. The value of the function v must by hypothesis be
equal to 4, when we suppose z=0, whatever be the values of
y and 2. Thus the required function v is determined by the
following conditions: 1st, for all values of z, y, 2, it satisfies the
general equation : )
% + %}’, -+ %’5 =0;

flﬁ:O, when y is equal to

2nd, it satisfies the equation -]’:;v+ dy
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l or — 1, whatever z and # may be, or satisfies the equation
Il'{,v+j—::=0, when z is equal to ! or —/, whatever # and y may
be; 3rd, it satisfies the equation y=4, when =0, whatever
y and z may be.

SECTION V,

Equations of the varied movement of heat in a solid cube.

126. A solid in the form of a cube, all of whose points have
acqnired the same temperature, is placed in a uniform current of
atmospheric air, maintained at temperature 0. It is required to
determine the successive states of the body during the whole
time of the cooling.

The centre of the cube is taken as the origin of rectangular
coordinates; the three perpendiculars dropped from this point on
the faces, are the axes of , y, and 2; 2! is the side of the cube,
v is the temperature to which a point whose coordinates are
Z, y, 2, is lowered after the time ¢ has elapsed since the com-
mencement of the cooling: the problem consists in determining
the function v, which depends on z, y, z and ¢.

127. To form the general equation which v must satisfy,
we must ascertain what change of temperature an infinitely
small portion of the solid must experience during the instant
dt, by virtue of the action of the molecules which are extremely
pear to it. We consider then a prismatic molecule enclosed
between six planes at right angles; the first three pass through
the point m, whose co-ordinates are w, y, 2, and the three others,
through the point m', whose co-ordinates are

z+dw, y+dy, z+dz.
The quantity of heat which during the instant d¢ passes into

the molecule across the first rectangle dydz perpendicular to z,

is — Kdy dzg—; dt¢, and that which escapes in the same time from

the molecule, through the opposite face, is found by writing
« + dz in place of z in the preceding expression, it is

' _Kdyds (Z_Z) dt— K dy dzd(j—;) ds,
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the differential being taken with respect to z only. The quantity
of heat which during the instant d¢ enters the molecule, across
the first rettangle dzdz perpendicular to the axis of y, is
-K dzda:(% dt, and that which escapes from the molecule during

the same instant, by the opposite face, is
~Kds d.z'dvdt Kdsdzd (d") d,

the differential being taken with respect to y only. The quantity
of heat which the molecule receives during the instant dt, through
its lower face, perpendicular to the axis of ¢, is — K dzdy ::dt.

and that which it loses through the opposite face is

- Rdrdy$ldi-Kdedyd (30) &,
the differential being taken with respect to £ only.

The sum of all the quantities of heat which escape from the
molecule must now be deducted from the sum of the quantities
which it receives, and the difference is that which determines its
increase of temperature during the instant: this difference is

Kdydzd( )dt+Kdzdmd( )dt+Kda:dyd( )dt
or Kdzdydz{j:’, ‘j;',’ f"}dz

128. If the quantity which has just been found be divided by
that which is necessary to raise the molecule from the temperature
0 to the temperature 1, the increase of temperature which is
effected during the instant d¢ will become known. Now, the
latter quantity is CDdxdydz: for C denotes the capacity of
the substance for heat; D its density, and dzdydz the volume
of the molecule. The movement of heat in the interior of the
solid is therefore expressed by the equation

dv K ( v d'% d’v)

it = co\az Y apt @
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129. It remains to form the equations which relate to the
state of the surface, which presents no difficulty, in accordance
with the principles which we have established. In fact, the
quantity of heat which, during the instant d¢, crosses the rectangle

dz dy, traced on a plane perpendicular to z, is — K dydz g;u dt.

This result, which applies to all points of the solid, ought to hold
when the value of z is equal to [, half the thickness of the prism.
In this case, the rectangle dy dz being situated at the surface, the
quantity of heat which crosses it, and is dispersed into the air
during the instant dt, is expressed by hvdy dz dt, we ought there-
fore to have, when z =1, the equation hv=—K % This con-
dition must also be satisfied when z=—1.

It will be found also that, the quantity of heat which crosses
the rectangle dz dx situated on a plane perpendicular to the axis

dv

of y being in general — Kdzdz and that which escapes at the

E_Z_ ’
surface into the air across the same rectangle. being hvdz dx dt,
we must have the equation hv + K % =0, when y=1 or—1
Lastly, we obtain in like manner the definite equation
w+ K% =0,
dz

which is satisfied when z2=7or — 1.

130. The function sought, which expresses the varied move-
ment of heat in the interior of a solid of cubic form, must therefore
be determined by the following conditions:

Ist. It satisfies the general equation

dv K (d% d% d%
d“ﬁv.—z)(d?’fay“«*z;-)'
2nd. It satisfies the three definite equations
A dv dv dv
hv+K8—x—0, hv+K@—O, hv+Ka:'z—0,

which bold whenz =11, y=11, z=11;
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8rd. If in the function v which contains z, y, 2, ¢, we make
t =0, whatever be the values of z, , and 2z, we ought to have,
according to hypothesis, v= 4, which is the initial and common
value of the temperature.

131. The equation arrived at in the preceding problem
represents the movement of heat in the interior of all solids.
Whatever, in fact, the form of the body may be, it is evident that,
by decomposing it into prismatic molecules, we shall obtain this
result. We may therefore limit ourselves to demonstrating in
this manner the equation of the propagation of heat. But in
order to make the gxhibition of principles more complete, and
that we may collect into a small number of consecutive articles
the theorems which serve to establish the general equation of the
propagation of heat in the interior of solids, and the equations
which relate to the state of the surface, we shall proceed, in the
two following sections, o the.investigation of these equations,
independently of any particular problem, and without reverting
to the elementary propositions which we have explained in the
introduction.

SECTION VI
General equation of the propagation of heat in the interior of solids.

132. THEOREM L. If the different points of a homogeneous
solid mass, enclosed between sixz planes at right angles, have actual
temperatures determined by the linear equation

v=A4-ax - by — cz,...... (a),

and if the molecules situated at the external surface on the six
planes which bound the prism are maintained, by any cause what-
ever, at the temperature expressed by the equation (a): all the
molecules situated in the interior of the mass will of themselves
retain their actual temperatures, so that there wnill be no change in
the state of the prism.

v denotes the actual temperature of the point whose co-
ordinates are z, ¥, z; 4, a, b, ¢, are constant coefficients.

To prove this proposition, consider in the solid any three
points whatever mMy, situated on the same straight line mpu,
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which the point M divides into two equal parts; denote by
z, ¥, 2z the co-ordinates of the point M, and its temperature by
v, the co-ordinates of the point p by z+a, y+8, z++, and its
temperature by w, the co-ordinates of the point m by z—a, y— 8,
2 — v, and its temperature by u, we shall have

v=A —ax—by—cz,
w=d—a(e+a)-b(y+8)—cle+v),
u=d-a@-a)-b(y—F—c(s—1),
whence we conclude that,
v—w=ax+b8+cy, and u—v=ax+b8+cy;
therefore V—w=u-—0

Now the quantity of heat which one point receives from
another depends on the distance between the two points and
on the difference of their temperatures. Hence the action of
the point M on the point w is equal to the action of m on M;
thus the point M receives as much heat from m as it gives up
to the point p.

We obtain the same result, whatever ‘be the direction and
magnitude of the line which passes through the point M, and
is divided into two equal parts. Hence it is impossible for this
point to change its temperature, for it receives from all parts
as much heat as it gives up.

The same reasoning applies to all other points; hence no
change can happen in the state of the solid.

133. CoroLLARY I. A solid being enclosed between two
infinite parallel planes 4 and B, if the actual temperature of
its different points is supposed to be expressed by the equation
v=1—2 and the two planes which bound it are maintained
by any cause whatever, A4 at the temperature 1, and B at the
temperature 0; this particular case will then be included in
the preceding lemma, if we make 4 =1,a=0,b=0,c=1.

134. CoroLLARY IL If in the interior of the same solid
we imagine a plane M parallel to those which bound it, we see
that a certain quantity of heat flows across this plane during
unit of time; for two very near points, such as m and =, one.
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of which is below the plane and the other above it, are unequally
heated ; the first, whose temperature is highest, must therefore
send to the second, during each instant, a certain quantity of heat
which, in some cases, may be very small, and even insensible,
according to the nature of the body and the distance of the two
molecules.

The same is true for any two other points whatever separated
by the plane. That which is most heated sends to the other
a certain quantity of heat, and the sum of these partial actions,
or of all the quantities of heat sent across the plane, composes
o continual flow whose value does not change, since all the
molecules preserve their temperatures. It is easy to prove that
this flow, or the quantity of heat which crosses the plane M during
the unit of time, is equivalent to that which crosses, during the same
time, another plane N parallel to the first. In fact, the part of
the mass which is enclosed between the two surfaces M and
N will reccive continually, across the plane A3/, as much heat
as it loses across the plane N. If the quantity of heat, which
in passing the plane M enters the part of the mass which is
considered, were not equal to that which cscapes by the opposite
surface I, the solid enclosed between the two surfaces would
acquire fresh heat, or would lose a part of that which it has,
and its temperatures would not be constant; which is contrary to
the preceding lemma.

135. The measure of the specific conducibility of a given
substance is taken to be the quantity of heat which, in an infinite
solid, formed of this substance, and enclosed between two parallel
planes, flows during unit of time across unit of surface, taken
on any intermediate plane whatever, parallel to the external
planes, the distance between which is equal to unit of length,
one of them being maintained at temperature 1, and the other
at temperature 0. This constant flow of the heat which crosses
the whole extent of the prism is denoted by the coefficient K,
and is the measure of the conducibility.

136. LEMMA. If we suppose all the temperatures of the solid in
question under the preceding article, to be multiplied by any number
whatever g, so that the equation of temperatures is v=g—gz,
wnstead of being v=1 -z, and if the two external planes are main-
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tained, one at the temperature g, and the other at temperature 0,
the constant flow of heat, in this second hypothesis, or the quantity
which during unit of time crosses unit of surface taken on an
tntermediate plane parallel to the bases, is equal to the prodtwt
of the first ﬂow multiplied by g.

In fact, since all the temperatures have been increased in
the ratio of 1 to g, the differences of the temperatures of any
two points whatever m and u, are increased in the same ratio.
Hence, according to the principle of the communication of heat,
in order to ascertain the quantity of heat which m sends to u
on the second hypothesis, we must multiply by g the quantity
which the same point m sends to u on the first hypothesis.
The same would be true for any two other points whatever.
Now, the quantity of heat which crosses a plane M results from
the sum of all the actions which the points m, m', m", m", etc,,
situated on the same side of the plane, exert on the points g,
#, u', W, ete, situated on the other side. Hence, if in the first
hypothesis the constant flow is denoted by K, it will be equal to
gK, when we have multiplied all the temperatures by g.

137. THEOREM 1I. In a prism whose constant temperatures
are expressed by the equation v=A —ax— by—cz, and which
s bounded by siz planes at right angles all of whose points are
maintained at constant temperatures determined by the preceding
equation, the quantity of heat which, during unit of time, crosses
unit of surface taken on any intermediate plane whatever perpen-
dicular to z, v8 the same as the constant flow tn a solid of the
same substance would be, if enclosed between two infinite parallel
planes, and for which the equatwn of constant temperatures is
v=c-—cz

To prove this, let us consuler in the prism, and also in the
infinite solid, two extremely near points m and g, separated

Fig. 4.
n

L e

by the plane M perpendicular to the axis of z; u being above
the plane, and m below it (see fig. 4), and above the same plane



108 THEORY OF HEAT. [cHAP. 11

let us take a point m such that the perpendicular dropped from
the point x on the plane may also be perpendicular to the
distance mm’ at its middle point k. Denote by =, y, z+ 4, the
co-ordinates of the point p, whose temperature is w,by z—a, y— 5,
z, the co-ordinates of m, whose temperature is v, and by z+a,
¥+ B, 2, the co-ordinates of m’, whose temperature is v'.

The action of m on g, or the quantity of heat which m sends
to p during a certain time, may be expressed by ¢ (v —w). The
factor ¢ depends on the distance mpu, and on the nature of the
mass. The action of m' on u will therefore be expressed by
g (v'—w); and the factor ¢ is the same as in the preceding
expression; hence the sum of the two actions of m on g, and
of m’ on u, or the quantity of heat which u receives from m and
from m’, is expressed by

g(v—w+v —w).
Now, if the points m, u, m’ belong to the prism, we have
w=A—az—by—c(z+h), v=A—a(z—a)—b(y—B)—cz,
and v=A-a(x+a)—b(y+8) —cz;

and if the same points belonged to an infinite solid, we should
have, by hypothesis,

w=c—c(z+h), v=c—cz, and v'=c—cz.
In the first case, we find
g(v—w+ v —w)=2qch,

and, in the second case, we still have the same result. Hence
the quantity of heat which u receives from m and from m’ on
the first hypothesis, when the equation of constant temperatures
is v=4 —ax —by—cz, is equivalent to the quantity of heat
which p receives from m and from m’ when the equation of
constant temperatures is v=¢ — cz.

The same conclusion might be drawn with respect to any three
other points whatever m/, u’, m”, provided that the second u' be
placed at equal distances from the other two, and the altitude of
the isosceles triangle m’ u’' m” be parallel to 2. Now, the quantity
of heat which crosses any plane whatever M, results from the sum

”r

of the actions which all the points m, m’, m”, m" etc., situated on



SECT. VL]  GENERAL EQUATIONS OF PROPAGATION. 109

one side of this plane, exert on all the points g, ', u", u”, ete
situated on the other side: hence the constant flow, which, during
unit of time, crosses a definite part of the plane M in the infinite
solid, is equal to the quantity of heat which flows in the same time
across the same portion of the plane M in the prism, all of whose
temperatures are expressed by the equation

v=A4 —ax—by-cz.

138. CoroLLARY. The flow has the value ¢K in the infinite
solid, when the part of the plane which it crosses has unit of
surface. In the prism also it has the same value cK or — K:i—lx.
It is proved in the same manner, that the constant flow which takes
place, during unit of time, in the same przsm across unit of surface,
on any plane whatever perpendicular to y, s equal to

bK or — ng,
y

and that which crosses a plane perpendicular to x has the value
aK or - K g_v

139. The propositions which we have proved in the preceding
articles apply also to the case in which the instantaneous action of
a molecule is exerted in the interior of the mass up to an appre-
ciable distance. In this case, we must suppose that the cause
which maintains the external layers of the body in the state
expressed by the linear equation, affects the mass up to a finite
depth. All observation concurs to prove that in solids and liquids
the distance in question is extremely small,

140. THEOREM III. If the temperatures at the points of a
solid are expressed by the equation v= f (z, v, 2, t), in which
x, y, z are the co-ordinates of a molecule whose temperature is
equal to v after the lapse of a time ¢; the flow of heat which
crosses part of a plane traced in the solid, perpendicular to one of
the three axes, is no longer constant; its value is different for
different parts of the plane, and it varies also with the time. This
variable quantity may be determined by analysis.



110 THEORY OF HEAT. [cHAP. II.

Let » be an infinitely small circle whose centre coincides with
the point m of the solid, and whose plane is perpendicular to the
vertical co-ordinate z; during the instant d¢ there will low across
this circle a certain quantity of heat which will pass from the
part of the circle below the plane of the circle into the upper
part. This flow is composed of all the rays of heat which depart
from a lower point and arrive at an upper point, by crossing
a point of the small surface . We proceed to shew that the
expression of the value of the flow i1s — K 3—: wdt.

Let us denote by 2/, ¥/, 2’ the coordinates of the point m whose
temperature is o' ; and suppose all the other molecules to be
referred to this point m chosen as the origin of new axes parallel
to the former axes: let £, 9, { be the three co-ordinates of a point
referred to the origin m; in order to express the actual temperature
w of a molecule infinitely near to m, we shall have the linear
equation

,oLdv dv dY
w=1v +Ea+ﬂdy+§zz~.

The coefficients v/, g—:;, s—v—, av are the values which are found

ly’ dz

T . dv dv dv .
by substituting in the functions v, @’ dy’ &z’ for the variables
x, y 2, the constant quantities 2', 3, 2', which measure the dis-
tances of the point m from the first three axes of «, y, and =.

Suppose now that the point m is also an internal molecule of
a rectangular prism, enclosed between six planes perpendicular to
the three axes whose origin is m ; that w the actual temperature of
each molecule of this prism, whose dimensions are finite, is ex-
pressed by the linear equation w = 4 + af + by + ¢, and that the
six faces which bound the prism are maintained at the fixed tem-
peratures which the last equation assigns to them. The state of
the internal molecules will also be permanent, and a quantity of
heat measured by the expression —Acwdt will flow during the
instant dt across the circle .

This arranged, if we take as the values of the constants

. e, dv dv A
4, a, b, ¢, the quantities v/, i dy d= the fixed state of the
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prism will be expressed by the equation

4 ’ ’
w=v'+% E+ %q+% ¢,

Thus the molecules infinitely near to the point m will have,
during the instant d¢, the same actual temperature in the solid
whose state is variable, and in the prism whose state is constant.:
Hence the flow which exists at the point m, during the instant dt,
across the infinitely small circle w, is the same in either solid ; it
is therefore expressed by — K Z—Zmdt.

From this we derive the following proposition

If in a solid whose internal temperatures vary with the time, by
wirtue of the action of the molecules, we trace any straight line what-
ever, and erect (see fig. 5), at the different points of this line, the
ordinates pm of a plane curve equal to the temperatures of these
points taken at the same moment ; the flow of heat, at each point p
of the straight line, will be proportional to the tangent of the angle
a which the element of the curve makes with the parallel to the
abscisse ; that is to say, if at the point p we place the centre of an

Fig. 5.

£

o,

infinitely small circle » perpendicular to the line, the quantity of
heat which has flowed during the instant dt, across this circle, in
the direction in which the absciss® op increase, will be measured
by the product of four factors, which are, the tangent of the angle
a, a constant coefficient K, the area o of the circle, and the dura-
tion dt of the instant.

141. CoroLLARY. If we represent by e the abscissa of this
curve or the distance of a point p of the straight line from a
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fixed point o, and by v the ordinate which represents the tem-
perature of the point p, v will vary with the distance e and
will be a certain function f(e¢) of that distance; the quantity
of heat which would flow across the circle w, placed at the

point p perpendicular to the line, will be — K %wdt, or
— Kf’ (¢) wdt,

denoting the function ‘i{i;gi)- by £ (e).

We may express this result in the following manner, which
facilitates its application.

To obtain the actual flow of heat at a point p of a straight
line drawn in a solid, whose temperatures vary by action of the
molecules, we must divide the difference of the temperatures at
two points infinitely near to the point p by the distance between
these points. The flow is proportional to the quotient.

142. TrHeorReM IV. From the preceding Theorems it is
easy to deduce the general equations of the propagation of heat.

Suppose the different points of a homogeneous solid of any
Jform whatever, to have received initial temperatures which vary
successively by the effect of the mutual action of the molecules,
and suppose the equation v =1 (x, y, 2, t) to represent the successive
states of the solid, it may now be shewn that v a function of four
variables necessarily satisfies the equation

dv_ K sd'v d'v  d'v
&“@(&?*If‘*@)'

In fact, let us consider the movement of heat in a molecule
enclosed between six planes at right angles to the axes of z, y,
and z; the first three of these planes pass through the point
m whose coordinates are z, y, #, the other three pass through
the point m/, whose coordinates are x + dz, y +dy, z + d=.

During the instant df, the molecule receives, across the
lower rectangle dady, which passes through ‘the point m, a

quantity of heat equal to — K dx dy g—g dt. To obtain the quantity

which escapes from the molecule by the opposite face, it is
sufficient to change z into z+ dz in the preceding expression,
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that is to say, to add to this expression its own differential taken
with respect to z only; we then have

dv
dv d((_l—z)
- Kdx d.ya;dt —dedy-—a-z- dz dt
as the value of the quantity which escapes across the upper
rectangle. The same molecule receives also across the first
rectangle dzdz which passes through the point m, a quantity

of heat equal to —Kg—‘-:dzdxdt; and if we add to this ex-

pression its own differential taken with respect to y only, we
find that the quantity which escapes across the opposite face
dz dz is expressed by

dv
dv d (d_) '
—K—dedzdt— K dy dz dx dt.
dy y

Lastly, the molecule receives through the first rectangle dy d=

a quantity of heat equal to — K %dy dz dt, and that which it

loses across the opposite rectangle which passes through m' is

expressed by
dv
—-K@d dzd&—Kd (d—x)d.cd dz dt
=™ dz 4 )

We must now take the sum of the quantities of heat which
the molecule receives and subtract from it the sum of those
which it loses. Hence it appears that during the instant dt,
a total quantity of heat equal to

K(%+%.’+%)dxdydzdt
accumulates in the interior of the molecule. It remains only
to obtain the increase of temperature which must result from
this addition of heat.

D being the density of the solid, or the weight of unit of
volume, and C the specific capacity, or the quantity of heat
which raises the unit of weight from the temperature 0 to the
temperature 1; the product CDdxdydz expresses the quantity

F. H. 8
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of heat required to raise from 0 to 1 the molecule whose volume
is dedyds. Hence dividing by this product the quantity of
heat which the molecule has just acquired, we shall have its
increase of temperature. Thus we obtain the general equation

dv K rd d'v  d%

a = CD (d._c’ tapt d—)
which is the equation of the propagation of heat in the interior
of all solid bodies.

143. Independently of this equation the system of tempera-
tures is often subject to several definite conditions, of which no
general expression can be given, since they depend on the nature
of the problem.

If the dimensions of the mass in which heat is propagated are
finite, and if the surface is maintained by some special cause in a
given state; for example, if all its points retain, by virtue of that
cause, the constant temperature 0, we shall have, denoting the
unknown function v by ¢ (=, y, 2, t), the equation of condition
¢ (=, y, 2, £)=0; which must be satisfied by all values of «, y, =
which belong to points of the external surface, whatever be the
value of £. Further, if we suppose the initial temperatures of the
body to be expressed by the known function F'(z, y, 2), we have
also the equation ¢ (2, y, 2, 0) = F'(z, 9, 2); the ‘condition ex-
pressed by this equation must be fulfilled by all values of the
co-ordinates z, y, z which belong to any point whatever of the
solid.

144. Instead of submitting the surface of the body to a con-
stant temperature, we may suppose the temperature not to be
the same at different points of the surface, and that it varies with
the time according to a given law; which is what takes place in
the problem of terrestrial temperature. In this case the equation
relative to the surface contains the variable ¢.

145. In order to examine by itself, and from a very general
point of view, the problem of the propagation of heat, the solid
whose initial state is given must be supposed to have all its
dimensions infinite; no special condition disturbs then the dif-
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fusion of heat, and the law to which this principle is submitted
becomes more manifest ; it is expressed by the general equation

dv _ K (dy +d’v + d

& = oD (3 3+ 32)-
to which must be added that which relates to the initial arbitrary
state of the solid.

Suppose the initial temperature of a molecule, whose co-
ordinates are x, ¥, 2, to be a known function F(z, y, z), and denote
the unknown value v by ¢ (2, y, 2, t), we shall have the definite
equation ¢ (z, ¥, 2, 0) = F (2, y, 2); thus the problem is reduced to
the integration of the general equation (A) in such a manner that
it may agree, when the time is zero, with the equation which con-
tains the arbitrary function F. A

SECTION VIL
General equation relative to the surface.

146. If the solid has a definite form,; and if its original heat
is dispersed gradually into atmospheric air maintained at a con-
stant temperature, a third condition relative to the state of the
surface must be added to the general equation (A) and to that
‘which represents the initial state.

We proceed to examine, in the following articles, the nature of
the equation which expresses this third condition.

Consider the variable state of a solid whose heat is dispersed
into air, maintained at the fixed temperature 0. Let @ be an
infinitely small part of the external surface, and u a point of ,
through which a normal to the surface is drawn; different points
of this line have at the same instant different temperatures.

Let v be the actual tempcrature of the point u, taken at a
definite instant, and w the corresponding temperature of a point »
of the solid taken on the normal, and distant from p by an in-
finitely small quantity a. Denote by «, y, z the co-ordinates of
the point u, and those of the point v by =+ 8z, y+8y, 2+38z;
let f(x, y, z) = 0 be the known equation to the surface of the solid,
and v=¢ (z, y, 2, t) the general equation which ought to give the

8—2
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value of v as a function of the four variables z, y, 2, & Differen-
tiating the equation £ (z, ¥, 2) =0, we shall have

mdz + ndy +pdz=0;

m, n, p being functions of z, ¥, z.
It follows from the corollary enunciated in Article 141, that
the flow in direction of the normal, or the quantity of heat which
during the instant d¢ would cross the surface w, if it were placed
at any point whatever of this line, at right angles to its direction,
is proportional to the quotient which is obtained by dividing the
difference of temperature of two points infinitely near by their
distance. Hence the expression for the flow at the end of the
normal is
w—v

-K odt;

K denoting the specific conducibility of the mass. On the other
hand, the surface » permits a quantity of heat to escape into the
air, during the time d¢, equal to hvwdt ; h being the conducibility
relative to atmospheric air. Thus the flow of heat at the end of
the normal has two different expressions, that is to say :

hvodt and — K2

—vmdt;
a

hence these two quantities are equal ; and it is by the expression
of this equality that the condition relative to the surface is in-
troduced into the analysis.

147. We have

e dv. dv.  do
w—v+8‘v—v+%8x+‘i—y'8y+’a;82.

Now, it follows from the principles of geometry, that the co-
ordinates &z, 8y, &z, which fix the position of the point » of the
normal relative to the point p, satisfy the following conditions :

pdx=mdz, pdy=nds.
We have therefore

1o dv de\s
tu—v—p(mdx+n—@+p£)§z.

;N\
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we have also

o=/ 1 8y + 85 = il;(m’+n'+ e,

or a =}q—) 8z, denoting by ¢ the quantity (m' + 2" + p')b ’
w—v dv dv dv)
hence P ( =t &y P,

consequently the equation

hvodt = — k( ) wdt

becomes the following®:

dv dv ,  dv h
m o +ndy+pdx Y= =0.iiviienenenns (B).

This equation is definite and applies only to points at the
surface ; it is that which must be added to the general equation of
the propagation of heat (A), and to the condition which deter-
mines the initial state of the solid ; m, n, p, ¢, are known functions
of the co-ordinates of the points on the surface.

148. The equation (B) signifies in general that the decrease of
the temperature, in the direction of the normal, at the boundary of
the solid, is such that the quantity of heat which tends to escape
by virtue of the action of the molecules, is equivalent always to
that which the body must lose in the medium.

The mass of the solid might be imagined to be prolonged,
in such a manner that the surface, instead of being exposed to the
air, belonged at the same time to the body which it bounds, and
to the mass of a solid envelope which contained it. If, on this
hypothesis, any cause whatever regulated at every instant the
decrease of the temperatures in the solid envelope, and determined
it in such a manner that the condition expressed by the equation
(B) was always satisfied, the action of the envelope would take the

1 Let N be the normal,

dv
Kal—v'ffw 0

v _mdv
dN =~ qdx
the rest as in the text., [R. L. E.]

+ &e.;
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place of that of the air, and the movement of heat would be the
same in either case: we can suppose then that this cause exists,
and determine on this hypothesis the variable state of the solid ;
which is what is done in the employment of the two equations
(A) and (B).

By this it is seen how the interruption of the mass and the
action of the medium, disturb the diffusion of heat by submitting
it to an accidental condition.

149. We may also consider the equation (B), which relates
to the state of the surface under another point of view: but we
must first derive a remarkable consequence from Theorem i1
(Art. 140). We retain the construction referred to in the corollary
of the same theorem (Art. 141). Let z, ¥, 2 be the co-ordinates
of the point p, and

x+8x, y+3dy, z+8z

those of a point ¢ infinitely near to p, and taken on the straight
line in question : if we denote by v and w the temperatures of the
two points p and ¢ taken at the same instant, we have

dv dv

w= v+80—v+d —— 8y +d
z

dx8+d 8z;

hence the quotient

8v _dv 8z dv dy  dv &z T e o = D
b dz ¥+d_:c 'g“l"d—z o’ and 8e—../8.c’+83f+8:',

thus the quantity of heat which flows across the surface » placed
at the point m, perpendicular to the straight line, is

—Kdt{dv 8z dv 8y , dv 8:}

dz e Tdy de vz Bef”

The first term is the product of — K % by dt and by 88':
The latter quantity is, according to the principles of geometry, the
area of the projection of @ on the plane of y and z; thus the
product represents the quantity of heat which would flow across
the area of the projection, if it were placed at the point p perpen-
dicular to the axis of z.
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The second term — K % w %dt represents the quantity of

heat which would cross the projection of w, made on the plane of
x and 2, if this projection were placed parallel to itself at the

point p. :
Lastly, the third term — K % ) %:—dt represents the quantity

of heat which would flow during the instant d¢, across the projec-
tion of w on the plane of # and y, if this projection were placed at
the point p, perpendicular to the co-ordinate z.

By this it is seen that the quantity of heat which flows across
every infinitely small part of a surface drawn in the interior of the
solid, can always be decomposed into three other quantities of flow,
which penetrate the three orthogonal projections of the surface, along
the directions perpendicular to the planes of the projections. The
result gives rise to properties analogous to those which have
been noticed in the theory of forces.

150. The quantity of heat which flows across a plane surface
o, infinitely small, given in form and position, being equivalent
to that which would cross its three orthogonal projections, it fol-
lows that, if in the interior of the solid an element be imagined of
any form whatever, the quantities of heat which pass into this
polyhedron by its different faces, compensate each other recipro-
cally: or more exactly, the sum of the terms of the first order,
which enter into the expression of the quantities of heat received
by the molecule, is zero ; so that the heat which is in fact accumu-
lated in it, and makes its temperature vary, cannot be expressed
except by terms infinitely smaller than those of the first order.

This result is distinctly seen when the general equation (A)
has been established, by considering the movement of heat in
a prismatic molecule (Articles 127 and 142); the demonstration
may be extended to a molecule of any form whatever, by sub-
stituting for the heat réceived through each face, that which its
three projections would receive.

In other respects it is necessary that this should be so: for, if
one of the molecules of the solid acquired during each instant a
quantity of heat expressed by a term of the first order, the varia-
tion of its temperature would be infinitely greater than that of
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other molecules, that is to say, during each infinitely small instant
its temperature would increase or decrease by a finite quantity,
which is contrary to experience.

151. We proceed to apply this remark to a molecule situated
at the external surface of the solid.

Fig. 6.
¥
d b
|
i
o : x

Through a point a (see fig. 6), taken on the plane of « and y,
draw two planes perpendicular, one to the axis of z the other to
the axis of y. Through a point b of the same plane, infinitely
near to a, draw two other planes parallel to the two preceding
planes; the ordinates z, raised at the points a, b, ¢, d, up to the
external surface of the solid, will mark on this surface four points
a', b, ¢, d', and will be the edges of a truncated prism, whose base
is the rectangle abed. If through the point a’ which denotes the
least elevated of the four points a, ¥, ¢’, d’, a plane be drawn
parallel to that of z and y, it will cut off from the truncated prism
a molecule, one of whose faces, that is to say a'd’c’'d, coincides
with the surface of the solid. The values of the four ordinates
ad, cc', dd’, bb’ are the following:

aa’ = z,
, dz
cc ‘.'z+'¢?5d‘”’
,_ ., dz '
dd —Z+'&—y—dy,
dz dz

bb=z-n-_£dx+d—ydy.
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152. One of the faces perpendicular to z is a triangle, and
the opposite face is a trapezium. The area of the triangle is

l dz
dy F dy,

and the flow of heat in the direction perpendicular to this surface
being — K c_ly_ we have, omitting the factor dt,

dx
dv 1 d dz
| dz2%dy
as the expression of the quantity of heat which in one instant
passes into the molecule, across the triangle in question.
The area of the opposite face is

1 dz dz dz
3 dy (dzd:c-{- d.t-l-dydy)

and the flow perpendicular to this face is also — K %, suppress-

-K— dy,

ing terms of the second order infinitely smaller than those of the
first; subtracting the quantity of heat which escapes by the second
face from that which enters by the first we find

dv dz
Kd da:dwd

This term expresses the quantity of heat the molecule receives
through the faces perpendicular to z.

It will be found, by a similar process, that the same molecule
receives, through the faces perpendicular to y, a quantity of heat

dv dz
equal to Kdy dydzd

The quantity of heat which the molecule receives through the

rectangular base is K dv d.z: dy. Lastly, across the upper sur-

a'b'dd, a certain quantlty of heat is permitted to escape,
eqnal to the product of Av into the extent @ of that surface.
The value of w is, according to known principles, the same as that

of dz dy multiplied by the ratio 5; € denoting the length of the

normal between the external surface and the plane of z and ¥, and

e=s {1 (%) + ()],
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hence the molecule loses across its surface a’b'c’d’ a quantity of
heat equal to hvda:dyg.

Now, the terms of the first order which enter into the expression
of the total quantity of heat acquired by the molecule, must cancel
each other, in order that the variation of temperature may not be
at each instant a finite quantity ; we must then have the equation

dv dz dv dz dv €
K(%-%dxdy+@@dzdy—zgdwdy)—hv;dzdy=0,
or ﬁvg—g_gé{.'.@dz ..dv
R : " Gdetdyay &

(E and (E their values derived from

153. Substituting for P y

the equation
mdx + ndy + pdz =0,

and denoting by ¢ the quantity

(m'+n*+p') ,
we have

L dv dv dv
K (mz.n.}.n@.ppz.z)-{-hoq.eo ............ (B),

thus we know distinctly what is represented by each of the
terms of this equation.

Taking them all with contrary signs and multiplying them
by dzdy, the first expresses how much heat the molecule receives
through the two faces perpendicular to @, the second how much
it receives through its two faces perpendicular to y, the third
how much it receives through the face perpendicular to 2, and
the fourth how much it receives from the medium. The equation
therefore expresses that the sum of all the terms of the first
order is zero, and that the heat acquired cannot be represented
except by terms of the second order.

154. To arrive at equation (B), we in fact consider ome
of the molecules whose base is in the surface of the solid, as
a vessel which receives or loses heat through its different faces.
The equation signifies that all the terms of the first order which
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enter into the expression of the heat acquired cancel each other;
so that the gain of heat cannot be expressed except by terms
of the second order. We may give to the molecule the form,
either of a right prism whose axis is normal to the surface of the
solid, or that of a truncated prism, or any form whatever.

The general equation (A), (Art. 142) supposes that all the
terms of the first order cancel each other in the interior of the
mass, which is evident for prismatic molecules enclosed in the
solid. The equation (B), (Art. 147) expresses the same result
for molecules situated at the boundaries of bodies.

Such are the general points of view -from which we may look
at this part of the theory of heat.

v 8, 2,

The equation % = —CgD (3—5 + Zy’: + %) represents the move-
ment of heat in the interior of bodies. It enables us to ascer-
tain the distribution from instant to instant in all substances
solid or liquid; from it we may derive the equation which
belongs to each particular case.

In the two following articles we shall make this application
to the problem of the cylinder, and to that of the sphere.

SECTION VIIL
Application of the general equations.

155. Let us denote the variable radius of any cylindrical
envelope by r, and suppose, as formerly, in Article 118, that
all the molecules equally distant from the axis have at each
instant a common temperature; v will be,a function of » and ¢;
ris a function of g, 2, given by the equation r*=3*+2" Itis
evident in the first place that the variation of » with respect

?,
to z is nul; thus the term ZZ‘; must be omitted. We shall have

then, according to the principles of the differential calculus, the
equations
de_dvie g da i d iy
dy drdy dy*  dr (dy dr (dy’ ?
dv _dvdr dv _d% (dr\'  dv (d*r
2w e ™ o (E) ta (@)
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whence
dv d_d% {(dr)’

dr\*  dv (d’r d'r
Gt =\t @) +a“r(a?+@)} """ (@)
In the second member of the equation, the quantities

dr dr d'r dr

a’j rdz’ d y, ’ d—zx ’
must be replaced by their respective values; for which purpose
we derive from the equation y* + 2* ="

_ dr e\t _d
y=r o and l—-(@) +r@,,

dy
dr dr\* d*r
=1 and 1—(—) +ra? s

rosr{(5)o )

- (el

The first equation, whose first member is equal to r*, gives

and consequently

(gl)' + (g;)' T ®);
the second gives, when we substitute for ‘
]
| )+ )
its valqe L dr dr 1
fi? + 7= R LU SU U PR (c)-

If the values given by equations (b) and (c) be now substi-
tuted in (a), we have

dv dv_dv 1ldv
vt artrare
Hence the equation which expresses the movement of heat
in the cylinder, is
dv K (dw 1dv
%= 75 (ats #)
as was found formerly, Art. 119.
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We might also suppose that particles equally distant from
the centre have not received a common initial temperature;
in this case we should arrive at a much more general equation.

156. To determine, by means of equation (A), the movement
of heat in a sphere which has been immersed in a liquid, we
shall regard v as a function of » and ¢; r is a function of , y, 2,
given by the equation

r=a'+y'+ 2
r being the variable radius of an envelope. We have then

dv dvdr d» d% (dr)’ dv d

oarde ™ = \&) T i

o _dodr g B dudye do
dy drdy dy’—dr'(dy drdy*’
do_dode g Bo_dy(iny vy

dz " drdz " dz'—dr’(dz drdz* "

Making these substitutions in the equation
dv K (d% d% d%
= CD {—; tagt d";'} ’
we shall have
dv d% (/dr dr\' (dz dv (d» d'r
a- ool (E) &) + @G R e E ] @

The equation &* + y* + 5* = »* gives the following results ;

dr dr\* dr
z=r and 1= (dw) +r——l,,
dr dr d'r
y=r—dy and 1= (d)+rdy’

z=4r% and 1= (Zr) +r 3;:

The three equations of the first order give:

Sy +at=r {(d"> +(Z;) + (3—:)2}.
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The three equations of the second order give:
b= () + () (oo {85 £
and substituting for
3 2 ]
() +(5) +(&)

dr dr dr 2
PR PR~

its value 1, we have

Making these substitutions in the equation (a) we have the

equation
& ~CD P @’
which is the same as that of Art. 114.

The equation would contain a greater number of terms, if we
supposed molecules equally distant from the centre not to have
received the same initial temperature.

We might also deduce from the definite equation (B), the
equations which express the state of the surface in particular
cases, in which we suppose solids of given form to communicate
their heat to the atmospheric air; but in most cases these equa-

tions present themselves at once, and their form is very simple,
when the co-ordinates are suitably chosen.

dv_K {d’v 2 dv}

SECTION IX.
General Remarks.

157. The investigation of the laws of movement of heat in
solids now consists in the integration of the equations which we
have constructed ; this is the object of the following chapters.
We conclude this chapter with general remarks on the nature
of the quantities which enter into our analysis.

In order to measure these quantities and express them numc-
rically, they must be compared with different kinds of units, five
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in number, namely, the unit of length, the unit of time, that of
temperature, that of weight, and finally the unit which serves to
measure quantities of heat. For the last unit, we might have
chosen the quantity of heat which raises a given volume of a
certain substance from the temperature 0 to the temperature 1.
The choice of this unit would have been preferable in many
respects to that of the quantity of heat required to convert a mass
of ice of a given weight, into an equal mass of water at 0, without
raising its temperature. We have adopted the last unit only
because it had been in a manner fixed beforehand in several works
on physics; besides, this supposition would introduce no change
into the results of analysis.

158. The specific elements which in every body determine
the measurable effects of heat are three in number, namely, the
conducibility proper to the body, the conducibility relative to the
atmospheric air, and the capacity for heat. The numbers which
express these quantities are, like the specific gravity, so many
natural characters proper to different substances.

We have already remarked, Art. 36, that the conducibility of
the surface would be measured in a more exact manner, if we had
sufficient observations on the effects of radiant heat in spaces
deprived of air.

It may be seen, as has been mentioned in the first section of
Chapter 1, Art. 11, that only three specific coefficients, K, h, C,
enter into the investigation ; they must be determined by obser-
vation; and we shall point out in the sequel the experiments
adapted to make them known with precision.

159. The number C which enters into the analysis, is always
multiplied by the density D, that is to say, by the number of
units of weight which are equivalent to the weight of unit of
volume ; thus the product CD may be replaced by the coeffi-
cient c. In this case we must understand by the specific capacity
for heat, the quantity required to raise from temperature 0 to
temperature 1 unit of volume of a given substance, and not unit of
weight of that substance.

With the view of not departing from the common definition,
we have referred the capacity for heat to the weight and not to
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the volume; but it would be preferable to employ the coefficient ¢
which we have just defined ; magnitudes measured by the unit
of weight would not then enter into the analytical expressions :
we should have to consider only, 1st, the linear dimension z, the
temperature v, and the time ¢; 2nd, the coefficients ¢, &, and K.
The three first quantities are undetermined, and the three others
are, for each substance, constant elements which experiment
determines. As to the unit of surface and the unit of volume,
they are not absolute, but depend on the unit of length.

160. It must now be remarked that every undetermined
magnitude or constant has one dimension proper to itself, and
that the terms of one and the same equation could not be com-
pared, if they had not the same exponent of dimension. We have
introduced this consideration into the theory of heat, in order to
make our definitions more exact, and to serve to verify the
analysis; it is derived from primary notions on quantities; for
which reason, in geometry and mechanics, it is the equivalent
of the fundamental lemmas which the Greeks have left us with-
out proof. '

161. In the analytical theory of heat, every equation (E)
expresses a necessary relation between the existing magnitudes
x,t, v ¢, h, K. This relation depends in no respect on the choice
of the unit of length, which from its very nature is contingent,
that is to say, if we took a different unit to measure the linear
dimensions, the equation (Z) would still be the same. Suppose
then the unit of length to be changed, and its second value to be
equal to the first divided by m. Any quantity whatever & which
in the equation (X) represents a certain line ab, and which, con-
sequently, denotes a certain number of times the unit of length,
becomes mz, corresponding to the same length ab; the value ¢
of the time, and the value v of the temperature will not be
changed ; the same is not the case with the specific elements

h, K, c: the first, h, becomes 1%:—,; for it expresses the quantity of

heat which escapes, during the unit of time, from the unit of sur-
face at the temperature 1. If we examine attentively the nature
of the coefficient K, as we have defined it in Articles 68 and 133,



SECT. IX.] UNITS AND DIMENSIONS. 129

we perceive that it becomes g ; for the flow of heat varies

directly as the area of the surface, and inversely as the distance
between two infinite planes (Art. 72). As to the coefficient ¢
which represents the product CD, it also depends on the unit of

length and becomes ;ng,; hence equation (£) must undergo no

change when we write ma instead of x, and at the same time
g , ’%;, ,%, instead of K, h, ¢; the number m disappears after
these substitutions : thus the dimension of x with respect to the
unit of length is 1, that of K is — 1, that of & is — 2, and that of ¢
is —3. If we attribute to each quantity its own exponent of di-
mension, the equation will be homogeneous, since every term will
have the same total exponent. Numbers such as S, which repre-
sent surfaces or solids, are of two dimensions in the first case,
and of three dimensions in the second. Angles, sines, and other
trigonometrical functions, logarithms or exponents of powers, are,
according to the principles of analysis, absolute numbers which do
not change with the unit of length ; their dimensions must there-
fore be taken equal to 0, which is the dimension of all abstract
numbers,

If the unit of time, which was at first 1, becomes 11;’ the number
t will become nt, and the numbers = and v will not change. The
coeficients K, h, ¢ will become I;(, g, ¢. Thus the dimensions

of x, t, v with respect to the unit of time are 0, 1, 0, and those of
K h care—-1,-1,0.

If the unit of temperature be changed, so that the temperature
1 becomes that which corresponds to an effect other than the
boiling of water; and if that effect requires a less temperature,
which is to that of boiling water in the ratio of 1 to the number p;
v will become vp, z and ¢ will keep their values, and the coeffi-
cients K, 4, ¢ will become %, * <.

The following table indicates the dimensions of the three
undetermined quantities and the three constants, with respect
to each kind of unit.

F. H. 9
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Quantity or Constant. Length. Duration. Temperature.
Exponent of dimension of z 0 0
» " t 1 0
” ” v ... 0 1
The specific conducibility, X ... -1 -1 -1
The surface conducibility, & -2 -1 -1
The capacity for heat, c .. -3 0 1

162. If we retained the coefficients C' and D, whose product
has been represented by ¢, we should have to consider the unit of
weight, and we should find that the exponent of dimension, with
respect to the unit of length, is —3 for the density D, and 0
for C.

On applying the preceding rule to the different equations and
their transformations, it will be found that they are homogeneous
with respect to each kind of unit, and that the dimension of every
angular or exponential quantity is nothing. If this were not the
case, some error must have been committed in the analysis, or
abridged expressions must have been introduced.

If, for example, we take equation (b) of Art. 105,
do K d Il

dt ~CD dz _cD’"

we find that, with respect to the unit of length, the dimension of
each of the three terms is 0; it is 1 for the unit of temperature,
and —1 for the unit of time.

o _
In the equation v=Ae“‘JKl of Art. 76, the lincar dimen-
sion of each term is 0, and it is evident that the dimension of the

‘exponent m\/ i{; is always nothing, whatever be the units of

length, time, or temperature.



CHAPTER IIL

PROPAGATION OF HEAT IN AN INFINITE RECTANGULAR SOLID.

. SECTION 1.
Statement of the problem.

163. PROBLEMS relative to the uniform propagation, or to"
the varied movement of heat in the interior of solids, are reduced,
by the foregoing methods, to problems of pure analysis, and
the progress of this part of physics will depend in consequence
upon the advance which may be made in the art of analysis.
The differential equations which we have proved contain the
chief results of the theory; they express, in the most general
and most concise manner, the necessary relations of numerical
analysis to a very extensive class of phenomena; and they
connect for ever with mathematical science one of the most
important branches of natural philosophy.

It remains now to discover the proper treatment of thesc
equations in order to derive their complete solutions and an
easy application of them. The following problem offers the
first example of analysis which leads to such solutions; it
appeared to us better adapted than. any other to indicate the
elements of the method which we have followed.

164. Suppose a homogeneous solid mass to be contained
between two planes B and C vertical, parallel, and infinite, and
to be divided into two parts by a plane A perpendicular to the
other two (fig. 7); we proceed to consider the temperatures of
the mass BAC bounded by the three infinite planes 4, B, C.
The other part BAC" of the infinite solid is supposed to be a
constant source of heat, that is to say, all its points are main-
tained at the temperature 1, which cannot alter. The two

9—2
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lateral solids bounded, one by the plane C and the plane A4
produced, the other by the plane B and the plane A pro-

Fig. 7.
B y ¢
™)
4
» i’

duced, have at alf points the constant temperature 0, some
external cause maintaining them always at that temperature;
lastly, the molecules of the solid bounded by 4, B and C have
the initial temperature 0. Heat will pass continually from the
source 4 irto the solid BAC, and will be propagated there in
the longitudinal direction, which is infinite, and at the same
time will turn towards the cool masses B and C, which will ab-
sorb great part of it. The temperatures of the solid BAC will
be raised gradually : but will not be able to surpass nor even
to attain a maximum of temperature, which is different for
different points of the mass. It is required to determine the
final and constant state to which the variable state continually
approaches.

If this final state were known, and were then formed, it would
subsist of itself, and this is the property which distinguishes
it from all other states. Thus the actual problem consists in
determining the permanent temperatures of an infinite rect-
angular solid, bounded by two masses of ice B and C, and a
mass of boiling water 4 ; the consideration of such simple and
primary problems is one of the surest modes of discovering the
laws of natural phenomena, and we see, by the history of the
sciences, that every theory has been formed in this manner.

165. To express more briefly the same problem, suppose
a rectangular plate BA C, of infinite length, to be heated at its
base A, and to preserve at all points of the base a coustant
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temperature 1, whilst each of the two infinite sides B and G,
perpendicular to the base A, is submitted also at every point
to a constant temperature O; it is required to determine what
must be the stationary temperature at any point of the plate.

It is supposed that there is no loss of heat at the surface
of the plate, or, which is the same thing, we consider a solid
formed by superposing an infinite number of plates similar to
the preceding: the straight line Az which divides the plate
into two equal parts is taken as the axis of z, and the co-ordinates
of any point m are z and y; lastly, the width 4 of the plate
is represented by 2/, or, to abridge the calculation, by , the
value of the ratio of the diameter to the circumference of a
circle.

Imagine a point m of the solid plate BAC, whose co-ordinates
are = and y, to have the actual temperature », and that the
qnantities », which correspond to different points, are such that
no change can happen in the temperatures, provided that the
temperature of every point of the base 4 is always 1, and that
the sides B and C retain at all their points the temperature 0.

If at each point m a vertical co-ordinate be raised, equal to
the temperature », a curved surface would be formed which
would extend above the plate and be prolonged to infinity.
We shall endeavour to find the nature of this surface, which
passes through a line drawn above the axis of y at a distance
equal to unity, and which cuts the horizontal plane of zy along
two infinite straight lines parallel to «.

166. To apply the general equation
dv K ¢d™% d d
az-c‘vﬁ(d?‘fa‘y"*d—é)'
we must consider that, in the case in question, abstraction is
d%

P must be omitted ;

made of the co-ordinate 2, so that the term

dv
dt
determine the stationary temperatures; thus the equation which

with respect to the first member —, it vanishes, since we wish to
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belongs to the actual problem, and determines the properties
of the required curved surface, is the following :

d  d%

a2t ay=

The function of z and y, ¢ (2, y), which represents the per-

manent state of the solid BA O, must, 1st, satisfy the equation
(a); 2nd, become nothing when we substitute —4 7 or + §= for y,
whatever the value of # may be; 3rd, must be equal to unity
when we suppose =0 and y to have any value included between
—4mand +§m.

Further, this function ¢ (z, y) ought to become extremely
small when we give to « a very large value, since all the heat
proceeds from the source 4.

167. In order to consider the problem in its elements, we
shall in the first place seek for the simplest functions of =
and y, which satisfy equation (z); we shall then generalise the
value of v in order to satisfy all the stated conditions. By this
method the solution will receive all possible extension, and we
shall prove that the problem proposed admits of no other
solution.

Functions of two variables often reduce to less complex ex-
pressions, when we attribute to one of the variables or to both
of them infinite values; this is what may be remarked in alge-
braic functions which, in this particular case, take the form of
the product of a function of # by a function of Y-

We shall examine first if the value of v can be represented
by such a product; for the function v must represent the state
of the plate throughout its whole extent, and consequently that
of the“points whose co-ordinate z is infinite. We shall then
write v=F(z) f(y); substituting in equation (a) and denoting

d?;ﬁx) by F" (x) and f (y) by £ (y), we shall have
F ' w) Lo
F@ T 7w
F' (x) f'

we then suppose @) =m an f y ) =-—m, m being any
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constant quantity, and as it is proposed only to find a particular
value of v, we deduce from the preceding equations F'(z)=¢™,

S (y) =cosmy.

168. We could not suppose m to be a negative number,
and we must necessarily exclude all particular values of v, into
which terms such as ¢™ might enter, m being a positive number,
since the temperature v cannot become infinite when z is in-
finitely great. In fact, no heat being supplied except from the
constant source 4, only an extremely small portion can arrive
at those parts of space which are very far removed from the
source. The remainder is diverted more and more towards the
infinite edges B and C, and is lost in the cold masses which
bound them.

The exponent m which enters into the function €™ cosmy
is unknown, and we may choose for this exponent any positive
number: but, in order that v may become nul on making

=—4m or y=+} =, whatever z may be, m must be taken
to be one of the terms of the series, 1, 3, 5, 7, &c.; by this
means the second condition will be fulfilled. -

169. A more general value of v is easily formed by adding
together several terms similar to the preceding, and we have

v=ae " cos y + be™™ cos 3y + ce™* cos 5y + de”"* cos Ty + &e. ...... ).

It is evident that the function v denoted by ¢ (x, y) satisfies
the equation %+% =0, and the condition ¢(z, +}m)=0.
A third condition remains to be fulfilled, which is expressed thus,
¢ (0, y)=1, and it is essential to remark that this result must
exist when we give to y any value whatever included between
—47 and +3}w. Nothing can be inferred as to the values
which the function ¢ (0, y) would take, if we substituted in place
of y a quantity not included between the limits — § = and + § .
Equation (b) must therefore be subject to the following condition :

1=acosy+ bcos3y + ¢ cos 5y + d cos Ty + &e.

The coefficients, a, b, ¢, d, &c., whose number is infinite, are
determined by means of this equation.

The second member is a function of y, which is equal to 1
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so long as the variable y is included between the limits —}
and +4 7. It may be doubted whether such a function exists,
but this difficulty will be fully cleared up by the sequel.

170. Before giving the calculation of the coefficients, we
may notice the effect represented by each one of the terms of
the series in equation ().

Suppose the fixed temperature of the base 4, instead of
being equal to unity at every point, to diminish as the point
of the line A becomes more remote from the middle point,
being proportional to the cosine of that distance; in this case
it will easily be seen what is the nature of the curved surface,
whose vertical ordinate expresses the temperature v or ¢ (z, y).
If this surface be cut at the origin by a plane perpendicular
to the axis of x, the curve which bounds the section will bave
for its equation v=a cosy; the values of the coefficients will
be the following :

a=a, b=0, ¢c=0, d=0,
and so on, and the equation of the curved surface will be
v=ae" Cosy.

If this surface be cut at right angles to the axis of y, the
section will be a logarithmic spiral whose convexity is turned
towards the axis; if it be cut at right angles to the axis of z,
the section will be a trigonometric curve whose concavity is
turned towards the axis.

It follows from this that the function % is always positive,

and 7173% is always negative. Now the quantity of heat which
a molecule acquires in consequence of its position between two

others in the direction of = is proportional to the value of g;-‘j
(Art. 123) : it follows then that the intermediate molecule receives
from that which precedes it, in the direction of z, more heat than
it communicates to that which follows it. But, if the same mole-

cule be considered as situated between two others in the direction

8,
of y, the function Z—;, being negative, it appears that the in-
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termediate molecule communicates to that which follows it more
heat than it receives from that which precedes it. Thus it
follows that the excess of the heat which it acquires in the direc-
tion of z, is exactly compensated by that which it loses in the
:%’, =0 denotes. Thus
then the route followed by the heat which escapes from the
source 4 becomes known. It is propagated in the direction
of z, and at the same time it is decomposed into two parts,
one of which is directed towards one of the edges, whilst the
other part continues to separate from the origin, to be decomposed
like the preceding, and so on to infinity. The surface which
we are considering is generated by the trigonometric curve which
corresponds to the base 4, moved with its plane at right angles to
the axis of z along that axis, each one of its ordinates de-
creasing indefinitely in proportion to successive powers of the
same fraction.

direction of y, as the equation -td;:s,+

Analogous inferences might be drawn, if the fixed tempera-
tures of the base 4 were expressed by the term

b cos 3y or ¢ cos 5y, &c.;

and in this manner an exact idea might be formed of the move-
ment of heat in the most general case; for it will be seen by
the sequel that the movement is always compounded of a multi-
tude of elementary movements, each of which is accomplished
as if it alone existed.

SECTION II

First example of the use of trigonometric series in the theory
of heat.
171. Take now the equation
1=a cosy+b cos 3y + ¢ cos 5y +d cos Ty + &c.,

in which the coefficients a, b, ¢, d, &c. are to be determined.
In order that this equation may exist, the constants must neces-
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sarily satisfy the equations which are obtained by successive
differentiations ; whence the following results, :
l=acosy+ bcos3y+ ccosby+ dcosTy+&e,
O=asiny + 3 sin 3y + 5c¢ sin 5y + 7d sin 7y + &c,,
0=a cosy + 3" cos 3y + 5% cos 5y + 7'd cos Ty + &c.,
0 =a sin y + 3% sin 3y + 5% sin 5y + 7°d sin 7y + &c.,
and so on to infinity.

These equations necessarily hold when y =0, thus we have
l=a+ b+ ¢+ d+ e+ [f+ g+...&c,
0=a+3b+5%+7Td+9%+11f+... &,
0=a+3+5%+7d+9%+... &e.,
0=a+3%+5%+7d+... &,

O0=a+3%b+5%+... &,
&e.
The number of these equations is infinite like that of the
unknowns a, b, ¢, d, ¢, ... &c. The problem consists in eliminating
all the unknowns, except one only.

172. In order to form a distinct idea of the result of these
eliminations, the number of the unknowns g, b, ¢, d, ... &ec, will
be supposed at first definite and equal to m. We shall employ
the first m equations only, suppressing all the terms containing
the unknowns which follow the m first. If in succession m
be made equal to 2, 3, 4, 5, and so on, the values of the un-
knowns will be found on each one of these hypotheses. The
quantity a, for example, will receive one value for the case
of two unknowns, others for the cases of three, four, or successively
a greater number of unknowns. It will be the same with the
unknown b, which will receive as many different values as there
have been cases of elimination; each one of the other unknowns
is in like manner susceptible of an infinity of different values.
Now the value of one of the unknowns, for the case in which
their number is infinite, is the limit towards which the values
which it receives by means of the successive eliminations tend.
It is required then to examine whether, according as the number
of unknowns increases, the value of each one of a, b, ¢, d ... &ec.
does not converge to a finite limit which it continually ap-
proaches.
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Suppose the six following equations to be employed :
l=a+ b+ ¢+ d+ e+ f+&e,
0=a+38% +5% +7d +9% + 11°f + &e,,
0=a+3 +5% +7'd + 9% +11'f + &c,,
0=a+3% +5% +7d +9% +11°f + &c,
0=a+3% + 5% +7°d +9% +11°f + &c,
0=a+3"+5%+7°d + 9% + 11°f + &c.
The five equations which do not contain f are:
1P=a(1'-1%)+ bAP=3)+ c(11'=5")+ d(11'=T)+ e(11°-9Y),
0 =a(11°-1%) +3% (11°-8%) 4 5% (11°- 5 +7°d (11=7") +-9% (11'—9"),
0 =a(11'-17) 43 (11°-3") +5% (11°-5%) + 7'd (11*~7°) +9%¢ (11'-9"),
0 =a (11°-17)+3% (11— 3")+5% (11759 +7°d (11°=7") +:9% (11°-9%),
0 =a(11'-1°) +3° (11*~3") +5% (11'-5")+7°d (11*~7%) +9% (11*~97).
Continuing the elimination we shall obtain the final equation
in @, which is:
a(1l’'-1%) (-1 (7" =19 (5'-1") (3" - 1") =11".9°. 7°. 5°. 3.1~

173. If we had employed a number of equations greater
by unity, we should have found, to determine @, an equation
analogous to the preceding, having in the first member one
factor more, namely, 13*—1°, and in the second member 13
for the new factor. The law to which these different values of
a are subject is evident, and it follows that the value of « which
corresponds to an infinite number of equations is expressed thus:

o= 3 5? 7 9 11°
F-1¥5 -1 =19 -1 11" - 1%
23.35.57.7 9.9 11.11
T2.4°4.6'6.8'8.10°10.12"

Now the last expression is known and, in accordance with

&e.,

or a &e.

Wallis’ Theorem, we conclude that a=-§-. It is required then
only to ascertain the values of the other unknowns.
174. The five equations which remain after the elimination

of f may be compared with the five simpler equations which
would have been employed if there had been only five unknowns.
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The last equations differ from the equations of Art. 172, in
that in them ¢, d, ¢, b, a are found to be multiplied respec-
tively by the factors

11'—9* 1'-7 11'-5" 11'-8 1I'-1°
FSCRNLIS § UL VU ¥ UL ¥ L

It follows from this that if we had solved the five linear
equations which must have been employed in the case of five
unknowns, and had calculated the value of each unknown, it
would have been easy to derive from them the value of the
unknowns of the same name corresponding to the case in which
six equations should have been employed. It would suffice to
multiply the values of ¢, d, ¢, b, a, found in the first case, by the
known factors. It will be easy in general to pass from the value
of one of these quantities, taken on the supposition of a certain
number of equations and unknowns, to the value of the same
quantity, taken in the case in which there should have been
one unknown and one equation more. For example, if the value
of e, found on the hypothesis of five equations and five unknowns,
is represented by E, that of the same quantity, taken in the case

11°
. 11*=-9*
taken in the case of seven unknowns, will be, for the same reason,

of one unknown more, will be E——— . The same value,

11* 13*
Ell' 9" 13" 9%’

and in the case of eight unknowns it will be

11* 13 15°

Ell'—9"'l3"—9"'15’—9”

and so on. In the same manner it will suffice to know the
value of b, corresponding to the case of two unknowns, to derive
from it that of the same letter which corresponds to the cases
of three, four, five unknowns, &. We shall only have to multiply
this first value of b by

2T 9

5’_3"7‘_3?-93—3. --&c.
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Similarly if we knew the value of ¢ for the case of three
unknowns, we should multiply this value by the successive factors
(i 9* 11° &
T I

We should calculate the value of d for the case of four unknowns
only, and multiply this value by

¢ 1 1y
9—’_——?.11’-— .—————13,_7‘... C.

The calculation of the value of a is subject to the same rule,
for if its value be taken for the case of one unknown, and multi-
plied successively by

3 55 T 9
3‘_12’ 52_12’ 7‘_1" 9!_12,

the final value of this quantity will be found.

175. The problem is therefore reduced to determining the
value of a in the case of one unknown, the value of b in the case
of two unknowns, that of ¢ in the case of three unknowns, and so
on for the other unknowns.

It is easy to conclude, by inspection only of the equations and
without any calculation, that the results of these successive elimi-
nations must be

a=1,
1!
b_ll_32’
1* 3
C=roE I
d_ 1! 3! 5!
. “'11_73'32_78'51_7!7
e;— 1! 3! 5! 7!

1P—9" " 3 -9 5=y " TP -9"

176. It remains only to multiply the preceding quantities by
the series of products which ought to complete them, and which
we have given (Art. 174). We shall have consequently, for the
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final values of the unknowns a, b, ¢, d, ¢ f, &c., the following
expressions :

3’
-1*"5

9 11
o1 Ir-

T

U o

N
-8 7

3’

a=1 &e.,

1 1
9'

3 9o-3-
9!
e
9!
-7

. (i

B O G
5 (i

5—-11" " 7—-11* *

g
1!
'-35
ll
1'-5 "3
ll
-7
1!
Tr-g
ll
-1

11*
11*- 3¢

11
11*-5*

b= &e.,

&e.,,

C =

1 2
3 o

d P

11*
11" -

13°
9" 13-

9
9*—-11* "

3’
3-9
3’
3F-11"

e &e,

93
13

37— &e,,

11*

11.11
" 6.16

11.11
" 4.18

11.11 13.13
2.16 ° 2.20 * 4.22

7.7 9.9 13.13 15.15
4.18°2.20° 2.24 ° 4.20

&e.,

&c.,

7.7 &,

.5

6 &e.

The quantity 3 or a quarter of the circumference is equiva-
lent, according to Wallis’ Theorem, to

12.12
11.13°

2.2 4.4 6.6 8.8 10.10
1.3°3.5°5.7°7.9° 9.11 °

14.14
13. 15&
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If now in the values of @, b, ¢, d, &c., we notice what arc the
factors which must be joined on to numerators and denominators
to complete the double series of odd and even numbers, we find
that the factors to be supplied are:

ra-—- 2 2
forbﬁ,w x’

6 b=—2.2
for c5—'—§, 8

1 2

7.7 C = 2.57{,
for d —,~, | whence we conclude {

14 2
for ¢ 29 d==-2.4,
or e “jos _ 9
oo £ 1111 €= Z.g9p

S 22 | f==-2 __2_ 1
L ‘117’

177. Thus the eliminations have been completely effected,
and the coefficients a, b, ¢, d, &c., determined in the equation

1=acosy +b cos 3y + ¢ cos 5y + d cos Ty + e cos 9y + &e.

The substitution of these coefficients gives the following equa-
tion :

T

4

The second member is a function of y, which does not change

in value when we give to the variable y a value included between

—}m and + 7. It would be easy to prove that this series is

always convergent, that is to say that writing instead of y any

number whatever, and following the calculation of the coefficients,

we approach more and more to a fixed value, so that the difference

of this value from the sum of the calculated terms becomes less

than any assignable magnitude. Without stopping for a proof,

=cosy—%cos$y+%cos5y—;cos7y+%0039y—&c.’

1 It is a little better to deduce the value of b in a, of ¢ in b, &e. [R. L. E.]
* The coefficients a, b, ¢, &c., might be determined, according to the methods
of Section vi., by multiplying both sides of the first equation by cosy, cos 3y,

cos 5y, &o., respectively, and integrating from —;r to +%1r, a8 was done by
D. F. Gregory, Cambridge Mathematical Journal, Vol. 1. p. 106. [A. F.]
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which the reader may supply, we remark that the fixed value
which is continually approached is }s, if the value attributed
to y is included between 0 and }w, but that it is —}ur, if y is
included between 47 and §=; for, in this second interval, each
term of the series changes in sign. In general the limit of the
series is alternately positive and negative; in other respects, the
convergence is not sufficiently rapid to produce an easy approxima-
tion, but it suffices for the truth of the equation.

178. The equation

y=cosx— %cos3x+%cos Ea:—;cos Tz + &c.
belongs to a line which, having z for abscissa and y for ordinate, is
composed of separated straight lines, each of which is parallel to
the axis, and equal to the circumference. These parallels are
situated alternately above and below the axis, at the distance i,
and joined by perpendiculars which themselves make part of the
line. To form an exact idea of the nature of this line, it must be
supposed that the number of terms of the function

cosx—:-licos3.v+%cos 5x — &ec.

has first a definite value. In the latter case the equation

y=cosm—%cos3.c+%cos5:c—&c.

belongs to a curved line which passes alternately above and below
the axis, cutting it every time that the abscissa # becomes equal
to one of the quantities

p—t

0, tzm igvr, igvr, &e.

According as the number of terms of the equation increases, the
curve in question tends more and more to coincidence with the
preceding line, composed of parallel straight lines and of perpen-
dicular lines; so that this line is the limit of the different curves
which would be obtained by increasing successively the number of

terms.
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SECTION IIL

Remarks on these series.
179. We may look at the same equations from another point
of view, and prove directly the equation

e

ar 1 1 1 1
3 =cosx—§cos3z:+ gcos5z—7cos7.z:+—cos9:c—&c.

9
The case where 2 is nothing is verified by Leibnitz’ series,
T 1,1 11 ,
g=l-gtz-gtgde

We shall next assume that the number of terms of the series

cos:c—-lcos3.fc+lcos5x—-1cos7.1:+&c.
3 5 7

instead of being infinite is finite and equal to m. We shall con-
sider the value of the finite series to be a function of =z and m.
We shall express this function by a series arranged according to
negative powers of m; and it will be found that the value of
the function approaches more nearly to being constant and inde-
pendent of &, as the number m becomes greater.

Let y be the function required, which is given by the equation

5 2m1_  cos (2m—1)a,

m, the number of terms, being supposed even. This equation
differentiated with respect to « gives

y=cosz— %cos3x+%cos 52— cos Tz+...—

—%=sin x—sin 3z + sin Sx—sin Tz + ...
+sin (2m —8) z—sin (2m - 1) z;
multiplying by 2 sin 2z, we have
-2 cd%sin 2z = 2sin zsin 2z — 2sin 3 sin 22 + 2 sin 5xsin 2% ...

+ 2sin (2m — 3) « sin 2z — 2 sin (2m — 1) x sin 2.
F. H, 10
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Each term of the second member being replaced by the
difference of two cosines, we conclude that

-—2'—igsin 2. = cos (— z) — cos 3x

—cosS  + ¢os 3
+ cos 3a— cos 7z
— co8 3z + cos 9z
+cos (2m —35)x - cos 2m-1) z
—cos (2m — 3x) + cos (2m + 1) x.
The second member reduces to
cos (2m + 1)z —cos (2m—1)x, or —2sin 2mzxsinx;

hence g= % ((dtsin 2m.r) .

] cos x

180. We shall integrate the second member by parts, dis-
tinguishing in the integral between the factor sin 2max dx which

must be integrated successively, and the factor cos+a: or sec x

which must be differentiated successively; denoting the results
of these differentiations by sec’z, sec” x, sec” «, ... &c, we shall
have

.

1 .
2y = const. — 5— cos 2mur sec x + 5 sin 2mx sec’ x
2in 2*m*

1
o ” v o
= gt,;,2 €08 2mr sec” x + &e.

thus the value of y or

cosx—-:licos3.c+%cos 5.1:—,-}.(‘087.174- —2—":1_—icos(2m—l).r,
which is a function of z and m, becomes expressed by an infinite
series; and it is evident that the more the number m increases,
the more the value of y tends to become constant. For this
reason, when the number m is infinite, the function y has a
definite value which is always the same, whatever be the positive
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value of x, less than J7. Now, if the arc z be supf)osed nothing,

we bave
1 1 1 1

y=l-gtg-7+g-%=

which is equal to }7. Hence generally we shall have

1
4™ =cosa:—%cos 3z+%cos 5x—%cos7:c+-lgcos 9z — &e....(b).

181. If in this equation we assume z =% % , we find

by giving to the arc = other particular values, we should find
other series, which it is useless to set down, several of which
have been already published in the works of Euler. If we
multiply equation (b) by d.r, and integrate it, we have

L 2 1 1
g =Sinz— J,sm3x+.,smow—Tsm7a:+&c

Making in the last equation x = {r, we find

' 1.1 1 1
g=l+gtmtmtptée,
a series already known. Particular cases might be enumerated
to infinity ; but it agrees better with the object of this work
to determine, by following the same process, the values of the
different series formed of the sines or cosines of multiple arcs.

182, Let
y=sinx—sin 2 +-l—sin‘3 L 4
y= 5 e+ 5sin3z— 2sinde ...
+ sin('m,--l)a:—n1 sin mur
m—1 “m ’

m being any even number. We derive from this equation

dy
(fi:cosx-cos 2 + cos 3x — cos 4x ... + cos (m— 1) x — cos mx;

10-2
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multiplying by 2sinz, and replacing each term of the second
member by the difference of two sines, we shall have

2sin 2 3 = sin (2 + ) — sin (2 2)

— sin (22 + 2) + 8in (22— x)

+ sin (3% + z) — sin (3z — x)

+sin {(m —1)z -z} —sin {(m + 1) z — a}
- sin (mx + z) + sin (mz — 2);

and, on reduction,

2sinz%=sin z + sin mz —sin (mz + z):

the quantity sin mz — sin (mz + z),
or sin (me + §x — }2) —sin((me + =+ §2),
is equal to —2sin fzcos (mx+ }z);
we have therefore
dy _ 1 sin}x
e=3 mna °° (mz + }2),
or dy _1_cos(mz+}z),
dr 2 2cosiz
whence we conclude
_ cos (mz + } z)
y=4e- [dx "~ 2cosiz

If we integrate this by parts, distinguishing between the

08 4
and the factor cos(mz + §z), which is to be integrated several
times in succession, we shall form a series in which the powers

factor h or sec $z, which must be successively differentiated,

of m+% enter into the denominators. As to the constant it

is nothing, since the value of y begins with that of .
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It follows from this that the value of the finite series
. 1. 1. 1. . 1. 1.
sin z — 5 sin 2z+§sm 3.1:--5-smoz+ ,7sm7:c- e = Esmm
differs very little from that of 4z, when the number of terms

is very great; and if this number is infinite, we have the known
equation

§z=sinx—-;—sm 2.z:+ sin 3z — lsm4z+;sm5x &e.
From the last series, that which has been given above for
the value of }7 might also be derived.

183. Let now

y=%cos2z‘-—%cos4x+%008 6r—...

1
om cos 2max.

Differentiating, multiplying by 2sin 2», substituting the
differences of cosines, and reducing, we shall have

dy sin (2m +1) 2
2%——tana:+ cos ’

or 2y=c-fdxtanz+fdzw;
cos &

tom— 1 cos(2m 2)z—

integrating by parts the last term of the second member, and
supposing m infinite, we have y=c+%log cosz, If in the
equation

1 1 1 1 :
y—écos2x—; cos‘i.v+(—icosﬁz—§cos’.8w+...&c.

we suppose x nothing, we find

_1.1.11
y2-l-68

+ ... &e. =3 log2
therefore y=3 log 2+ 3 log cos .
Thus we meet with the series given by Euler,

log(2cos}ac)=cosz—;1,-cos2w+%cos3.v— %cos‘lw+&c.
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184. Applying the same process to the equation

y=sinz+ ;l-sin 3.c+3 sin 5 +1sin Tz + &c,
3 b} 7

we find the following series, which has not been noticed,

1 1. 1. . 1. 1. . o

T sinz +‘3sm3.z:+gsm Sz+zsinTe + g sin 9x + &e.

It must be observed with respect to all these series, that
the equations which are formed by them do not hold except

when the variable x is included between certain limits. Thus
the function

1 1 .
cosx — 5 cos e+ | cosdx—  cosT.c + &e.
Q9

3 7
is not equal to }m, except when the variable z is contained
between the limits which we have assigned. It is the same
with the series

sinx—;sin ‘.’.z:+-:l;siu 3.::-%siu ~Lv+%siu5.r—&c.

This infinite series, which is always convergent, has the value
4z so long as the arc x is greater than 0 and less than . But
it is not equal to 4z, if the arc exceeds = ; it has on the contrary
values very different from {x; for it is evident that in the in-
terval from & =7 to =2, the function takes with the contrary
sign all the values which it had in the preceding interval from
=0 to z=m This serics has been known for a long time,
but the analysis which served to discover it did not indicate
why the result ceases to hold when the variable exceeds .

The method which we are about to employ must therefore
be examined attentively, and the origin of the limitation to which
each of the trigonometrical series is subject must be sought.

185. To arrive at 1it, it is sufficient to consider that the
values expressed by infinite series are not known with exact
certainty except in the case where the limits of the sum of the
terms which complete them can be assigned ; it must therefore
be supposed that we employ only the first terms of these series,

! This may be derived by integration from 0 to = as in Art. 232, [R.L.E.]
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and the limits between which the remainder is included must
be found.

We will apply this remark to the equation
1 1 . 1
y=cosz — gcos&z + = cos 5z — 7-cos7:c
cos (2m —3) _cos @Cm-1Dzx
2m —3 2m -1
The number of terms is even and is represented by m; from it

is derived the equation 2dy _ sin 2mz
dr  cosz

value of y, by integration by parts. Now the integral fuvdx
may be resolved into a series composed of as many terms as
may be desired, v and v being functions of . We may write, for
example,

fuvdx =c+ ufcdx: —g;fd.vadx +§—Z§fdﬂ d.cfvd.c

—f{d(%ﬁ)fd.c dwf-vdx}.

an equation which is verified by differentiation.

, whence we may infer the

* Denoting sin 2mx by v and sec & by v, it will be found that

1 . 1. .,
Pt scc’.r sin 2mzx + i sec”z cos 2mx
d sec’ z °
- W‘ .COsS amax | .

" 186. It is required now to ascertain the limits between which

1
> scc & ¢os 2mx +

2y=c—2

the integral f {d (sec” x) cos 2mx} which completes the serics

1
20
is included. To form this integral an infinity of values must
be given to the arc a, from O, the limit at which the integral
begins, up to z, which is the final value of the arc; for each one
of these values of z the value of the differential d (sec” ) must
be determined, and that of the factor cos 2mx, and all the partial
products must be added: now the variable factor cos2maz is
necessarily a positive or negative fraction; consequently the
integral is composed of the sum of the variable values of the
differential d (scc”.x), multiplied respcctively by these fractions.



152 THEORY OF HEAT. [cHAP. 1IN

The total value of the integral is then less than the sum of the
differentials d (sec’ z), taken from z =0 up to z, and it is greater
than this sum taken negatively: for in the first case we replace
the variable factor cos 2mz by the constant quantity 1, and in
the second case we replace this factor by —1: now the sum of
the differentials d (sec” ), or which is the same thing, the integral
fd (sec” z), taken from z = 0, is sec” z — sec” 0; sec” z is a certain
function of z, and sec” 0 is the value of this function, taken on
the supposition that the arc z is nothing.
The integral required is therefore included between
+ (sec”z —sec” 0) and — (sec” z —sec”0) ;
that is to say, representing by & an unknown fraction positive or
negative, we have always
J{d (sec” z) cos 2mx} =k (sec” z —sec” 0).
Thus we obtain the equation
2y=c—--2—_1"—‘ sec z eos 2mx + i—,l"?sec'x sin 2m+§‘1§,sec".rcos2nw
LA

in which the quantity 2,’;, (sec” x —sec” 0) expresses exactly the

sum of all the last terms of the infinite series.

187. If we had investigated two terms only we should bave
had the equation

1 . :
2y =c—5—secxcos 2+ sec’ x sin 2maz +

2m 2w’ 2'm
From this it follows that we can develope the value of y in as
mauvy terms as we wish, and express exactly the remainder of
the series; we thus find the set of equations

(sec’ z—sec’0).

1 +k
— 4 = -
2_1[ =c 9, seC T CoS 2mx 96t (SCC T — 8eC O),

1 . k . .
2y =c— 5 secxcos 2mx+ sec’  sin 2mx + ,,—),—”—‘,(sec x —sec 0),

2*m?
1 5 1 ' rsin @ 1 " °
2y=c-—2’—’;sec:ccos mx+-2—_."-‘,sec xsin mx+§—,—';‘—,sec & cos 2mx

+ ;,’f—n, (sec” x — sec” 0).
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The number % which enters into these equations is not the
same for all, and it represents in each one a certain quantity
which is always included between 1 and —1; m is equal to the
number of terms of the series

cos:c—%cos3:c+%cos5x-—...—Eml—_lcos 2m-1)a,
whose sum is denoted by .

188. These equations could be employed if the number m
were given, and however great that number might be, we could
determine as exactly as we pleased the variable part of the value
of y. If the number m be infinite, as is supposed, we consider
the first equation only; and it is evident that the two terms
which follow the constant become smaller and smaller; so that
the exact value of 2y is in this case the constant ¢; this constant
is determined by assuming =0 in the value of y, whence we
conclude

'f=cosa:—]icos 3x+£cos 5:0—,1—.cos7w+1cos 9z — &ec.
4 3 5 7 9

It is easy to see now that the result necessarily holds if the
arc z is less than §7. In fact, attributing to this arc a definite
value X as near to 4w as we please, we can always give to m
E%. (sec & — sec0), which completes
the series, becomes less than any quantity whatever; but the
exactness of this conclusion is based on the fact that the term
sec z acquires no value which exceeds all possible limits, whence
it follows that the same reasoning cannot apply to the case in
which the arc z is not less than 4.

The same analysis could be applied to the series which express
the values of }z, logcosx, and by this means we can assign
the limits between which the variable must be included, in order
that the result of analysis may be free from all uncertainty ;
moreover, the same problems may be treated otherwise by a
method founded on other principles’,

a value so great, that the term

- 189. The expression of the law of fixed temperatures in
a solid plate supposed the knowledge of the equation

1 Cf. De Morgan's Diff. and Int. Calculus, pp. 605—6CJ. [A.F.]
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™ 1 1 . 1 .1 .
;:cosz—gcos&c+3cosax-7cosw+§cos.!).r:—&c.

A simpler method of obtaining this equation is as follows :

If the sum of two arcs is equal to i, a quarter of the
circumference, the product of their tangent is 1; we have thcre-
fore in general

1 1
Sm=arc tanu + arc tan ~ ..., (©);
P4 u

the symbol arc tan u denotes the length of the arc whose tangent
is u, and the series which gives the value of that arc is well
known ; whence we have the following result:

SRS AU AU YA N VAT
2T 3&“*?)*5("*{{* 7(" o

1 1

+y (u’+u.,)-—&c. ................... (.

If now we write e*¥~1 instead of u in cquation (c), and in equa-
tion (d), we shall have
57 =arc tan erV=1 4 arc tan e~=V-1,

1 1
and s T=cosx—; cosdxr+ } cos.'m:—-}—. Ccos 7.0 + 1 cos 9. — &c.
4 3 3 1 9

The series of equation (d) is always divergent, and that. of
equation (4) (Art. 180) is always convergent; its value is {=
or — .

SECTION 1V.
General solution.

190. We can now form the complete solution of the problem
which we have proposed; for the coefficients of equation (b)
(Art. 169) being determined, nothing remains but to substitute
them, and we have
wy -x 1 ~ox 1 ~5r - 1 -7r’ - 3
T ¢ oSy —geeos 3y + 5 cosiy - cecosTy + &e....(a).

™~
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. . . dw  d .

This value of v satisfies the equation T (_i?= 0; it becomes
nothing when we give to y a value equal to 47 or — = ; lastly,
it is equal to unity when z is nothing and y is included between
—4m and + 7. Thus all the physical conditions of the problem
are exactly fulfilled, and it is certain that, if we give to each
point of the plate the temperature which equation (a). deter-
mines, and if the base 4 be maintained at the same time at the
temperature 1, and the infinite edges B and C at the tempera-
ture 0, it would be-impossible for any change to occur in the
system of temperatures,

191. The second member of equation () having the form
of an exceedingly convergent series, it is always easy to deter-
mine numerically the temperature of a point whose co-ordinates
z and y are known. The solution gives rise to various results
which it is necessary to remark, since they belong also to the
general theory.

If the point m, whose fixed temperature is considered, is very
distant from the origin 4, the value of the second member of
the equation (z) will be very nearly equal to e cosy; it reduces
to this term if 2 is infinite.

. 4
The equation V= €” cosy represents also a state of the

solid which would be preserved without any change, if it were
once formed ; the same would be the case with the state repre-

sented by the equation v= ?—s;e"" cos 3y, and in general each

term of the series corresponds to a particular state which enjoys
the same property. All these partial systems exist at once in
that which equation (z) represents; they are superposed, and
the movement of heat takes place with respect to each of them
as if it alone existed. In the state which corresponds to any
one of these terms, the fixed temperatures of the points of the
base A differ from one point to another, and this is the only con-
dition of the problem which is not fulfilled ; but the general state
which results from the sum of all the terms satisfies this special
condition.

According as the point whose temperature is considerced is
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more distant from the origin, the movement of heat is less com-
plex: for if the distance z is sufficiently great, each term of
the series is very small with respect to that which precedes it,
so that the state of the heated plate is sensibly represented by
the first three terms, or by the first two, or by the first only,
for those parts of the plate which are more and more distant
from the origin.

The curved surface whose vertical ordinate measures the

fixed temperature v, is formed by adding the ordinates of a
multitude of particular surfaces whose equations are

e Ty 1.8 Ty _ os
4 =€ cosy, — 3™ cos 3y, raial cos 5y, &c.

The first of these coincides with the general surface when z
is infinite, and they have a common asymptotic sheet.

If the difference v — v, of their ordinates is considered to be
the ordinate of a curved surface, this surface will coincide, when =
is infinite, with that whose equation is }mwv,=—}e™* cos3y. All
the other terms of the series produce similar results,

The same results would again be found if the section at the
origin, instead of being bounded as in the actual hypothesis by
a straight line parallel to the axis of y, had any figure whatever
formed of two symmetrical parts, It is evident therefore that
the particular values

aecosy, be™ cosdy, ce™ cosdy, &c.,

have their origin in the physical problem itself, and have a
necessary relation to the phenomena of heat. Each of them
expresses a simple mode according to which heat is established
and propagated in a rectangular plate, whose infinite sides retain
a constant temperature. The general system of temperatures
is compounded always of a multitude of simple systems, and the
expression for their sum has nothing arbitrary but the coeffi-
cients qa, b, ¢, d, &c.

192. Equation (a) may be employed to determine all the
circumstances of the permanent movement of heat in a rect-
angular plate heated at its origin. If it be asked, for example,
what is the expenditure of the source of heat, that is to say,
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what is the quantity which, during a given time, passes across
the base 4 and replaces that which flows into the cold masses
B and C; we must consider that the flow perpendicular to the

axis of y is expressed by — K g—: The quantity which during

the instant d¢ flows across a part dy of the axis is therefore

~E® ayar;

and, as the temperatures are permanent, the amount of the flow,
during unit of time, is — K 3—2 dy. This expression must be
integrated between the limits y=—34n and y=+ §m, in order

to ascertain the whole quantity which passes the base, or which
is the same thing, must be integrated from y =0 to y =}, and

the result doubled. The quantity % is a function of z and g,

in which # must be made equal to 0, in order that the calculation
may refer to the base 4, which coincides with the axisof y. The
expression for the expenditure of the source of heat is there-

fore 2 f ( K dy) The integral must be taken from y=0 to

y=43%m; if, in the function %’ z is not supposed equal to 0,

but z =, the integral will be a function of £ which will denote
the quantity of heat which flows in unit of time across a trans-
verse edge at a distance x from the origin.

193. If we wish to ascertain the quantity of heat which,
during unit of time, passes across a line drawn on the plate
parallel to the edges B and C, we employ the expression — K g}} ,
and, multiplying it by the element dz of the line drawn, integrate
with respect to z between the given boundaries of the line; thus

the integral f ( K dx) shews how much heat flows across the

whole length of the lme and if before or after the integration
we make y=4m, we determine the quantity of heat which, during
unit of time, escapes from the plate across the infinite edge C.
‘We may next compare the latter quantity with the expenditure
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of the source of heat; for the source must necessarily supplvy
continually the heat which flows into the masses B and C. If
this compensation did not exist at each instant, the system of
temperatures would be variable.

194. Equation («) gives

. Kgg = ‘!'7_? (e cosy — ™ cos 3y + € cos 3y — € cos Ty + &c.);

multiplying by dy, and integrating from y =0, we have

Kf.. 1. VR
?(e smy—:-;e“sm3y+-5—e'°’s1nay-,?e’ sm(]/+&&).
If y be made =}, and the integral doubled, we obtain

%(e"+ ! e“'+£e’“‘+ ! e"‘+&c.)
w 3 5 7

as the expression for the quantity of heat which, during unit of
time, crosses a line parallel to the base, and at a distance x from
that base.

From equation (z) we derive also

—-K% =4§ e”siny — e sin3y+e™ sin Sy — e sin Ty + &e.):

hence the integral f - K (%) dx, taken from =0, is
4K s oy s iy i =
;—l(l-—e siny — (1 —¢™)sin3y + (1 —¢™)sindy
— (1 —€'z) sinTy + &e.}.

If this quantity be subtracted from the value which it assumes
when 2 is made infinite, we find

>

1 1
- .2 ~-3e _.° [} S -
- -{eFsiny—_e*sinSy+ e sindy—&e )
- ( Y=g y+s Y )»

and, on making y=1m, we have an expression for the whole
quantity of heat which crosses the infinite edge C, from the
point whose distance from the origin is z up to the end of the
plate ; namely,

4K ( 1 1 1

s I 14 = T Iy £ 4 -
p \c +34, +ze +7c +&('.),

<
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which is evidently equal to half the quantity which in the same
time passes beyond the transverse line drawn on the plate at
a distance « from the origin. We have already remarked that
this result is a necessary consequence of the conditions of the
problem; if it did’ not hold, the part of the plate which is
situated beyond the transverse line and is prolonged to infinity
would not receive through its base a quantity of heat equal to
that which it loses through its two edges; it could not therefore
preserve its state, which is contrary to hypothesis.

195. As to the expenditure of the source of heat, it is found
by supposing # =0 in the preceding expression; hence it assumes
an infinite value, the reason for which is evident if it be remarked
that, according to hypothesis, every point of the line 4 has and
retains the temperature 1: parallel lines which are very near
to this base have also a temperature very little different from
unity : hence, the extremities of all these lines contiguous to
the cold masses B and C communicate to them a quantity of
heat incomparably greater than if the decrease of temperature
were continuous and imperceptible. In the first part of the
plate, at the ends near to B or C, a cataract of heat, or an
infinite flow, exists. This result ceases to hold when the distance
« becomes appreciable.

196. The length of the base has been denoted by 7. If we

assign to it any value 2/, we must write i'rr'%l instead of y, and

multiplying also the values of z by 5;, we must write %vr:-:

I
2l
instead of z. Denoting by A4 the constant tempcraturc of the
base, we must replace » by % . These substitutions being made

in the equation (a), we have

4 Sre _ hmre .,r
v=—;r—(e 2 cos - ?"ﬁ" 3 c093zl/+—e 2l cosd - "l
l nr:v
3¢ 0T 4+&c) e (B).

This equation represents exactly the system of permanent
temperature in an infinite rectangular prism, included between
two masses of ice B and C, and a constant source of heat.
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197. It is easy to see either by means of this equation, or
from Art. 171, that heat is propagated in this solid, by sepa-
rating more and more from the origin, at the same time that it
is directed towards the infinite faces B and C. Each section
parallel to that of the base is traversed by a wave of heat which
is renewed at each instant with the same intensity: the intensity
diminishes as the section becomes more distant from the origin.
Similar movements are effected with respect to any plane parallel
to the infinite faces; each of these planes is traversed by a con-
stant wave which conveys its heat to the lateral masses.

The developments contained in the preceding articles would
be unnecessary, if we had not to explain an entirely new theory,
whose principles it is requisite to fix. With that view we add
the following remarks.

198. Each of the terms of equation (z) corresponds to only
one particular system of temperatures, which might exist in a
rectangular plate heated at its end, and whose infinite edges are
maintained at a constant temperature. Thus the equation
v=¢"cosy represents the permanent temperatures, when the
points of the base A are subject to a fixed temperature, denoted
by cosy. We may now imagine the heated plate to be part of a
plane which is prolonged to infinity in all directions, and denoting
the co-ordinates of any point of this plane by z and y, and the
temperature of the same point by v, we may apply to the entire
plane the equation v = ¢ cos y; by this means, the edges B and
C receive the constant temperature 0; but it is not the same
with contiguous parts BB and CC; they receive and keep lower
temperatures. The base 4 has at every point the permanent
temperature denoted by cos y, and the contiguous parts A4 have
higher temperatures. If we construct the curved surface whose
vertical ordinate is equal to the permanent temperature at each
point of the plane, and if it be cut by a vertical plane passing
through the line A or parallel to that line, the form of the section
will be that of a trigonometrical line whose ordinate represents
the infinite and periodic series of cosines. If the same curved
surface be cut by a vertical plane parallel to the axis of x, the
form of the section will through its whole length be that of a
logarithmic curve,
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199. By this it may be scen how the analysis satisfies the
two conditions of the hypothesis, which subjected the base to a
temperature equal to cos y, and the two sides B and C to the
temperature 0. When we express these two conditions we solve
in fact the following problem: If the heated plate formed part of
an infinite plane, what must be the temperatures at all the points
of the plane, in order that the system may be self-permanent, and
that the fixed temperatures of the infinite rectangle may be those
which are given by the hypothesis ?

- We have supposed in the foregoing part that some external
causes maintained the faces of the rectangular solid, one at the
temperature 1, and the two others at the temperature 0. This
effect may be represented in different manners; but the hypo-
thesis proper to the investigation consists in regarding the prism
as part of a solid all of whose dimensions are infinite, and in deter-
mining the temperatures of the mass which surrounds it, so that
the conditions relative to the surface may be always observed.

200. To ascertain the system of permanent temperatures in
a rectangular plate whose extremity 4 is maintained at the tem-
perature 1, and the two infinite edges at the temperature 0, we
might consider the changes which the temperatures undergo,
from the initial state which is given, to the fized state which is
the object of the problem. Thus the variable state of the solid
would be determined for all values of the time, and it might then
be supposed that the value was infinite.

The method which we have followed is different, and conducts
more directly to the expression of the final state, since it is
founded on a distinctive property of that state. We now proceed
to shew that the problem admits of no other solution than that
which we have stated. The proof fullows from the following
propositions.

201. If we give to all the points of an infinite rectangular
plate temperatures expressed by equation (2), and if at the two
edges B and C we maintain the fixed temperature 0, whilst the
end A is exposed to a source of heat which keeps all points of the
line 4 at the fixed temperature 1; no change can happen in the

. . dw  dv .
state of the solid. In fact, the ecquation it ‘?-—-0 being

F. H. . 11
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satisfied, it is evident (Art. 170) that the quantity of heat which
determines the temperature of each molecule can be neither
“increased nor diminished.

The different points of the same solid having received the
temperatures expressed by equation (a) or v=¢(z, y), suppose
that instead of maintaining the edge 4 at the temperature 1, the
fixed temperature 0 be given to it as to the two lines B and C;
the heat contained in the plate BAC will flow across the three
edges 4, B, C, and by hypothesis it will not be replaced, so that
the temperatures will diminish continually, and their final and
common value will be zero. This result is evident since the
points infinitely distant from the origin 4 have a temperature
infinitely small from the manner in which equation (a) was
formed.

The same effect would take place in the opposite direction, if
the system of temperatures were v =— ¢ (z, y), instead of being
v=¢(z, y); that is to say, all the initial negative temperatures
would vary continually, and would tend more and more towards
their final value 0, whilst the three edges A, B, C preserved the
temperature 0.

202. Let v=¢(x, y) be a given equation which expresses
the initial temperature of points in the plate BA C, whose base A
is maintained at the temperature 1, whilst the edges B and C'
preserve the temperature 0.

Let v=F(z, y) be another given equation which expresses
the initial temperature of each point of a solid plate BAC exactly
the same as the preceding, but whose three edges B, A, C are
maintained at the temperature 0.

Suppose that in the first solid the variable state which suc-
ceeds to the final state is determined by the equation v= bz 90),
t denoting the time elapsed, and that the equation v =® (=, ¥t
determines the variable state of the second solid, for which the
initial temperatures are F(z, y).

Lastly, suppose a third solid like each of the two preceding:
let v=f(z, y) + F(z, y) be the equation which represents its
initial state, and let 1 be the constant temperature of the base
4, 0 and 0 those of the two edges B and C.
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We proceed to shew that the variable state of the third solid
is determined by the equation v=¢ (2, y, ) + P(z, , ¢).

In fact, the temperature of a point m of the third solid varies,
because that molecule, whose volume is denoted by M, acquires
or loses a certain quantity of heat A. The increase of tempera-
ture during the instant d¢ is

A
cil
the coefficient ¢ denoting the specific capacity with respect to
volume. The variation of the temperature of the same point in

dt,

b% dt, and £? dt in the second, the letters

d and D representing the quantity of heat positive or negative
which the molecule acquires by virtue of the action of all the
neighbouring molecules. Now it is easy to perceive that A
.18 equal to d+D. For proof it is sufficient to consider the
quantity of heat which the point m receives from another point
m' belonging to the interior of the plate, or to the edges which
bound it.

The point m, whose initial temperature is denoted by f,,
transmits, during the instant d¢, to the molecule m, a quantity of
heat expressed by g,(f, — f)d¢, the factor g, representing a certain
function of the distance between the two molecules. Thus the
whole quantity of heat acquired by m is Zq,(f, —f)dt, the sign
3 expressing the sum of all the terms which would be found
by considering the other points m,, m, m, &c. which act on m;
that is to say, writing g¢,, £, or ¢, f;, or g,, f, and so on, instead of
g, f In the same manner 2g,(F, — F)dt will be found to be
the expression of the whole quantity of heat acquired by the
same point m of the second solid; and the factor ¢, is the same
as in the term 2g¢,(f, — f)dt, since the two solids are formed of
the same matter, and the position of the points is the same; we
have then

the first solid is

d=3q,(f,—f)dt and D=Zq,(F,— F)dt.
For the same reason it will be found that

A=Zg{fi+ F - (f+ dt;

A d D
hence A=d+ D and m=m+m.

11—2
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It follows from this that the molecule m of the third solid
acquires, during the instant d¢, an increase of temperature equal
to the sum of the two increments which the same point would
have gained in the two first solids. Hence at the end of the
first instant, the original hypothesis will again hold, since any
molecule whatever of the third solid has a temperature equal
to the sum of those which it has in the two others. Thus the
same relation exists at the beginning of each instant, that is to
say, the variable state of the third solid can always be represented
by the equation

v=¢(xy 1)+ Pyt

203. The preceding proposition is applicable to all problems
relative to the uniform or varied movement of heat. It shews
that the movement can always be decomposed into several others,
each of which is effected separately as if it alone existed. This
superposition of simple effects is one of the fundamental elements
in the theory of heat. It is expressed in the investigation, by
the very nature of the general equations, and derives its origin
from the principle of the communication of heat.

Let now v=¢(x, y) be the equation (2) which expresses the
permanent state of the solid plate BAC, heated at its end 4, and
whose edges B and C preserve the temperature 1; the initial state
of the plate is such, according to hypothesis, that all its points
have a nul temperature, except those of the base 4, whose tem-
perature is 1. The initial state can then be considered as formed
of two others, namely : a first, in which the initial temperatures are
— ¢(a, y), the three edges being maintained at the temperature 0,
and a second state, in which the initial temperatures are + ¢ (z, y),
the two edges BB and C preserving the temperature 0, and the
base 4 the temperature 1; the superposition of these two states
produces the initial state which results from the hypothesis. It
remains then only to examine the movement of heat in each one
of the two partial states. Now, in the second, the system of tem-
peratures can undergo no change; and in the first, it has been
remarked in Article 201 that the temperatures vary continually,
and end with being nul. Hence the final state, properly so called,
is that which is represented by v = ¢ (z, y) or equation (a).
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If this state were formed at first it would be self-existent, and
it is this property which has served to determine it for us. If the
solid plate be supposed to be in another initial state, the differ-
ence between the latter state and the fixed state forms a partial
state, which imperceptibly disappears. After a considerable time,
the difference has nearly vanished, and the system of fixed tem-
peratures has undergone no change. Thus the variable temper-
atures converge more and more to a final state, independent of
the primitive heating.

204. We perceive by this that the final state is unique; for,
if a second state were conceived, the difference between the
second and the first would form a partial state, which ought to be
self-existent, although the edges 4, B, C were maintained at the
temperature 0. Now the last effect cannot occur; similarly if we
supposed another source of heat independent of that which flows
from the origin A; besides, this hypothesis is not that of the
problem we have treated, in which the initial temperatures are
nul. It is evident that parts very distant from the origin can
only acquire an exceedingly small temperature.

Since the final state which must be determined is unique, it
follows that the problem proposed admits no other solution than
that which results from equation (z). Another form may be
given to this result, but the solution can be neither extended nor
restricted without rendering it inexact.

The method which we have explained in this chapter consists
in forming first very simple particular values, which agree with
the problem, and in rendering the solution more general, to the
intent that v or ¢ (2, y) may satisfy three conditions, namely:

%+§£=0' ¢ 0)=1 ¢(= :I:t}'rf)=0.

It is clear that the contrary order might be followed, and the
solution obtained would necessarily be the same as the foregoing.
We shall not stop over the details, which are easily supplied,
when once the solution is known. We shall only give in the fol-
lowing section a remarkable expression for the function ¢ (z, y)
whose value was developed in a convergent series in equation (a).
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SECTION V.
Finite expression of the result of the solution.

* 205. The preceding solution might be deduced from the

integral of the equation % + %‘;= 0, which contains imaginary

quantities, under the sign of the arbitrary functions. We shall

confine ourselves here to the remark that the integral
v=¢@+y/ D +¥ -3/ D),

has a manifest relation to the value of v given by the equation

3 =€ cosy—ze c083y+§e cos 5y — &e.
In fact, replacing the cosines by their imaginary expressions,
we have

"_;."= e V- _% sy V-1) + é eV _ &

1 StV &o

+ e-(rnv-“x,_}_}c-umv’-'n + 3 e

The first series is a function of z—y,/—1, and the second
series is the same function of z 4+ y/ — 1.

Comparing these series with the known development of arc tan =
in functions of z its tangent, it is immediately seen that the first

is arc tan e *V™ and the second is arc tan eV ; thus
equation (a) takes the finite form

%v =arc tan eV L arc tan 67V . eenens (B).

In this mode it conforms to the general integral
v=¢(z+y./—_l)+\}r(z-yJ?i) ......... 4,
the function ¢ (2) is arc tan ¢™, and similarly the function ¥ (z).
1 D, F. Gregory derived the solution from the form
v=cos (y3) 4 +sin (v £) ¥ 0.
Cuamb. Math. Journal, Vol. 1. p. 105. [A.F.]
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If in equation (B) we denote the first term of the second mem-
ber by p and the second by ¢, we have

%m: =p+gq, tanp=6"""T {an g=¢ "IV,

tanp+tang 267 cosy 2cosy.
—tanp tang 1—e™ ¢ —¢’

whence tan (p+g¢) or i

S 2cos y
whence we deduce the equation 5 v =arc tan < é’fé‘?) ...... ©).

This is the simplest form under which the solution of the
problem can be presented.

206. This value of v or ¢ (2, y) satisfies the conditions relative
to the ends of the solid, namely, ¢ (z, + §7) =0, and ¢ (0, y)=1;
it satisfies also the general equation %"'%2'1 0, since equa-
tion (C) is a transformation of equation (B). Hence it represents
exactly the system of permanent temperatures; and since that
state is unique, it is impossible that there should be any other
solution, either more general or more restricted.

The equation (C) furnishes, by means of tables, the value of
one of the three unknowns v, z, 3, when two of them are given; it
very clearly indicates the nature of the surface whose vertical
ordinate is the permanent temperature of a given point of the
solid plate. Finally, we deduce from the same equation the values
of the differential coefficients % and g—; which measure the velo-
city with which heat flows in the two orthogonal directions; and
we consequently know the value of the flow in any other direction.

These coefficients are expressed thus,
-—39 ¢ +e” )
dz cosy(e,,+ 2co8 2y +¢e™/’
dv

=— 2 sin il )
dy y(e”+2cos2y+e‘" '

It may be remarked that in Article 194 the value of g—;, and

that of % are given by infinite series, whose sums may be easily
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found, by replacing the trigonometrical quantities by imaginary
exponentials, We thus obtain the values of 3—:} and % which

we have just stated.

The problem which we have now dealt with is the first which
we have solved in the theory of heat, or rather in that part of
the theory which requires the employment of analysis. It
furnishes very easy numerical applications, whether we make
use of the trigonometrical tables or convergent series, and it
represents exactly all the circumstances of the movement of
heat. We pass on now to more general considerations.

SECTION VI
- Development of an arbitrary function in trigonometric series.

207. The problem of the propagation of heat in a rect-
b 2,
angular solid has led to the equation g+g?”=0; and if it
be supposed that all the points of one of the faces of the solid
have a common temperature, the coefficients a, b, ¢, d, etc. of
the series

acosx+bcos3zr+ccosbr+dcosTx+...&e,

must be determined so that the value of this function may be
equal to a constant whenever the arc z is included between —
and + 3w The value of these coefficients has just been assigned;
but herein we have dealt with a single case only of a more general
problem, which consists in developing any function whatever in
an infinite series of sines or cosines of multiple arcs. This
problem is connected with the theory of partial differential
equations, and has been attacked since the origin of that analysis.
It was necessary to solve it, in order to integrate suitably the
equations of the propagation of heat; we proceed to explain
the solution.

We shall examine, in the first place, the case in which it is
required to reduce into a series of sines of multiple arcs, a
function whose development contains only odd powers of the
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variable. Denoting such a function by ¢ (z), we arrange the
equation
¢(x) =asinz+bsin2z+c sm3z+dsxn4:c+ .&e,

in which it is required to determine the value of the coefficients
a, b, ¢, d, &. First we write the equation

¢ (z) ==z¢'(0) + ’—”—E’qb" (0 +T_;¢'" )+ "‘L—;¢" ) + T-é ¢'(0) +... &c.,

in which ¢'(0), ¢” (0), ¢""(0), ¢"(0), &c. denote the values taken
by the coefficients

@) PeE) PeE) A
dz '’ de® °’ dz* ’ dz* N
when we suppose =0 in them. Thus, representing the develop-
ment according to powers of z by the equation

z z
z)=A B C -D% E
we have ¢(0) =0, and ¢ (0)=A

$"(0)=0, ¢"(0)=B,
$"(0) =0, $'(0)=C,
$"(0)=0, $"(0) =
&e. &e.
If now we compare the preceding equation with the equation
¢(z)=a sinz+ b sin 2z + ¢ sin 3z + d sin 4 + ¢ sin 5z + &,

developing the second member with respect to powers of z, we
have the equations

A=a+2b +3c +4d +5e + &e,
B=a+2%b + 3c+ 4°d + 5% + &c.,
C=a+ 2%+ 8c+ 4°d + 5% + &c.,
D=a+2b+ 3¢+ 4d + 5% + &e,,
E=a+2b+38c+4°d+ 5%+ &e. ............ (a).

These equations serve to find the coefficients a, b, ¢, d, ¢,
&c., whose number is infinite. To determine them, we first re-
gard the number of unknowns as finite and equal to m; thus
we suppress all the equations which follow the first m equations,
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and we omit from each equation all the terms of the second
member which follow the first m terms which we retain. The
whole number m being given, the coefficients a, b, ¢, d, ¢, &c. have
fixed values which may be found by elimination. Different
values would be obtained for the same quantities, if the number
of the equations and that of the unknowns were greater by one
unit. Thus the value of the coefficients varies as we increase
the number of the coefficients and of the equations which ought
to determine them. It is required to find what the limits are
towards which the values of the unknowns converge continually
as the number of equations increases. These limits are the true
values of the unknowns which satisfy the preceding equations
when their number is infinite.

208. We consider then in succession the cases in which we
should have to determine one unknown by one equation, two
unknowns by two equations, three unknowns by three equations,
and so on to infinity.

Suppose that we denote as follows different systems of equa-
tions analogous to those from which the values of the coefficients
must be derived :

a=4, a+2b,=A4,, a,+2b +38c, =4,
a,+2%,=B,, a,+ 2'b,+ 3%, = B,,
a,+ 2%, + 3%, =C,,

a,+2b, +3c, +4d, =4,,

a,+2',+ 3%, +4'd,=B,,

a,+2°%,+ 3%, + 4°d,=C,,

a,+2'b,+3'%,+4'd,=D,,

a,+2b, +3c, +4d; +5¢, =A,,

a,+2°b, + 3%, + 4°d, + 5%, = B,,
a,+ 2°%b, + 8%, + 4°d, + 5%, = C,,
a,+2'b,+ 3¢, + 4'd, + b'e;=D,,
a,+ 2%, + 3%, + 4°d, + 5%, = E,,

&e. &e v i voranee (®).
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If now we eliminate the last unknown e, by means of the
five equations which contain 4,, B,, C,, D,, E,, &c., we find
a, (5" —1%) +2b, (5°—2%) + 3¢, (5°— 3") +4d, (5' —4")=5"4,— B,,
a, (5= 1°) + 2%, (5" — 2") + 8%, (5" - 3") + 4°d, (5* — 4) = 5"B, — C,,
a, (5" —1%) + 2°, (5* — 2%) + 8%, (5" — 8") + 4°d, (5° — 4") =5°C, — D,,
a,(5°—1%) + 275, (5° - 2") + 8¢, (5" 3") + 4'd, (5*— 4*) = 5D, — E,.

We could have deduced these four equations from the four

which form the preceding system, by substituting in the latter
instead of

a, (5'—1%a,,

b,, (5°—2"b,,

¢ (3'—-3Ye,,

d, (5*—4"d,;

and instead of A, 5'4,—B,

B,, 5'B,-C,,

C, 5C,—-D,

D, 5'D,—E,.
By similar substitutions we could always pass from the case
which corresponds to a number m of unknowns to that which
corresponds t6 the number m+1. Writing in order all the

relations between the quantities which correspond to one of the

cases and those which correspond to the following case, we shall
have

a,=a,(2'-1),
a,=a,(3'-1), b,=>,(3-2°,
a,=a, (4'—-1), b,=b,(4*'-2", c,=c,(4'-3"),
a,=a,(5’°=1), b,=b,(5"-2", ¢,=c,(5*-3"), d,=d,(5'4"),
a,=a,(6°-1), b=5,(6"-2", c,=c,(6°-3"), d,=d, (6’4",
e,=¢, (6’ 57),
&e. &e. o e (c).
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We have also
A4 =24,-B,
A,=384,-B,, B,=3B,-C,,
A,=44,—- B, B,=4B,—-C,, C,=4C,-D,,
A,=54,-B,, B,=5B,-C,, C,;=5C,—D,, D;=35D,~E,
&e. &C. et (d).

From equations (¢) we conclude that on representing the un-
knowns, whose number is infinite, by a, b, ¢, d, e, &c., we must
have

al
CCEFEFo)F-y@-—D(E-1)...

b!
F-HEF-'-H(6-29...°

b=

c’
CEFE-PHE-PE-N(r=-9)...'

d,
CENC-HE-HE-H-

&e. &C. cevvreenrirnrarans @).

209. It remains then to determine the values of a, b, c,,
d,, e, &c.; the first is given by one equation, in which 4, enters;
the second is given by two equations into which 4 B, enter; the
third is given by three equations, into which A B,C, enter; and
so on. It follows from this that if we knew the values of

A, AB, ABC, ABCD,.. &.

we could easily find a, by solving one equation, ab, by solving
two equations, ab,c, by solving three equations, and so on: after
which we could determine a, b, ¢, d, ¢, &. It is required then
to calculate the values of

A,, AB, ABC, ABCD, ABCD,E,.. &,

by means of equations (d). 1st, we find the value of 4, in
terms of A, and B,; 2nd, by two substitutions we find this value
of 4, in terms of 4,B,C;; 3rd, by three substitutions we find the

832
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same value of 4, in terms of 4,B,C.D,, and so on. The successive

values of 4, are

A4,=42"-B,,

A,=42"3-B,(2"+3"+C,

A=42.3.4-B,(2.3+2".4+3.404+C, 2" +3+4)-D,,

A, =42"3.4.5—-B(2.3.4'+2.3".5+2°.4".5"+ 3. 4'. 5"
+C,(2°.3 + 204"+ 2°.5° + 3°.4°+ 3. 5"+ 4*.5")
-D,(2'+3'+4+5)+ E,, &,

the law of which is readily noticed. The last of these values,

which is that which we wish to determine, contains the quantities

A, B, C, D, E, &c., with an infinite index, and these quantities

are known ; they are the same as those which enter into equa-

tions (a).

Dividing the ultimate value of 4, by the infinite product
2'.3%.4*.5%.6... &c.,
we have

1 1 1 1 1 1 1
A —B(2—,+§;+Z;+5;+&c.)+ 0(—2,'3,4'2..4,4'3—-—,.4,-*-'&0.)

1 1 1
-D (2*. e g etaent &"“)

+E( 1 ,+&c.)+&c.

1
FF AT Y46
The numerical coefficients are the sums of the products which
could be formed by different combinations of the fractions

1 1 1 1 1
Pr ?” §,‘, 3;, '6—5...&0.,

after having removed the first fraction If we represent

1
. Ti ’

the respective sums of products by P, Q,, R, 8,, T,, ... &c., and
if we employ the first of equations (¢) and the first of equa-
tions (b), we have, to express the value of the first coefficient g,
the equation
a(2-1)(3*-1)(#'-1)("-1)...

20345, T

= A - BP,+ (Q, — DR, + ES, - &,
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now the quantities P,, Q,, R,, 8,, T,... &c. may be easily deter-
mined, as we shall see lower down; hence the first coefficient a
becomes entirely known.

210. We must pass on now to the investigation of the follow-
ing coefficients b, ¢, d, e, &c., which from equations (¢) depend on
the quantities b,, ¢c,, d,, ¢,, &. For this purpose we take up
equations (b), the first has already been employed to find the
value of a,, the two following give the value of b,, the three
following the value of c,, the four following the value of d,, and
80 on. :

On completing the calculation, we find by simple inspection
- of the equations the following results for the values of b, ¢,, d,,
&e.

2b,(1*-2)=4,1'- B,,
3¢, (1'-3") (2'-3)=4,1*"2'"-B,(1'+ 2" + C,,
4d,(1'— 4" (2'-4") (3'"— 49
=A1"2"3"-B,(1"2'+1".3'+ 2.3 + C, (1 + 2+ 3" — D,,
&e.

It is easy to perceive the law which these equations follow;
it remains only to determine the quantities A4,B,, A4,B,C,,
ABLC,, &e.

Now the quantities 4,B, can be expressed in terms of 4,B,C,,
the latter in terms of A4,B,C,D,. For this purpose it suffices to
effect the substitutions indicated by equations (d) ; the successive
changes reduce the second members of the preceding equations
80 as to contain only the ABCD, &c. with an infinite suffix,
that is to say, the known quantities ABCD, &c. which enter into
equations (a); the coefficients become the different products
which can be made by combining the squares of the numbers
1°2'3°4°5* to infinity. It need only be remarked that the first
of these squares 1' will not enter into the coefficients of the
value of @ ; that the second 2* will not enter into the coefficients
of the value of b,; that the third square 3" will be omitted only
from those which serve to form the coefficients of the value of c,;
and so of the rest to infinity. We have then for the values of
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bede,, &c., and consequently for those of bede, &c., results entirely
analogous to that which we have found above for the value of -
the first coefficient a,.

211. If now we represent by P,,Q,, R, S,, &c., the quantities

1 1. 1 1
'i—,+§.+;—.+g§+ v

1 1 1 1 1

retpetpstgetaet -

1 1 1
rEetrystEast
1 + 1
TR U U U N
&e.,

. . .. 1 1 1
which are formed by combinations of the fractions T 3 g
4—1,, 51, &c. to infinity, omitting 21, the second of these fractions
we have, to determine the value of 4,, the equation

1°-20
2b, WS'T:=A —BP,+ CQ,—.DR,'}'ES"-&C.

Representing in general by P,Q R,S, ... the sums of the
products which can be made by combining all the fractions
1 1 1 1 1
28¢5
only; we have in general to determine the quantities a,, b,, c,,
d,, ¢;..., &c., the following equations:

... to infinity, after omitting the fraction 71?

S S
e O O L

A—BP,+0Q,~ DR+ BS,~&c.= 2, 1 & 22,

A—BP +CQ,— DR, + ES,—&c.= a

2
A—BP,+CQ,— DR, + ES, — &.= 3¢, {.12;3;’.&52_;&

1* — 4%) (20 — 4%) (3*— 47
A—BP‘+CQ‘—DR‘+ES‘—&C.=4'J‘( 1*.)?'(.3'.5'.)(5'... )’
&e.
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212. If we consider now equations (¢) which give the values
of the coefficients a, b, ¢, d, &c., we have the following results:

(@ -17 (8 —19) (4" =17 (5" —17)...
¢ 345,
=A—-BP,+ CQ,— DR, + ES, - &c.,
op (11 =2 (3=2) (#-2) (529 ...
1°.3.4%.5...
=A—BP,+ CQ,~ DR, + ES, — &c,

—3) (-3 (£ -9 (5'—3N...
18,28, 4%.50...

3 (L

=4 - BP,- CQ,- DR, + ES, — &,

(11— 47) (2 — 4% (3 — 49 (' — 47) ...
4 r.2.3.5..

=A-BP,+CQ,— DR, + ES, - &,

&e.

Remarking the factors which are wanting to the numerators
and denominators to complete the double series of natural
numbers, we see that the fraction is reduced, in the first equation

11 . 2 2 . . 3 3 .
tog.3;1n the second to —g-z; 0 the third to 36’ in the
fourth to — § . 33 so that the products which multiply a, %, 3c,
4d, &c., are alternately % and -%. It is only required then to

find the values of P .Q,RS,, PQ,R.8,, P,Q,R,S,, &

To obtain them we may remark that we can make these
values depend upon the values of the quantities PQRST, &c.,
which represent the different products which may be formed

. . 1 1 1 1 1 1 . .
with the fractions I L @,&c., without omit-
ting any.

With respect to the latter products, their values are given
by the series for the developments of the sine. We represent
then the series



SECT. V1]  DETERMINATION OF THE COEFFICIENTS. 177

1
%+1+;+ +5 !+

1 1 1 1 1 1
rotrstretoptastyetée
1 1 1 1
T stroestreetagetée
1 1. 1
ro gy et ey sy Ly,
by P, Q, R, S, &c.

35 + &e.

«* :v’ z
The series sinZ=2— 5+ = + &e.
B BT

furnishes the values of the quantities P, @, B, S, &. In fact, the
value of the sine being expressed by the equation

R 2 A (TS

we have

2 z o
I—E'l'—g—-? + &e.

RO ACREATEAIEAR

Whence we conclude at once that

& (]
pP=" ™ R=T 8=" &

Tq Q =1 =17
3 & 7 2

213. Suppose now that P, Q,, R,, S,, &c., represent the
sums of the different products which can be made with the
fractions ll” —21—,, 3l,, 4—1,, 5—1,, &ec., from which the fraction ;1,

has been removed, n being any integer whatever; it is required
to determine P,, @, 8,, &c., by means of P, Q, R, S, &c. If
we denote by

1-¢P +4¢'Q.— ¢'R, + ¢*S, — &c.,
the products of the factors

(- H0-8) (-9 (-
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among which the factor (1 - ;%) only has been omitted ; it follows
that on multiplying by (1 - ,%) the quantity

1-¢P,+¢Q.—¢"B, +¢'S, — &c,

we obtain 1-¢P+¢'Q—¢"R+¢'S— &
" This comparison gives the following relations :
R+%=R
n
.+ 5P.=0
L) ;ii ¥
B+lq =R
L] “’ [y t
S.+iR =8
n
&e.;
1
or P.=P—ﬂ_"
1 1
Q.=Q—;.P+;u
1 1 1
&:R—?Q+?P—?,

1 1 1 1
S,=S—?R+’—5Q—"—,P+;..
&c,

Employing the known values of P, Q, R, 8, and making n
equal to 1, 2, 3, 4, 5, &c. successively, we shall have the values of
PQRS, &c.; those of P,Q RS, &c.; those of P,Q,R,S,, &c.

214, From the foregoing theory it follows that the values
of a, b, ¢, d, ¢, &c., derived from the equations

a+2b +3c +4d +5e +&.= A4,

a+ 2%+ 3c+4'd+ 5%+ &e.= B,

a+ 2+ 3%+ 4'd+ 5%+ &e.=C,

a+2b+3c+4d+5e+&. =D,

a+Pb+3c+4d+5%e+&e.=E,
&e.,
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are thus expressed,

emann(f-1)e 03—
TRERER)
—%26=A—B(T:;-2-l,) + C(E—zlg+§)
G- bi-
EERENEREN.
e s-a(5-3)r o (3-50d
+E(§—%’;+31.§—§’L—g+31,) &e.;
1

BTEETEETERT
&e.

E(vr’ 17 17 17 l) & ;

215. Knowing the values of a, b, ¢, d, ¢, &c., we can substitute
them in the proposed equation

¢ (z) =a sinz + b sin 2z + ¢ sin 3z + d sin 4z + ¢ sin 5z + &c.,

and wrifing also instead of the quantities 4, B, C, D, E, &c., their
122
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values ¢'(0), ¢"(0), ¢"(0), $™(0), ¢"(0), &c., we ha.ve the general
equatxon

gh@= sn ={g O+ O (G- 1)+ ¥ O(F-F 5+ 1)

+¢"‘(0)("r 1= lrj '1—.)+&c.};

T
__smzz{¢(o)+¢'"(0)(L 5 +¢(0)(l: h[ 21')

+¢"(0) (‘7 F 15 24 [_ 2‘)+&°}
+5 smsz{¢ (0)+¢™(0) (—- - y +¢'(0) (lé‘ ::'T_:;*::‘)
4171

+¢"(0) (L 3 5 Mkt 3"'&}

_—smkc{ (o)+¢'"(0)(—[-;-,)+¢(0)(l_‘ :,3L;-+:.

s l'lr 1
+ ¢ (0) el 3 s +&et;
. F-f+oE-a)l

We may make use of the preceding series to reduce into
a series of sines of multiple arcs any proposed function whose
development contains only odd powers of the variable.

216. The first case which presents itself is that in which
¢ (2) =2; we find then ¢'(0)=1, ¢"'(0) =0, ¢*(0) =0, &c., and so
for the rest. We have therefore the series

%z=sinz—% sin 2.z:+% sin3z-—% sin 42 + &c.,
which has been given by Ealer.
If we suppose the proposed function to be 2°, we shall have
$(0)=0, ¢"(0)=[3, ¢'(0)=0, ¢"(0) =

which gives the equation
-]l:c’= (r'-?-) sin x — ( -g) %sin 2% + (1r’ —E;);sin 3z + &e.

2 3
(4).
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We should arrive at the same result, starting from the pre-
ceding equation,

§w=sinz-%sin2z+%sin3z—%sin-tz+&c.
In fact, multiplying each member by dw, and integrating, we
have
0—-%'=cosz—%cos2z+%,
the value of the constant C is
1.1 1 1

oosSz—-i—,cos&z+&c.;

1—2—,+§,—?+'5—.—&0.;
¢ ]
a series whose sum is known to be %"E Multiplying by dx the
two members of the equation
%g—%’—cosw—él—,cos2x+;,cos3x &e.,

and integmting we have
_——___=gmz—lsm2x+;,51n3w &C

3P 2B P
If now we write instead of 2 its value derived from the’
equation

1 . 1. 1. 1.
§z=smz—§sm2z+§sm3:c—zsmdw+&c.,

we shall obtain the same equation as above, namely,

1a* 7 1\ 1 7 1\, 1 7 1

23 = sma:(l.j—-r,)—— sm2ac(L 2,) +3 sin 3:4:(L 3,) &e.
We could arrive in the same manner at the development in

series of multiple arcs of the powers 4, ", 2%, &c., and in general

every function whose development contains only odd powers of
the variable.

217. Equation (A), (Art. 216), can be put under a simpler
form, which we may now indicate. We remark first, that part of
the coefficient of sin x is the series

#0) + g $"(0) +]—§ $(0) + ',’57 $(0) + &e,
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which represents the quantity %(ﬁ(vr). In fact, we have, in
general,

$(2) = $(0) +a/(0) + ”ﬁ,’ &0+ ‘(—_; "0 +'§¢"<0>
+ &e.
Now, the function ¢(z) containing by hypothesis only odd

powers, we must have ¢(0) =0, ¢"(0)=0, ¢"(0)=0, and so on.
Hence

$ (@) =2/ (0) + Té $7(0) + “[; #'(0) + &e.;

a second part of the coefficient of sin z is found by multiplying
by —% the series
ooy T () T gt L .
¢ (0)+@ ¢ (0)+|_5 ¢ (0)+|—_7 $°(0) + &,
whose value is '%_‘ﬁ"('n'). We can determine in this manner the
different parts of the coefficient of sinz, and the components of

the coefficients of sin 2z, sin 3z, sin 4x, &. We may employ for
this purpose the equations:

FO+T 6O +T #0) +&o=1 bl
§O+T 0 +7T 60+ bo.= L ();
FO+T 670 +T5 4°0) + &o.= L "

O+ Ty # O +T 4°0) + &0 = L ¢ ().
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By means of these reductions equation (A) takes the following
form :

3 (e =sin = [(n) = i ¢ (m) + o 8" (m) — 3o () + o}

- goin2e {6() - 36" (m) + 3 4" (m) = 3 $°m) + &

1

+goin3z [ (m) = 5 6 (n) + 58" () - 35 6m) + B

~ ot {pm) - f 8+ f 8w - 4+ o)
+ &e. (B);

or this,

%7;-¢(z)=¢(1r) {s %sm2:c+ sin 3z — &ec.

_¢”(){sm:c ;.sm2z+ =5 8in 3z — &c}
+¢xv(,,-){smw-%sm2.v+3,sm3:c &c}

— ¢"(m) {sm x— 21, sin 2z + 3, sin 3z — &e.
+ &e.

218. We can apply one or other of these formule as often as
we have to develope a proposed function in a series of sines of
multiple arcs. If, for example, the proposed function is &*— ¢,
whose development contains only odd powers of z, we shall have

1 ée—¢” . 1. 1.
—2-wm—(smw-581n2z+§sm3x—&c.)

(sm T — 2, sin 2z + 3 sin 3z — &c.

+ (smz—%,sm%+ sin 3z — &c. )

(sm T - ;, sin 2 + 3, sin 3z — &e.

+ &c.
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Collecting the coefficients of sin z, sin 2z, sin 3z, sin 4z, &c.,

1 1.1 1

®, 3 3 __—n
and writing, instead of np T atete, its value a1 Ve

have
1 (—€¢") sinz sin2r sin 3z
2T e e T 1 o1 T~
1+ I 2+ 3 3+ 3
We might multiply these applications and derive from them
several remarkable series. We have chosen the preceding example
because it appears in several problems relative to the propagation
of heat.

&e.

219. Up to this point we have supposed that the function
whose development is required in a series of sines of multiple
arcs can be developed in a series arranged according to powers
of the variable z, and that only odd powers enter into that
series. We can extend the same results to any functions, even
to those which are discontinuous and entirely arbitrary. To esta-
blish clearly the truth of this proposition, we must follow the
analysis which furnishes the foregoing equation (B), and examine
what is the nature of the coefficients which multiply sinz,

sin 2z, sin 3z, &c. Denoting by % the quantity which multiplies

%sin nz in this equation when n is odd, and —}lsinn:c when n is
even, we have
#= §(m) = o ¢ (m) 4§ () = 5 47(m) + e

Considering s as a function of w, differentiating twice, and
comparing the results, we find s +$ ‘%—f, = ¢(m); an equation
which the foregoing value of s must satisfy.

Now the integral of the equation s +% ;l—;; = ¢ (), in which s
is considered to be a function of z, is
8=a cosnz + b sin nx

+n sinm:fcos nz (x)de —n cosn.cfsinnnﬁ(a:)dx.
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If n is an integer, and the value of z is equal to 7, we have
s=%n f¢ () sin nzde. The sign + must be chosen when = is

odd, and the sign — when that number is even. We must make
z equal to the semi-circumference , after the integration in-
dicated; the result may be verified by developing the term

f ¢ (z) sin nz dx, by means of integration by parts, remarking

that the function ¢ (z) contains only odd powers of the vari-
able z, and taking the integral from =0 to z=.

We conclude at once that the term is equal to
) 1 1 1
t {‘f’(”")"“’”_s‘f’ (m) +;‘1¢"(7r) - ¢ (m) + po ¢ (7)) — &c.} .

If we substitute this value of % in equation (B), taking the
sign + when the term of this equation is of odd order, and the
sign — when n is even, we shall have in general f ¢ () sin nxdz

for the coefficient of sinnz; in this manner we arrive at a very
remarkable result expressed by the following equation :

;vnp(w) = sinzfsi.n x¢(x) dz + sin 2:cfsin 2z (x) dx + &e.
+8in iz [sin iz ¢ (x) dz + &e. ............... (D),

the second member will always give the development required
~ for the function ¢ (z), if we integrate from z=0 to z==

1 Lagrange had already shewn (Miscellanea Taurinensia, Tom. 1m., 1766,
pp. 260—1) that the function y given by the equation

y=2 (i!;Y,sinX,rAX) sinzr +2 (2 ¥, sin 2X,x AX) sin 2or
r=l
+2 (ZY, sin 8X,x AX) sin 827 + ... + 2 (2 ¥, sinnX,r AX) sin now
o)
receives the values Y;, Y5, ¥;...¥,, corresponding to the values X,, X,, X,...X, of
r

z, where Xr=m, and Ax=m .

Lagrange however abstained from the transition from this summation-formula
to the integration-formula given by Fourier.

Cf. Riemann’s Gesammelte Mathematische Werke, Leipzig, 1876, pp. 218—220

of his historical criticism, Ueber die Darstellbarkeit einer Function durch eine
Trigonometrische Reike. [A.F.]
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220. We see by this that the coefficients a, b, ¢, d, ¢, f; &c.,
which enter into the equation

'%r¢(z)=a sin 2 + b sin 2z + ¢ 8in 3z + d sin 4z + &c.,

and which we found formerly by way of successive eliminations,
are the values of definite integrals expressed by the general term

f sin 1z ¢ () dz, ¢ being the number of the term whose coefficient

is required. This remark is important, because it shews how even
entirely arbitrary functions may be developed in series of sines
of multiple arcs. In fact, if the function ¢ («) be represented
by the variable ordinate of any curve whatever whose abscissa
extends from #=0 to #=m, and if on the same part of the axis
the known trigonometric curve, whose ordinate is y=sinz, be
constructed, it is easy to represent the value of any integral
term. We must suppose ‘that for each abscissa x, to which cor-
responds one value of ¢ (x), and one value of sinz, we multiply
the latter value by the first, and at the same point of the axis
raise an ordinate equal to the product ¢ (z)sinz. By this con-
tinuous operation a third curve is formed, whose ordinates are
those of the trigonometric curve, reduced in proportion to the
ordinates of the arbitary curve which represents ¢(x). This
done, the area of the reduced curve taken from =0 to z==
gives the exact value of the coefficient of sinz; and whatever
the given curve may be which corresponds to ¢ (x), whether we
can assign to it an analytical equation, or whether it depends on
no regular law, it is evident that it always serves to reduce
in any manner whatever the trigonometric curve; so that the
area of the reduced curve has, in all possible cases, a definite
value, which is the value of the coefficient of sinz in the develop-
ment of the function. The same is the case with the following

coefficient b, or f ¢ (z) sin 2zdz.

In general, to construct the values of the coefficients a,b, ¢, d, &c.,
we must imagine that the curves, whose equations are

y=sin®, y=sin2zx, y=sin3x, y=sindx, &c.,

have been traced for the same interval on the axis of .z, from
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=0 to z==; and then that we have changed these curves by
multiplying all their ordinates by the corresponding ordinates of
a curve whose equation is y=¢ (). The equations of the re-
duced curves are

y=sinz¢(z), y=sin2x¢(x), y=sindz¢(z), &c.
The areas of the latter curves, taken from =0 to 2=,

are the values of the coefficients a, b, ¢, d, &c., in the equation

%r¢(w)=a sin z + b sin 2z + ¢ sin 3z + d sin 4z + &c.

221. We can verify the foregoing equation (D), (Art. 220),
by determining directly the quantities a,, a,, a,, ... a,, &c, in the
cquation

¢(x) =a, sinz + a, 8in 22 + a, sin 3z + ... @, sin jz + &c.;

for this purpose, we multiply each member of the latter equation
by siniz dz, ¢ being an integer, and take the integral from z=0
to =, whence we have

f¢(z) sin iz dic = a,fsinz sin iz dz + a,fsinzmsinizdx+&c.
+a,fsinj:c sinizde+ ... &.

Now it can easily be proved, 1st, that all the integrals, which
enter into the second member, have a nul value, except only the
term g, f sin iz sin @wde; 20d, that the value of [sinésin ird is

37 ; whence we derive the value of a,, namely
2 ..
;—rfcb (x) sin 2 da.

The whole problem is reduced to considering the value of the
integrals which enter into the second member, and to demon-
strating the two preceding propositions. The integral

2fsinjxsin 1 du,
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taken from z=0 to z =, in which ¢ and j are integers, is
1 .. 1 ..
’.—:—jsm(t-—j)x—msm(t-i-j)x+0.
Since the integral must begin when 2 =0 the constant C is
nothing, and the numbers ¢ and j being integers, the value of the

integral will become nothing when x=m; it follows that each
of the terms, such as

alfsinzsint'zdx, a,fsin2zsinia:da:, a,fsin3zsini:cdz, &e,

vanishes, and that this will occur as often as the numbers ¢ and j
are different. The same is not the case when the numbers ¢ and J

are equal, for the term i—_—ljsin (t—j) =z to which the iﬁtegm.l re-
duces, becomes 9, and its value is . Consequently we have
2 [sin wz sin tx dx = 7;

thus we obtain, in a very brief manner, the vulues of a,, a,, a,, ...
a,, &c., namely,

a,=f—rf¢(:c) sin z d, a,=1grf¢(x) sin 2z dz,

=2 [$(@ sin32d, a,=2 [$(@) sin iwda.
Substituting these we have
}nd(x) = sin a:ftﬁ(z) sin z dx + sin 2xf¢ () sin 2z dz + &c.

+sin af«p(m) sin izdz + &.

222. The simplest case is that in which the given function
has a constant value for all values of the variable z included

between 0 and ; in this case the integral | sin izdz is equal o

;2.., if the number 3 is odd, and equal to 0 if the number i is even.
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Hence we deduce the equation

1 . 1. 1. 1
§w-sma:+§sm3w+gsm 5.'c+7

which has been found before.

sin 72 + &e.,

It must be remarked that when a function ¢(z) has been de-
veloped in a series of sines of multiple arcs, the value of the series

a sin & + b sin 2z + ¢ sin 3z + d sin 4z + &e.

is the same as that of the function ¢ (z) so long as the variable z
is included between 0 and o ; but this equality ceases in general
to hold good when the value of z exceeds the number .

Suppose the function whose development is required to be «,
we shall have, by the preceding theorem,

%wm=sinszsinxdw+ sin2:cfa:sin2zd.z

+sin3xfwsin3wdw+&c.

The integral f 'zsin izdz 18 equal to j;"—; ; the indices 0 and =,
[)

which are connected with the sign f , shew the limits of the inte-

gral ; the sign + must be chosen when ¢ is odd, and the sign —
when ¢ is even. We have then the following equation,
1

1 . 1. . 1
§w=smx-§sm 2w+§sm3x—z

gin 42 + % sin 5z — &e.

223. We can develope also in a series of sines of multiple
arcs functions different from those in which only odd powers of
the variable enter. To instance by an example which leaves no
doubt as to the possibility of this development, we select the
function cosz, which contains only even powers of #, and which
may be developed under the following form :

a sin z + b sin 2z + ¢ sin 3z + d sin 4x + e sin 5z + &ec.,

although in this series only odd powers of the variable enter.
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We have, in fact, by the preceding theorem;

%wcosa:=sinwfcoszsina:dx+ sin szcos;vsin%dx

+ sin 3.zfcos:csin 3z dz + &c.

The integral f cosz sin tz dz is equal to zero when ¢ is an

odd number, ,?_" i
successively 1 =2, 4, 6, 8, etc., we have the always convergent
series

1 2 4
T8z =13 sm2:c+ sm4\z+5 7sm6a:+&c,

or,

cosz=-2-{G ;) 2w+(§ ;)sm‘tx-i-( +7)sm6:c+&c}

This result is remarkable in this respect, that it exhibits the
development of the cosine in a series of functions, each one of
which contains only odd powers. If in the preceding equation &
be made equal to }, we find

1w _1¢1.1 1 1 1
Zﬁ‘é(l"’a 5 7"'9*11 &°)
This series is known (Introd. ad analysin. infinit. cap. X.).

224. A similar analysis may be employed for the development
of any function whatever in a series of cosines of multiple arcs.
Let ¢(z) be the function whose development is required, we
may write
¢(z) =a, cos0x+a cos z + a, cos 2z + a, cos 3z + &c.
+ a, cos iz + &c. .......... (m).
If the two members of this equation be multiplied by cos jz,
and each of the terms of the second member integrated from
=0 to #=m; it is easily seen that the value of the integral
will be nothing, save only for the term which already contains
cos jz. This remark gives immediately the coefficient a,; it is
sufficient in general to consider the value of the integral

f cos jz cos 1z dx,
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taken from x = 0 to # =, supposing j and i to be integers. We
have

fcosjzcosizdz=2(J.l+z.)sm(1+i)x+ (Jl .)sm(J f)x+c.

This integral, taken from #=0 to # =, evidently vanishes
whenever j and 1 are two different numbers. The same is not
the case when the two numbers are equal. The last term

Tl_i)sin(j—i)a:

becomes g, and its value is 4, when the arc z is equal to .

If then we multiply the two terms of the preceding equation (m)
by cosiz, and integrate it from 0 to =, we have

f¢ (@) cos iz dz = jma,

an equation which exhibits the value of the coefficient a.
To find the first coefficient @,, it may be remarked that in
the integral

(Jl+1.)sm(,7+i)w+2(] .)sm(J i) @,

if j=0 and =0 each of the terms becomes g, and the value

of each term is }u; thus the integral f cosjz cos wwdx taken

from =0 to == is nothing when the two integers j and
are different: it is 3o when the two numbers j and ¢ are equal
but different from zero; it is equal to = when j and ¢ are each
equal to zero; thus we obtain the following equation,

e (x)= % f :4;(9:) dx+cosz [ :4: (@) coszdx+cos 2z f :4; (x)cos2zdx
| + cos 3z f :4: () cos Bz dx + &e.  (n)*

! The process analogous to (4) in Art. 222 fails here; yet we see, Art. 177, that
an analogous result exists. [R. L. E.]
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This and the preceding theorem suit all possible functions,
whether their character can be expressed by known methods of
analysis, or whether they correspond to curves traced arbitrarily.

225. If the proposed function whose development is required
in cosines of multiple arcs is the variable x itself; we may write
down the equation

%m:=a,+a‘cosa:+a,cos2z+a,cos3x+...+a‘cosiz+&_c.,

and we have, to determine any coefficient whatever a,, the equa-

tion @, = ] " cos izdz. This integral has a nul value when ¢ is
[

an even number, and is equal to —,‘—% when ¢ is odd. We have at

the same time a, =%1r’. We thus form the following series,

1 cos x cos 3z cos 5z cos Tx
e L e e bl il
We may here remark that we have arrived at three different
developments for 2, namely,

1 . 1. 1. 1. 1.
-éa:—smw-—ésmh+§sm3w—zmn4-w+gsm5x—&c.,
1 2 . 2 2

§z=;rsmz—3, sin 3ac+ sm 5z — &c. (Art. 181),

1 1 2 2 2
§x—;7r—-7—rcos:c—3—,—cos3z 5_n_cos5:c—&c.

It must be remarked that these three values of }z ought not
to be considered as equal; with reference to all possible values of
x, the three preceding developments have a common value only
when the variable x is included between 0 and }=. The con-
struction of the values of these three series, and the comparison of
the lines whose ordinates are expressed by them, render sensible
the alternate coincidence and divergence of values of these
functions.

To give a second example of the development of a function in
a series of cosines of multiple arcs, we choose the function sin z,
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which contains only odd powers of the variable, and we may sup-
pose it to be developed in the form

a+ b cos x4 ccos 2z + d cos 3z + &e.

Applying the general equation to this particular case, we find,
as the equation required,

1 . - 1 cos2z cos4x cos6r
A R T R N

Thus we arrive at the development of a function which con-
tains only odd powers in a series of cosines in which only even
powers of the variable enter. If we give to # the particular value
3, we find

1 1 1 1 1 1

1""3tT3 sstsr Tet e
Now, from the known equation,

1 1 1 1 1 1

Z'rr—l—§+§—7+-9--—ﬁ+&c.,
we derive

1 1 1 i i

s~ 1.3 s7tontm st
and also

1 11 _ 1 1 .

83735 7.9 11.13° °°

Adding these two results we have, as above,

_1.-,,»—.1_.*._1.___ l...+_1.___l__+__l_._
4 271.3 3.5 5.7 7.9 9.11

&e.

226. The foregoing analysis giving the means of developing
any function whatever in a series of sines or cosines of multiple
arcs, we can easily apply it to the case in which the function to be
developed has definite values when the variable is included
between certain limits and has real values, or when the variable is
included between other limits. We stop to examine this particular
case, since it is presented in physical questions which depend on
partial differential equations, and was proposed formerly as an ex-
ample of functions which cannot be developed in sines or cosines

F. H. 13
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of multiple arcs. Suppose then that we have reduced to a series of
this form a function whose value is constant, when @ is included
between O andva, and all of whose values are nul when z is in-
cluded between @ and =. We shall employ the general equation
(D), in which the integrals must be taken from =0 to z=.
The values of ¢(x) which enter under the integral sign being
nothing from z =a to z=r, it is sufficient to integrate from 2=0
to z=a. This done, we find, for the series required, denoting by
h the constant value of the function,

1 1—cos2x .
§1r¢(z) {(l cosa) sinz + —§——-—sm2.z:
+1-_:3-°f_3«sin3z+&c.}.

If we make A=}, and represent the versed sine of the arc
by versin z, we have

$() = versin asin @ +  versin 2asin 2z + g versina sin 3z + &e.

This series, always convergeut, is such that if we give to z any
value whatever included between 0 and a, the sum of its terms
will be §7; but if we give to « any value whatever greater than
a and less than §u, the sum of the terms will be nothing.

In the following example, which is not less remarkable, the
values of ¢ (z) are equal to sin Zraf for all values of z included

between 0 and o, and nul for values of x between a and w. To
find what series satisfies this condition, we shall employ equa-
tion (D).

The integrals must be taken from z=0 to z=a; but it is
sufficient, in the case in question, to take these integrals from
=0 to z=a, since the values of ¢(z) are supposed nul in the
rest of the interval. Hence we find

¢(a£)=2 {smasmz sin 2z sin 2z sm3asm3:c+&c‘}

Pod T e T woga

! In what cases a function, arbitrary between certain limits, can be developed
in a series of cosines, and in what cases in a series of sines, has been shewn by
Sir W. Thomson, Camd. Math. Journal, Vol. 1. pp. 258—262, in an article
signed P. Q. B., On Fourier's Expansions of Functions in Trigonometrical Series.
[A.F.]



SECT. V1] TRIGONOMETRICAL DEVELOPMENTS. 195

If a be supposed equal to =, all the terms of the series vanish,
except the first, which becomes - o and whose value is sinz; we

have then ¢(z) =sinz.

997. The same analysis could be extended to the case in
which the ordinate represented by ¢ (x) was that of a line com-
posed of different parts, some of which might be arcs of curves

and others straight lines. For example, let the value of the func-
tion, whose development is required in a series of cosines of

2
multiple arcs, be (g) —a*, from # =0 to =}, and be nothing

from =} to z=m. We shall employ the general equation (n),
and effecting the integrations within the given limits, we find

. ]
that the general term’ f [(g) -x’] cos 1zdz is equal to ;2-, when ¢
is even, to -:.r—,when ¢ is the double of an odd number, and to

—:—.5 when ¢ is four times an odd number. On the other hand, we

32°
the following development :

find 1 for the value of the first term 3 5 f ¢ (z)dz. We have then

1 * 2 (cosx cosdx cosbz cos Tz
'i‘ﬁ(”):é‘:';(lzr)"';{ Tty vty to +&}
+cos2m cos 4r = cos 6a:_ &e.

93 - 43 6®

The second member is represented by a line composed of para-
bolic arcs and straight lines.

228. In the same manner we can find the development of a
function of z which expresses the ordinate of the contour of a
trapezium. Suppose ¢(z) to be equal to & from £=0 to z=gq,
that the function is equal to a from z=a to z=m — a, and lastly
equal to 7 — z, from z = m—atox=m. To reduce it to a series

] 2
ﬂ: ) —z]oosixdz ( ) s"“‘"’—:f’-mnw—-2-:a:cosm:-¢- 28":'3.

[R.L.E.]
13—2
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of sines of multiple arcs, we employ the general equation (D).
The general term f ¢ (z) sin 1z dz is composed of three different

. 2. . .
parts, and we have, after the reductions, Fsinia for the coefficient
of sin tx, when ¢ is an odd number; but the coefficient vanishes
when 1 is an even number. Thus we arrive at the equation

%mﬁ (x)=2 {sinasinz-{-%,sin 3zsin3.z+-§—,sin 52 sin 5z

+ % sin 7a sin 7z + &c.} ™)

If we supposed a= 4, the trapezium would coincide with an
isosceles triangle, and we should have, as above, for the equa-
tion of the contour of this triangle,

%-mp(x) =2(sina:—:%sin3z+é§sin 5.z'-,71,;sin Tz + &c.},’

a series which is always convergent whatever be the value of «.
In general, the trigonometric series at which we have arrived,
in developing different functions are always convergent, but it
has not appeared to us necessary to demonstrate this here ; for the
terms which compose these series are only the coefficients of terms
of series which give the values of the temperature; and these
coefficients are affected by certain exponential quantities which
decrease very rapidly, so that the final series are very convergent.
With regard to those in which only the sines and cosines of
multiple arcs enter, it is equally easy to prove that they are
convergent, although they represent the ordinates of discontinuous
lines. This does not result solely from the fact that the values
of the terms diminish continually; for this condition is not
sufficient to establish the convergence of a series. It is necessary
that the values at which we arrive on increasing continually the
number of terms, should approach more and more a fixed limit,

! The accuracy of this and other series given by Fourier is maintained by
Sir W. Thomson in the article quoted in the note, p. 194
* Expressed in cosines between the limits 0 and w,

2
irp(z)= % - (eos?z+;—,eos6x+5l—,eoslw+&c.) .

Cf. De Morgan’s Diff. and Int. Calc., p. 622. [A.F.]
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and should differ from it only by a quantity which becomes less
than any given magnitude: this limit is the value of the series.
Now we may prove rigorously that the series in question satisfy
the last condition.

229. Take the preceding equation (A) in which we can give
to z any value whatever; we shall consider this quantity as a
new ordinate, which gives rise to the following construction.

Fig. 8.
m

Having traced on the plane of = and y (see fig. 8) a rectangle
whose base Om is equal to the semi-circumference, and whose
height is 4 ; on the middle point m of the side parallel to the
base, let us raise perpendicularly to the plane of the rectangle
a line equal to }m, and from the upper end of this line draw
straight lines to the four corners of the rectangle. Thus will be
formed a quadrangular pyramid. If we now measure from the
point O on the shorter side of the rectangle, any line equal to a,
and through the end of this line draw a plane parallel to the base
Omr, and perpendicular to the plane of the rectangle, the section
common to this plane and to the solid will be the trapezium whose
height is equal to a. The variable ordinate of the contour of
this trapezium is equal, as we have just seen, to

el sinasinm+l,sin3asin3w+l,sin5asin5z+&c. . .
T 3 5

It follows from this that calling z, y, z the co-ordinates of any
point whatever of the upper surface of the quadrangular pyramid
which we have formed, we have for the equation of the surface
of the polyhedron, between the limits

z=0, z=m, y=0, y=im

1_ sinzsiny  sin3zsin3y  sin5zsin 5y

2 1 3 5?

+ &e.
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This convergent series gives always the value of the ordinate
z or the distance of any point whatever of the surface from the
plane of z and y.

The series formed of sines or cosines of multiple arcs are
therefore adapted to represent, between definite limits, all possible
functions, and the ordinates of lines or surfaces whose form is
discontinuous. Not only bhas the possibility of these develop-
ments been demonstrated, but it is easy to calculate the terms
of the series; the value of any coefficient whatever in the
equation

¢ (2) = a,sinz + a,sin 2z + a,sin 3z + ... + a;sintx + ete.,
is that of a definite integral, namely,

2 qu () sin iz dz.

Whatever be the function ¢ (z), or the form of the curve
which it represents, the integral has a definite value which may
be introduced into the formula. The values of these definite

integrals are analogous to that of the whole area f¢ (x) dz in-

cluded between the curve and the axis in a given interval, or to
the values of mechanical quantities, such as the ordinates of the
centre of gravity of this area or of any solid whatever. It is
evident that all these quantities have assignable values, whether
the figure of the bodies be regular, or whether we give to them
an entirely arbitrary form.

230. If we apply these principles to the problem of the motion
of vibrating strings, we can solve difficulties which first appeared
in the researches of Daniel Bernoulli. The solution given by this
geometrician assumes that any function whatever may always be
developed in a series of sines or cosines of multiple arcs. Now
the most complete of all the proofs of this proposition is that
which consists in actually resolving a given function into such a
series with determined coefficients.

In researches to which partial differential equations are ap-
plied, it is often easy to find solutions whose sum composes a
more general integral; but the employment of these integrals
requires us to detcrmine their extent, and to be able to dis-
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tinguish clearly the cases in which they represent the general
integral from those in which they include only & part. It is
necessary above all to assign the values of the constants, and
the difficulty of the application consists in the discovery of the
coefficients. It is remarkable that we can express by convergent
series, and, as we shall see in the sequel, by definite integrals,
the ordinates of lines and surfaces which are not subject to a
continuous law'. We see by this that we must admit into analysis
functions which have equal values, whenever the variable receives
any values whatever included between two given limits, even
though on substituting in these two functions, instead of the
variable, a number included in another interval, the results of
the two substitutions are not the same. The functions which
enjoy this property are represented by different lines, which
coincide in a definite portion only of their course, and offer a
singular species of finite osculation. These considerations arise
in the calculus of partial differential equations; they throw a new
light on this calculus, and serve to facilitate its employment in
physical theories.

231. The two general equations which express the develop-
ment of any function whatever, in cosines or sines of multiple
arcs, give rise to several remarks which explain the true meaning
of these theorems, and direct the application of them.

If in the series
a +b cos z + ¢ cos 2z + d cos 3z + e cos 4z + &c.,

we make the value of & negative, the series remains the same; it
also preserves its value if we augment the variable by any multiple
whatever of the circumference 2. Thus in the equation

%mﬁ (@) =%[¢ () de + cos a:f¢ () cos wdzx

+ cos 2wf¢ () cos 2adz + cos 3zf<;b () cos Bzdx + &e....(v),

the function ¢ is periodic, and is represented by a curve composed
of a multitude of equal arcs, each of which corresponds to an

! Demonstrations have been supplied by Poisson, Deflers, Dirichlet, Dirksen,
Bessel, Hamilton, Boole, De Morgan, Stokes. See note, pp. 208,209, [A. F.]
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interval equal to 27 on the axis of the absciss®. Further, each of
these arce is compesed of twe symmetrical branches, which cor-
respond to the halves of the interval equal to 2.

Suppose then that we trace a line of any form whatever ¢z
(see fig. 9.), which corresponds to an interval equal to .

Fig. 9.

-K ax ¥ L

If a series be required of the form
a4+ bcosz+ccos 2z +d cos 3z + &c,

such that, substituting for  any valwe whatever X included be-
tween 0 and o, we find for the value of the series that of the
ordinate X¢, it is easy to solve the problem: for the coefficients
given by the equation (v) are

,lrf‘i’(x)fiv» f;fqb(w)cosww. %fcﬁ(x)costixdx, &e.

These integrals, which are taken from =0 to z =, having
always measurable values like that of the area O¢zw, and the
series formed by these coefficients being always convergent, there
is no form of the line ¢¢a, for which the ordinate X¢p is not
exactly represented by the development

& + beos z + ¢ cos 2z + d cos 3z + e cos 4z + &c.

The arc ¢z is entirely arbitrary ; but the same is not the case
with other parts of the line, they are, on the contrary, determinate;
thus the arc ¢z which corresponds to the interval from 0 to — 7 is
the same as the arc ¢a; and the whole arc aga is repeated on
consecutive parts of the axis, whose length is 2.

We may vary the limits of the integrals in equatiowr (v). If
they are taken from z=—u to == the result will be doubled :

it would also be doubled if the limits of the integrals were
0 and 27, instead of being 0 and . We denote in general by the

\x
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1]
sign f an integral which begins when the variable is equal to a,

and is completed when the variable is equal to b; and we write
cquation (n) under the following form :

%7r¢(a:)=%f:¢(:c) dz+cosmf:¢(x)coszdw+ cos2a:f:¢(z)’cos2x&c

+cos 3z f " () c08 32d + et ... ).
]

Instead of taking the integrals from = =0 to z =, we might
take them from =0 to @ = 2w, or from # = — 7 to z=7; but in
each of these two cases, w¢ («) must be written instead of §w¢ (z)
in the first member of