1. (20) Diatomic nitrogen, \(N_2 \), exists at \(T = 65.9 \, K \), \(v = 0.4 \, m^3/kg \). Find the pressure.

2. (40) A mass, 10 kg, of \(H_2O \) initially at \(T_1 = 30 \, ^\circ C \), \(v_1 = 0.001080 \, m^3/kg \) is heated isochorically to state 2 where \(T_2 = 140 \, ^\circ C \). It then undergoes an isobaric process to state 3 where \(T_3 = 250 \, ^\circ C \).

 (a) Find the final specific volume.
 (b) Accurately sketch the total process in the \(P-v \), \(T-v \), and \(P-T \) planes. Label each state in your sketch giving numerical values for \(P, T, v \). Include the vapor dome in its correct position.
 (c) Find the work done in the total process.

3. (40) A mass of 0.01 kg of helium at \(P_1 = 100 \, kPa \), \(T_1 = 300 \, K \) exists inside of the piston-cylinder arrangement of Fig. 1. The piston has a cross-sectional area of \(A = 0.2 \, m^2 \). The helium is heated until \(T_2 = 2000 \, K \). The motion of the piston is resisted by a linear spring. The spring exerts no force at state 1, and has a spring constant of 1000 \(kN/m \).
 (a) Find the final pressure.
 (b) Find the total work done.