NAME:
AME 20231
Thermodynamics
Examination 2
Prof. J. M. Powers
31 March 2010

Happy 156th birthday, Sir Dugald Clerk, inventor of the two-stroke engine, b. 31 March 1854.

1. (25) A calorically imperfect ideal gas, with gas constant R and initially at P_{1}, T_{1}, V_{1}, fills a cylinder which is capped by a frictionless mobile piston. The gas is heated until $V=V_{2}$. The specific heat is given by

$$
c_{v}(T)=c_{v o}+\alpha T
$$

where $c_{v o}$ and α are constants. Find the final temperature and the heat transferred to the gas in terms of given quantities.
2. (25) A sphere of aluminum with radius of 0.01 m is initially at 1500 K . It is suddenly immersed in a very large tub of water at $300 K$. The heat transfer coefficient is $\mathrm{h}=10 \mathrm{~kW} / \mathrm{m}^{2} / \mathrm{K}$. Assuming the sphere has a spatially uniform temperature and constant material properties, find the time when the sphere's temperature is 400 K .
3. (50) Consider the Rankine cycle below. Find

(a) the heat transfer rate to the boiler $(k W)$,
(b) the power output of the turbine $(k W)$,
(c) the overall thermal efficiency,
(d) the thermal efficiency of a Carnot cycle operating between the same temperature limits,
(e) an accurate sketch of the cycle on a $T-s$ diagram,
(f) the mass flow rate of external lake cooling water to exchange heat with the condenser if the lake cooling water temperature rise is designed to be $20^{\circ} \mathrm{C}$.

