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Happy 156th birthday, Sir Dugald Clerk, 

inventor of the two-stroke engine,

b. 31 March 1854.

1. (25) A calorically imperfect ideal gas, with gas constant R and initially at P1, T1, V1, fills a
cylinder which is capped by a frictionless mobile piston. The gas is heated until V = V2. The
specific heat is given by

cv(T ) = cvo + αT,

where cvo and α are constants. Find the final temperature and the heat transferred to the gas
in terms of given quantities.

Solution

The mass of the gas, m, is

m =
P1V1

RT1

.

The process is isobaric so
P2 = P1.

From the ideal gas law, we have
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The work is
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PdV = P1(V2 − V1).

The change in internal energy is
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So
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From the first law, U2 − U1 = 1Q2 − 1W2, so

1Q2 = U2 − U1 + 1W2.
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Overall performance on this problem was not very good. The biggest problem was simple; many students
forgot calculate the total energy U via multiplication by the system mass. Many students also had
difficulty in integrating the specific heat to get the internal energy. Also, many students neglected to
account for the work, which influenced the heat transfer via the first law. Lastly, a few students failed
to realize that the process was isobaric.

2. (25) A sphere of aluminum with radius of 0.01 m is initially at 1500 K. It is suddenly immersed
in a very large tub of water at 300 K. The heat transfer coefficient is h = 10 kW/m2/K.
Assuming the sphere has a spatially uniform temperature and constant material properties,
find the time when the sphere’s temperature is 400 K.

Solution

The first law holds that
dE

dt
= Q̇ − Ẇ .

There is no work for this problem, so Ẇ = 0. Thus

dE

dt
= Q̇.

Now we neglect kinetic and potential energy changes of the aluminum, so

E = mcT + Eo.

With m, c and Eo constant, we thus have

dE

dt
= mc

dT

dt
.

Now we know that
Q̇ = hA(T∞ − T ).

So the first law reduces to

mc
dT

dt
= hA(T∞ − T ).

dT

dt
=

hA

mc
(T∞ − T ).

dT

dt
=
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ρV c
(T∞ − T ).
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=
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ρ 4

3
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t + C.
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T∞ − T = C′ exp

„

−

3h

ρrc
t

«

.

At t = 0, we have T = To, so
T∞ − To = C′.
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From Table A.3, we find for aluminum ρ = 2700 kg/m3 and c = 0.90 kJ/kg/K. So we look for the time
when T = 400 K and get

t = −

“

2700 kg

m3

”

(0.01 m2)
“

0.90 kJ
kg K

”

3
“

10 kW

m2 K

” ln
(300 K) − (400 K)

(300 K) − (1500 K)
.

t = 2.01 s.

3. (50) Consider the Rankine cycle below. Find

boiler

turbine

condenser

3

4

1

2

P3 = 15 MPa

T3 = 400 ˚C

P4 = 10 kPa

x4 = 1

P1 = 10 kPa

x1 = 0

m = 100 kg/s
.

cold lake

water in

warm lake water

out, ΔT = 20 ˚C

pump

P2 = 15 MPa

T2 = 60 ˚C

heat loss from non-adiabatic

turbine = 5000 kW

(a) the heat transfer rate to the boiler (kW ),

(b) the power output of the turbine (kW ),

(c) the overall thermal efficiency,

(d) the thermal efficiency of a Carnot cycle operating between the same temperature limits,

(e) an accurate sketch of the cycle on a T − s diagram,

(f) the mass flow rate of external lake cooling water to exchange heat with the condenser if
the lake cooling water temperature rise is designed to be 20 ◦C.

Solution

At state 1, we have two properties. From the tables, we learn

h1 = 191.81
kJ

kg
, s1 = 0.6492

kJ

kg K
, T1 = 45.81 ◦C.
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At state 2, the compressed liquid tables give

h2 = 263.65
kJ

kg
, s2 = 0.8231

kJ

kg K
.

After the boiler, we know two properties and find

h3 = 2975.44
kJ

kg
, s3 = 5.8810

kJ

kg K
.

After the turbine, we know two properties and find

h4 = 2584.63
kJ

kg
, s4 = 8.1501

kJ

kg K
.

So the heat transfer rate to the boiler is

˙
2Q3 = ṁ(h3 − h2) =

„

100
kg

s

«„„

2975.44
kJ

kg

«

−

„

263.65
kJ

kg

««

= 271179 kW.

For the turbine we have dE/dt = ˙
3Q4 −

˙
3W4 + ṁ(h3 − h4). Now dE/dt = 0, so the power output of the

turbine is

˙
3W4 = ṁ(h3 − h4) − ˙

3Q4 =

„

100
kg

s

«„„

2975.44
kJ

kg

«

−

„

2584.63
kJ

kg

««

− (5000 kW )

˙
3W4 = 34081 kW.

The power requirement of the pump, assumed to be adiabatic, is

˙
1W2 = ṁ(h2 − h1) =

„

100
kg

s

«„„

263.65
kJ

kg

«

−

„

191.81
kJ

kg

««

= 7184 kW.

The cycle efficiency is

η =
Ẇnet

˙
2Q3

=
(34081 kW ) − (7184 kW )

271179 kW
= 0.099185.

The Carnot efficiency for an engine operating between the same temperature limits is

η = 1 −

TL

TH

= 1 −

45.81 + 273.15

400 + 273.15
= 0.526.

s (kJ/kg/K)

T (˚C)

0.6492

1

2

3

4
45.81

400

5.8810 8.1501

0.8231

60

374

The heat loss in the condenser is

˙
4Q1 = ṁ(h4 − h1) =

„

100
kg

s

«„„

2584.63
kJ

kg

«

−

„

191.81
kJ

kg

««

= 239282 kW.
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Now for the lake water we need
˙

4Q1 = ṁwc(∆T ).

ṁw =
˙

4Q1

c∆T
.

ṁw =
239282 kW

“

4.186 kJ
kg K

”

(20 K)
= 2858

kg

s
.

Overall performance on this problem was good but not outstanding. Some had fundamental problems
identifying the numerical values of the state variables; this was intended to be an easy part of this problem
as there was no interpolation involved. A few failed to realize that state 2 was a compressed liquid. Most
got the turbine power; a few forgot to multiply by the mass flow rate. Many did not correctly account
for the heat transfer in the turbine and had a sign error. Most did not account for the pump work in
calculation of thermal efficiency. Surprisingly many people used Celsius and not Kelvin to calculate the
ideal efficiency. A few calculated the efficiency for a heat pump, not a power cycle. T − s diagrams were
generally bad, with a few very good. Some problems with T −s diagram include: 1) Not showing that the
entropy increased in the pump, 2) Not showing that the entropy increased in the turbine, 3) Not showing
the vapor dome, 4) Not showing the turbine temperature was greater than the critical temperature, 5)
Not showing the isobar was an isotherm under the vapor dome, 6) Not placing states 1 and 4 at the
edges of the vapor dome. Most people got the cooling water flow rate correct.
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