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Homework 1

1. 2.41 The hydraulic lift in an auto-repair shop has a cylinder diameter of 0.2 m. To what pressure should
the hydraulic fluid be pumped to lift 40 kg of piston/arms and 700 kg of a car?
Given: d = 0.3 m, marms = 40 kg, mcar = 700 kg
Assumptions: Patm = 101 kPa
Find: P
Gravity force acting on the mass, assuming the y-direction is on the axis of the piston:

∑
Fy = ma → F = (marms +mcar)(9.81 m/s2) = 7256.9 N

Now balance this force with the pressure force:

F = 7256.9 N = (P − Patm)(A) → P = Patm + F/A

A =
πd2

4
=

π(0.3 m)2

4
= 0.0707 m2

P = 101 kPa +
7256.9 N

0.0707 m2
= 204 kPa = P.

2. 2.46 A piston/cylinder with cross sectional area of 0.01 m2 has a piston mass of 200 kg resting on the
stops, as shown in Fig. P2.46. With an outside atmospheric pressure of 100 kPa, what should the water
pressure be to lift the piston?
Given: m = 200 kg, Ac = 0.01 m2, Patm = 100 kPa
Assumptions:
Find: P
The force acting down on the piston comes from gravitation and the outside atmospheric pressure acting
over the top surface. Force balance:

∑
F = 0 → PAc = mg + PatmAc

Now solve for P :

P = Patm +
mg

Ac
= 100 · 103 Pa +

(200 kg)(9.81 m/s2)

0.01 m2

= 100 kPa + 196.2 kPa = 296.2 kPa = P.
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This is a sample file in the text formatter LATEX. I require you to use it for the following reasons:

• It produces the best output of text, figures, and equations of any program I’ve seen.

• It is machine-independent. It runs on Linux, Macintosh (see TeXShop), and Windows (see MiKTeX)
machines. You can e-mail ASCII versions of most relevant files.

• It is the tool of choice for many research scientists and engineers. Many journals accept LATEX sub-
missions, and many books are written in LATEX.

Some basic instructions are given below. Put your text in here. You can be a little sloppy about spacing. It
adjusts the text to look good. You can make the text smaller. You can make the text tiny.

Skip a line for a new paragraph. You can use italics (e.g. Thermodynamics is everywhere) or bold.
Greek letters are a snap: Ψ, ψ, Φ, φ. Equations within text are easy— A well known Maxwell thermodynamic

relation is ∂T
∂p

∣∣∣
s
= ∂v

∂s

∣∣
p
. You can also set aside equations like so:

du = Tds− pdv, first law (1)

ds ≥ dq

T
. second law (2)

Eq. (2) is the second law. References 2 are available. If you have an postscript file, say sample.figure.eps,
in the same local directory, you can insert the file as a figure. Figure 1, below, plots an isotherm for air
modeled as an ideal gas.
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P v = R T
R = 0.287 kJ/kg/K
T = 300 K

Figure 1: Sample figure plotting T = 300 K isotherm for air when modeled as an ideal gas.

Running LATEX

You can create a LATEX file with any text editor (vi, emacs, gedit, etc.). To get a document, you need
to run the LATEX application on the text file. The text file must have the suffix “.tex” On a Linux cluster
machine, this is done via the command

pdflatex file.tex

This generates three files: file.pdf, file.aux, and file.log. The most important is file.pdf. This file
can be viewed by any application that accepts .pdf files, such as Adobe Acrobat reader.

The .tex file must have a closing statement as below.

2Lamport, L., 1986, LATEX: User’s Guide & Reference Manual, Addison-Wesley: Reading, Massachusetts.
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Quiz 1

1. Steam turbines, refrigerators, steam power plants, fuel cells, etc.
2. False, coal, natural gas, nuclear, etc.
3. True or false (An air separation plant separates air into its various components, which in
addition to oxygen and nitrogen include argon and other gases.)

4



Homework 2

2. 2.71 A U-tube manometer filled with water, density 1000 kg/m3, shows a height difference
of 25 cm. What is the gauge pressure? If the right branch is tilted to make an angle of 30
with the horizontal, as shown in Fig. P2.71, what should the length of the column in the
tilted tube be relative to the U-tube?
Given: ρ = 1000 kg/m3, h = 0.25 m, θ = 25 ◦

Assumptions: g = 9.81 m/s2

Find: P , l

P = F/A = mg/A = V ρg/A = hρg
= (0.25 m)(1000 kg/m3)(9.81 m/s2)
= 2452.5 Pa
= 2.45 kPa = P

h = (l)(sin 25◦)

l = h/ sin 25◦ = 59 cm = l

5
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Quiz 2

1. Water has a density of 997 kg/m3. Rationally estimate the pressure difference between the
difference between the surface and the bottom of a typical Olympic swimming pool located
on Earth. Make any necessary assumptions.

Answers will vary. Assuming no atmospheric pressure difference between the surface and
bottom of the pool and a depth of 3 m, the pressure difference ∆P is

∆P = ρgh = (997 kg/m3)(9.81 m/s2)(3 m)
= 29 kPa = ∆P.

It was acceptable to leave the height h in the solution as a variable. Atmospheric pressure
acts on the surface and the bottom of the pool so it should not factor into the pressure
difference of the pool.
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Homework 3

1. 3.72 A spherical helium balloon of 11 m in diameter is at ambient T and P , 15 ◦C and
100 kPa. How much helium does it contain? It can lift a total mass that equals the mass
of displaced atmospheric air. How much mass of the balloon fabric and cage can then be
lifted?
Given: d = 11 m, T = 15 ◦ C, P = 100, kPa
Assumptions:
Find: mHe, mlift

We need to find the masses and the balloon volume:

V =
π

6
d3 =

π

6
(11 m)3 = 696.9 m3

mHe = ρV =
V

v
=

(100 kPa)(696.9 m3)

(2.0771 kJ
kg·K)(288 K)

= 116.5 kg = mHe

mair =
(100 kPa)(696.9 m3)

(0.287 kJ
kg·K)(288 K)

= 843 kg

mlift = mair −mHe = 726.5 kg = mlift

9
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3. 3.122 A cylinder has a thick piston initially held by a pin as shown in Fig. P3.122.
The cylinder contains carbon dioxide at 200 kPa and ambient temperature of 290 K. The
metal piston has a density of 8000 kg/m3 and the atmospheric pressure is 101 kPa. The pin
is now removed, allowing the piston to move and after a while the gas returns to ambient
temperature. Is the piston against the stops?
Given: ρp = 8000 kg/m3, P1 = 200 kPa, Patm = 101 kPa, T = 290 K
Assumptions:
Find: P2

Do a force balance on piston determines equilibrium float pressure. Piston:

mp = (Ap)(l)(ρ)

Pext = Patm +
mpg

Ap
= 101 kPa +

(Ap)(0.1 m)(8000 kg/m3)(9.81 m/s2)

(Ap)(1000)
= 108.8 kPa

The pin is released, and since P1 > Pext, the piston moves up. T2 = T0, so if the piston stops,
then V2 = V1 ×H2/H1 = V1 × 150/100. Using an ideal gas model with T2 = T0 gives

P2 = (P1)(V1/V2) = (200)(100/150) = 133 kPa > Pext → P2 = 133 kPa

Therefore, the piston is at the stops for the ideal gas model.

Now for the tabulated solution:
To find P2, we must do some extrapolation because Table B.3.2 does not list 200 kPa. We
first interpolate to find the specific volume at T1 = 290 K = 16.85 ◦C at 400 kPa and 800
kPa, and then extrapolate using those points to find the specific volume at 200 kPa, v1.

Since v1 =
V1

mCO2

and the area of the piston is Ap = π
(100 mm)2

4
= 0.00785 m2, the mass of

carbon dioxide in the cylinder is

mCO2 =
V1

v1
=

(Ap)(100 mm)

0.1682 m3/kg
=

(0.00785 m2)(0.1 m)

0.1682 m3/kg
=

0.000785 m3

0.1682 m3/kg
= 0.00467 kg

Since the cylinder is closed, the mass of the carbon dioxide does not change, but the volume

does, so we will assume the piston is at the stops and V2 = 0.00118 m3, so v2 =
V2

mCO2

=

0.2523 m3/kg. Now we have two state variables (T2 and v2), so let’s go back to Table
B.3.2 and find a third state variable, P2. Interpolating between 400 kPa and 800 kPa gives
P2 = −291 kPa, which means our original assumption that the piston is against the stops
was incorrect. A similar iterative approach could be used to find P2 in the tables. The
piston is not against the stops. This problem was difficult, so it was only worth two points.
You received two points for a reasonable attempt with some calculations, one point for just
writing something, and no points for not attempting it. +2 indicates you were awarded two
points for part (b), and they were not bonus points.

4. 3.166E A 36 ft3 rigid tank has air at 225 psia and ambient 600 R connected by a valve
to a piston cylinder. The piston of area 1 ft2 requires 40 psia below it to float, Fig. P3.99.
The valve is opened and the piston moves slowly 7 ft up and the valve is closed. During the
process air temperature remains at 600 R. What is the final pressure in the tank?
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Given: VA = 36 ft3, PA = psia, T = 600 R, isothermal process
Assumptions:
Find: PA2

mA =
PAVA

RT
=

(225)(36)(144)

(53.34)(600)
= 36.4 lbm

Now find the change in mass during the process:

mB2 −mB1 =
∆VA

vB
=

∆VBPB

RT
=

(1)(7)(40)(144)

(53.34)(600)
= 1.26 lbm

MA2 = mA − (mB2 −mB1) = 36.4− 1.26 = 35.1 lbm

PA2 =
mA2RT

VA
=

(35.1)(53.34)(600)

(36)(144)
= 217 psia = PA2
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Quiz 3

1. A fixed mass of water exists in a fixed volume at the saturated liquid state with v = vf .
Heat is added to the water isochorically. Which of the following are possible final states for
the water?

Compressed liquid and supercritical liquid.
As seen in the P − v diagram, Figure 3.6
in the notes, the saturated liquid state is the
line on the vapor dome to the left of the crit-
ical point. As you add heat isochorically, the
pressure increases but the volume stays the
same. Thus the only possible final states for
the water are compressed liquid and super-
critical liquid.
You received 2 points for putting your name
on the quiz, 4 points for each correct re-
sponse, and lost 1 point for each incorrect
response.

13



Homework 4

1. 4.38 A piston cylinder contains 1 kg of liquid water at 25 ◦C and 300 kPa, as shown in
Fig. P4.38. There is a linear spring mounted on the piston such that when the water is
heated the pressure reaches 3 MPa with a volume of 0.1 m3.
(a) Find the final temperature
(b) Plot the process in a P-v diagram.
(c) Find the work in the process.
Given:
Assumptions:
Find: T2, 1W2

Solution:
Take CV as the water. This is a constant mass:

m2 = m1 = m

State 1: Compressed liquid, take saturated liquid at same temperature.
Table B.1.1: v1 = vf (25) = 0.001003 m3/kg
State 2: v2 = V2/m = 0.1/1 = 0.1 m3/kg and P= 3000 kPa from B.1.3 → Superheated

vapor, close to T = 400◦C, Interpolate: T2 = 404◦C
Work is done while piston moves at linearly varying pressure, so we get:

1W2 =
∫
PdV = Pavg(V2 − V1) = 1/2(P1 + P2)(V2 − V1)

= 0.5(300 + 3000) kPa (0.1− 0.001) m3 = 163.4 kJ = 1W2

See the P − v diagram below:

2. 4.64 A piston/cylinder arrangement shown in Fig. P4.64 initially contains air at 150 kPa,
400◦C. The setup is allowed to cool to the ambient temperature of 25◦C. (a) Is the piston
resting on the stops in the final state? What is the final pressure in the cylinder? (b) What
is the specific work done by the air during this process?
Given:
Assumptions: For all states air behave as an ideal gas.
Find:

14



Solution: State 1: P1 = 150 kPa, T1 = 400◦C = 673.2 K
State 2: T2 = T0 = 20◦C = 293.2 K
(a) If piston at stops at 2, V2 = V1/2 and pressure less than Plift = P1

→ P2 = P1 ×
V1

V2
× T2T1 = (150 kPa)(2)(

298.2

673.2
) = 132.9 kPa = P2 < P1

Since P2 < P1, the piston is resting on the stops.
(b) Work done while piston is moving at constant Pext = P1.

1W2 =

∫
PextdV = P1(V2 − V1)

Since V2 =
V1

2
=

1

2

mRT1

P1
,

1w2 =1 W2/m = RT1(1/2− 1) = (−0.287
kJ

kg ·K)(673.2 K)(−1/2) = −96.6 kJ/kg = 1w2

3. 4.124 A cylinder fitted with a piston contains propane gas at 100 kPa, 300 K with a
volume of 0.1 m3. The gas is now slowly compressed according to the relation PV1.1 =
constant to a final temperature of 340 K. Justify the use of the ideal gas model. Find the
final pressure and the work done during the process.
Given:
Assumptions:
Find:
Solution:
The process equation and T determines state 2. Use ideal gas law to say

P2 = P1

(
T2

T1

) n
n−1

= 100

(
340

300

) 1.1
1.0

= 396 kPa = P2

V2 = V1

(
P1

P2

) 1
n

= 0.1

(
100

396

) 1
1.1

= 0.0286 m3

For propane Table A.2: Tc = 370 K, Pc = 4260 kPa, Figure D.1 gives Z.

Tr1 = 0.81, Pr1 = 0.023 → Z1 = 0.98

Tr2 = 0.92, Pr2 = 0.093 → Z2 = 0.95

Ideal gas model OK for both states, minor corrections could be used. The work is integrated
to give Eq. 4.4

1W2 =
∫
PdV =

P2V2 − P1V1

1− n
=

(396× 0.0286)− (100× 0.1)

1− 1.1
kPa m3

= −13.3 kJ = 1W2

15



5. 4.170 The data from Table B.2.1 was used to create the vapor dome seen in Figure 2.
The plot was scaled to make the compression process and vapor dome more visible. Using
trapezoidal numerical integration in MATLAB, the work was found to be W = 0.6861 kJ .
The mass of the ammonia was found (using the ideal gas law and initial conditions) to be
0.00507 kg and this was multiplied by the specific volume to find the volume (V = mv).

16



Figure 2: Problem 4.170
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Quiz 4

A gas exists with volume V1 and pressure P1. It is compressed isochorically to P2, expands
isobarically to V3, decompresses isochorically back to P1, and compresses isobarically back
to V1. Sketch on a P − V plane diagram and find the net work.

P

V
V1

P1

P2

V3

1©

2©

4©

3©

The process is seen in the figure to the right.
For the net work:

Wnet =
∮
PdV

=
∫ 2

1 PdV +
∫ 3

2 PdV +
∫ 4

3 PdV +
∫ 1

4 PdV

Now because there paths are isochoric,∫ 2

1 PdV =
∫ 4

3 PdV = 0. Thus the net work
becomes

Wnet =
∫ 3

2 PdV +
∫ 1

4 PdV
= P2

∫ 3

2 dV + P1

∫ 1

4 dV

= P2(V3 − V1) + P1(V1 − V3) = Wnet

= (P2 − P1)(V3 − V1)

18



Quiz 5

1. We are given that
u(T, v) = a1T + a2T

2 + a3v + a4v
2.

Find cv.

The specific heat at constant volume, cv, is defined as follows:

cv =

(
∂u

∂T

)

v

so the given specific energy equation becomes
(
∂u

∂T

)

v

= a1 + 2a2T = cv .

19



Homework 5

20



21



22



23



Quiz 6

1. A calorically imperfect ideal gas with gas constant R and

cv = cv0 + a(T − T0),

where cv0, a, and T0 are constants, isobarically expands from P = P0, T = T0 to T = T1.
Find 0q1.

u1 − u0 = 0q1 −0 w1

= 0q1 −
∫ 1

0 Pdv
= 0q1 − Pv1 + Pv0

(u1 + P1v1)− (u0 + P0v0) =0 q1

h1 − h0 =0 q1

0q1 = h1 − h0 =
∫ T1

T0
cp(T )dT

=
∫ T1

T0
(cv(T )dT +R)dT

=
∫ T1

T0
(cv0 +R + a(T − T0))dT

= ((cv0 +R)T )T1

T0
+

a

2
((T − T0)2)

T1

T0

= (cv0 +R)(T1 − T0) +
a

2
(T1 − T0)

2 = 0q1 .

24
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5. You supervise an industrial process which uses forced convection to cool hot 10 g steel ball
bearings. In the forced convection environment, the heat transfer coefficient is h = 0.2 kW

m2·K .
The initial temperature is 1600 K. The ambient temperature is 300 K. Using the method
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developed in class, estimate the time constant of cooling, find an expression for T (t), and
find the time when T = 350 K. Plot T (t). Repeat the analysis for a 1 kg sphere.
Given: T0 = 1600 K, T∞ = 300 K, m = 10 g, h = 0.2 kW

m2·K
Assumptions: Incompressible, Newton’s law of cooling
Find: τ , t @ 350 K, plot T (t)

dU

dt
= Q̇− Ẇ

The ball bearing is incompressible, so Ẇ = 0:

dU

dt
= Q̇

mc
dT

dt
= Q̇

mc
dT

dt
= −hA(T − T∞)

ρV c
dT

dt
= −hA(T − T∞)

dT

dt
= − hA

ρcV
(T − T∞)

dT

T − T∞
= − hA

ρcV
dt

∫
dT

T − T∞
=

∫
− hA

ρcV
dt

ln(T − T∞) = − hA

ρcV
t+ C

T − T∞ = C ′ exp

(
− hA

ρcV
· 0
)

= C ′

T (t) = T∞ + (T0 − T∞) exp

(
− hA

ρcV
t

)
(3)

Generally, the time constant for a first-order system is the inverse-reciprocal of the exponen-
tial term. This gives

τ =
ρcV

hA
Now to evaluate. Since the mass is m = 10 g and the density of steel was found to be
7850 kg/m3,3 the volume of the ball is

V =
m

ρ
=

0.010 kg

7850 kg/m3
= 1.27 · 10−6 m3

3 http://www.engineeringtoolbox.com/metal-alloys-densities-d_50.html
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Knowing the volume, the radius of the ball bearing was found to be

r =

(
3V

4π

)1/3

= 6.72 · 10−3 m

The surface area A of the steel ball is

A = 4πr2 = 5.68 m2

The specific heat of steel is c = 0.49 kJ
kg·K

4. A plot of the 10 g and 1 kg ball bearings is found
in Figure 3. The time it takes for the temperature to reach 350 K was found by rearranging
Eq. (3):

ln

(
T − T∞

T0 − T∞

)(
−ρcV

hA

)
= t

A summary of the results for both analyses is found in the table below:

m τ t @ 350 K

10 g 43.1 s 140.5 s
1 kg 200.1 s 652.0 s
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Figure 3: Plot of T (t) for problem 5.5.

6. 5.228 A car with mass 1275 kg is driven at 60 km/h when the brakes are applied quickly
to decrease its speed to 20 km/h. Assume the break pads have a 0.5 kg mass with heat
capacity 1.1 kJ/kg K and that the brake disks and drums are 4.0 kg of steel. Further assume
that both masses are heated uniformly. Find the temperature increase in the break assembly
and produce a plot of the temperature rise as a function of the car mass.
Given: mc = 1275 kg, vci = 60 km/h, vcf = 20 km/h, mp = 0.5 kg, cp = 1.1 kJ/kg K, md =

4 http://www.engineeringtoolbox.com/specific-heat-metals-d_152.html
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4 kg, cd = 0.46 kJ/kg K
Find: ∆T

Starting with the first law,
∆E = 1Q2 + 1W2

There is no work being done (1W2 = 0). The heat transfer of the deceleration is equal to the
sum of the heat transfer of the break pads and the break disks/drums. Thus the change in
kinetic energy of the car is equal to the heat transfer of those components:

1

2
mcv

2
ci −

1

2
mcv

2
cf = mpcp(∆T ) +mdcd(∆T )

∆T =
1
2mc(v2ci − v2cf )

mpcp +mdcd

∆T (mc) = 0.05166mc → 65.9 K = ∆T

The function ∆T (mc) is found in the following figure:
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Quiz 7

1. The following ordinary differential equation and initial condition results from a control
volume analysis for a fluid entering and exiting a leaky bucket. In contrast to the example
problem done in lecture, the equation accounts better for the actual behavior of the fluid
exiting:

ρA
dH

dt
= ṁi − ρAe

√
2gH, H(0) = 0.

Here we have the following constants: density ρ, cross-sectional area of the tank A, cross-
sectional area of the exit hole Ae, inlet mass flow rate ṁi, gravitational constant g. The
independent variable is time t, and the dependent variable is height H. Find the fluid height
H at the equilibrium state.

Equilibrium state means the tank is in steady state and the amount of water in the tank is

not changing, so
dH

dt
= 0. Taking this into account, the given equation becomes

ṁi = ρAe

√
2gH,

and you can solve for H to find

H =

(
ṁi

ρAe

)2

· 1

2g
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Homework 7

2. Consider ow in a pipe with constant cross-sectional area A. Flow enters a xed control
volume at the inlet i and exits at the exit e. The velocity in the x-direction is v. Derive the
control volume version of the linear x-momentum equation for a uid in a fashion similar to
that used in lecture for the mass and energy equations. The only force you need to consider
is a pressure force; neglect all wall shear forces and gravity forces. The nal form should be
of the form

∂

∂t

∫

V

ρvdV = ṁivi − ṁeve + PiA− PeA.

You may wish to consult any of a variety of undergraduate uid mechanics textbooks for more
guidance.
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Consulting any fluid mechanics book gives the following equation for the x-momentum for
flow in a pipe:

∑
Fx =

∂

∂t

∫

V

ρvdV +

∫∫

cs

ρvv̄ · n̂ds

Since a pressure force is defined as P = F/A, and by convention saying that the pressure
force at the inlet is positive and negative at the exit, the sum of the forces

∑
Fx can be

substituted:

PiA− PeA =
∂

∂t

∫

V

ρvdV +

∫∫

cs

ρvv̄ · n̂ds

The normal vector n̂ points out perpendicularly for both the inlet and exit control surfaces.
Since the velocity v is always in the positive x-direction, the dot product will give the opposite
signs for the inlet and exit velocities (one will add and the other will subtract). Taking that
dot product, and since the cross-section of the pipe is said to be constant, the double integral∫∫

cs ds = A and the momentum equation becomes

PiA− PeA =
∂

∂t

∫

V

ρvdV + ([ρveA]ve − [ρviA]vi)

The mass flow rate can be written as ṁ = ρvA, so the final form of the momentum equation
can be rearranged to be

∂

∂t

∫

V

ρvdV = ṁivi − ṁeve + PiA− PeA.
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6. Take data from Table A.8 for O2 and develop your own third order polynomial curve t
for u(T ). That is find a1, a2, a3 such that

u(T ) = a0 + a1T + a2T
2 + a3T

3

well describes the data in the range 200 K < T < 3000 K. Give a plot which gives the
predictions of your curve fit u(T ) as a continuous curve for 200 K < T < 3000 K. Superpose
on this plot discrete points of the actual data. Take an appropriate derivative of the curve
fit for u(T ) to estimate cv(T ). Give a plot which gives your curve fit prediction of cv(T ) for
200 K < T < 3000 K. Superpose discrete estimates from a simple finite difference model
cv = ∆u

∆T , where the finite difference estimates come from the data in Table A.8, onto your
plot. You will find a discussion on least squares curve tting in the online course notes to be
useful for this exercise.

See the plots below for the internal energy and the specific heat at constant volume for
O2. The third-order polynomial fit for the data was found to be u(T ) = −9.17 + 0.644T +
0.001T 2 + 0.00T 3.
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Table A.8
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Quiz 8

1. Mass flows through a duct with variable area. The flow is incompressible and steady. At
the inlet, we have v = 10 m/s,A = 1 m2, ρ = 1000 kg/m3. At the exit, we have A = 0.1 m2.
Find the flow velocity at the exit.
From mass conservation for steady one-dimensional flow,

ṁi = ṁe

Since ṁ = ρvA, we can substitute:

ρviAi = ρveAe

The flow is incompressible, so the density cancels and you can solve for the velocity at the
exit:

ve =
viAi

Ae
=

(10 m/s)(1 m2)

0.1 m2
= 100 m/s = ve.
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Homework 8
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ẆCV = −0.6 kW

Q̇CV = −8.0 kW

CV

ṁi ṁe

i©
e©

water tank

6. A tank containing 50 kg of liquid water initially
at 45◦C has one inlet and one exit with equal mass
flow rates. Liquid water enters at 45◦C and a mass
flow rate of 270 kg/hr. A cooling coil immersed in
the water removes energy at a rate of 8.0 kW. The
water is well mixed by a paddle wheel so that the
water temperature is uniform throughout. The power
input to the water from the paddle wheel is 0.6 kW.
The pressures at the inlet and exit are equal and all
kinetic and potential energy effects can be ignored.
Determine the variation of water temperature with
time. Give a computer-generated plot of temperature
versus time.
Given: m=50 kg, T0 = 45 ◦C, Ti = 45 ◦C, ṁ = 270
kg/hr, ẆCV = −0.6 kW, Q̇CV = −8.0 kW
Assumptions: ∆P = 0, ∆KE = 0, ∆PE = 0, perfect mixing, cp = 4186 kJ

kg·K

Find:
dT

dt
This solution follows much the same course as Example 6.7 in Professor Powers’s notes. The
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first law is found as Eq. (6.100) in Professor Powers’s notes:

dECV

dt
= Q̇CV − ẆCV +

∑
ṁihtot,i −

∑
ṁehtot,e (4)

Our control volume is undergoing transient energy transfer, so
dECV

dt
%= 0. The energy in

the control volume is
ECV = UCV = mucv.

We will assume from mass conservation that

ṁi = ṁe = ṁ = 270 kg/hr

and we will also assume that the total enthalpy for the water is

dhtot = cpdT.

Putting all this into Eq. (4),

d

dt
(mucv) = Q̇CV − ẆCV + ṁ(hi − he)

Since ducv = cvdT and m and cv are constant, the above equation becomes

mcv
dT

dt
= Q̇CV − ẆCV + ṁ(hi − he)

where T is the temperature of the tank of water. The enthalpy difference between the inlet
and the exit is

hi − he = cp(Ti − T )

because the water supplied at the inlet is always a constant temperature of Ti = 45 ◦C. For
liquid water,

cp = cv = c

Simplifying, the standard form of the differential equation is

dT

dt
=

Q̇CV − ẆCV + ṁc(Ti − T )

mc

To solve this first-order, linear, inhomogeneous differential equation, we can use separation
of variables. Consulting a differential equations textbook5, you will find that you can solve
the equation by using separation of variables. The differential equation can be rewritten as

dT

dt
=

Q̇CV − ẆCV

mc
+

ṁ

m
(Ti − T )

dT

dt
= a+ b(Ti − T )

5Goodwine, Bill, 2010, Engineering Differential Equations: Theory and Practice, Springer: New York.
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The latter equation is equivalent to the one above it with a =
Q̇CV − ẆCV

mc
and b =

ṁ

m
. It

will make solving the problem much easier. Separating the variables of the latter equation:

dT

a+ b(Ti − T )
= dt (5)

Now we must do u′-substitution (I use u′ here so that you don’t get confused with specific
internal energy, u). If u′ = a+ b(Ti − T ),

du′ = −bdT

−1

b
du′ = dT. (6)

Substituing Eq. (6) and u′ = a+ b(Ti − T ) into Eq. (5) reveals

−1

b

du′

u′ = dt

ln(u′) = −bt+ C

u′ = C exp(−bt)

Substituting for u′ gives
a+ b(Ti − T ) = C exp(−bt)

then for b

a+
ṁ

m
(Ti − T ) = C exp(−ṁ

m
t)

and finally for a
Q̇CV − ẆCV

mc
+

ṁ

m
(Ti − T ) = C exp(−ṁ

m
t).

Rearrange the above equation to give T as a function of t:

T (t) = Ti +
Q̇CV − ẆCV

ṁc
− C ′ exp(−ṁ

m
t) (7)

where C ′ is a constant that must be solved for using initial conditions, T (t = 0 s) = T0 =
45 ◦C = 318 K. The units of some material properties have to be made compatible. The
mass flow rate ṁ is

ṁ = 270 kg/hr

(
1 hr

3600 s

)
= 3/40 kg/s

Plugging into Eq. (7),

T (t = 0) = T0 +
Q̇CV − ẆCV

ṁc
− C ′ exp(−ṁ

m
t)

318 K = 318 K +
−8.0 kW − (−0.6 kW)

(3/40 kg/s)(4186 kJ
kg·K)

− C ′ exp

(
−3/40 kg/s

50 kg
(0)

)

0 = 0 +
−8.0 kW − (−0.6 kW)

(3/40 kg/s)(4186 kJ
kg·K)

− C ′(1)
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Solving for C ′ we find

C ′ =
−8.0 kW − (−0.6 kW)

(3/40 kg/s)(4186 kJ
kg·K)

C ′ =
−7.4 kW

313.95 kW
K

C ′ = −23.57 K

Thus the expression for T(t) is

T (t) = Ti +
Q̇CV − ẆCV

ṁc
+ (23.57 K) exp(−ṁ

m
t).

or, numerically,

T (t) = 294.4 K + (23.57 K) exp(−0.0015
1

s
t).

The plot of T (t) is Figure 4.
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Figure 4: Plot for Problem 8.6.

48



Quiz 10

1. The indoor temperature of a home is TH . The winter-time outdoor temperature is TL.
A heat pump maintains this temperature difference. Find the best possible ratio of heat
transfer into the home to the work required by the pump.
For a Carnot heat pump,

β =
QH

W
=

QH

QH −QL
=

TH

TH − TL
=

1

1− TL

TH

= β.
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Homework 9
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Quiz 11

1. Write the Gibbs equation, then use it to find s for a calorically perfect incompressible
material.

The Gibbs equation is
du = Tds− Pdv.

By definition, dv = 0 for an incompressible material (an incompressible material cannot
change volume). Also, the material is calorically perfect, so du = cvdT and the change in
entropy is

du = Tds

cv
dT

T
= ds

cv

∫ 2

1

dT

T
=

∫ 2

1

ds

s2 − s1 = cv ln
T2

T1
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Homework 10
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5. Consider the ballistics problem as developed in class. We have the governing equation
from Newtons second law of

dx

dt
= v, x(0) = x0,

dv

dt
=

P∞A

m

(
P0

P∞

(x0

x

)k

− 1

)
− C

m
v3, v(0) = 0.

Consider the following parameter values: P1 = 105 Pa, P0 = 2 × 108 Pa, T0 = 300 K,
C = 0.01 N/(m/s)3, A = 10−4 m2, k = 7/5, x0 = 0.03 m, m = 0.004 kg. Consider the gas
to be calorically perfect and ideal and let it undergo an isentropic process. Take the length
of the tube to be 0.5 m.
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(a) From Eq. (8.239) of Professor Powers’s notes,

P = P0

(x0

x

)k

,

thus P is a function of x. Then to get a function for the temperature, taking the ideal gas
law,

PV = mRT

mRT = PV

mRT =

(
P0

(x0

x

)k
)
V

mRT =

(
P0

(x0

x

)k
)
(Ax)

T =

(
P0

(x0

x

)k
)
(Ax)

mR

The forward Euler method form, u(t+∆t) = u(t) +
du

dt
∆t, is used to first integrate

dv

dt
and

then integrate
dx

dt
, as follows:

v(t+∆t) = v(t) +

(
P∞A

m

(
P0

P∞

(
x0

x(t)

)k

− 1

)
− C

m
v(t)3

)
×∆t,

x(t+∆t) = x(t) + v(t+∆t)×∆t.

From Eq. (8.250) in Professor Powers’s notes, in order for the Euler method to provide a
stable solution for early time, we need for ∆t:

∆t <

√
mx0

kP0A
=

√
(0.004 kg)(0.03 m)

(7/5)(2× 108 Pa)(10−4 m2)
= 0.0000654 s.

For my MATLAB program, I used ∆t = 0.000001 s.
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(b) Here are the plots:
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Figure 5: Plots for Problem 10.5.

(c) The velocity at the end of the tube is vend = 33.7 m/s and the time for the bullet to

reach the end of the tube is tend = 0.0099 s .

(d) Extra points (up to 5) were awarded for analysis done for part (d).

(e) Here is the source code, presented in two columns to save space:

%HW 10, problem 5
clear all; close all; clc;

%given values
Pinf = 10ˆ5;
P0 = 2*10ˆ8;
T0 = 300;
C = 0.01;
A = 10ˆ-4;
k = 7/5;
x0 = 0.03;

m = 0.004;
R = 287;

%initial conditions
x(1) = x0;
v(1) = 0;
dt = 0.000001;
t = 0:dt:.01;

%First-order Euler method below
%cycle through time range, which was
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%found iteratively to be the length
%of time necessary for x to reach 0.5 m
for i = 1:length(t)

v(i + 1) = v(i) +
(Pinf*A/m*
(P0/Pinf*(x0/x(i))ˆk - 1)
- C/m*v(i)ˆ3)*dt;

x(i + 1) = x(i) + v(i)*dt;
end

%Find out velocity and time
% until x = 0.5 m
n=1;
while x(n)<0.5

n = n+1;
end
%Report velocity and time at x = 0.5 m
v(n)
t(n)

P = P0*(x0./x).ˆk;
for i = 1:length(t)

T(i) = P(i)*A*x(i)/(m*R);
end

%Plot results
set(gca,'FontSize',20)
plot(t,x(1,1:length(t)),'k')

axis([0 0.01 0 0.6])
title('x(t)')
ylabel('Distance, x [m]')
xlabel('t [s]')

figure
set(gca,'FontSize',20)
plot(t,v(1,1:length(t)),'k')
axis([0 0.01 0 150])
title('v(t)')
ylabel('Velocity, v [m/s]')
xlabel('t [s]')

figure
set(gca,'FontSize',20)
plot(t,T(1,1:length(t)),'k')
title('T(t)')
ylabel('Temperature, T [k]')
xlabel('t [s]')

figure
P = P/1000000;
set(gca,'FontSize',20)
plot(t,P(1,1:length(t)),'k')
title('P(t)')
ylabel('Pressure, P [MPa]')
xlabel('t [s]')
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Quiz 12

1. Write the Gibbs equation.

The Gibbs equation is
du = Tds− Pdv

or alternatively
dh = Tds+ vdP.
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