AME 20231 Homework Solutions ${ }^{1}$ Spring 2012

Last updated: May 7, 2012, 23:48

Contents

Homework 1 2
Quiz 1 4
Homework 2 5
Quiz 2 8
Homework 3. 9
Quiz 3 13
Homework 4 14
Quiz 4 18
Quiz 5 19
Homework 5 20
Quiz 6 24
Homework 6 25
Quiz 7 32
Homework 7 33
Quiz 8 40
Homework 8 41
Quiz 10 49
Homework 9 50
Quiz 11 56
Homework 10 57
Homework 11 64
Quiz 12 70
Homework 12 71

[^0]
Homework 1

1. 2.41 The hydraulic lift in an auto-repair shop has a cylinder diameter of 0.2 m . To what pressure should the hydraulic fluid be pumped to lift 40 kg of piston/arms and 700 kg of a car?
Given: $d=0.3 \mathrm{~m}, m_{a r m s}=40 \mathrm{~kg}, m_{\text {car }}=700 \mathrm{~kg}$
Assumptions: $P_{\text {atm }}=101 \mathrm{kPa}$
Find: P
Gravity force acting on the mass, assuming the y-direction is on the axis of the piston:

$$
\sum F_{y}=m a \rightarrow F=\left(m_{a r m s}+m_{c a r}\right)\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=7256.9 \mathrm{~N}
$$

Now balance this force with the pressure force:

$$
\begin{gathered}
F=7256.9 \mathrm{~N}=\left(P-P_{a t m}\right)(A) \rightarrow P=P_{a t m}+F / A \\
A=\frac{\pi d^{2}}{4}=\frac{\pi(0.3 \mathrm{~m})^{2}}{4}=0.0707 \mathrm{~m}^{2} \\
P=101 \mathrm{kPa}+\frac{7256.9 \mathrm{~N}}{0.0707 \mathrm{~m}^{2}}=204 \mathrm{kPa}=P .
\end{gathered}
$$

2. 2.46 A piston/cylinder with cross sectional area of $0.01 \mathrm{~m}^{2}$ has a piston mass of 200 kg resting on the stops, as shown in Fig. P2.46. With an outside atmospheric pressure of 100 kPa , what should the water pressure be to lift the piston?
Given: $m=200 \mathrm{~kg}, A_{c}=0.01 \mathrm{~m}^{2}, P_{a t m}=100 \mathrm{kPa}$
Assumptions:
Find: P
The force acting down on the piston comes from gravitation and the outside atmospheric pressure acting over the top surface. Force balance:

$$
\sum F=0 \rightarrow P A_{c}=m g+P_{a t m} A_{c}
$$

Now solve for P :

$$
\begin{aligned}
P & =P_{a t m}+\frac{m g}{A_{c}}=100 \cdot 10^{3} \mathrm{~Pa}+\frac{(200 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}{0.01 \mathrm{~m}^{2}} \\
& =100 \mathrm{kPa}+196.2 \mathrm{kPa}=296.2 \mathrm{kPa}=P .
\end{aligned}
$$

Pat Q. Student

AME 20231
20 January 2012
This is a sample file in the text formatter $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$. I require you to use it for the following reasons:

- It produces the best output of text, figures, and equations of any program I've seen.
- It is machine-independent. It runs on Linux, Macintosh (see TeXShop), and Windows (see MiKTeX) machines. You can e-mail ASCII versions of most relevant files.
- It is the tool of choice for many research scientists and engineers. Many journals accept $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ submissions, and many books are written in $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$.

Some basic instructions are given below. Put your text in here. You can be a little sloppy about spacing. It adjusts the text to look good. You can make the text smaller. You can make the text tiny.

Skip a line for a new paragraph. You can use italics (e.g. Thermodynamics is everywhere) or bold. Greek letters are a snap: Ψ, ψ, Φ, ϕ. Equations within text are easy-A well known Maxwell thermodynamic relation is $\left.\frac{\partial T}{\partial p}\right|_{s}=\left.\frac{\partial v}{\partial s}\right|_{p}$. You can also set aside equations like so:

$$
\begin{array}{rlr}
d u & =T d s-p d v, & \text { first law } \\
d s & \geq \frac{d q}{T} . & \text { second law } \tag{2}
\end{array}
$$

Eq. (2) is the second law. References ${ }^{2}$ are available. If you have an postscript file, say sample.figure.eps, in the same local directory, you can insert the file as a figure. Figure 1, below, plots an isotherm for air modeled as an ideal gas.

Figure 1: Sample figure plotting $T=300 K$ isotherm for air when modeled as an ideal gas.

Running ${ }^{A} T_{E} X$

You can create a $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ file with any text editor (vi, emacs, gedit, etc.). To get a document, you need to run the $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ application on the text file. The text file must have the suffix ". tex" On a Linux cluster machine, this is done via the command
pdflatex file.tex
This generates three files: file.pdf, file.aux, and file.log. The most important is file.pdf. This file can be viewed by any application that accepts .pdf files, such as Adobe Acrobat reader.
The .tex file must have a closing statement as below.

[^1]
Quiz 1

1. Steam turbines, refrigerators, steam power plants, fuel cells, etc.
2. False, coal, natural gas, nuclear, etc.
3. True or false (An air separation plant separates air into its various components, which in addition to oxygen and nitrogen include argon and other gases.)

Homework 2

2.56

Liquid water with density ρ is filled on top of a thin piston in a cylinder with cross-sectional area A and total height H, as shown in Fig. P2.56. Air is let in under the piston so it pushes up, spilling the water over the edge. Derive the formula for the air pressure as a finction of piston elevation from the bottom, h.

Solution:

2. 2.71 A U-tube manometer filled with water, density $1000 \mathrm{~kg} / \mathrm{m}^{3}$, shows a height difference of 25 cm . What is the gauge pressure? If the right branch is tilted to make an angle of 30 with the horizontal, as shown in Fig. P2.71, what should the length of the column in the tilted tube be relative to the U-tube?
Given: $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}, h=0.25 \mathrm{~m}, \theta=25^{\circ}$
Assumptions: $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$
Find: P, l

$$
\begin{aligned}
P= & F / A=m g / A=V \rho g / A=h \rho g \\
= & (0.25 \mathrm{~m})\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) \\
= & 2452.5 \mathrm{~Pa} \\
= & 2.45 \mathrm{kPa}=P \\
& \quad h=(l)\left(\sin 25^{\circ}\right) \\
& l=h / \sin 25^{\circ}=59 \mathrm{~cm}=l
\end{aligned}
$$

The density of mercury changes approximately linearly with temperature as

$$
\rho_{\mathrm{Hg}}=13595-2.5 T \mathrm{~kg} / \mathrm{m}^{3} \quad T \text { in Celsius }
$$

so the same pressure difference will result in a manometer reading that is influenced by temperature. If a pressure difference of 100 kPa is measured in the summer at $35^{\circ} \mathrm{C}$ and in the winter at $-15^{\circ} \mathrm{C}$, what is the difference in column height between the two measurements?

Solution:
The manometer reading h relates to the pressure difference as

$$
\Delta \mathrm{P}=\rho \mathrm{L}_{\mathrm{g}} \quad \Rightarrow \quad \mathrm{~L}=\frac{\Delta \mathrm{P}}{\rho \mathrm{~g}}
$$

The manometer fluid density from the given formula gives

$$
\begin{aligned}
& \rho_{\mathrm{SU}}=13595-2.5 \times 35=13507.5 \mathrm{~kg} / \mathrm{m}^{3} \\
& \rho_{\mathrm{W}}=13595-2.5 \times(-15)=13632.5 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

The two different heights that we will measure become

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{su}}=\frac{100 \times 10^{3}}{13507.5 \times 9.807} \frac{\mathrm{kPa}(\mathrm{~Pa} / \mathrm{kPa})}{\left(\mathrm{kg} / \mathrm{m}^{3}\right) \mathrm{m} / \mathrm{s}^{2}}=0.7549 \mathrm{~m} \\
& \mathrm{~L}_{\mathrm{w}}=\frac{100 \times 10^{3}}{13632.5 \times 9.807} \frac{\mathrm{kPa}(\mathrm{~Pa} / \mathrm{kPa})}{\left(\mathrm{kg} / \mathrm{m}^{3}\right) \mathrm{m} / \mathrm{s}^{2}}=0.7480 \mathrm{~m} \\
& \Delta \mathrm{~L}=\mathrm{L}_{\mathrm{su}}-\mathrm{L}_{\mathrm{w}}=0.0069 \mathrm{~m}=6.9 \mathrm{~mm}
\end{aligned}
$$

A powerplant that separates carbon-dioxide from the exhaust gases compresses it to a density of $8 \mathrm{Ibm} / \mathrm{f}^{3}$ and stores it in an un-minable coal seam with a porous volume of $3500000 \mathrm{ft}^{3}$. Find the mass they can store.

Solution:

$$
\mathrm{m}=\rho \mathrm{V}=8 \mathrm{lbm} / \mathrm{ft}^{3} \times 3500000 \mathrm{ft}^{3}=2.8 \times 10^{7} \mathrm{lbm}
$$

Just to put this in perspective a power plant that generates 2000 MW by burning coal would make about 20 million tons of carbon-dioxide a year. That is 2000 times the above mass so it is nearly impossible to store all the carbon-dioxide being produced.

Quiz 2

1. Water has a density of $997 \mathrm{~kg} / \mathrm{m}^{3}$. Rationally estimate the pressure difference between the difference between the surface and the bottom of a typical Olympic swimming pool located on Earth. Make any necessary assumptions.

Answers will vary. Assuming no atmospheric pressure difference between the surface and bottom of the pool and a depth of 3 m , the pressure difference ΔP is

$$
\begin{aligned}
\Delta P & =\rho g h=\left(997 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(3 \mathrm{~m}) \\
& =29 \mathrm{kPa}=\Delta P .
\end{aligned}
$$

It was acceptable to leave the height h in the solution as a variable. Atmospheric pressure acts on the surface and the bottom of the pool so it should not factor into the pressure difference of the pool.

Homework 3

1. 3.72 A spherical helium balloon of 11 m in diameter is at ambient T and $P, 15{ }^{\circ} \mathrm{C}$ and 100 kPa . How much helium does it contain? It can lift a total mass that equals the mass of displaced atmospheric air. How much mass of the balloon fabric and cage can then be lifted?
Given: $d=11 \mathrm{~m}, T=15^{\circ} \mathrm{C}, P=100, \mathrm{kPa}$
Assumptions:
Find: $m_{H e}, m_{l i f t}$
We need to find the masses and the balloon volume:

$$
\begin{aligned}
V & =\frac{\pi}{6} d^{3}=\frac{\pi}{6}(11 \mathrm{~m})^{3}=696.9 \mathrm{~m}^{3} \\
m_{H e}=\rho V=\frac{V}{v} & =\frac{(100 \mathrm{kPa})\left(696.9 \mathrm{~m}^{3}\right)}{\left(2.0771 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}\right)(288 \mathrm{~K})}=116.5 \mathrm{~kg}=m_{\mathrm{He}} \\
m_{\text {air }} & =\frac{(100 \mathrm{kPa})\left(696.9 \mathrm{~m}^{3}\right)}{\left(0.287 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}\right)(288 \mathrm{~K})}=843 \mathrm{~kg} \\
m_{\text {lift }} & =m_{\text {air }}-m_{H e}=726.5 \mathrm{~kg}=m_{\text {lift }}
\end{aligned}
$$

Give the phase and the misking properties of $P, T_{5} v$ and x.
Solution:
a. $\mathrm{R}-410 \mathrm{a} \quad T=10^{\circ} \mathrm{C} \quad v=0.01 \mathrm{~m}^{3} / \mathrm{kg}$

Table B.4.1 $\quad v<v_{\mathrm{g}}=0.023 \mathrm{k} 3 \mathrm{~m}^{3} / \mathrm{kg}$
sat. liquild + vapor, $\mathrm{P}=\mathrm{P}_{\text {lat }}=1055.7 \mathrm{kPa}$,
$x=\left(v-v_{p}\right) v_{\mathrm{ff}_{\mathrm{g}}}=\langle 0.01-0.000586) 00.02295=0.397$
b. $\mathrm{H}_{2} \mathrm{O} \quad T=350^{\circ} \mathrm{C} \quad v=0.2 \mathrm{~m}^{3} / \mathrm{kg}$

Table B. 1.1 at given T: $\quad v>\mathrm{v}_{\mathrm{g}}=0.00881 \mathrm{~m}^{3} / \mathrm{kg}$
sup. vaper $P a 1.40 \mathrm{MPa}, x=$ undeflined
c. $R-410 \mathrm{a} T=-5^{\circ} \mathrm{C} \quad P=600 \mathrm{kPa}$
sup. vaper $\left(P<P_{K}-67 \mathrm{~K} .9 \mathrm{kPa}\right.$ at $\left.-5^{5} \mathrm{C}\right)$
Table B.4.2:
$\mathrm{v}=0.04351 \mathrm{~m}^{3} / \mathrm{kg}$ at $-8.67^{\circ} \mathrm{C}$
$\mathrm{v}=0.04995 \mathrm{~m}^{3} / \mathrm{kg}$ at $\sigma^{\prime} \mathrm{C}$

$$
\Rightarrow \quad \mathrm{v}=0.04454 \mathrm{~m}^{3} / \mathrm{kg} \text { at } \quad 5^{4} \mathrm{C}
$$

d. $\mathrm{R}-134 \mathrm{a} \quad P=294 \mathrm{kFa}, \quad v=0.05 \mathrm{~m}^{3} / \mathrm{kg}$

Table B.5.1: $\mathrm{v}<\mathrm{v}_{\mathrm{k}}=0.06919 \mathrm{~m}^{3} / \mathrm{kg}$
two-phase $T=T_{\text {sut }}=0^{\circ} \mathrm{C}$
$\left.x=\left(v-v_{p}\right) v_{f_{E}}=(0.05-0.000773)\right) 0.06842=0.7195$

States shown are placed relative to the two-phase region, not to each orber.

3. 3.122 A cylinder has a thick piston initially held by a pin as shown in Fig. P3.122. The cylinder contains carbon dioxide at 200 kPa and ambient temperature of 290 K . The metal piston has a density of $8000 \mathrm{~kg} / \mathrm{m}^{3}$ and the atmospheric pressure is 101 kPa . The pin is now removed, allowing the piston to move and after a while the gas returns to ambient temperature. Is the piston against the stops?
Given: $\rho_{p}=8000 \mathrm{~kg} / \mathrm{m}^{3}, P_{1}=200 \mathrm{kPa}, P_{\text {atm }}=101 \mathrm{kPa}, T=290 \mathrm{~K}$
Assumptions:
Find: P_{2}
Do a force balance on piston determines equilibrium float pressure. Piston:

$$
\begin{gathered}
m_{p}=\left(A_{p}\right)(l)(\rho) \\
P_{\text {ext }}=P_{\text {atm }}+\frac{m_{p} g}{A_{p}}=101 \mathrm{kPa}+\frac{\left(A_{p}\right)(0.1 \mathrm{~m})\left(8000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}{\left(A_{p}\right)(1000)}=108.8 \mathrm{kPa}
\end{gathered}
$$

The pin is released, and since $P_{1}>P_{\text {ext }}$, the piston moves up. $T_{2}=T_{0}$, so if the piston stops, then $V_{2}=V_{1} \times H_{2} / H_{1}=V_{1} \times 150 / 100$. Using an ideal gas model with $T_{2}=T_{0}$ gives

$$
P_{2}=\left(P_{1}\right)\left(V_{1} / V_{2}\right)=(200)(100 / 150)=133 \mathrm{kPa}>P_{\text {ext }} \rightarrow P_{2}=133 \mathrm{kPa}
$$

Therefore, the piston is at the stops for the ideal gas model.
Now for the tabulated solution:
To find P_{2}, we must do some extrapolation because Table B.3.2 does not list 200 kPa . We first interpolate to find the specific volume at $T_{1}=290 \mathrm{~K}=16.85^{\circ} \mathrm{C}$ at 400 kPa and 800 kPa , and then extrapolate using those points to find the specific volume at $200 \mathrm{kPa}, v_{1}$. Since $v_{1}=\frac{V_{1}}{m_{C O_{2}}}$ and the area of the piston is $A_{p}=\pi \frac{(100 \mathrm{~mm})^{2}}{4}=0.00785 \mathrm{~m}^{2}$, the mass of carbon dioxide in the cylinder is

$$
m_{C O_{2}}=\frac{V_{1}}{v_{1}}=\frac{\left(A_{p}\right)(100 \mathrm{~mm})}{0.1682 \mathrm{~m}^{3} / \mathrm{kg}}=\frac{\left(0.00785 \mathrm{~m}^{2}\right)(0.1 \mathrm{~m})}{0.1682 \mathrm{~m}^{3} / \mathrm{kg}}=\frac{0.000785 \mathrm{~m}^{3}}{0.1682 \mathrm{~m}^{3} / \mathrm{kg}}=0.00467 \mathrm{~kg}
$$

Since the cylinder is closed, the mass of the carbon dioxide does not change, but the volume does, so we will assume the piston is at the stops and $V_{2}=0.00118 \mathrm{~m}^{3}$, so $v_{2}=\frac{V_{2}}{m_{C O_{2}}}=$ $0.2523 \mathrm{~m}^{3} / \mathrm{kg}$. Now we have two state variables (T_{2} and v_{2}), so let's go back to Table B.3.2 and find a third state variable, P_{2}. Interpolating between 400 kPa and 800 kPa gives $P_{2}=-291 \mathrm{kPa}$, which means our original assumption that the piston is against the stops was incorrect. A similar iterative approach could be used to find P_{2} in the tables. The piston is not against the stops. This problem was difficult, so it was only worth two points. You received two points for a reasonable attempt with some calculations, one point for just writing something, and no points for not attempting it. +2 indicates you were awarded two points for part (b), and they were not bonus points.
4. 3.166 E A $36 \mathrm{ft}^{3}$ rigid tank has air at 225 psia and ambient 600 R connected by a valve to a piston cylinder. The piston of area $1 \mathrm{ft}^{2}$ requires 40 psia below it to float, Fig. P3.99. The valve is opened and the piston moves slowly 7 ft up and the valve is closed. During the process air temperature remains at 600 R . What is the final pressure in the tank?

Given: $V_{A}=36 \mathrm{ft}^{3}, P_{A}=\mathrm{psia}, T=600 \mathrm{R}$, isothermal process
Assumptions:
Find: $P_{A 2}$

$$
m_{A}=\frac{P_{A} V_{A}}{R T}=\frac{(225)(36)(144)}{(53.34)(600)}=36.4 \mathrm{lbm}
$$

Now find the change in mass during the process:

$$
\begin{gathered}
m_{B 2}-m_{B 1}=\frac{\Delta V_{A}}{v_{B}}=\frac{\Delta V_{B} P_{B}}{R T}=\frac{(1)(7)(40)(144)}{(53.34)(600)}=1.26 \mathrm{lbm} \\
M_{A 2}=m_{A}-\left(m_{B 2}-m_{B 1}\right)=36.4-1.26=35.1 \mathrm{lbm} \\
P_{A 2}=\frac{m_{A 2} R T}{V_{A}}=\frac{(35.1)(53.34)(600)}{(36)(144)}=217 \mathrm{psia}=P_{A 2}
\end{gathered}
$$

Quiz 3

1. A fixed mass of water exists in a fixed volume at the saturated liquid state with $v=v_{f}$. Heat is added to the water isochorically. Which of the following are possible final states for the water?

Compressed liquid and supercritical liquid. As seen in the $P-v$ diagram, Figure 3.6 in the notes, the saturated liquid state is the line on the vapor dome to the left of the critical point. As you add heat isochorically, the pressure increases but the volume stays the same. Thus the only possible final states for the water are compressed liquid and supercritical liquid.
You received 2 points for putting your name on the quiz, 4 points for each correct response, and lost 1 point for each incorrect response.

Homework 4

1. 4.38 A piston cylinder contains 1 kg of liquid water at $25^{\circ} \mathrm{C}$ and 300 kPa , as shown in Fig. P4.38. There is a linear spring mounted on the piston such that when the water is heated the pressure reaches 3 MPa with a volume of $0.1 \mathrm{~m}^{3}$.
(a) Find the final temperature
(b) Plot the process in a P-v diagram.
(c) Find the work in the process.

Given:

Assumptions:
Find: $T_{2},{ }_{1} W_{2}$
Solution:
Take CV as the water. This is a constant mass:

$$
m_{2}=m_{1}=m
$$

State 1: Compressed liquid, take saturated liquid at same temperature.
Table B.1.1: $v_{1}=v_{f}(25)=0.001003 \mathrm{~m}^{3} / \mathrm{kg}$
State 2: $v_{2}=V_{2} / m=0.1 / 1=0.1 \mathrm{~m}^{3} / \mathrm{kg}$ and $P=3000 \mathrm{kPa}$ from B.1.3 \rightarrow Superheated vapor, close to $T=400^{\circ} \mathrm{C}$, Interpolate: $T_{2}=404^{\circ} \mathrm{C}$
Work is done while piston moves at linearly varying pressure, so we get:

$$
\begin{aligned}
{ }_{1} W_{2} & =\int P d V=P_{\text {avg }}\left(V_{2}-V_{1}\right)=1 / 2\left(P_{1}+P_{2}\right)\left(V_{2}-V_{1}\right) \\
& =0.5(300+3000) \mathrm{kPa}(0.1-0.001) \mathrm{m}^{3}=163.4 \mathrm{~kJ}={ }_{1} W_{2}
\end{aligned}
$$

See the $P-v$ diagram below:

2. 4.64 A piston/cylinder arrangement shown in Fig. P4.64 initially contains air at 150 kPa , $400^{\circ} \mathrm{C}$. The setup is allowed to cool to the ambient temperature of $25^{\circ} \mathrm{C}$. (a) Is the piston resting on the stops in the final state? What is the final pressure in the cylinder? (b) What is the specific work done by the air during this process?
Given:
Assumptions: For all states air behave as an ideal gas.
Find:

Solution: State 1: $P_{1}=150 \mathrm{kPa}, T_{1}=400^{\circ} \mathrm{C}=673.2 \mathrm{~K}$
State 2: $T_{2}=T_{0}=20^{\circ} \mathrm{C}=293.2 \mathrm{~K}$
(a) If piston at stops at $2, \mathrm{~V} 2=\mathrm{V} 1 / 2$ and pressure less than $\mathrm{Plift}=\mathrm{P} 1$

$$
\rightarrow P_{2}=P_{1} \times \frac{V_{1}}{V_{2}} \times T_{2} T_{1}=(150 \mathrm{kPa})(2)\left(\frac{298.2}{673.2}\right)=132.9 \mathrm{kPa}=P_{2}<P_{1}
$$

Since $P_{2}<P_{1}$, the piston is resting on the stops.
(b) Work done while piston is moving at constant $P_{\text {ext }}=P_{1}$.

$$
{ }_{1} W_{2}=\int P_{e x t} d V=P_{1}\left(V_{2}-V_{1}\right)
$$

Since $V_{2}=\frac{V_{1}}{2}=\frac{1}{2} \frac{m R T_{1}}{P_{1}}$,

$$
{ }_{1} w_{2}={ }_{1} W_{2} / m=R T_{1}(1 / 2-1)=\left(-0.287 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}\right)(673.2 \mathrm{~K})(-1 / 2)=-96.6 \mathrm{~kJ} / \mathrm{kg}={ }_{1} w_{2}
$$

3. 4.124 A cylinder fitted with a piston contains propane gas at $100 \mathrm{kPa}, 300 \mathrm{~K}$ with a volume of $0.1 \mathrm{~m}^{3}$. The gas is now slowly compressed according to the relation PV1.1 $=$ constant to a final temperature of 340 K . Justify the use of the ideal gas model. Find the final pressure and the work done during the process.
Given:
Assumptions:
Find:
Solution:
The process equation and T determines state 2 . Use ideal gas law to say

$$
\begin{gathered}
P_{2}=P_{1}\left(\frac{T_{2}}{T_{1}}\right)^{\frac{n}{n-1}}=100\left(\frac{340}{300}\right)^{\frac{1.1}{1.0}}=396 \mathrm{kPa}=P_{2} \\
V_{2}=V_{1}\left(\frac{P_{1}}{P_{2}}\right)^{\frac{1}{n}}=0.1\left(\frac{100}{396}\right)^{\frac{1}{1.1}}=0.0286 \mathrm{~m}^{3}
\end{gathered}
$$

For propane Table A.2: $T_{c}=370 \mathrm{~K}, P_{c}=4260 \mathrm{kPa}$, Figure D. 1 gives Z.

$$
\begin{aligned}
& T_{r 1}=0.81, P_{r 1}=0.023 \rightarrow Z_{1}=0.98 \\
& T_{r 2}=0.92, P_{r 2}=0.093 \rightarrow Z_{2}=0.95
\end{aligned}
$$

Ideal gas model OK for both states, minor corrections could be used. The work is integrated to give Eq. 4.4

$$
\begin{aligned}
{ }_{1} W_{2} & =\int P d V=\frac{P_{2} V_{2}-P_{1} V_{1}}{1-n}=\frac{(396 \times 0.0286)-(100 \times 0.1)}{1-1.1} \mathrm{kPa} \mathrm{~m}^{3} \\
& =-13.3 \mathrm{~kJ}={ }_{1} W_{2}
\end{aligned}
$$

A piston/cylinder has 2 lbm of R-134a at state 1 with $200 \mathrm{~F}, 90 \mathrm{lbf} / \mathrm{in}^{2}{ }^{2}$, and is then brought to saturated vapor, state 2 , by cooling while the piston is locked with a pin. Now the piston is balanced with an additional constant force and the pin is removed. The cooling continues to a state 3 where the $\mathrm{R}-134 \mathrm{a}$ is saturated liquid. Show the processes in a P-V diagram and find the work in each of the two steps, 1 to 2 and 2 to 3 .
Solution :
C.V. R-134a This is a control mass.

Properties from table F. 10.1 and 10.2
State 1: $(T, P) \quad \Rightarrow \quad v=0.7239 \mathrm{ft}^{3} / \mathrm{lbm}$
State 2 given by fixed volume and $\mathrm{x}_{2}=1.0$
State 2: $v_{2}=v_{1}=v_{g} \quad \Longrightarrow \quad W_{2}=0$

$$
\begin{aligned}
& T_{2}=50+10 \times \frac{0.7239-0.7921}{0.6632-0.7921}=55.3 \mathrm{~F} \\
& P_{2}=60.311+(72.271-60.311) \times 0.5291=66.64 \mathrm{psia}
\end{aligned}
$$

State 3 reached at constant $P(F=$ constant $)$ state $3: P_{3}=P_{2}$ and

$$
v_{3}=v_{f}=0.01271+(0.01291-0.01271) \times 0.5291=0.01282 \mathrm{~A}^{3} / \mathrm{lbm}
$$

$$
{ }_{1} \mathrm{~W}_{3}={ }_{1} \mathrm{~W}_{2}+{ }_{2} \mathrm{~W}_{3}=0+{ }_{2} \mathrm{~W}_{3}=\int \mathrm{PdV}=\mathrm{P}\left(\mathrm{~V}_{3}-\mathrm{V}_{2}\right)=\mathrm{mP}\left(\mathrm{v}_{3}-\mathrm{v}_{2}\right)
$$

$$
=2 \times 66.64(0.01282-0.7239) \frac{144}{778}=-17.54 \mathrm{Btu}
$$

5. 4.170 The data from Table B.2.1 was used to create the vapor dome seen in Figure 2 . The plot was scaled to make the compression process and vapor dome more visible. Using trapezoidal numerical integration in MATLAB, the work was found to be $W=0.6861 \mathrm{~kJ}$. The mass of the ammonia was found (using the ideal gas law and initial conditions) to be 0.00507 kg and this was multiplied by the specific volume to find the volume $(V=m v)$.

Figure 2: Problem 4.170

Quiz 4

A gas exists with volume V_{1} and pressure P_{1}. It is compressed isochorically to P_{2}, expands isobarically to V_{3}, decompresses isochorically back to P_{1}, and compresses isobarically back to V_{1}. Sketch on a $P-V$ plane diagram and find the net work.

The process is seen in the figure to the right.
For the net work:

$$
\begin{aligned}
W_{n e t} & =\oint P d V \\
& =\int_{1}^{2} P d V+\int_{2}^{3} P d V+\int_{3}^{4} P d V+\int_{4}^{1} P d V
\end{aligned}
$$

Now because there paths are isochoric, $\int_{1}^{2} P d V=\int_{3}^{4} P d V=0$. Thus the net work becomes

$$
\begin{aligned}
W_{n e t} & =\int_{2}^{3} P d V+\int_{4}^{1} P d V \\
& =P_{2} \int_{2}^{3} d V+P_{1} \int_{4}^{1} d V \\
& =\frac{P_{2}\left(V_{3}-V_{1}\right)+P_{1}\left(V_{1}-V_{3}\right)=W_{n e t}}{\left(P_{2}-P_{1}\right)\left(V_{3}-V_{1}\right)} \\
& =\left(\begin{array}{l}
\end{array}\right.
\end{aligned}
$$

Quiz 5

1. We are given that

$$
u(T, v)=a_{1} T+a_{2} T^{2}+a_{3} v+a_{4} v^{2} .
$$

Find c_{v}.

The specific heat at constant volume, c_{v}, is defined as follows:

$$
c_{v}=\left(\frac{\partial u}{\partial T}\right)_{v}
$$

so the given specific energy equation becomes

$$
\left(\frac{\partial u}{\partial T}\right)_{v}=a_{1}+2 a_{2} T=c_{v} .
$$

Homework 5

5.27

Find the phase and the missing properties of $\mathrm{P}, \mathrm{T}, \mathrm{v}, \mathrm{u}$ and x
a. Water at $5000 \mathrm{kPa}, \mathrm{u}=3000 \mathrm{k} / \mathrm{kg}$
b. Ammonia at $50^{\circ} \mathrm{C}, \mathrm{v}=0.06506 \mathrm{~m}^{3} / \mathrm{kg}$
c. Ammeneia ar $28^{\circ} \mathrm{C}, 1200 \mathrm{kPa}$
d. R. 134 a at $20^{\circ} \mathrm{C}, \mathrm{u}=350 \mathrm{~kJ} / \mathrm{kg}$
a) Check in Table B. $1.2 \mathrm{at} 5000 \mathrm{kPa} \quad \mathrm{u} \quad \mathrm{u}=2597 \mathrm{kl} / \mathrm{kg}$

Goto B. 1.3 it is found very close to $450^{\circ} \mathrm{C}, \mathrm{x}=$ undefined $\mathrm{v}=0.0633 \mathrm{~m}^{3} / \mathrm{kg}$
b) Table $\mathrm{B} 2.1 \mathrm{~m} 50^{\circ} \mathrm{C}: \quad v>\mathrm{v}_{\mathrm{g}}=0.06337 \mathrm{~m}^{3} / \mathrm{kg}$. so vaperbeated vapor Table B.2.2: close to $1600 \mathrm{kPz}, \quad \mathrm{u}=13649 \mathrm{~kJ} \mathrm{~kg}, \mathrm{x}=$ undefined
c) Table B. 2.1 between 25 mod $30^{\circ} \mathrm{C}$. We see $\mathrm{P}>\mathrm{P}_{\text {mat }}=1167 \mathrm{kPa}\left(30^{\circ} \mathrm{C}\right)$

We conclole compressed liguid without any interpolasion.

$$
\begin{aligned}
& \mathrm{v}=\mathrm{v}_{\mathrm{f}}=0.001658+\frac{28-25}{5}(0.00168-0.001658)=0.00167 \mathrm{~m} \mathrm{~m}^{3} / \mathrm{kg} \\
& \mathrm{u}=\mathrm{u}_{\mathrm{f}}=296+\frac{28-25}{5}(320.46-29659)=310.91 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

d) Table B. 5.1 at $200^{\circ} \mathrm{C}: \quad 227.03=\mathrm{u}_{\mathrm{f}}<\mathrm{s}<\mathrm{ug}_{\mathrm{g}}=389.19 \mathrm{~kJ} / \mathrm{kg}$ so two-phase

$$
\begin{aligned}
& \mathrm{x}=\frac{\mathrm{u}-\mathrm{u}_{\mathrm{f}}}{\mathrm{~b}_{\mathrm{f}}}=\frac{350-227.03}{162.16}=0.7583 . \quad \mathrm{P}=\mathrm{P}_{\mathrm{tat}}=572.8 \mathrm{kPa} \\
& \mathrm{v}=\mathrm{v}_{\mathrm{f}}+\mathrm{x} \mathrm{v}_{\mathrm{fg}}=0.000817+\mathrm{x} \times 0.03524=0.02754 \mathrm{~m}^{3} / \mathrm{kg}
\end{aligned}
$$

all states are relative so the two-plase tegicen not to each other

A cylunder fitted wath a finctionless puston coutains 2 kg of wrperheated refngerant R 134a vapor at $350 \mathrm{kPa}, 100^{\circ} \mathrm{C}$. The cylinder is now cooled so the $\mathrm{R}-134 \mathrm{a}$ remains at constant peessare until it reaches a quality of 75%. Calculate the heat transfer in the process.

Solution:

CV:R-134a $\quad m_{2}=m_{1}=m ;$
Energy Eq.5.11 $m\left(u_{2}-u_{1}\right)={ }_{1} Q_{2}-{ }_{1} W_{2}$
Process: $\mathrm{P}=$ comst. $\Rightarrow_{1} \mathrm{~W}_{2}=\int \mathrm{PaV}=\mathrm{P} \Delta V=P\left(V_{2}-V_{1}\right)=\operatorname{Pm}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)$

Seate 1: Table B. $5.2 \quad \mathrm{~h}_{1}=(490.48+489.52) / 2=490 \mathrm{k} / \mathrm{kg}$
Sate 2: Table B. $5.1 \quad \mathrm{~b}_{2}=206.75+0.75 \times 194.57=352.7 \mathrm{k} / \mathrm{kg}(350.9 \mathrm{kPa})$

$$
\begin{aligned}
& 1 Q_{2}=m\left(u_{2}-u_{1}\right)+{ }_{1} W_{2}=m\left(u_{2}-u_{1}\right)+P \mathrm{~mm}\left(v_{2}-v_{1}\right)=m\left(h_{2}-h_{1}\right) \\
& { }_{1} Q_{2}=2 \mathrm{~kg} \times(352.7-490) \mathrm{kJ} / \mathrm{kg}=-274.6 \mathrm{~kJ}
\end{aligned}
$$

 coutaiss 0.5 kg of satuated vapoe water at $120^{\circ} \mathrm{C}$, as shown in Fie P5.55. Heat is tramferred to the water, caving the peiton to nise. If the piston cross-sectional area is $0.05 \mathrm{~m}^{2}$, and the prespre varies linearly with volume unhl a final pressure of 500 i ª is reached. Find the final temperature in the cplinder and the beat trasfer for the process.

Selusion:

C.V. Water in cylinder.

Costimaty:

$$
\mathrm{m}_{2}=\mathrm{EH}_{1}=\mathrm{m}_{2}
$$

Energy EqS.11: $\quad \mathrm{m}\left(\mathrm{m}_{2}-\mathrm{H}_{1}\right)={ }_{1} \mathrm{Q}_{2}-{ }_{1} \mathrm{~W}_{2}$
State 1: (T, x) TableB.1.1 $\Rightarrow v_{1}=0.89136 \mathrm{~m}^{3} / \mathrm{kg} . \quad \mathrm{D}_{1}=2529.2 \mathrm{kl} / \mathrm{kg}$
Proces: $\quad P_{2}=P_{1}+\frac{k_{\text {g }} m}{A_{p}^{2}}\left(v_{2}-v_{1}\right)=198.5+\frac{15 \times 0.5}{(0.05)^{2}}\left(v_{2}+0.89186\right)$
State 2: $\quad \mathrm{P}_{2}=500 \mathrm{kPa}$ and on the process curve (set above equanioa).

$$
\begin{aligned}
& \Rightarrow \quad v_{2}=0.89186+(500-198.5) \times\left(0.05^{2} / 7.5\right)=0.0924 m^{3} / \mathrm{kg} \\
& (P, v) \text { Table B.1.3 } \rightarrow \mathrm{I}_{2}=503^{*} \mathrm{C} ; \quad \mathrm{m}_{2}=1008 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

The proces equation allows us to evalube the work

$$
\begin{aligned}
{ }_{1} W_{2} & =\int \mathrm{PdV}=\left(\frac{\mathrm{P}_{1}+\mathrm{P}_{2}}{2}\right) \mathrm{m}\left(v_{2}-\mathrm{v}_{1}\right) \\
& =\left(\frac{198.5+509}{2}\right) \mathrm{kPa} \times 0.5 \mathrm{~kg} \times(0.9924-0.99136) \mathrm{m}^{3} / \mathrm{kg}=17.56 \mathrm{~kJ}
\end{aligned}
$$

Sabstitute the work into the energy equation and solve for the heat transfer

$$
{ }_{1} \mathrm{Q}_{2}=\mathrm{m}\left(\mathrm{~B}_{2}-\mathrm{B}_{1}\right)+{ }_{1} \mathrm{~S}_{2}=0.5 \mathrm{~kg} \times(3658-2529.2) \mathrm{k} / \mathrm{kg}+17.56 \mathrm{~kJ}-587 \mathrm{~kJ}
$$

An insulated cylinder is divided into two parts of $10 \mathrm{f}^{3}$ each by an initially locked piston. Side A has air at $2 \mathrm{~atm}, 600 \mathrm{R}$ and side B has air at $10 \mathrm{~atm}, 2000 \mathrm{R}$ as shown in Fig. P5.111. The piston is now unlocked so it is free to move, and it conducts heat so the air comes to a uniform temperature $T_{\mathrm{A}}=T_{\mathrm{B}}$. Find the mass in both A and B and also the final T and P.
C.V. $A+B$. Then ${ }_{1} Q_{2}=0.1 W_{2}=0$.

Force balance on piston: $P_{A} A=P_{E} A$, so final state in A and B is the same.
State $1 \mathrm{~A}: \mathrm{u}_{\mathrm{A} 1}=102.457 ; \mathrm{m}_{\mathrm{h}}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{29.4 \times 10 \times 144}{53.34 \times 600}=1.32 .3 \mathrm{lbm}$
State 1B: $\mathrm{u}_{\mathrm{B} 1}=367.642 ; \quad \mathrm{m}_{\mathrm{B}}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{147 \times 10 \times 144}{53.34 \times 2000}=1.984 \mathrm{Jm}$
$m_{A}\left(u_{2}-u_{1}\right)_{A}+m_{g}\left(u_{2}-u_{1}\right)_{\mathrm{a}}=0$
$\left(m_{A}+m_{B}\right) u_{2}=m_{A} u_{A 1}+m_{B} u_{B 1}$
$=1.323 \times 102.457+1.984 \times 367.642=864.95$ Btu
$\mathrm{u}_{2}=864.95 / 3.307=261.55 \Rightarrow \mathrm{~T}_{2}=1475 \mathrm{R}$
$\mathrm{P}=\mathrm{m}_{\text {tot } \mathrm{RI}_{2} / \mathrm{V}_{\text {tot }}}=\frac{3.307 \times 53.34 \times 1475}{20 \times 144}=90.34 \mathrm{Ibr}^{-1 \mathrm{~m}^{2}}$

Quiz 6

1. A calorically imperfect ideal gas with gas constant R and

$$
c_{v}=c_{v 0}+a\left(T-T_{0}\right),
$$

where $c_{v 0}, a$, and T_{0} are constants, isobarically expands from $P=P_{0}, T=T_{0}$ to $T=T_{1}$. Find ${ }_{0} q_{1}$.

$$
\begin{gathered}
u_{1}-u_{0}={ }_{0} q_{1}-{ }_{0} w_{1} \\
={ }_{0} q_{1}-\int_{0}^{1} P d v \\
={ }_{0} q_{1}-P v_{1}+P v_{0} \\
\left(u_{1}+P_{1} v_{1}\right)-\left(u_{0}+P_{0} v_{0}\right)={ }_{0} q_{1} \\
h_{1}-h_{0}={ }_{0} q_{1} \\
{ }_{0} q_{1}=h_{1}-h_{0}=\int_{T_{0}}^{T_{1}} c_{p}(T) d T \\
= \\
=\int_{T_{0}}^{T_{1}}\left(c_{v}(T) d T+R\right) d T \\
=\int_{T_{0}}^{T_{1}}\left(c_{v 0}+R+a\left(T-T_{0}\right)\right) d T \\
=\left(\left(c_{v 0}+R\right) T\right)_{T_{0}}^{T_{1}}+\frac{a}{2}\left(\left(T-T_{0}\right)^{2}\right)_{T_{0}}^{T_{1}} \\
= \\
\left(c_{v 0}+R\right)\left(T_{1}-T_{0}\right)+\frac{a}{2}\left(T_{1}-T_{0}\right)^{2}={ }_{0} q_{1} .
\end{gathered}
$$

Homework 6

5.51
la a enk 5 liners of water at $70^{\circ} \mathrm{C}$ is combined wiht 1 kg aluminan pobe, 1 kg of Hatare (Heci) ant t ky of glast all pot is at $20^{\circ} \mathrm{C}$. Whut is the final urifoen lenperibure moplocting aty bear lows ind work?

Far the liguid ind the notal masses see willue the spovile bous (TM1 A.3, A.4) so

$$
\sum m\left(\omega_{2}-x_{1}\right)=\sum m C_{5}\left(T_{2}-T_{1}\right)=T_{2} \sum m C_{51}-\sum m C_{5} T_{11}
$$

$$
\Sigma \min _{1}=4 \times 576 \times 4.18+1 \times 0.3+1 \times 0.46+1 \times 08-22.902 / \mathrm{K}
$$

Bereg E4- $22.99 \mathrm{~T}_{2}=4 \times 5.75 \times 4.18 \times 70+(1 \times 0.9+1 \times 0.46 \times 1 \times 0.8) \times 20$

$$
=5430.11+43.2
$$

$$
T_{2}=65 \cdot z^{\circ} \mathrm{C}
$$

5.35

Wrocr at $150^{\circ} \mathrm{C}, 456 \mathrm{k} 7 \mathrm{a}$, is broopht to 1200 CC in a conuturt prewusp popopat. Vind the change in the spoctic insernal enorgy, uning a) the thean abler, b) the idral gas

Salubios:
4)

Sune I Takle B. 13 Superteasel vipor $\mathrm{B}_{\mathrm{i}}-7464,45 \mathrm{kl} / \mathrm{kg}$
Satce 2 Table $18.1 .3 \quad \mathrm{~m}_{1}=4467.23 \mathrm{kl} / \mathrm{ks}$

$$
\theta_{1}-N_{1}=4467.23-2564.48-1902.75 \mathrm{~L} 1 / 28
$$

b)

Table A. 8 at 423.15K: $\quad u_{1} \sim 901.41 \mathrm{kikg}$
Table A-8 at $1478.15 \mathrm{~K}: \quad \mathrm{H}_{2}=2474.25 \mathrm{~kJ} / \mathrm{kg}$

$$
u_{y}-5 y-2414.25-991.41-1852.82 .1 / 28
$$

s) Table A. 5 ; $\quad \mathrm{C}_{\mathrm{F}}=1.41 \mathrm{kl} \mathrm{kg}_{\mathrm{K}} \mathrm{C}$

$$
4_{y}-5_{1}=1.41 \mathrm{k} \mathrm{k}_{\mathrm{y}} \mathrm{~K}(1200-150) \mathrm{K}=1420.5 \mathrm{ka} \mathrm{k}
$$

Nobot bes the avermpe slope foon $150 \mathrm{C}=1290 \mathrm{C}$ is Nigher ithan the sea at $25 \mathrm{C}\left(=C_{w}\right)$

 under the piobon is heated se thut the poston meves up, spiling the sater eot over the
 Selpios:

The walor on log is ourpresked liguld and his volume und mas

$$
\begin{aligned}
& V_{H_{2}} 0=V_{\text {tact }}-V_{\text {sit }}-10=01-03=0.7 \mathrm{e}^{3}
\end{aligned}
$$

The intial air prownse in then

The procesu lise show the wark as min asa

$$
\left.{ }_{1} W_{2}=0 \mathrm{PNV}-\frac{1}{2}\left(P_{1}+P_{2}\right)\left(V_{2}-V_{1}\right)=\frac{1}{2}(16984+109395)(1-0.3)-96 \% 1 \mathrm{k}\right]
$$

The entrgy equation nolved for the heat tranafer bocones

$$
\begin{aligned}
& { }_{1} Q_{2}=m\left(N_{2}=H_{1}\right)={ }_{1} W_{2} \pi \omega_{2}\left(T_{2}-T_{1}\right)+{ }_{1} W_{1} \\
& =0.592 \mathrm{~kg} \times 0.717 \mathrm{kJkg} \times(596.59+7000 \mathrm{~K}+34.91 \mathrm{k})=222.7 \mathrm{k}
\end{aligned}
$$

Ronark: we pocils have used evalees from Table A.7;

$$
U_{2}-\theta_{1}=432.5-214.36=215.14 \mathrm{kl} / \mathrm{kg} \text { vwess } 2125 \mathrm{k} 1 \mathrm{~kg} \text { widh } \mathrm{C}_{\mathrm{c}}
$$

8.171

A pistonkylinder arratgment B is connected to a $1-\mathrm{m}^{3}$ tank A by a line and valve. shoven is Fie P5.171. Initially bod comtain watet, with A as to0 kPa, setantod vapor
 II consel te a uniform itate.
a. Find the ievial nuw in A and B

1. If the process resilt in $7_{2}=20 \mathrm{~F}^{\circ} \mathrm{C}$, Ind the heat tnoufir and work.

Solytion:
C.V $-\lambda$ + II. Thin a a pqetrol mans

$$
\text { Centimaly equabee: } \quad m_{2}+\left(m_{A 1} * m_{21}\right)=0 ;
$$

Enery $\quad B_{y} a_{2}+m_{A 1} \|_{A!}+m_{a!} H_{a!}={ }_{1} Q_{2} *{ }_{2} W_{2}$

if $\mathrm{V}_{\mathrm{B}}=0$ thea $\mathrm{F}_{2} \times\left[\mathrm{P}_{\mathrm{Bi}}\right.$ and $\mathrm{v}=\mathrm{V}_{A} / \mathrm{m}_{\text {hof }}$ wee P-V dagram

$$
{ }_{1} W_{2}=\int P_{8} d V_{8}-P_{31}\left(V_{2}+V_{1} L_{5}-P_{81} i V_{2}-V_{1}\right)_{\text {not }}
$$

Sase Al: Table 这:1,1, $=1$
$\mathrm{V}_{\mathrm{RO}}=1.694 \mathrm{~m} \mathrm{~kg}, \mathrm{u}_{\mathrm{Ry}}=2506.1 \mathrm{k} 1 \mathrm{k}$

Sase BL: Table 8.12 emp vaper

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{BI}}-\mathrm{V}_{\mathrm{B}} / \mathrm{V}_{31}=0 . \operatorname{sess} \mathrm{km} \\
& \mathrm{E}_{2}{ }^{=3} \mathrm{BPOT}_{\mathrm{TOT}}{ }^{-1.56 \mathrm{~K}}
\end{aligned}
$$

se mow state I: $P_{2}=P_{\text {m }}=300 \mathrm{kPa} T_{2}=200$ " C

$$
\Leftrightarrow u_{2}=2650.7 \mathrm{k} \mathrm{k}_{8} \text { and } V_{2}=m_{2} v_{2}=1.36 \times 0.7161=1.117 \mathrm{~m}^{3}
$$

$$
\begin{aligned}
& W_{2}=P_{34}\left(V_{2}-V_{1}\right)=-264.82 \mathrm{LJ} \\
& Q_{2}=m_{2} H_{2}+W_{A 1} \varphi_{A L}+m_{21}{ }^{4} \mathrm{BI}+W_{2}=-684.7 \mathrm{~kJ}
\end{aligned}
$$

5. You supervise an industrial process which uses forced convection to cool hot 10 g steel ball bearings. In the forced convection environment, the heat transfer coefficient is $h=0.2 \frac{\mathrm{~kW}}{\mathrm{~m}^{2} \cdot \mathrm{~K}}$. The initial temperature is 1600 K . The ambient temperature is 300 K . Using the method
developed in class, estimate the time constant of cooling, find an expression for $T(t)$, and find the time when $T=350 \mathrm{~K}$. Plot $T(t)$. Repeat the analysis for a 1 kg sphere.
Given: $T_{0}=1600 \mathrm{~K}, T_{\infty}=300 \mathrm{~K}, m=10 \mathrm{~g}, h=0.2 \frac{\mathrm{~kW}}{\mathrm{~m}^{2} \cdot \mathrm{~K}}$
Assumptions: Incompressible, Newton's law of cooling
Find: $\tau, t @ 350 \mathrm{~K}$, plot $T(t)$

$$
\frac{d U}{d t}=\dot{Q}-\dot{W}
$$

The ball bearing is incompressible, so $\dot{W}=0$:

$$
\begin{gather*}
\frac{d U}{d t}=\dot{Q} \\
m c \frac{d T}{d t}=\dot{Q} \\
m c \frac{d T}{d t}=-h A\left(T-T_{\infty}\right) \\
\rho V c \frac{d T}{d t}=-h A\left(T-T_{\infty}\right) \\
\frac{d T}{d t}=-\frac{h A}{\rho c V}\left(T-T_{\infty}\right) \\
\frac{d T}{T-T_{\infty}}=-\frac{h A}{\rho c V} d t \\
\int \frac{d T}{T-T_{\infty}}=\int-\frac{h A}{\rho c V} d t \\
\ln \left(T-T_{\infty}\right)=-\frac{h A}{\rho c V} t+C \\
T-T_{\infty}=C^{\prime} \exp \left(-\frac{h A}{\rho c V} \cdot 0\right) \\
=C^{\prime} \\
T(t)=T_{\infty}+\left(T_{0}-T_{\infty}\right) \exp \left(-\frac{h A}{\rho c V} t\right) \tag{3}
\end{gather*}
$$

Generally, the time constant for a first-order system is the inverse-reciprocal of the exponential term. This gives

$$
\tau=\frac{\rho c V}{h A}
$$

Now to evaluate. Since the mass is $m=10 \mathrm{~g}$ and the density of steel was found to be $7850 \mathrm{~kg} / \mathrm{m}^{3} \cdot 3^{3}$ the volume of the ball is

$$
V=\frac{m}{\rho}=\frac{0.010 \mathrm{~kg}}{7850 \mathrm{~kg} / \mathrm{m}^{3}}=1.27 \cdot 10^{-6} \mathrm{~m}^{3}
$$

[^2]Knowing the volume, the radius of the ball bearing was found to be

$$
r=\left(\frac{3 V}{4 \pi}\right)^{1 / 3}=6.72 \cdot 10^{-3} \mathrm{~m}
$$

The surface area A of the steel ball is

$$
A=4 \pi r^{2}=5.68 \mathrm{~m}^{2}
$$

The specific heat of steel is $c=0.49 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}{ }^{4}$. A plot of the 10 g and 1 kg ball bearings is found in Figure 3. The time it takes for the temperature to reach 350 K was found by rearranging Eq. (3):

$$
\ln \left(\frac{T-T_{\infty}}{T_{0}-T_{\infty}}\right)\left(-\frac{\rho c V}{h A}\right)=t
$$

A summary of the results for both analyses is found in the table below:

m	τ	$t @ 350 \mathrm{~K}$
10 g	43.1 s	140.5 s
1 kg	200.1 s	652.0 s

Problem 5.5

Figure 3: Plot of $T(t)$ for problem 5.5.
6. 5.228 A car with mass 1275 kg is driven at $60 \mathrm{~km} / \mathrm{h}$ when the brakes are applied quickly to decrease its speed to $20 \mathrm{~km} / \mathrm{h}$. Assume the break pads have a 0.5 kg mass with heat capacity $1.1 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ and that the brake disks and drums are 4.0 kg of steel. Further assume that both masses are heated uniformly. Find the temperature increase in the break assembly and produce a plot of the temperature rise as a function of the car mass.
Given: $m_{c}=1275 \mathrm{~kg}, v_{c i}=60 \mathrm{~km} / \mathrm{h}, v_{c f}=20 \mathrm{~km} / \mathrm{h}, m_{p}=0.5 \mathrm{~kg}, c_{p}=1.1 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}, m_{d}=$

[^3]$4 \mathrm{~kg}, c_{d}=0.46 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
Find: ΔT
Starting with the first law,
$$
\Delta E={ }_{1} Q_{2}+{ }_{1} W_{2}
$$

There is no work being done $\left({ }_{1} W_{2}=0\right)$. The heat transfer of the deceleration is equal to the sum of the heat transfer of the break pads and the break disks/drums. Thus the change in kinetic energy of the car is equal to the heat transfer of those components:

$$
\begin{gathered}
\frac{1}{2} m_{c} v_{c i}^{2}-\frac{1}{2} m_{c} v_{c f}^{2}=m_{p} c_{p}(\Delta T)+m_{d} c_{d}(\Delta T) \\
\Delta T=\frac{\frac{1}{2} m_{c}\left(v_{c i}^{2}-v_{c f}^{2}\right)}{m_{p} c_{p}+m_{d} c_{d}} \\
\Delta T\left(m_{c}\right)=0.05166 m_{c} \rightarrow 65.9 \mathrm{~K}=\Delta T
\end{gathered}
$$

The function $\Delta T\left(m_{c}\right)$ is found in the following figure:

Quiz 7

1. The following ordinary differential equation and initial condition results from a control volume analysis for a fluid entering and exiting a leaky bucket. In contrast to the example problem done in lecture, the equation accounts better for the actual behavior of the fluid exiting:

$$
\rho A \frac{d H}{d t}=\dot{m}_{i}-\rho A_{e} \sqrt{2 g H}, \quad H(0)=0 .
$$

Here we have the following constants: density ρ, cross-sectional area of the tank A, crosssectional area of the exit hole A_{e}, inlet mass flow rate \dot{m}_{i}, gravitational constant g. The independent variable is time t, and the dependent variable is height H. Find the fluid height H at the equilibrium state.

Equilibrium state means the tank is in steady state and the amount of water in the tank is not changing, so $\frac{d H}{d t}=0$. Taking this into account, the given equation becomes

$$
\dot{m}_{i}=\rho A_{e} \sqrt{2 g H}
$$

and you can solve for H to find

$$
H=\left(\frac{\dot{m}_{i}}{\rho A_{e}}\right)^{2} \cdot \frac{1}{2 g}
$$

Homework 7

6.15

A boiler receives a constant flow of $5000 \mathrm{~kg} / \mathrm{h}$ ligquid water at $5 \mathrm{MPa}, 20^{\circ} \mathrm{C}$ and it beats the flow such that the exit state is $450^{\circ} \mathrm{C}$ with a pressure of 4.5 MPa .
Determine the necessary minimum pipe flow area in both the inlet and exit pipe(s) if there should be so velocities larger than $20 \mathrm{~m} / \mathrm{s}$.

Solation:

Mass flow rate from Eq. 6.3 , both $\mathrm{V} \leq 20 \mathrm{~m} / \mathrm{s}$

$$
\dot{m}_{1}=\dot{m}_{e}=(\mathrm{AV} / \mathrm{v})_{i}=(\mathrm{AV} / \mathrm{V})_{e}=5000 \frac{1}{3600} \mathrm{~kg} / \mathrm{s}
$$

Table B. $1.4 \quad \mathrm{v}_{1}=0.001 \mathrm{~m}^{3} / \mathrm{kg}$.
Table B.: $3 \quad v_{e}=(0.00003+0.00633) / 2=0.07166 \mathrm{~m}^{3} / \mathrm{kg}$.

$$
\begin{aligned}
\begin{aligned}
A_{1} \geq v_{i} \dot{m} / V_{i} & =0.001 \mathrm{~m}^{3} / \mathrm{kg} \times \frac{5000}{3600} \mathrm{~kg} / \mathrm{s} / 20 \mathrm{~m} / \mathrm{s} \\
& =694 \times 10^{-5} \mathrm{~m}^{2}=0.69 \mathrm{~cm}^{2}
\end{aligned} \\
\begin{aligned}
A_{e} \geq v_{e} \dot{m} / V_{e} & =0.07166 \mathrm{~m}^{3} / \mathrm{kg} \times \frac{5000}{3600} \mathrm{~kg} / \mathrm{s} / 20 \mathrm{~m} / \mathrm{s} \\
& =4.98 \times 10^{-3} \mathrm{~m}^{2}=50 \mathrm{~cm}^{2}
\end{aligned}
\end{aligned}
$$

2. Consider ow in a pipe with constant cross-sectional area A. Flow enters a xed control volume at the inlet i and exits at the exit e. The velocity in the x-direction is v . Derive the control volume version of the linear x-momentum equation for a uid in a fashion similar to that used in lecture for the mass and energy equations. The only force you need to consider is a pressure force; neglect all wall shear forces and gravity forces. The nal form should be of the form

$$
\frac{\partial}{\partial t} \int_{V} \rho \mathrm{v} d V=\dot{m}_{i} \mathrm{v}_{i}-\dot{m}_{e} \mathrm{v}_{e}+P_{i} A-P_{e} A
$$

You may wish to consult any of a variety of undergraduate uid mechanics textbooks for more guidance.

Consulting any fluid mechanics book gives the following equation for the x-momentum for flow in a pipe:

$$
\sum F_{x}=\frac{\partial}{\partial t} \int_{V} \rho \mathrm{v} d V+\iint_{c s} \rho \mathrm{v} \overline{\mathrm{v}} \cdot \hat{n} d s
$$

Since a pressure force is defined as $P=F / A$, and by convention saying that the pressure force at the inlet is positive and negative at the exit, the sum of the forces $\sum F_{x}$ can be substituted:

$$
P_{i} A-P_{e} A=\frac{\partial}{\partial t} \int_{V} \rho \mathrm{v} d V+\iint_{c s} \rho \mathrm{v} \overline{\mathrm{v}} \cdot \hat{n} d s
$$

The normal vector \hat{n} points out perpendicularly for both the inlet and exit control surfaces. Since the velocity v is always in the positive x-direction, the dot product will give the opposite signs for the inlet and exit velocities (one will add and the other will subtract). Taking that dot product, and since the cross-section of the pipe is said to be constant, the double integral $\iint_{c s} d s=A$ and the momentum equation becomes

$$
P_{i} A-P_{e} A=\frac{\partial}{\partial t} \int_{V} \rho \mathbf{v} d V+\left(\left[\rho \mathrm{v}_{e} A\right] \mathrm{v}_{e}-\left[\rho \mathrm{v}_{i} A\right] \mathrm{v}_{i}\right)
$$

The mass flow rate can be written as $\dot{m}=\rho \vee A$, so the final form of the momentum equation can be rearranged to be

$$
\frac{\partial}{\partial t} \int_{V} \rho \mathrm{v} d V=\dot{m}_{i} \mathrm{v}_{i}-\dot{m}_{e} \mathrm{v}_{e}+P_{i} A-P_{e} A
$$

The fromt of a jet engme acts as a diffuser receving as at $900 \mathrm{~km} / \mathrm{h},-5^{\circ} \mathrm{C}, 50 \mathrm{kPa}$. bringing it to $80 \mathrm{~m} / \mathrm{s}$ relative to the engine before entering the compressor. If the flow area is reduced so 80% of the inlet area find the temperasure and pressure in the compressor inlet.

Soluation:
C.V. Diffuser, Steady state, 1 inlet, 1 exit flow, no q, no w

Conturury Eq 6.3: $\quad \dot{m}_{i}=\dot{m}_{e}=($ AV/V $)$
Energy Eq.6.12; $\dot{\mathrm{m}}\left(\mathrm{h}_{1}+\frac{1}{2} \mathrm{~V}_{\mathrm{i}}^{2}\right)=\dot{\mathrm{m}}\left(\frac{1}{2} \mathrm{~V}_{e}^{2}+\mathrm{h}_{e}\right)$

$$
\begin{aligned}
& \begin{aligned}
\mathrm{h}_{e}-\mathrm{h}_{\mathrm{i}} & =\mathrm{C}_{\mathrm{p}}\left(\mathrm{~T}_{\mathrm{e}}-\mathrm{T}_{\mathrm{i}}\right)=\frac{1}{2} \mathrm{~V}_{\mathrm{i}}^{2}-\frac{1}{2} \mathrm{~V}_{e}^{2}-\frac{1}{2}\left(\frac{900 \times 1000}{3600}\right)^{2}-\frac{1}{2}(80)^{2} \\
& =28050 \mathrm{~J} / \mathrm{kg}=28.05 \mathrm{~kJ} / \mathrm{kg} \\
\Delta \mathrm{~T} & =28.05 / 1.004=27.9 \Rightarrow \quad \mathrm{~T}_{e}=-5+27.9=22.9^{\circ} \mathrm{C}
\end{aligned}
\end{aligned}
$$

Now was the continnty eq-

$$
\begin{aligned}
& A_{1} V_{i} / v_{1}=A_{e} V_{e} / v_{e} \Rightarrow \quad v_{e}=v_{i}\left(\frac{A_{e} V_{e}}{A_{i} V_{i}}\right) \\
& v_{e}=v_{1} \times \frac{0.8 \times 80}{1 \times 250}=v_{1} \times 0.256
\end{aligned}
$$

Ideal gas: $\quad \mathrm{Pv}=\mathrm{RT} \quad \sim v_{e}=\mathrm{RT}_{e} \mathrm{P}_{\mathrm{e}}=R \mathrm{R}_{\mathrm{i}} \times 0.256 \cdot \mathrm{P}_{3}$

$$
\mathrm{P}_{e}=\mathrm{P}_{1}\left(\mathrm{~T}_{e} / \mathrm{T}_{i}\right) 0.256=50 \mathrm{kPa} \times 296 /(268 \times 0.256)=215.7 \mathrm{kPa}
$$

Saturated liquid nitrogen at 600 kPa enters a boiler at a rate of $0.005 \mathrm{~kg} / \mathrm{s}$ and exits as saturated vapor. It then flows into a super beater also at 600 kPa where it exits at $600 \mathrm{kPa}, 280 \mathrm{~K}$. Find the rate of heat transfer in the boiler and the super beater

Solution:
C.V-boiler steady single inlet and exit flow, neglect KE, PE energies in flow

Continusty $\mathrm{Eq}_{\mathrm{q}}: \quad \dot{\mathrm{m}}_{1}=\dot{\mathrm{m}}_{2}=\dot{\mathrm{m}}_{3}$

Table B. $6.1: \quad h_{1}=-81.469 \mathrm{~kJ} / \mathrm{kg} . \quad \mathrm{b}_{2}=86.85 \mathrm{~kJ} / \mathrm{kg}$.
Table B. $6.2: \quad \mathrm{by}=289.05 \mathrm{~kJ} / \mathrm{kg}$
Energy Eq6.13: qpoiles $=\mathrm{b}_{2}-\mathrm{h}_{\mathrm{y}}=86.85-(-81.469)=168.32 \mathrm{~kJ} / \mathrm{kg}$
C.V. Superbeater (same approximations as for boiler)

Energy Eq6.13: $q_{\text {sep bexter }}=h_{1}-h_{2}=289.05-86.85=202.2 \mathrm{~kJ} / \mathrm{kg}$

$$
\dot{Q}_{\text {sap heater }}=\dot{m}_{2} Q_{\text {sup heater }}=0.005 \mathrm{~kg} / \mathrm{s} \times 202.2 \mathrm{~kJ} / \mathrm{kg}=1.01 \mathrm{~kW}
$$

6.159

A small, high-speed turbine operating on compressed air produces a power output of 0.1 hp . The inlet state is $60 \mathrm{lbf} / \mathrm{in}^{2}, 120 \mathrm{~F}$, and the exit state is $14.7 \mathrm{lbf} / \mathrm{in}^{2}$. -20 F . Assuming the velocities to be low and the process to be adiabatic, find the required mass flow rate of air through the turbine.

Solution:

C.V. Turbine, no heat transfer, no $\triangle \mathrm{KE}$, no $\triangle \mathrm{PE}$

Energy Eq.6.13: $\quad \mathrm{h}_{\mathrm{in}}=\mathrm{h}_{\mathrm{ex}}+\mathrm{w}_{\mathrm{T}}$
Ideal gas so use constant specific heat from Table A. 5

$$
\begin{aligned}
\mathrm{w}_{\mathrm{T}} & =\mathrm{h}_{\mathrm{in}}-\mathrm{h}_{\mathrm{ex}} \equiv \mathrm{C}_{\mathrm{p}}\left(\mathrm{~T}_{\mathrm{in}}-\mathrm{T}_{\mathrm{ex}}\right) \\
& =0.24(120-(-20))-33.6 \mathrm{Btu} / \mathrm{lbm} \\
\dot{\mathrm{~W}}=\dot{\mathrm{m}}_{\mathrm{T}} & \Rightarrow \\
\dot{\mathrm{~m}}=\dot{\mathrm{W}} / \mathrm{w}_{\mathrm{T}} & =\frac{0.1 \mathrm{hp} \times 550 \mathrm{lbf}-\mathrm{ft} / \mathrm{s}-\mathrm{hp}}{778 \mathrm{lbf}-\mathrm{ft} / \mathrm{Btu} \times 33.6 \mathrm{Btu} / \mathrm{lbm}}=0.0021 \mathrm{lbm} / \mathrm{s}=7.57 \mathrm{lbm} / \mathrm{h} \\
& \text { The dentist's drill has a small } \\
& \text { air flow and is not really } \\
& \text { adiabatic. }
\end{aligned}
$$

6. Take data from Table A. 8 for O 2 and develop your own third order polynomial curve t for $u(T)$. That is find a_{1}, a_{2}, a_{3} such that

$$
u(T)=a_{0}+a_{1} T+a_{2} T^{2}+a_{3} T^{3}
$$

well describes the data in the range $200 \mathrm{~K}<T<3000 \mathrm{~K}$. Give a plot which gives the predictions of your curve fit $u(T)$ as a continuous curve for $200 \mathrm{~K}<T<3000 \mathrm{~K}$. Superpose on this plot discrete points of the actual data. Take an appropriate derivative of the curve fit for $u(T)$ to estimate $c_{v}(T)$. Give a plot which gives your curve fit prediction of $c_{v}(T)$ for $200 \mathrm{~K}<T<3000 \mathrm{~K}$. Superpose discrete estimates from a simple finite difference model $c_{v}=\frac{\Delta u}{\Delta T}$, where the finite difference estimates come from the data in Table A.8, onto your plot. You will find a discussion on least squares curve tting in the online course notes to be useful for this exercise.

See the plots below for the internal energy and the specific heat at constant volume for O_{2}. The third-order polynomial fit for the data was found to be $u(T)=-9.17+0.644 T+$ $0.001 T^{2}+0.00 T^{3}$.

Quiz 8

1. Mass flows through a duct with variable area. The flow is incompressible and steady. At the inlet, we have $\mathrm{v}=10 \mathrm{~m} / \mathrm{s}, A=1 \mathrm{~m}^{2}, \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$. At the exit, we have $A=0.1 \mathrm{~m}^{2}$. Find the flow velocity at the exit.
From mass conservation for steady one-dimensional flow,

$$
\dot{m}_{i}=\dot{m}_{e}
$$

Since $\dot{m}=\rho \mathrm{v} A$, we can substitute:

$$
\rho \mathrm{v}_{i} A_{i}=\rho \mathrm{v}_{e} A_{e}
$$

The flow is incompressible, so the density cancels and you can solve for the velocity at the exit:

$$
\mathrm{v}_{e}=\frac{\mathrm{v}_{i} A_{i}}{A_{e}}=\frac{(10 \mathrm{~m} / \mathrm{s})\left(1 \mathrm{~m}^{2}\right)}{0.1 \mathrm{~m}^{2}}=100 \mathrm{~m} / \mathrm{s}=\mathrm{v}_{e}
$$

Homework 8

6.74

The main waterlisc into a tall building has a pressarc of 600 kPa at 5 m below groond level. A pump brings the pressure up so the waser can be dellivered at Ise kPa at the iop floor 150 mabove ground level. Aswame a flow rate of $10 \mathrm{~kg} / \mathrm{s}$ lignid waler at $10^{\circ} \mathrm{C}$ and neglect any difference is kinetic energy and innemal energy u. Find the pomp work.

Solution:

C. V. Pipe from inles at -5 m up to exit at +150 m , 150 kPa .

Energy EqK.13: $h_{i}+\frac{1}{2} v_{i}^{2}+E Z_{i}=h_{e}+\frac{1}{2} v_{e}{ }^{2}+\mathrm{g}_{e}+w$
With the same u the difference in h's are the Pv terms

$$
\begin{aligned}
w & =h_{i}-h_{c}+\frac{1}{2}\left(V_{i}^{2}+V_{e}^{2}\right)+g\left(Z_{i} \cdot Z_{e}\right) \\
& =P_{i} v_{i}-P_{e} v_{c}+g\left(Z_{i}-Z_{e}\right) \\
& -600 \times 0.001-156 \times 0.001+9.506 \times(-5-150 y / 1000 \\
& =-4-1.52=-1.1 \quad \mathrm{~kJ} / \mathrm{kg}^{2} \\
\dot{W} & =\dot{m} w=10 \times(-1.1)=-11 \quad \mathrm{~kW}
\end{aligned}
$$

6.163

The following data are for a simple sleam power plant as shown in Fig. P6.103.

State	1	2	3	4	5	6	7
PMPa	6.2	6.1	5.9	5.7	5.5	0.01	0.009
$\mathrm{~T}^{4} \mathrm{C}$		45	175	550	490		40
$\mathrm{~h} \mathrm{~kJ} / \mathrm{kg}_{\mathrm{g}}$	-	194	744	3426	3404	-	168

Stase 6 has $x_{6}=0.92$, and velocity of $200 \mathrm{~m} / \mathrm{s}$. The rate of steam flow is $25 \mathrm{~kg} / \mathrm{s}$, with 300 kW power input to the pump. Piping diameters are 200 mes from stean generator to the borbine and 75 mm from the condenser to the steam generator. Detormite the velocity at state 5 and the powtr culpat of the turbine.

Solution:
Turbine $\mathrm{A}_{5}=(\pi / 4)(0.2)^{2}-0.03142 \mathrm{~m}^{2}, \mathrm{v}_{\mathrm{g}}=0.06163 \mathrm{~m}^{3} / \mathrm{kg}$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{s}}=\dot{m} \mathrm{v}_{5} / \mathrm{A}_{3}=25 \mathrm{~kg} / \mathrm{s} \times 0.06163 \mathrm{~m}^{3} / \mathrm{kg} / 0.03142 \mathrm{~m}^{2}=49 \mathrm{~m} / \mathrm{s} \\
& h_{5}=191.83+0.92 \times 2392.8=2393.2 \mathrm{k} / \mathrm{kg} \\
& w_{T}=h_{5}-h_{5}+\frac{1}{2}\left(v_{5}^{2}-v_{6}^{2}\right) \\
& \left.=3404-2393.2+\left(49^{2}-200^{2}\right) / 2 \times 1000\right)=992 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{~W}_{\mathrm{T}}=\frac{\mathrm{m}}{\mathrm{~m}} \mathrm{~T}-25 \mathrm{~kg} / \mathrm{s} \times 992 \mathrm{~kJ} / \mathrm{kg}-24800 \mathrm{~kW}
\end{aligned}
$$

Remark: Notice the kinetic energy change is small relative to enthalpy change.
6.108

A R-410a heat pump cycle shown in Fig. P6. 108 has a R-410a flow rate of 0.05 kg / s with 5 kW imo the compressor. The following dala are given

State	1	2	3	4	5	6
P, kPa	3100	3050	3000	420	400	190
T. ${ }^{\circ} \mathrm{C}$	130	110	45		-10	-5
$\mathrm{~h}, \mathrm{~kJ} / \mathrm{kg}$	377	367	134	-	250	284

Calculate the heat transfor from the compressor, the heat transfor from the R-410a in the condenser and the heat transfer so the R.410a is the ev aporasor.

Solution:
CV:Compressor

$$
\dot{Q}_{\mathrm{COMP}}=\dot{\operatorname{m}}\left(\mathrm{h}_{1}=\mathrm{h}_{6}\right)+\dot{\mathrm{W}}_{\mathrm{CON}}=0.05(377-284)-5.0=-0.35 \mathrm{~kW}
$$

CV: Condenser

$$
-\hat{Q}_{\mathrm{CosD}}=\dot{m}\left(\mathrm{~m}_{3}-\mathrm{h}_{2}\right)=0.05 \mathrm{~kg} / \mathrm{s}(134-367) \mathrm{kJ} / \mathrm{kg}=-11.65 \mathrm{~kW}
$$

C.V. Valve:

$$
h_{4}=h_{y}=134 \mathrm{~kJ} / \mathrm{kg}
$$

CV; Evaporator

$$
\left.\oint_{E V A P}=m\left(h_{y}-h_{4}\right)=0.05 \mathrm{~kg} / \mathrm{s}(280)-134\right) \mathrm{kl} / \mathrm{kg}=7.3 \mathrm{~kW}
$$

A modern jet engine has a temperature after comberstion of about 1500 K at 3200 kPa as it enters the parbine setion, see state 3 Fie. P.6.109. The compressor ielet is $80 \mathrm{kPa}, 260 \mathrm{~K}$ stane 1 and outlet state 2 is $3300 \mathrm{kPa}, 780 \mathrm{~K}$; the burbine ouslet state 4 into the noczale is $\$ 00 \mathrm{kPa}, 900 \mathrm{~K}$ and noczle exit state 5 at $70 \mathrm{kPa}, 640 \mathrm{~K}$.
Neglect any leat transfer and neglect kinetic energy except out of the novele. Find the compeessor and turbine specific work terms and the nozele exit velocity.

Solution:

The compressoe, tarbine and novele are all steady state single flow devices and they are adiabatic.

We will use air properties from table A.7.1:

$$
h_{1}=260.32, h_{2}-800.28, h_{3}=1635.80, h_{4}-933.15, h_{5}=649.53 \mathrm{kl} \mathrm{~kg}_{g}
$$

Encrgy equation for the compressor gives

$$
W_{c \text { in }}=b_{2}-h_{1}=800.28-260.32=539.36 \mathrm{kB} / \mathrm{kg}
$$

Energy cquation for the terbine gives

$$
w_{T}=h_{3}-h_{4}=1635.80-933.15=762.65 \mathrm{k} / 1 / \mathrm{kg}
$$

Eiergy equation for the nozzle gives

$$
\begin{aligned}
& h_{4}=h_{5}+V_{2} V_{5}^{2} \\
& y_{2} V_{5}^{2}=h_{4}-h_{5}=933.15-649.53=283.62 \mathrm{kl} / \mathrm{kg} \\
& V_{5}-\left[2\left(h_{4}-h_{5}\right)\right]^{1 / 2}-(2 \times 283.62 \times 1000)^{1 / 2}-753 \mathrm{~mm} / \mathrm{s}
\end{aligned}
$$

6.173E.

A condenser, as the heat exchanger shown in Fig. P6.83, brings 1 Ibmis waser now at I llofin. ${ }^{2}$ from 500 F to saturated liquid at I Ibflin. ${ }^{2}$. The cooling is done by lake water at 70 F that returns to the lake at 90 F . For an insulated condenser, find the flow rate of pooling wattr.
Solution:
C.V. Heat exchanger

Energy Eq.6.10:

$$
\dot{m}_{\mathrm{cool}} h_{\mathrm{TD}}+\dot{m}_{\mathrm{H}_{2}} \mathrm{C}^{h}{ }_{500}=\dot{m}_{\mathrm{cool}} \mathrm{H}_{90}+\dot{m}_{\mathrm{H}_{2}} \mathrm{oh}_{\mathrm{Fl}}
$$

Table F.7.1: $h_{70}-38.09$ Btu/bm, $h_{90}=58.07$ Brallim, $\mathrm{h}_{\mathrm{g}, 1}=69.74$ Bru/bm
Table F.7.2: hspo.1 $=12 \mathrm{ks} .5$ bullbes

6. A tank containing 50 kg of liquid water initially at $45^{\circ} \mathrm{C}$ has one inlet and one exit with equal mass flow rates. Liquid water enters at $45^{\circ} \mathrm{C}$ and a mass flow rate of $270 \mathrm{~kg} / \mathrm{hr}$. A cooling coil immersed in the water removes energy at a rate of 8.0 kW . The water is well mixed by a paddle wheel so that the water temperature is uniform throughout. The power input to the water from the paddle wheel is 0.6 kW . The pressures at the inlet and exit are equal and all kinetic and potential energy effects can be ignored. Determine the variation of water temperature with time. Give a computer-generated plot of temperature versus time.

Given: $\mathrm{m}=50 \mathrm{~kg}, T_{0}=45{ }^{\circ} \mathrm{C}, T_{i}=45^{\circ} \mathrm{C}, \dot{m}=270$
$\mathrm{kg} / \mathrm{hr}, \dot{W}_{C V}=-0.6 \mathrm{~kW}, \dot{Q}_{C V}=-8.0 \mathrm{~kW}$
Assumptions: $\Delta P=0, \Delta K E=0, \Delta P E=0$, perfect mixing, $c_{p}=4186 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$
Find: $\frac{d T}{d t}$
This solution follows much the same course as Example 6.7 in Professor Powers's notes. The
first law is found as Eq. (6.100) in Professor Powers's notes:

$$
\begin{equation*}
\frac{d E_{C V}}{d t}=\dot{Q}_{C V}-\dot{W}_{C V}+\sum \dot{m}_{i} h_{t o t, i}-\sum \dot{m}_{e} h_{t o t, e} \tag{4}
\end{equation*}
$$

Our control volume is undergoing transient energy transfer, so $\frac{d E_{C V}}{d t} \neq 0$. The energy in the control volume is

$$
E_{C V}=U_{C V}=m u_{c v}
$$

We will assume from mass conservation that

$$
\dot{m}_{i}=\dot{m}_{e}=\dot{m}=270 \mathrm{~kg} / \mathrm{hr}
$$

and we will also assume that the total enthalpy for the water is

$$
d h_{t o t}=c_{p} d T
$$

Putting all this into Eq. (4),

$$
\frac{d}{d t}\left(m u_{c v}\right)=\dot{Q}_{C V}-\dot{W}_{C V}+\dot{m}\left(h_{i}-h_{e}\right)
$$

Since $d u_{c v}=c_{v} d T$ and m and c_{v} are constant, the above equation becomes

$$
m c_{v} \frac{d T}{d t}=\dot{Q}_{C V}-\dot{W}_{C V}+\dot{m}\left(h_{i}-h_{e}\right)
$$

where T is the temperature of the tank of water. The enthalpy difference between the inlet and the exit is

$$
h_{i}-h_{e}=c_{p}\left(T_{i}-T\right)
$$

because the water supplied at the inlet is always a constant temperature of $T_{i}=45^{\circ} \mathrm{C}$. For liquid water,

$$
c_{p}=c_{v}=c
$$

Simplifying, the standard form of the differential equation is

$$
\frac{d T}{d t}=\frac{\dot{Q}_{C V}-\dot{W}_{C V}+\dot{m} c\left(T_{i}-T\right)}{m c}
$$

To solve this first-order, linear, inhomogeneous differential equation, we can use separation of variables. Consulting a differential equations textbook ${ }^{5}$, you will find that you can solve the equation by using separation of variables. The differential equation can be rewritten as

$$
\begin{aligned}
\frac{d T}{d t} & =\frac{\dot{Q}_{C V}-\dot{W}_{C V}}{m c}+\frac{\dot{m}}{m}\left(T_{i}-T\right) \\
\frac{d T}{d t} & =a+b\left(T_{i}-T\right)
\end{aligned}
$$

[^4]The latter equation is equivalent to the one above it with $a=\frac{\dot{Q}_{C V}-\dot{W}_{C V}}{m c}$ and $b=\frac{\dot{m}}{m}$. It will make solving the problem much easier. Separating the variables of the latter equation:

$$
\begin{equation*}
\frac{d T}{a+b\left(T_{i}-T\right)}=d t \tag{5}
\end{equation*}
$$

Now we must do u^{\prime}-substitution (I use u^{\prime} here so that you don't get confused with specific internal energy, $u)$. If $u^{\prime}=a+b\left(T_{i}-T\right)$,

$$
\begin{align*}
d u^{\prime} & =-b d T \\
-\frac{1}{b} d u^{\prime} & =d T \tag{6}
\end{align*}
$$

Substituing Eq. (6) and $u^{\prime}=a+b\left(T_{i}-T\right)$ into Eq. (5) reveals

$$
\begin{aligned}
-\frac{1}{b} \frac{d u^{\prime}}{u^{\prime}} & =d t \\
\ln \left(u^{\prime}\right) & =-b t+C \\
u^{\prime} & =C \exp (-b t)
\end{aligned}
$$

Substituting for u^{\prime} gives

$$
a+b\left(T_{i}-T\right)=C \exp (-b t)
$$

then for b

$$
a+\frac{\dot{m}}{m}\left(T_{i}-T\right)=C \exp \left(-\frac{\dot{m}}{m} t\right)
$$

and finally for a

$$
\frac{\dot{Q}_{C V}-\dot{W}_{C V}}{m c}+\frac{\dot{m}}{m}\left(T_{i}-T\right)=C \exp \left(-\frac{\dot{m}}{m} t\right) .
$$

Rearrange the above equation to give T as a function of t :

$$
\begin{equation*}
T(t)=T_{i}+\frac{\dot{Q}_{C V}-\dot{W}_{C V}}{\dot{m} c}-C^{\prime} \exp \left(-\frac{\dot{m}}{m} t\right) \tag{7}
\end{equation*}
$$

where C^{\prime} is a constant that must be solved for using initial conditions, $T(t=0 \mathrm{~s})=T_{0}=$ $45^{\circ} \mathrm{C}=318 \mathrm{~K}$. The units of some material properties have to be made compatible. The mass flow rate \dot{m} is

$$
\dot{m}=270 \mathrm{~kg} / \mathrm{hr}\left(\frac{1 \mathrm{hr}}{3600 \mathrm{~s}}\right)=3 / 40 \mathrm{~kg} / \mathrm{s}
$$

Plugging into Eq. (7),

$$
\begin{aligned}
T(t=0) & =T_{0}+\frac{\dot{Q}_{C V}-\dot{W}_{C V}}{\dot{m} c}-C^{\prime} \exp \left(-\frac{\dot{m}}{m} t\right) \\
318 \mathrm{~K} & =318 \mathrm{~K}+\frac{-8.0 \mathrm{~kW}-(-0.6 \mathrm{~kW})}{(3 / 40 \mathrm{~kg} / \mathrm{s})\left(4186 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}\right)}-C^{\prime} \exp \left(-\frac{3 / 40 \mathrm{~kg} / \mathrm{s}}{50 \mathrm{~kg}}(0)\right) \\
0 & =0+\frac{-8.0 \mathrm{~kW}-(-0.6 \mathrm{~kW})}{(3 / 40 \mathrm{~kg} / \mathrm{s})\left(4186 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}\right)}-C^{\prime}(1)
\end{aligned}
$$

Solving for C^{\prime} we find

$$
\begin{aligned}
C^{\prime} & =\frac{-8.0 \mathrm{~kW}-(-0.6 \mathrm{~kW})}{(3 / 40 \mathrm{~kg} / \mathrm{s})\left(4186 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}\right)} \\
C^{\prime} & =\frac{-7.4 \mathrm{~kW}}{313.95 \frac{\mathrm{~kW}}{\mathrm{~K}}} \\
C^{\prime} & =-23.57 \mathrm{~K}
\end{aligned}
$$

Thus the expression for $T(t)$ is

$$
T(t)=T_{i}+\frac{\dot{Q}_{C V}-\dot{W}_{C V}}{\dot{m} c}+(23.57 \mathrm{~K}) \exp \left(-\frac{\dot{m}}{m} t\right)
$$

or, numerically,

$$
T(t)=294.4 \mathrm{~K}+(23.57 \mathrm{~K}) \exp \left(-0.0015 \frac{1}{s} t\right)
$$

The plot of $T(t)$ is Figure 4 .

Figure 4: Plot for Problem 8.6.

Quiz 10

1. The indoor temperature of a home is T_{H}. The winter-time outdoor temperature is T_{L}. A heat pump maintains this temperature difference. Find the best possible ratio of heat transfer into the home to the work required by the pump.
For a Carnot heat pump,

$$
\beta=\frac{Q_{H}}{W}=\frac{Q_{H}}{Q_{H}-Q_{L}}=\frac{T_{H}}{T_{H}-T_{L}}=\frac{1}{1-\frac{T_{L}}{T_{H}}}=\beta .
$$

Homework 9

7.26

A farmer runs a heat pump with a 2 kW motor. It should keep a chicken hatchery at $30^{\circ} \mathrm{C}$, which loses energy at a rate of 10 kW to the colder ambient $T_{\text {memb }}$. What is the minimum coefficient of performance that will be acceptable for the heat pump?
Solution:
Power input: $\quad \dot{\mathrm{W}}=2 \mathrm{~kW}$
Energy Eq. for hatchery: $\quad \dot{Q}_{\mathrm{H}}=\dot{\mathrm{Q}}_{\mathrm{L} \operatorname{coss}}=10 \mathrm{~kW}$
Definition of COP: $\quad \beta=\mathrm{COP}=\frac{\dot{Q}_{\mathrm{H}}}{\dot{\mathrm{W}}}=\frac{10}{2}=5$

7.42

Consider a heat engine and heat purnp connected as shown in figure P7,42. Assume $\mathrm{T}_{\mathrm{H} 1}=\mathrm{T}_{\mathrm{H} 2}>\mathrm{T}_{\mathrm{amb}}$ and determine for each of the three cases if the setup satisfy the first law and/or violates the $2^{\text {sd }}$ law.

	$\dot{\mathrm{Q}}_{\mathrm{HI}}$	$\dot{\mathrm{Q}}_{\mathrm{L} 1}$	$\dot{\mathrm{~W}}_{1}$	$\dot{\mathrm{Q}}_{\mathrm{H} 2}$	$\dot{\mathrm{Q}}_{\mathrm{L} 2}$	$\dot{\mathrm{~W}}_{2}$
a	6	4	2	3	2	1
b	6	4	2	5	4	1
c	3	2	1	4	3	1

Solution:

	$1^{\text {th }}$, law	$2^{\text {nd }}$ law
a	Yes	Yes (possible)
b	Yes	No, combine Kelvin - Planck
c	Yes	No, combination clausius

It is proposed to build a $1000-\mathrm{MW}$ electric power plant with steam as the working fluid. The condensers are to be cooled with river water (see Fig. P7.67). The maximum steam temperature is $550^{\circ} \mathrm{C}$, and the pressure in the condensers will be 10 kPa . Estimate the temperature rise of the river downstream from the power plant.

Solution:

$$
\begin{aligned}
& \dot{\mathrm{W}}_{\mathrm{NET}}=10^{6} \mathrm{~kW}, \mathrm{~T}_{\mathrm{H}}=550^{\circ} \mathrm{C}=823.3 \mathrm{~K} \\
& \mathrm{P}_{\mathrm{COND}}=10 \mathrm{kPa} \rightarrow \mathrm{~T}_{\mathrm{L}}=\mathrm{T}_{\mathrm{G}}(\mathrm{P}=10 \mathrm{kPa})=45.8^{\circ} \mathrm{C}=319 \mathrm{~K} \\
& \mathrm{\eta}_{\mathrm{TH} \text { CARNOT }}=\frac{\mathrm{T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{L}}}{\mathrm{~T}_{\mathrm{H}}}=\frac{823.2-319}{823.2}=0.6125 \\
& \Rightarrow \dot{\mathrm{Q}}_{\mathrm{LMIN}}=10^{6}\left(\frac{1-0.6125}{0.6125}\right)=0.6327 \times 10^{6} \mathrm{~kW}
\end{aligned}
$$

But $\dot{m}_{\mathrm{H}_{2} \mathrm{O}}=\frac{60 \times 8 \times 10 / 60}{0.001}=80000 \mathrm{~kg} / \mathrm{s}$ having an energy flow of

$$
\begin{aligned}
\dot{\mathrm{Q}}_{\mathrm{LMIN}} & =\dot{\mathrm{m}}_{\mathrm{H}_{2} \mathrm{O}} \Delta \mathrm{~h}=\dot{\mathrm{m}}_{\mathrm{H}_{2} \mathrm{O}} \mathrm{C}_{\mathrm{PLUH}} \mathrm{H}_{2} \mathrm{O}
\end{aligned} \mathrm{~T}_{\mathrm{H}_{2} \mathrm{OMIN}} \mathrm{M}
$$

7.137

Liquid sodium leaves a nuclear reactor at 1500 F and is used as the energy source in a steam power plant. The condenser cooling water comes from a cooling tower at 60 F . Determine the maximum thermal efficiency of the power plant. Is it misleading to use the temperatures given to calculate this value?

Solution:

$$
\begin{aligned}
& T_{H}=1500 \mathrm{~F}=1960 \mathrm{R}, \quad \mathrm{~T}_{\mathrm{L}}=60 \mathrm{~F}=520 \mathrm{R} \\
& \eta_{\mathrm{TH} \text { MAX }}=\frac{T_{H}-T_{\mathrm{L}}}{T_{\mathrm{H}}}=\frac{1960-520}{19860}=0.735
\end{aligned}
$$

It might be misleading to use 1500 F as the value for T_{H}, since there is not a supply of energy available at a constant temperature of 1500 F (liquid Na is cooled to a lower temperature in the beat exchanger).
\Rightarrow The Na cannot be used to boil $\mathrm{H}_{2} \mathrm{O}$ at 1500 F .
Similarly, the $\mathrm{H}_{2} \mathrm{O}$ leaves the cooling tower and enters the condenser at 60 F , and leaves the condenser at some higher temperature.
\Rightarrow The water does not provide for condensing steam at a constant temperature of 60 F .
8.37

In a Carnot engine with ammonia as the working fluid, the high temperature is $60^{\circ} \mathrm{C}$ and as Q_{11} is received, the ammonia changes from saturated liquid to saturated vapor. The ammonia pressure at the low temperature is 190 kPa . Find T_{L}, the cycle thermal efficiency, the heat added per kilogram, and the entropy, s, at the beginning of the heat rejection process.

Solution:

Constant $T \Rightarrow$ constant P from 1 to 2 , Table B.2.1

$$
\begin{aligned}
\mathrm{q}_{\mathrm{H}} & =\int \mathrm{Tds}=\mathrm{T}\left(s_{2}-s_{1}\right)=\mathrm{T} s_{\mathrm{fg}} \\
& =\mathrm{h}_{2}-\mathrm{h}_{1}=\mathrm{h}_{\mathrm{fg}}=997.0 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

States 3 \& 4 are two-phase, Table B.2.1

$$
\Rightarrow T_{L}=T_{3}=T_{4}=T_{\text {sat }}(P)=-20^{\circ} \mathrm{C}
$$

$$
\eta_{\text {cycle }}=1-\frac{\mathrm{T}_{\mathrm{h}}}{\mathrm{~T}_{\mathrm{H}}}=1-\frac{253.2}{333.2}=0.24
$$

Table B.2.1: $\quad s_{3}=s_{2}=s_{g}\left(60^{\circ} \mathrm{C}\right)=4.6577 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$

8.44

Do Problem 8.43 using refrigerant R-134a instead of R-410a.
Consider a Camot-cycle heat pump with R-410a as the working fluid. Heat is rejected from the $\mathrm{R}-410 \mathrm{a}$ at $40^{\circ} \mathrm{C}$, during which process the $\mathrm{R}-410 \mathrm{a}$ changes from saturated vapor to saturated liquid. The heat is transferred to the R-410a at $0^{\circ} \mathrm{C}$.
a. Show the cycle on a T-s diagram.
b. Find the quality of the R-410a at the beginning and end of the isothermal heat addition process at $0^{\circ} \mathrm{C}$.
c. Determine the coefficient of performance for the cycle.

Solution:
a) T

b) From Table B.S.1, state 3 is saturated liquid

$$
\begin{aligned}
s_{4}=s_{3} & =1.1909 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K} \\
& =1.0+\mathrm{x}_{4}(0.7262) \\
& \Rightarrow \quad x_{4}=0.2629
\end{aligned}
$$

State 2 is saturated vapor so from Table B.5.1

$$
\begin{gathered}
s_{1}=s_{2}=1.7123 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K}=1.0+\mathrm{x}_{1}(0.7262) \\
\Rightarrow \quad x_{1}=0.981
\end{gathered}
$$

c) $\quad \beta^{\prime}=\frac{\mathrm{q}_{\mathrm{H}}}{\mathrm{W}_{\mathrm{IN}}}=\frac{\mathrm{T}_{\mathrm{H}}}{\mathrm{T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{L}}}=\frac{313.2}{40}=7.83$

Quiz 11

1. Write the Gibbs equation, then use it to find s for a calorically perfect incompressible material.

The Gibbs equation is

$$
d u=T d s-P d v
$$

By definition, $d v=0$ for an incompressible material (an incompressible material cannot change volume). Also, the material is calorically perfect, so $d u=c_{v} d T$ and the change in entropy is

$$
\begin{aligned}
d u & =T d s \\
c_{v} \frac{d T}{T} & =d s \\
c_{v} \int_{1}^{2} \frac{d T}{T} & =\int_{1}^{2} d s \\
s_{2}-s_{1} & =c_{v} \ln \frac{T_{2}}{T_{1}}
\end{aligned}
$$

Homework 10

8.94

A handheld pump for a bicycle has a volume of $30 \mathrm{~cm}^{3}$ when fully extended. You now press the plunger (piston) in while holding your thumb over the exit hole so that an air pressure of 300 kPa is obtained. The outside atmosphere is at $\mathrm{P}_{0}, \mathrm{~T}_{0}$. Consider two cases: (1) it is done quickly (~ 1 s), and (2) it is done very slowly ($\sim 1 \mathrm{~h}$).
a. State assumptions about the process for each case.
b. Find the final volume and temperature for both cases.

Solution:

C.V. Air in pump. Assume that both cases result in a reversible process.

$$
\text { State 1: } \mathrm{P}_{0}, T_{0} \quad \text { State 2: } 300 \mathrm{kPa}, \text { ? }
$$

One piece of information must resolve the ? for a state 2 property.
Case 1) Quickly means no time for heat transfer

$$
Q=0 \text {, so a reversible adiabatic compression. }
$$

$$
u_{2}-u_{1}=-1 w_{2} ; \quad s_{2}-s_{1}=\int d q / T+{ }_{1} s_{2} \text { gen }=0
$$

With constant 5 and constant heat capacity we use Eq. 8.23

$$
T_{2}=T_{1}\left(P_{2} / P_{1}\right)^{\frac{k-1}{k}}=298\left(\frac{300}{101.325}\right)^{\frac{0.4}{1.4}}=405.3 \mathrm{~K}
$$

Use ideal gas law PV $=\mathrm{mRT}$ at both states so ratio gives

$$
\Rightarrow \quad V_{2}=P_{1} V_{1} T_{2} / T_{1} P_{2}=13.78 \mathrm{~cm}^{3}
$$

Case II) Slowly, time for beat transfer so $\mathrm{T}=$ constant $=\mathrm{T}_{0}$ -
The process is then a reversible isothermal compression.

$$
\mathrm{T}_{2}=\mathrm{T}_{0}=298 \mathrm{~K} \quad \Rightarrow \quad \mathrm{~V}_{2}=\mathrm{V}_{1} \mathrm{P}_{1} / \mathrm{P}_{2}=10.1 \mathrm{~cm}^{3}
$$

8.126

A piston/cylinder contains 2 kg water at $150 \mathrm{kPa}, 20^{\circ} \mathrm{C}$. The piston is loaded so pressure is linear in volume. Heat is added from a $600^{\circ} \mathrm{C}$ source until the water is at $1 \mathrm{MPa}, 500^{\circ} \mathrm{C}$. Find the heat transfer and the total change in entropy.

Solution:
CV $\mathrm{H}_{2} \mathrm{O}$ out to the source, both ${ }_{1} Q_{2}$ and ${ }_{1} W_{2}$
Energy Eq.5.11: $\quad m\left(u_{2}-u_{1}\right)={ }_{1} \mathrm{Q}_{2}-{ }_{1} \mathrm{~W}_{2}$
Entropy Eq.8.37: $\quad \mathrm{m}\left(\mathrm{s}_{2} * \mathrm{~s}_{1}\right)={ }_{1} \mathrm{Q}_{2} / \mathrm{T}_{\text {SOURCE }}+{ }_{1} \mathrm{~S}_{2}$ gen
Process: $\quad \mathrm{P}=\mathrm{A}+\mathrm{BV} \quad \rightarrow \quad{ }_{1} \mathrm{~W}_{2}=\int \mathrm{PdV}=1 / 2\left(\mathrm{P}_{1}+\mathrm{P}_{2}\right)\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)$
State 1: B.1.1 Compressed liquid use saturated liquid at same T:

$$
\mathrm{v}_{1}=0.001002 \mathrm{~m}^{3} / \mathrm{kg} \quad u_{1}=83.94 \mathrm{~kJ} / \mathrm{kg} . \quad s_{1}=0.2966 \mathrm{kl} / \mathrm{kg} \mathrm{~K}
$$

State 2: Table B. 1.3 sup, vap.

$$
\begin{aligned}
& \mathrm{v}_{2}=0.35411 \mathrm{~m}^{3} / \mathrm{kg} \\
& \mathrm{u}_{2}=3124.3 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{~s}_{2}=7.7621 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K}
\end{aligned}
$$

$$
\begin{aligned}
& { }_{1} \mathrm{~W}_{2}=1 / 2(1000+150) \mathrm{kPa} \times 2 \mathrm{~kg}(0.35411-0.001002) \mathrm{m}^{3} / \mathrm{kg}=406 \mathrm{~kJ} \\
& { }_{1} \mathrm{Q}_{2}=2(3124.3-83.94)+406=6486.7 \mathrm{~kJ} \\
& \mathrm{~m}\left(\mathrm{~s}_{2}-\mathrm{s}_{1}\right)=2 \mathrm{~kg}(7.7621-0.2968) \mathrm{kJ} / \mathrm{kg}-\mathrm{K}=14.931 \mathrm{~kJ} / \mathrm{K} \\
& \begin{array}{l}
\mathrm{Q}_{2} / \mathrm{T}_{\text {source }}=7.429 \mathrm{~kJ} / \mathrm{K} \quad\left(\text { for source } \mathrm{Q}=-1 \mathrm{Q}_{2}\right) \\
{ }_{1} \mathrm{~S}_{2} \text { gen } \\
=\mathrm{m}\left(\mathrm{~s}_{2}-\mathrm{s}_{1}\right)-1 \mathrm{Q}_{2} / \mathrm{T}_{\text {source }}=\Delta \mathrm{S}_{\text {iocal }} \\
\quad=\Delta \mathrm{S}_{\mathrm{H} 2 \mathrm{O}}+\Delta \mathrm{S}_{\text {source }}=14.931-7.429=7.502 \mathrm{~kJ} / \mathrm{K}
\end{array}
\end{aligned}
$$

Remark: This is an external irreversible process (delta T to the source)

8.135

One kilogram of ammonia $\left(\mathrm{NH}_{3}\right)$ is contained in a spring-loaded piston/cylinder, Fig. P8.135, as saturated liquid at $-20^{\circ} \mathrm{C}$. Heat is added from a reservoir at $100^{\circ} \mathrm{C}$ until a final condition of $800 \mathrm{kPa}, 70^{\circ} \mathrm{C}$ is reached. Find the work, heat transfer, and entropy generation, assuming the process is internally reversible.

Solution:
C. $\mathrm{V} .=\mathrm{NH}_{3}$ out to the reservoir.

Continuity Eq.: $\quad \mathrm{m}_{2}=\mathrm{m}_{1}=\mathrm{m}$
Energy Eq.5.11: $\quad E_{2}-E_{1}=m\left(u_{2}-u_{1}\right)={ }_{1} Q_{2}-{ }_{1} W_{2}$
Entropy Eq.8.37: $\quad \mathrm{S}_{2}-\mathrm{S}_{1}=\int \mathrm{j} \mathrm{dQ} / \mathrm{T}+{ }_{1} \mathrm{~S}_{2 . \mathrm{gen}}={ }_{1} \mathrm{Q}_{2} / \mathrm{T}_{\text {ra }}+{ }_{1} \mathrm{~S}_{2 \text { gen }}$
Process: $\mathrm{P}=\mathrm{A}+\mathrm{BV}$ linear in $\mathrm{V} \quad \Rightarrow$

$$
{ }_{1} W_{2}=\left(\jmath \mathrm{PdV}=\frac{1}{2}\left(P_{1}+P_{2}\right)\left(V_{2}-V_{1}\right)-\frac{1}{2}\left(P_{1}+P_{2}\right) m\left(v_{2}-v_{1}\right)\right.
$$

State 1: Table B. 2.1

$$
\begin{aligned}
& \mathrm{P}_{1}=190.08 \mathrm{kPa} \\
& \mathrm{v}_{1}=0.001504 \mathrm{~m}^{3} / \mathrm{kg} \\
& \mathrm{u}_{1}=88.76 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{~s}_{1}=0.3657 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K}
\end{aligned}
$$

State 2: Table B. 2.2 sup. vapor

$$
\begin{aligned}
& \mathrm{v}_{2}=0.199 \mathrm{~m}^{3} / \mathrm{kg}, \mathrm{u}_{2}=1438.3 \mathrm{~kJ} / \mathrm{kg}, \quad \mathrm{~s}_{2}=5.5513 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K} \\
& { }_{1} \mathrm{~W}_{2}=\frac{1}{2}(190.08+800) \mathrm{kPa} \times 1 \mathrm{~kg}(0.1990-0.001504) \mathrm{m}^{3} / \mathrm{kg}=97.768 \mathrm{~kJ} \\
& { }_{1} \mathrm{Q}_{2}=\mathrm{m}\left(\mathrm{u}_{2}-\mathrm{u}_{1}\right)+{ }_{1} \mathrm{~W}_{2}=1(1438.3-88.76)+97.768=1447.3 \mathrm{~kJ} \\
& { }_{1} \mathrm{~S}_{2 \mathrm{gm}}=\mathrm{m}\left(\mathrm{~s}_{2}-\mathrm{s}_{1}\right)-{ }_{1} \mathrm{Q}_{2} / \mathrm{T}_{\text {res }}=1(5.5513-0.3657)-\frac{1447.3}{373.15}=1.307 \mathrm{~kJ} / \mathrm{K}
\end{aligned}
$$

One Ibm of air at 15 psia is mixed with one Ibm air at 30 psia, both at 540 R , in a rigid insulated tank. Find the final state (P, T) and the entropy generation in the process.

C.V. All the air.

Energy Eq:: $U_{2}-U_{1}=0-0$
Entropy Eq.: $S_{2}-S_{1}=0+{ }_{1} S_{2 \text { gen }}$
Process Eqs.: $\mathrm{V}=\mathrm{C} ; \quad \mathrm{W}=0, \mathrm{Q}=0$
States A1, B1: $u_{A 1}=u_{B 1}$
$\mathrm{V}_{\mathrm{A}}=\mathrm{m}_{\mathrm{A}} \mathrm{RT}_{1} / \mathrm{P}_{\mathrm{A} 1} ; \quad \mathrm{V}_{\mathrm{B}}=\mathrm{m}_{\mathrm{B}} \mathrm{RT}_{1} / \mathrm{P}_{\mathrm{B} 1}$

$$
\mathrm{U}_{2}-\mathrm{U}_{1}=\mathrm{m}_{2} \mathrm{u}_{2}-\mathrm{m}_{\mathrm{A}} \mathrm{u}_{\mathrm{A} 1}-\mathrm{m}_{\mathrm{B}} \mathrm{u}_{\mathrm{B} 1}=0 \Rightarrow \mathrm{u}_{2}=\left(\mathrm{u}_{\mathrm{A} 1}+\mathrm{u}_{\mathrm{B} 1}\right) / 2=\mathrm{u}_{\mathrm{A} 1}
$$

State 2: $\quad \mathrm{T}_{2}=\mathrm{T}_{1}=540 \mathrm{R}$ (from u_{2}); $\mathrm{m}_{2}=\mathrm{m}_{\mathrm{A}}+\mathrm{m}_{\mathrm{B}}=2 \mathrm{~kg}$;

$$
V_{2}=m_{2} R T_{1} / P_{2}=V_{A}+V_{B}=m_{A} R T_{1} / P_{A 1}+m_{B} R T_{1} / P_{B 1}
$$

Divide with $\mathrm{m}_{\mathrm{A}} R T_{1}$ and get

$$
2 / P_{2}=1 / P_{A 1}+1 / P_{B 1}=\frac{1}{15}+\frac{1}{30}=0.1 p_{5 i a}{ }^{-1} \Rightarrow P_{2}=20 \text { psia }
$$

Entropy change from Eq. 8.16 with the same T, so only P changes

$$
\begin{aligned}
\mathrm{S}_{2 \mathrm{gcn}} & =\mathrm{S}_{2}-\mathrm{S}_{1}=-\mathrm{m}_{\mathrm{A}} \mathrm{R} \ln \frac{P_{2}}{P_{\mathrm{A} 1}}-m_{\mathrm{B}} R \ln \frac{P_{2}}{P_{\mathrm{B} 1}} \\
& =-1 \times 53.34\left[\ln \frac{20}{15}+\ln \frac{20}{30}\right] \\
& =-53.34(0.2877-0.4055)=6.283 \mathrm{lbf}-\mathrm{ft} / \mathrm{R}=0.0081 \mathrm{Btu} / \mathrm{R}
\end{aligned}
$$

5. Consider the ballistics problem as developed in class. We have the governing equation from Newtons second law of

$$
\begin{aligned}
\frac{d x}{d t} & =\mathrm{v}, \quad x(0)=x_{0} \\
\frac{d v}{d t} & =\frac{P_{\infty} A}{m}\left(\frac{P_{0}}{P_{\infty}}\left(\frac{x_{0}}{x}\right)^{k}-1\right)-\frac{C}{m} \mathrm{v}^{3}, \quad \mathrm{v}(0)=0 .
\end{aligned}
$$

Consider the following parameter values: $P_{1}=105 \mathrm{~Pa}, P_{0}=2 \times 108 \mathrm{~Pa}, T_{0}=300 \mathrm{~K}$, $C=0.01 \mathrm{~N} /(\mathrm{m} / \mathrm{s})^{3}, A=10^{-4} \mathrm{~m}^{2}, k=7 / 5, x_{0}=0.03 \mathrm{~m}, m=0.004 \mathrm{~kg}$. Consider the gas to be calorically perfect and ideal and let it undergo an isentropic process. Take the length of the tube to be 0.5 m .
(a) From Eq. (8.239) of Professor Powers's notes,

$$
P=P_{0}\left(\frac{x_{0}}{x}\right)^{k}
$$

thus P is a function of x. Then to get a function for the temperature, taking the ideal gas law,

$$
\begin{aligned}
P V & =m R T \\
m R T & =P V \\
m R T & =\left(P_{0}\left(\frac{x_{0}}{x}\right)^{k}\right) V \\
m R T & =\left(P_{0}\left(\frac{x_{0}}{x}\right)^{k}\right)(A x) \\
T & =\frac{\left(P_{0}\left(\frac{x_{0}}{x}\right)^{k}\right)(A x)}{m R}
\end{aligned}
$$

The forward Euler method form, $u(t+\Delta t)=u(t)+\frac{d u}{d t} \Delta t$, is used to first integrate $\frac{d v}{d t}$ and then integrate $\frac{d x}{d t}$, as follows:

$$
\begin{aligned}
\mathrm{v}(t+\Delta t) & =\mathrm{v}(t)+\left(\frac{P_{\infty} A}{m}\left(\frac{P_{0}}{P_{\infty}}\left(\frac{x_{0}}{x(t)}\right)^{k}-1\right)-\frac{C}{m} \mathrm{v}(t)^{3}\right) \times \Delta t \\
x(t+\Delta t) & =x(t)+\mathrm{v}(t+\Delta t) \times \Delta t
\end{aligned}
$$

From Eq. (8.250) in Professor Powers's notes, in order for the Euler method to provide a stable solution for early time, we need for Δt :

$$
\Delta t<\sqrt{\frac{m x_{0}}{k P_{0} A}}=\sqrt{\frac{(0.004 \mathrm{~kg})(0.03 \mathrm{~m})}{(7 / 5)\left(2 \times 10^{8} \mathrm{~Pa}\right)\left(10^{-4} \mathrm{~m}^{2}\right)}}=0.0000654 \mathrm{~s}
$$

For my MATLAB program, I used $\Delta t=0.000001 \mathrm{~s}$.
(b) Here are the plots:

Figure 5: Plots for Problem 10.5.
(c) The velocity at the end of the tube is $\mathrm{v}_{\text {end }}=33.7 \mathrm{~m} / \mathrm{s}$ and the time for the bullet to reach the end of the tube is $t_{\text {end }}=0.0099 \mathrm{~s}$.
(d) Extra points (up to 5) were awarded for analysis done for part (d).
(e) Here is the source code, presented in two columns to save space:

```
%HW 10, problem 5
clear all; close all; clc;
%given values
Pinf = 10^5;
P0 = 2*10^8;
T0 = 300;
C = 0.01;
A = 10^-4;
k = 7/5;
x0 = 0.03;
```

```
m=0.004;
R = 287;
%initial conditions
x(1) = x0;
v(1) = 0;
dt = 0.000001;
t = 0:dt:.01;
%First-order Euler method below
%cycle through time range, which was
```

```
%found iteratively to be the length axis([0 0.01 0 0.6])
%of time necessary for x to reach 0.5 m title('x(t)')
for i = 1:length(t) ylabel('Distance, x [m]')
    v(i + 1) = v(i) + xlabel('t [s]')
        (Pinf*A/m*
                (P0/Pinf*(x0/x(i))^k - 1) figure
            - C/m*v(i)^3)*dt;
    x(i + 1) = x(i) + v(i)*dt;
end
%Find out velocity and time
% until x = 0.5 m
n=1;
while x(n)<0.5
    n = n+1;
end
%Report velocity and time at x = 0.5 m
v(n)
t(n)
P = P0*(x0./x).^k;
for i = 1:length(t)
    T(i) = P(i)*A*x(i)/(m*R);
end
%Plot results
set(gca,'FontSize',20)
```

```
figure
```

figure

```
set(gca,'FontSize',20)
```

set(gca,'FontSize',20)
plot(t,v(1,1:length(t)),'k')
plot(t,v(1,1:length(t)),'k')
axis([0 0.01 0 150])
axis([0 0.01 0 150])
title('v(t)')
title('v(t)')
ylabel('Velocity, v [m/s]')
ylabel('Velocity, v [m/s]')
xlabel('t [s]')
xlabel('t [s]')
figure
figure
set(gca,'FontSize',20)
set(gca,'FontSize',20)
plot(t,T(1,1:length(t)),'k')
plot(t,T(1,1:length(t)),'k')
title('T(t)')
title('T(t)')
ylabel('Temperature, T [k]')
ylabel('Temperature, T [k]')
xlabel('t [s]')
xlabel('t [s]')
P = P/1000000;
P = P/1000000;
set(gca,'FontSize',20)
set(gca,'FontSize',20)
plot(t,P(1,1:length(t)),'k')
plot(t,P(1,1:length(t)),'k')
title('P(t)')
title('P(t)')
ylabel('Pressure, P [MPa]')
ylabel('Pressure, P [MPa]')
xlabel('t [s]')

```
xlabel('t [s]')
```

plot(t,x(1,1:length(t)),'k')

Homework 11

9.22

Atmospheric air at $-45^{\circ} \mathrm{C}, 60 \mathrm{kPa}$ enters the front diffuser of a jet engine with a velocity of $1000 \mathrm{~km} / \mathrm{h}$ and frontal area of $1 \mathrm{~m}^{2}$. After the adiabatic diffuser the velocity is $20 \mathrm{~m} / \mathrm{s}$. Find the diffuser exit temperature and the maximum pressure possible.

Solution:

C.V. Diffuser, Steady single inlet and exit flow, no work or heat transfer.

Energy Eq.6.13: $\quad h_{i}+v_{i}^{2} / 2=h_{e}+v_{e}^{2} / 2, \quad$ and $\quad h_{e}-h_{i}=C_{p}\left(T_{e}-T_{i}\right)$
Entropy Eq.9.9: $\quad s_{1}+\int d q / T+s_{\text {gen }}=s_{i}+0+0=s_{e} \quad$ (Reversible, adiabatic)
Heat capacity and ratio of specific heats from Table A.5: $\quad C_{P o}=1.004 \frac{\mathrm{~kJ}}{\mathrm{~kg} \mathrm{~K}}$, $\mathrm{k}=1.4$, the energy equation then gives:

$$
\begin{gathered}
1.004\left[\mathrm{~T}_{e}-(-45)\right]=0.5\left[(1000 \times 1000 / 3600)^{2}-20^{2} \mathrm{y} 1000=38.38 \mathrm{~kJ} / \mathrm{kg}\right. \\
\Rightarrow \mathrm{T}_{e}=-6.77{ }^{\circ} \mathrm{C}=266.4 \mathrm{~K}
\end{gathered}
$$

Constant s for an ideal gas is expressed in Eq. 8.23 (we need the inverse realation here):

$$
\mathrm{P}_{e}=\mathrm{P}_{1}\left(\mathrm{~T}_{e} / \mathrm{T}_{i}\right)^{\frac{\mathrm{k}}{k-1}}=60 \mathrm{kPa}(266.4 / 228.1)^{3.5}=\mathbf{1 0 3 . 3} \mathbf{k P a}
$$

Air enters a turbine at $\$ 00 \mathrm{kPa}, 1150 \mathrm{~K}$, and expands in a reversible adiabatic process to 100 kPa . Calculate the exit temperasure and the work output per kilogram of air, using
a. The jdea! gas eables, Table A. 7
b. Constant specific beat, value at 300 K from table A.S

Solution:

C.V. Air turbine.

Adiabatic: $\mathrm{q}=0$, reversible: $\mathrm{s}^{\mathrm{pen}}=0$
Energy Eq.6.13: $\quad \mathrm{w}_{\mathrm{T}}=\mathrm{h}_{1}-\mathrm{h}_{\mathrm{e}}$.
Entropy Eq.9.9. $\quad \mathrm{se}_{\mathrm{e}}=\mathrm{s}_{1}$
a) Table A. $7: \quad \mathrm{h}_{\mathrm{i}}=121930 \mathrm{~kJ} / \mathrm{kg} . \quad{ }_{\mathrm{T}}^{0}=8.29616 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$

The constant s process is written from Eq.8.19 as

$$
\begin{aligned}
& \Rightarrow 5^{0} \mathrm{Tt}=5_{\mathrm{It}}^{0}+\mathrm{R} \cdot \ln \left(\frac{\mathrm{P}_{e}}{\mathrm{P}_{\mathrm{i}}}\right)=829616+0.287 \ln \left(\frac{100}{800}\right)=7.099 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K} \\
& \text { Interpolate in } \mathrm{A} .71 \mathrm{I} \quad \Rightarrow \mathrm{~T}_{e}=674 \mathrm{~K}, \mathrm{~h}_{\mathrm{e}}=685.6 \mathrm{k} / \mathrm{kg}
\end{aligned}
$$

$$
w=\mathrm{h}_{1}-\mathrm{h}_{e}=533.7 \mathrm{~kJ} / \mathrm{kg}
$$

b) Table A.5: $\quad \mathrm{C}_{\mathrm{Pe}}=1.004 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}, \mathrm{R}=0.287 \mathrm{~kJ} / \mathrm{kg} \mathrm{K} . \mathrm{k}=1.4$, them from Eq 8.23

$$
\begin{gathered}
\mathrm{T}_{e}=\mathrm{T}_{1}\left(\mathrm{P}_{e} \cdot P_{i}\right)^{\frac{\mathrm{k} \cdot \mathrm{t}}{\mathrm{k}}}=1150 \mathrm{~K}\left(\frac{100}{800}\right)^{p 235}=634.5 \mathrm{~K} \\
\mathrm{w}=\mathrm{C}_{\mathrm{P} 0}\left(\mathrm{~T}_{1} \cdot \mathrm{~T}_{e}\right)=1.004 \mathrm{k} / \mathrm{kg} \cdot \mathrm{~K}(1150-634.5) \mathrm{K}=517.6 \mathrm{~kJ} / \mathrm{kg}
\end{gathered}
$$

A heat-powered portable aur comperssce coesists of there components: (a) an adiabatic compressor; (b) a constant pressure heater (heat supplied from an outside source) and (c) an adabotic turbine. Ambient air enters the compressor at 100 kPa , 300 K , and is compressed to 600 kPa . All of the power from the turbine goes into the coexpresor, and the turbine exhwost is the sppply of compressed air. If this persuare is fequired to be 200 kPa , what mant the lemperamure be at the exal of the heater?
Solatoon

$\mathrm{P}_{2}=600 \mathrm{kPa}, \mathrm{P}_{4}=200 \mathrm{kPa}$
Adiabance and reversible comprevor
Process: $\quad q=0$ and spen $=0$
Esergy Eq.6.13: $\quad \mathbf{h}-w_{c}=h_{2}$
Entropy Eq9.8: $\quad 52=s_{1}$

For constant specifc heat the nemoroptic relanon becouss Eq. 8.23

$$
\begin{gathered}
T_{2}=T_{1}\left(\frac{P_{2}}{P_{1}}\right)^{\frac{k-1}{2}}=300 \mathrm{~K}(6)^{0.2857}=500.8 \mathrm{~K} \\
-w_{e}=C_{T_{0}}\left(T_{2}-T_{1}\right)=1004(500 \%-300)=201.5 \mathrm{~kJ} / \mathrm{kg}
\end{gathered}
$$

Adabatic and reversuble tubbere: $q=0$ and $s_{g n a}=0$
Energy Eq.6.13: $\quad h_{y}=W_{T}+h_{4}: \quad$ Entropy Eq98: $\quad s_{4}=5_{3}$
For cotatant specific beat the isemopouc velation becomes: Eq 8.23

$$
T_{4}=T_{3}\left(P_{4} / P_{3}\right)^{\frac{1.1}{k}}=T_{3}(200 / 600)^{0.2157}=0.7304 T_{3}
$$

Energy Eq_{q} for shaft $\quad-\mathrm{w}_{\mathrm{c}}=\mathrm{w}_{\mathrm{T}}=\mathrm{C}_{\mathrm{P}}\left(\mathrm{T}_{3}-\mathrm{T}_{4}\right)$

$$
2015 \mathrm{kJkg}=1.004 \mathrm{kl} \mathrm{kgK} \times T_{3}(1-0.7304) \Rightarrow T_{3}=744.4 \mathrm{~K}
$$

A small dim has a prepe carying liquid water at $150 \mathrm{kPa}, 20^{\circ} \mathrm{C}$ wif a flow sate of 2000 kg is in a 0.5 라 dameter pipe. The pipe nusn to the boticm of the dim 15 m lower isto a autent wid pepe diametior 0.35 m Avoume no frictice of heat rassfer in the pipe and find the peevume of the barbise inlet. If the turtine exhuravs to 100 kPa wih negligrble lanetic eacrigy uhat is the zate of work?

Sclunor:
C V. Ppe Steady flow no work, so heat wasnfer
Susei compresised liquad B $11 \quad v_{2}=v_{1}=v_{q}=0.001002 \mathrm{~m}^{3} \mathrm{~kg}$
Corhmity Eq6. $\quad \dot{m}=\rho A V^{\prime}=A V^{\prime} /$

$$
\begin{aligned}
& V_{1}=\pi v_{1} / A_{1}=2000 \mathrm{~kg} / \mathrm{s} \times 0.001002 \mathrm{~m}^{3} / \mathrm{kg} /\left(\frac{\pi}{4} 0.5^{2} \mathrm{~m}^{2}\right)=10.2 \mathrm{~ms}^{-1} \\
& V_{2}=\dot{m} v_{2} / A_{2}=2000 \mathrm{~kg} /=0.001002 \mathrm{~m}^{3} / \mathrm{kg} /\left(\frac{5}{4} 0.35^{2} \mathrm{~m}^{2}\right)=20.83 \mathrm{~ms}^{-1}
\end{aligned}
$$

From Bernouti Eq9. 16 for the pipe (incoupressible vabstance)

$$
\begin{aligned}
& v\left(P_{2}-P_{1}\right)+\frac{1}{2}\left(v_{2}^{2}-v_{1}^{2}\right)+g\left(Z_{2}-Z_{1}\right)=0 \Rightarrow \\
& P_{2}=P_{1}+\left[\frac{1}{2}\left(v_{1}^{2}-v_{2}^{2}\right)+g\left(Z_{1}-Z_{2}\right)\right] v \\
& =150 \mathrm{kPa}+\frac{\frac{1}{2} \times\left(102^{2}-20.83^{2}\right)+9.80655 \times 15}{1000 \times 0001002} \frac{m^{2} \mathrm{~s}^{-2}}{1 \mathrm{~kJ} \mathrm{vm}}{ }^{3} / \mathrm{kg} \\
& =150-178-132.2 \mathrm{kPa}
\end{aligned}
$$

Note that the presuure at the bonom thould be ligher due to the elevation difference bot lower due to the accelecraticn. Now apply the energy equation Eq9 13 for the total coutrol volume

$$
\begin{aligned}
w & =-\int v d+\frac{1}{2}\left(v_{1}^{2}-v_{3}^{2}\right)+\left(Z_{1}-Z_{3}\right) \\
& =-0.001002(100-150)+\left[\frac{1}{2} \times 102^{2}+9.80605 \times 15\right] / 1000=0.25 \mathrm{kl} / \mathrm{kg} \\
w & =\frac{1}{\mathrm{w} w}=2000 \mathrm{~kg} 5 \times 0.25 \mathrm{k} 1 \mathrm{~kg}=500 \mathrm{~kW}
\end{aligned}
$$

9.133

A refrigerator uses carbon dioxide that is brought from $1 \mathrm{MPa},-20^{\circ} \mathrm{C}$ to 6 MPa using 2 kW power input to the compressor with a flow rate of $0.02 \mathrm{~kg} / \mathrm{s}$. Find the compressor exit temperature and its isentropic efficiency.
C.V. Actual Compressor, assume adiabatic and neglect kinetic energies.

Energy Eq.6.13: $\quad-\mathrm{W}_{\mathrm{C}}=\mathrm{h}_{2}-\mathrm{h}_{1}=\frac{\dot{\mathrm{W}}}{\dot{\mathrm{m}}}=\frac{2 \mathrm{~kW}}{0.02 \mathrm{~kg} / \mathrm{s}}=100 \mathrm{~kJ} / \mathrm{kg}$
Entropy Eq-9.9: $\quad s_{2}=s_{1}+\mathrm{s}_{\text {gen }}$
States: 1: B. $3.2 \quad h_{1}=342.31 \mathrm{~kJ} / \mathrm{kg} . \quad 5_{1}=1.4655 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$

$$
2: \text { B. } 3.2 \quad \mathrm{~h}_{2}=\mathrm{h}_{1}-\mathrm{w}_{\mathrm{C}}=442.31 \mathrm{~kJ} / \mathrm{kg} \quad \Leftrightarrow \quad \mathrm{~T}_{2}=117.7^{\circ} \mathrm{C}
$$

Ideal compressor. We find the exit state from (P, s).
State 2s: $\quad \mathrm{P}_{2}, \mathrm{~s}_{2 \mathrm{~s}}=\mathrm{s}_{1}=1.4655 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K} \quad \Rightarrow \quad \mathrm{h}_{2 \mathrm{~s}}=437.55 \mathrm{~kJ} / \mathrm{kg}$

$$
-\mathrm{w}_{\mathrm{Cs}}=\mathrm{h}_{2 \mathrm{~s}}-\mathrm{h}_{1}=437.55-342.31=95.24 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\eta_{C}=-w_{C s} /-w_{C}=\frac{95.24}{100}=0.952
$$

Aur flows into an insulated nozzle at $1 \mathrm{MPa}, 1200 \mathrm{~K}$ with $15 \mathrm{~m} / \mathrm{s}$ and mass flow rate of $2 \mathrm{~kg} / \mathrm{s}$. It expands to 650 kPa and exit temperature is 1100 K . Find the exit velocity, and the nozzle efficiency.

Solution:

C.V. Nozzle. Steady 1 inlet and 1 exit flows, no beat transfer, no work

Energy Eq.6.13: $\mathrm{h}_{\mathrm{i}}+(1 / 2) \mathbf{v}_{i}^{2}=\mathrm{h}_{\mathrm{e}}+(1 / 2) \mathrm{v}_{\mathrm{e}}^{2}$
Entropy Eq.9.9: $\quad s_{1}+s_{g e n}=s_{e}$
Ideal nozzle $s_{\text {gen }}=0$ and assume same exit pressure as actual nozzle. Instead of using the standard entropy from Table A. 7 and Eq 8.19 let us use a constant beat capacity at the average T and Eq 8.23 . First from A.7.1

$$
\begin{aligned}
& C_{p 1150}=\frac{1277.81-1161.18}{1200-1100}=1.166 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K} \\
& C_{v}=C_{p} 1150-R=1.166-0.287=0.8793, \quad k=C_{p 1150} / C_{v}=1.326
\end{aligned}
$$

Notice how they differ from Table A. 5 values.

$$
\begin{gathered}
T_{e s}=T_{i}\left(P_{e} P_{i}\right)^{\frac{k-1}{k}}=1200\left(\frac{650}{1000}\right)^{0.24 s 85}=1079.4 \mathrm{~K} \\
\frac{1}{2} V_{e s}^{2}=\frac{1}{2} V_{i}^{2}+C\left(T_{i}-T_{e s}\right)=\frac{1}{2} \times 15^{2}+1.166(1200-1079.4) \times 1000 \\
=1125+140619.6=140732 \mathrm{~J} / \mathrm{kg} \Rightarrow V_{e s}=530.5 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Actual nozzle with given exit temperature

$$
\begin{aligned}
& \frac{1}{2} v_{e x}^{2}=\frac{1}{2} v_{i}^{2}+h_{i}-h_{e x}=1125+1.166(1200-1100) \times 1000 \\
& =116712.5 \mathrm{Jkg} \\
& \Rightarrow V_{e a c}=483 \mathrm{~m} / \mathrm{s} \\
& \eta=\left(\frac{1}{2} v_{e x}^{2}-\frac{1}{2} v_{1}^{2}\right)\left(\frac{1}{2} v_{e s}^{2}-\frac{1}{2} v_{1}^{2}\right)= \\
& =\left(\mathrm{h}_{\mathrm{i}}-\mathrm{h}_{\mathrm{n}, ~, \mathrm{CC}}\right)\left(\mathrm{h}_{\mathrm{i}}-\mathrm{h}_{\mathrm{n}, \mathrm{~J}}\right)=\frac{116600}{140619.6}=0.829
\end{aligned}
$$

Quiz 12

1. Write the Gibbs equation.

The Gibbs equation is

$$
d u=T d s-P d v
$$

or alternatively

$$
d h=T d s+v d P
$$

Homework 12

11.33

A smaller power plant produces stoam at $3 \mathrm{MPa}, 600^{\circ} \mathrm{C}$ in the boiler. It keeps the condenser at $45^{\circ} \mathrm{C}$ by traesfer of 10 MW oot as heat transfer. The first turbise section expands to 500 kPa and then flow is reheated followed by the expansion in the low pressure turtine. Fiad the feleat temperature so the tartine culpat is satarated vapor. For this reheat find the total tarbine power outpet and the boiler heat transfer.

The taves properties from Tables B.1.1 and B. 1.3
$1: 490 \mathrm{C}, \mathrm{x}=0 \mathrm{r} \mathrm{h}_{\mathrm{f}}=188.42 \mathrm{kl} / \mathrm{kg}, \mathrm{v}_{\mathrm{t}}=0.00101 \mathrm{~m}^{3} / \mathrm{kg} . \mathrm{P}_{\text {sat }}=9.59 \mathrm{kPa}$
$3: 3.0 \mathrm{MPa}, 600^{\circ} \mathrm{C}: \quad \mathrm{hy}=3682.34 \mathrm{kl} / \mathrm{kg}, \quad 83=7.5034 \mathrm{kl} / \mathrm{kg} \mathrm{K}$
$6: 490 \mathrm{C}, \mathrm{x}=\mathrm{I}: \mathrm{h}_{\mathrm{s}}=2583.19 \mathrm{~kJ} / \mathrm{kg}, 5 \mathrm{~F}=8.1647 \mathrm{k} / \mathrm{kg} \mathrm{K}$
C.V. Pump Reversible and adiabatic.

Energy: $\quad w_{p}=\|_{2}-h_{1}$; Entropy: $\quad s_{2}=s_{1}$
since incompressible it is casier to find work (positive in) as

$$
\begin{array}{r}
w_{p}-\int \mathrm{v} d P=v_{1}\left(P_{2}-P_{1}\right)=0.00101(3000-9.59)-3.02 \mathrm{~kJ} / \mathrm{kg} \\
\mathrm{~h}_{2}=\mathrm{h}_{1}+w_{\mathrm{p}}=188.42+3.02-191.44 \mathrm{kl} / \mathrm{kg}
\end{array}
$$

C.V. HP Turbise section

Entropy Eq: $\quad \mathrm{s}_{4}=\mathrm{s}_{3} \quad \rightarrow \mathrm{~h}_{4}=3093.26 \mathrm{k} / \mathrm{kg}: \mathrm{T}_{4}=314^{\circ} \mathrm{C}$
C.V. LP Turbine secticn

Eatropy Eq.: $\quad \mathrm{s}=\mathrm{s}_{5}=8.1647 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}=>$ sate 5
State 5: $500 \mathrm{kPa}, \mathrm{sy}_{7} \Rightarrow \mathrm{~h}_{4}=3547.55 \mathrm{~kJ} / \mathrm{kg} . \mathrm{T}_{5}=529^{\circ} \mathrm{C}$
C.V. Condenser.

Energy Eq.: $\quad \mathrm{q}_{\mathrm{L}}=\mathrm{h}_{6}-\mathrm{h}_{1}=\mathrm{h}_{\mathrm{fg}}=2394.77 \mathrm{~kJ} / \mathrm{kg}$

$$
\dot{\mathrm{m}}=\dot{\mathrm{Q}}_{\mathrm{L}} / \mathrm{q}_{\mathrm{L}}=10000 / 2394.77=4.176 \mathrm{~kg} / \mathrm{s}
$$

Both turbine sections

$$
\begin{aligned}
\dot{\mathrm{W}}_{\mathrm{T}, \operatorname{tot}} & =\dot{\operatorname{m}} \mathrm{W}_{\mathrm{T}, 10 t}=\dot{\mathrm{m}}\left(\mathrm{~h}_{3}-\mathrm{h}_{4}+\mathrm{h}_{\mathrm{S}}=\mathrm{h}_{6}\right) \\
& =4.176(3682.34-3093.26+3547.55-2583.19)=6487 \mathrm{~kW}
\end{aligned}
$$

Both boiler sections

$$
\begin{aligned}
\dot{\mathrm{Q}}_{\mathrm{H}} & =\dot{\mathrm{m}}\left(\mathrm{~h}_{3}-\mathrm{h}_{2}+\mathrm{h}_{5}-\mathrm{h}_{4}\right) \\
& =4.176(3682.34-191.44+3547.55-3093.26)=16475 \mathrm{~kW}
\end{aligned}
$$

1282

In the Otto cycle all the heat transfer 911 occurs at constant volume. It is more realistic to aseame that part of q_{H} occus afier the poiton has started its downward motion in the expansion stroke. Therefore, consider a cycle identical to the Otto cyele, except that the firas two-thinds of the toeal ght occurs at coestant volume and the last one-thind oocurs af constant pressure. Assume that the sotal 9 in is 2100 k / kg, that the state at the begirning of the compressios process is $90 \mathrm{kPa}, 20^{\circ} \mathrm{C}$, and that the compression ratio is 9 . Calculare the matumam peeseare asd temperatuee and the thermal efficiency of this cycle. Compare the resulss with those of a conventional Otto cycle having the same given variables.

$$
\begin{aligned}
& \mathrm{P}_{1}=90 \mathrm{kPa}, \mathrm{~T}_{\mathrm{t}}=200^{\circ} \mathrm{C} \\
& \begin{aligned}
\mathrm{r}_{\mathrm{v}} & =\mathrm{v}_{\mathrm{r}} / \mathrm{v}_{2}=7 \\
\mathrm{q}_{\mathrm{g}} & =(23) \times 2100 \\
& =1400 \mathrm{k} / \mathrm{kg} \\
\mathrm{q}_{\mathrm{H}} & =2100.3=700 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
\end{aligned}
$$

Constant s compression, Equ. $8.24-25$

$$
\begin{aligned}
& P_{2}=P_{1}\left(v_{1} / v_{2}\right)^{3}=90 \mathrm{kPa}(9)^{1.4}=1951 \mathrm{kPa} \\
& T_{2}=T_{1}\left(v_{1} / v_{2}\right)^{2-1}=293.15 \mathrm{~K}(9)^{14}=706 \mathrm{~K}
\end{aligned}
$$

Constant v combustion

$$
\begin{aligned}
& T_{1}=T_{2}+q_{3} C_{v 0}=706-14000.717=2660 \mathrm{~K} \\
& P_{3}=P_{2} T_{3} T_{2}=1951 \mathrm{kPa}(2660 / 706)=7350.8 \mathrm{kPa}=P_{4}
\end{aligned}
$$

Constant P sombuatice

$$
\mathrm{T}_{4}=\mathrm{T}_{3}+\mathrm{q}_{3}, \mathrm{C}_{50}=2660+7001.004=3357 \mathrm{~K}
$$

Rerraining expension: $\quad \frac{\mathrm{v}_{4}}{\mathrm{v}_{4}}=\frac{\mathrm{v}_{1}}{\mathrm{v}_{4}}=\frac{\mathrm{P}_{4}}{\mathrm{P}_{1}} \times \frac{\mathrm{T}_{1}}{\mathrm{~T}_{4}}=\frac{7350.8}{90} \times \frac{293.15}{3357}=7.131$

$$
\begin{aligned}
& \mathrm{T}_{5}=\mathrm{T}_{4}\left(\mathrm{v}_{4} / \mathrm{v}_{4}\right)^{k-1}=3357 \mathrm{~K}(1 / 7.131)^{2.4}=1530 \mathrm{~K} \\
& \mathrm{q}_{\mathrm{L}}=\mathrm{C}_{\mathrm{vd}}\left(\mathrm{~T}_{5}-\mathrm{T}_{1}\right)=0.717 \mathrm{kl} / \mathrm{kg}-\mathrm{K}(1530-293.15) \mathrm{K}=886.2 \mathrm{kl} / \mathrm{kg} \\
& \eta_{\mathrm{TH}}=1-\mathrm{q}_{\mathrm{L}} / q_{11}=1.836 .2 / 2100=0.578
\end{aligned}
$$

5 d. Omo Cycle: $\eta_{\mathrm{mu}}=1-(9)^{-0.4}=0.585$, small differesce
14.37

Start from Gibbs relation $\mathrm{dh}=\mathrm{Tds}+\mathrm{vdP}$ and use one of Maxwell's equation to get $(\partial \mathrm{h} / \partial \hat{\mathrm{v}})_{\mathrm{T}}$ in terms of properties P, v and T . Then use Eq. 14.24 to also find an expression for $(\partial \mathrm{h} / \partial \mathrm{T})_{\mathrm{v}}$.

$$
\begin{aligned}
& \text { Find }\left(\frac{\partial \mathrm{h}}{\partial \mathrm{v}}\right)_{\mathrm{T}} \text { and }\left(\frac{\partial \mathrm{h}}{\partial \mathrm{~T}}\right)_{\mathrm{v}} \\
& \mathrm{dh}=\mathrm{Tds}+\mathrm{vdP} \quad \text { and use Eq. } 14.18 \\
& \Rightarrow \quad\left(\frac{\partial \mathrm{~h}}{\partial \mathrm{v}}\right)_{\mathrm{T}}=\mathrm{T}\left(\frac{\partial \mathrm{~s}}{\partial \mathrm{v}}\right)_{\mathrm{T}}+\mathrm{v}\left(\frac{\partial \mathrm{P}}{\partial \mathrm{v}}\right)_{\mathrm{T}}=\mathrm{T}\left(\frac{\partial \mathrm{P}}{\partial \mathrm{~T}}\right)_{\mathrm{v}}+\mathrm{v}\left(\frac{\partial \mathrm{P}}{\partial \mathrm{v}}\right)_{\mathrm{T}}
\end{aligned}
$$

Also for the second first derivative use Eq. 14.24

$$
\left(\frac{\partial \mathrm{h}}{\partial \mathrm{~T}}\right)_{\mathrm{v}}=\mathrm{T}\left(\frac{\partial \mathrm{~s}}{\partial \mathrm{~T}}\right)_{\mathrm{V}}+\mathrm{v}\left(\frac{\partial \mathrm{P}}{\partial \mathrm{~T}}\right)_{\mathrm{V}}=\mathrm{C}_{\mathrm{V}}+\mathrm{v}\left(\frac{\partial \mathrm{P}}{\partial \mathrm{~T}}\right)_{\mathrm{V}}
$$

14.54

Consider the speed of sound as defined in Eq. 14.41. Calculate the speed of sound for liquid water at $20^{\circ} \mathrm{C}, 2 \mathrm{MPa}$, and for water vapor at $200^{\circ} \mathrm{C}, 400 \mathrm{kPa}$, using the steam tables.

$$
\text { From Eq. 14.41: } \quad \mathrm{c}^{2}=\left(\frac{\partial \mathrm{P}}{\partial \mathrm{p}}\right)_{\mathrm{s}}=-\mathrm{v}^{2}\left(\frac{\partial \mathrm{P}}{\partial \mathrm{v}}\right)_{\mathrm{s}}
$$

Liquid water at $20^{\circ} \mathrm{C}, 2.5 \mathrm{MPa}$, assume

$$
\left(\frac{\partial \mathrm{P}}{\partial \mathrm{v}}\right)_{\mathrm{S}}=\left(\frac{\Delta \mathrm{P}}{\Delta \mathrm{v}}\right)_{\mathrm{T}}
$$

Using saturated liquid at $20^{\circ} \mathrm{C}$ and compressed liquid at $20^{\circ} \mathrm{C}, 5 \mathrm{MPa}$,

$$
\begin{aligned}
c^{2}= & \left(\frac{0.001002+0.001001}{2}\right)^{2}\left(\frac{2-0.002339}{0.001001-0.001002}\right) \frac{\mathrm{MJ}}{\mathrm{~kg}} \\
= & 2.002 \times 10^{6} \frac{\mathrm{~J}}{\mathrm{~kg}} \\
& \Rightarrow \quad \mathrm{c}=1416 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Superheated vapor water at $200^{\circ} \mathrm{C}, 400 \mathrm{kPa}$

$$
\mathrm{v}=0.5342 \mathrm{~m}^{3} / \mathrm{kg}, \mathrm{~s}=7.1706 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K}
$$

At $P=300 \mathrm{kPa} \& \quad \mathrm{~s}=7.1706 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}: \quad \mathrm{T}=170^{\circ} \mathrm{C}, \quad \mathrm{v}=0.6666 \mathrm{~m}^{3} / \mathrm{kg}$ At $P=500 \mathrm{kPa} \& s=7.1706 \mathrm{k} / / \mathrm{kg}$ K: $\mathrm{T}=226.3^{\circ} \mathrm{C}, v=0.4509 \mathrm{~m}^{3} / \mathrm{kg}$

$$
\mathrm{c}^{2}=-(.5342)^{2}\left(\frac{0.500-0.300}{4509-.6666}\right) \frac{\mathrm{MJ}}{\mathrm{~kg}}=0.2646 \times 10^{6} \mathrm{~m}^{2} / \mathrm{s}^{2}
$$

$$
\Rightarrow \quad c=514 \mathrm{~m} / \mathrm{s}
$$

14.69

Sbow that the van der Waals equation can be written as a cubic equation in the compressibility factor involving the reduced pressure and reduced temperature as

$$
\mathrm{Z}^{3}-\left(\frac{\mathrm{P}_{\mathrm{r}}}{8 \mathrm{~T}_{r}}+1\right) \mathrm{Z}^{2}+\left(\frac{27 \mathrm{P}_{\mathrm{r}}}{64 \mathrm{~T}_{\mathrm{r}}^{2}}\right) \mathrm{Z}-\frac{27 \mathrm{P}_{\mathrm{r}}^{2}}{512 \mathrm{~T}_{\mathrm{r}}^{3}}=0
$$

van der Waals equation, Eq-14.55: $\quad P=\frac{R T}{v-b}=\frac{a}{v^{2}}$

$$
\mathrm{a}=\frac{27}{64} \frac{\mathrm{R}^{2} \mathrm{~T}_{\mathrm{C}}^{2}}{\mathrm{P}_{\mathrm{C}}} \quad \mathrm{~b}=\frac{\mathrm{RT}_{\mathrm{C}}}{8 \mathrm{P}_{\mathrm{C}}}
$$

multiply equation by $\frac{v^{2}(v-b)}{P}$
Get: $\quad v^{3}-\left(b+\frac{R T}{P}\right) v^{2}+\left(\frac{a}{P}\right) v-\frac{a b}{P}=0$
Multiply by $\frac{P^{3}}{R^{3} T^{3}}$ and substitute $Z=\frac{P v}{R T}$
Get: $\quad Z^{3}-\left(\frac{b P}{R T}+1\right) Z^{2}+\left(\frac{a P}{R^{2} T^{2}}\right) Z-\left(\frac{a b P^{2}}{R^{3} T^{3}}\right)=0$
Substitute for a and b, get:

$$
Z^{3}-\left(\frac{\mathrm{P}_{\mathrm{t}}}{8 \mathrm{~T}_{\mathrm{r}}}+1\right) \mathrm{Z}^{2}+\left(\frac{27 \mathrm{P}_{\mathrm{r}}}{64 \mathrm{~T}_{t}^{2}}\right) \mathrm{Z}-\frac{27 \mathrm{P}_{t}^{2}}{512 \mathrm{~T}_{\mathrm{t}}{ }^{3}}=0
$$

Where $\quad \mathrm{P}_{\mathrm{f}}=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}}, \quad \mathrm{T}_{\mathrm{f}}=\frac{\mathrm{T}}{\mathrm{T}_{\mathrm{c}}}$

14.81

 process. Find the exit temperature and the specific entropy generation using Redlich-Kwong equation of state and ideal gas heat capacing. Notice this becomes iterative dae to the non-linearify couplidge k, P, v and \bar{T}.
C. V. Throttle. Steady single flow, no heat transfer and no work.

Energy eq: $\quad h_{1}+0=h_{2}+0 \quad$ so ecemast h
Entupy $\mathrm{Bq}=\mathrm{s}_{1}+\mathrm{s}_{\mathrm{mm}}=\mathrm{s}_{2} \quad$ so entropy generation
Find the change in h from Eq .14 .26 assuming C_{p} is constart.
Redich-Kwong cquation of state: $\quad P=\frac{R T}{v-b}-\frac{a}{v(v+b) T^{12}}$

$$
\left(\frac{\partial}{\partial T}\right)_{v}=\frac{R}{v-b}+\frac{x}{2 v(v+b) T^{1 / 2}}
$$

From Eq.1431

$$
\left(u_{2}-u_{1}\right)_{\mathrm{T}}=\int_{1}^{2} \frac{3 a}{2 v(v+b) \mathrm{T}^{1 / 2}} d v=\frac{-3 a}{2 b T^{1 a}} \mathrm{u}\left[\left(\frac{v_{2}+b}{v_{2}}\right)\left(\frac{v_{1}}{v_{1}+b}\right)\right]
$$

We find change in h froen chasge in 23 so we do not do the derivative in Eq 14.27. This is due to the form of the EOS.

$$
\left(h_{2}-b_{1}\right)_{T}=P_{2} v_{2}-P_{1} v_{1}-\frac{3 a}{2 b T^{12}} \ln \left[\left(\frac{v_{2}+b}{v_{2}}\right)\left(\frac{v_{1}}{v_{1}+b}\right)\right]
$$

Ertropy follows from Eq, 14.35

$$
\begin{aligned}
& \left(s_{2}-s_{1}\right)_{T}=\int_{1}^{\frac{1}{1}}\left[\frac{R}{v-b}+\frac{a / 2}{v(v+b) T^{j / z}}\right] d v \\
& =R \ln \left(\frac{v_{2}-b}{v_{1}-b}\right)-\frac{a}{2 b T^{-3}} \ln \left[\left(\frac{v_{2}+b}{v_{2}}\right)\left(\frac{v_{1}}{v_{1}+b}\right)\right] \\
& P_{8}=5040 \mathrm{kPa} \quad \mathrm{~T}_{4}=154.6 \mathrm{~K} ; \quad \mathrm{R}=0.2598 \mathrm{k} / \mathrm{kg} \mathrm{~K} \\
& \mathrm{~b}=0.08664 \frac{\mathrm{RT}_{5}}{\mathrm{P}_{\mathrm{c}}}=0.05664 \times \frac{0.2598 \times 154.6}{5040}=0.0006905 \mathrm{~m}^{3} / \mathrm{kg}
\end{aligned}
$$

$$
s=0.42748^{2^{3} T_{c}^{12}} \frac{P_{6}}{P_{6}}=0.42748=\frac{0.29 g^{3}-1844^{52}}{1040}=1.7013
$$

$$
h_{1}-h_{1}=h_{2}-h_{2}+h_{1}-h_{1}=C_{1}\left(T_{2}-T_{1}\right)+h_{2}-b_{y}=0
$$

 then as we anrurae itase 2 in clove to idenl pat, bet we do ast knove I_{2}
We firit reed to fad v, fren the EOS, no garit v and fand $?$

$$
\begin{aligned}
& v_{2}=0.011 w^{3} k g \Rightarrow P=57950-87239=4924 \quad 100 \text { lew } \\
& v_{1}=0.01012 w^{3} 1 \% \Rightarrow P=5900.0-900.7=40913 \mathrm{CS}
\end{aligned}
$$

 a valat for r_{2} Corsu ideal gat at $T_{5}=110 \mathrm{~K}$.

$$
\begin{array}{r}
v_{4}+B T_{s} / P_{3}=0.2198=230100=0.59154 m^{3} / \mathrm{k} \\
P_{2}=1001157-0.1118=99.502 \mathrm{kTa} \text { (kleot) }
\end{array}
$$

Frow the bors
A. fre woot porisel ind adjaitments priel

$$
\begin{aligned}
& \left(h_{2}-k_{1}\right)_{T}=P_{3} x_{1}-P_{1} v_{1}-\frac{l_{3}}{2 b T^{1}} \ln \left[\left(\frac{k_{1}+b}{v_{2}}\right)\left(\frac{v_{1}}{v_{1}+b}\right)\right] \\
& =59.635-5000 \times 0.01002=243.694 \ln \frac{099704}{219635} \times \frac{001092}{501151} \\
& =3565-54.1+14.72535=20.321 \mathrm{k} \mathrm{~kg}
\end{aligned}
$$

From toeigy ty $\left.\quad T_{2}=T_{1}-0_{4}-M_{1}\right)_{2} / C_{2}=130-20318 / 9922=308 \mathrm{~K}$ Nors the chanpe in it is doce ina uraily thahon.

$$
\begin{aligned}
& \mathrm{H}_{1}=\mathrm{H}_{2}-\mathrm{H}_{2}=\left(\mathrm{S}_{4}-\mathrm{B}_{2}\right)_{2}+\mathrm{H}_{2}-\mathrm{H}_{2} \\
& =R \ln \left(\frac{v_{5}-b}{v_{2}-b}\right)-\frac{a}{v_{0} I^{2}} \ln \left[\left(\frac{v_{1}+b}{v_{s}}\right)\left(\frac{v_{1}}{v_{1}+b}\right)\right]+C_{3} \operatorname{la}_{2} \frac{T_{2}}{V_{8}} \\
& =0.2998 \ln \left(\frac{0.5926}{0.9505292}\right)-0.39318 \ln (094114)+0.922 \operatorname{lo}\left(\frac{208}{250}\right. \\
& =1.05341+0.021425-0.092699 \\
& \text { - } 0.957 \mathrm{k} 1 \mathrm{kgK}
\end{aligned}
$$

[^0]: ${ }^{1}$ Solutions adapted from Borgnakke, Sonntag (2008) "Solutions Manual," Fundamentals of Thermodynamics, 7th Edition, and previous AME 20231 Homework Solutions documents.

[^1]: ${ }^{2}$ Lamport, L., 1986, LATEX: User's Guide © Reference Manual, Addison-Wesley: Reading, Massachusetts.

[^2]: 3 http://www.engineeringtoolbox.com/metal-alloys-densities-d_50.html

[^3]: 4 http://www.engineeringtoolbox.com/specific-heat-metals-d_152.html

[^4]: ${ }^{5}$ Goodwine, Bill, 2010, Engineering Differential Equations: Theory and Practice, Springer: New York.

