NAME:
AME 20231
Thermodynamics
Examination 2: Solution
Profs. A. M. Ardekani and J. M. Powers
5 April 2012

1. (20) A heat pump is used to heat a house in winter. The house's temperature is maintained at $23^{\circ} \mathrm{C}$. When the ambient temperature is $-10^{\circ} \mathrm{C}$, the rate of heat lost from the house to the surroundings is 25 kW . Calculate the minimum electrical power required to run the heat pump under these conditions.

Solution
We have the first law which gives

$$
\begin{gathered}
\dot{W}=\dot{Q}_{H}-\dot{Q}_{L}, \\
\dot{W}=\dot{Q}_{H}\left(1-\frac{\dot{Q}_{L}}{\dot{Q}_{H}}\right) .
\end{gathered}
$$

The best possible heat pump is a Carnot heat pump, for which

$$
\frac{\dot{Q}_{L}}{\dot{Q}_{H}}=\frac{T_{L}}{T_{H}}
$$

So,

$$
\begin{gathered}
\dot{W}=\dot{Q}_{H}\left(1-\frac{T_{L}}{\dot{T}_{H}}\right), \\
\dot{W}=(25 k W)\left(1-\frac{-10+273.15}{23+273.15}\right), \\
\dot{W}=2.79 \mathrm{~kW} .
\end{gathered}
$$

The coefficient of performance is

$$
\begin{aligned}
& C O P=\frac{\dot{Q}_{H}}{\dot{W}} \\
& C O P=8.974
\end{aligned}
$$

2. (40) A refrigeration cycle using R-134a as the working fluid consists of a compressor, a condenser, an expansion valve, and an evaporator. See Fig. 1. R134a at $P_{2}=1.000 M P a$ and $T_{2}=50^{\circ} \mathrm{C}$ enters the condenser. It leaves the condenser as a saturated liquid at the same pressure. The pressure in the evaporator is $133.7 k P a$. The processes in the condenser and the evaporator are isobaric. The fluid enters the adiabatic compressor as a saturated vapor.
(a) Determine for the condenser $\dot{Q}_{o u t} / \dot{m}$.
(b) Determine T_{4} and x_{4}.
(c) Determine for the evaporator $\dot{Q}_{i n} / \dot{m}$.
(d) Determine the coefficient of performance of the cycle.

Solution

With $P_{2}=1000 \mathrm{kPa}$ and $T_{2}=50^{\circ} \mathrm{C}$, we find from the superheated tables that $h_{2}=431.24 \mathrm{~kJ} / \mathrm{kg}$. We then note that $P_{3}=P_{2}=1000 k P a$, while $x_{3}=0$. We can then interpolate the saturation tables to find that $h_{3}=255.563 \mathrm{~kJ} / \mathrm{kg}, T_{3}=39^{\circ} \mathrm{C}$. After the expansion valve we have $h_{4}=h_{3}=255.563 \mathrm{~kJ} / \mathrm{kg}$. We

Figure 1: Schematic for refrigeration problem.
are given that $P_{4}=133.7 \mathrm{kPa}$. At this pressure, we note that $h_{f}<h_{4}<h_{g}$, so we have a saturated mixture. The temperature at this state is

$$
T_{4}=-20^{\circ} \mathrm{C} .
$$

We then get the quality at state 4 via

$$
x_{4}=\frac{h_{4}-h_{f}}{h_{f g}}=\frac{\left(255.563 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right)-\left(173.74 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right)}{212.34 \frac{\mathrm{~kJ}}{\mathrm{~kg}}}=0.385 .
$$

Then since $x_{1}=1$ and $P_{1}=P_{4}=133.7 \mathrm{kPa}$, we find $T_{1}=-20^{\circ} \mathrm{C}, h_{1}=386.08 \mathrm{~kJ} / \mathrm{kg}$. Thus,

$$
\frac{\dot{W}}{\dot{m}}=h_{2}-h_{1}=\left(431.24 \frac{k J}{k g}\right)-\left(386.08 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right)=45.16 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

For the condenser, we get

$$
\frac{\dot{Q}_{\text {out }}}{\dot{m}}=h_{2}-h_{3}=\left(431.24 \frac{k J}{k g}\right)-\left(255.563 \frac{k J}{k g}\right)=175.667 \frac{k J}{k g} .
$$

For the evaporator, we get

$$
\frac{\dot{Q}_{i n}}{\dot{m}}=h_{1}-h_{4}=\left(386.08 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right)-\left(255.563 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right)=130.517 \frac{\mathrm{~kJ}}{\mathrm{~kg}} .
$$

The coefficient of performance is

$$
C O P=\frac{\dot{Q}_{i n} / \dot{m}}{\dot{W} / \dot{m}}=\frac{130.517 \frac{\mathrm{~kJ}}{\mathrm{~kg}}}{45.16 \frac{\mathrm{~kJ}}{\mathrm{~kg}}}=2.89 .
$$

3. (40) A calorically imperfect ideal gas of mass m with gas constant R and specific heat at constant volume $c_{v}(T)=c_{v o}+a T$ exists in a piston-cylinder configuration at initial pressure and volume P_{1} and V_{1}. The piston, with cross-sectional area A, is restrained by a linear spring, whose spring constant is k_{s}. At the initial state, the spring exerts no force on the piston. The gas is heated until its final volume is V_{2}. Find the final temperature T_{2}, the final pressure P_{2}, the work done ${ }_{1} W_{2}$ and the heat transfer ${ }_{1} Q_{2}$.

Solution

The relationship between pressure and volume for the linear spring is easily shown to be given by

$$
P=P_{1}+\frac{k_{s}}{A^{2}}\left(V-V_{1}\right) .
$$

Note when $V=V_{1}$ that $P=P_{1}$, as required. From the ideal gas law, $P V=m R T$, we get

$$
T_{1}=\frac{P_{1} V_{1}}{m R}
$$

Now, we have been given V_{2}, so from the force balance equation we find

$$
P_{2}=P_{1}+\frac{k_{s}}{A^{2}}\left(V_{2}-V_{1}\right)
$$

From the ideal gas law, we have

$$
\frac{P_{2} V_{2}}{T_{2}}=\frac{P_{1} V_{1}}{T_{1}}
$$

Thus,

$$
T_{2}=T_{1} \frac{P_{2} V_{2}}{P_{1} V_{1}}
$$

Since we know P_{2}, we can thus say

$$
T_{2}=T_{1} \frac{\left(P_{1}+\frac{k_{s}}{A^{2}}\left(V_{2}-V_{1}\right)\right) V_{2}}{P_{1} V_{1}}
$$

And since we know T_{1}, we can further say

$$
T_{2}=\frac{\left(P_{1}+\frac{k_{s}}{A^{2}}\left(V_{2}-V_{1}\right)\right) V_{2}}{m R}
$$

Now we know ${ }_{1} W_{2}=\int_{V_{1}}^{V_{2}} P d V$, so

$$
\begin{aligned}
{ }_{1} W_{2} & =\int_{V_{1}}^{V_{2}}\left(P_{1}+\frac{k_{s}}{A^{2}}\left(V-V_{1}\right)\right) d V \\
{ }_{1} W_{2} & =\int_{V_{1}}^{V_{2}}\left(P_{1}+\frac{k_{s}}{A^{2}}\left(V-V_{1}\right)\right) d V \\
{ }_{1} W_{2} & =P_{1}\left(V_{2}-V_{1}\right)+\frac{k_{s}}{2 A^{2}}\left(V_{2}-V_{1}\right)^{2}
\end{aligned}
$$

Now we know for a calorically perfect ideal gas that

$$
U_{2}-U_{1}=\int_{T_{1}}^{T_{2}} c_{v}(T) d T
$$

So for our gas, we have

$$
U_{2}-U_{1}=m \int_{T_{1}}^{T_{2}}\left(c_{v o}+a T\right) d T
$$

Integrating, we find

$$
\begin{aligned}
U_{2}-U_{1} & =m\left(c_{v o}\left(T_{2}-T_{1}\right)+\frac{a}{2}\left(T_{2}^{2}-T_{1}^{2}\right)\right) \\
U_{2}-U_{1} & =m\left(T_{2}-T_{1}\right)\left(c_{v o}+\frac{a}{2}\left(T_{2}+T_{1}\right)\right)
\end{aligned}
$$

Substituting for known values of T_{1} and T_{2}, we can say
$U_{2}-U_{1}=\left(\left(\frac{\left(P_{1}+\frac{k_{s}}{A^{2}}\left(V_{2}-V_{1}\right)\right) V_{2}}{R}\right)-\frac{P_{1} V_{1}}{R}\right)\left(c_{v o}+\frac{a}{2}\left(\left(\frac{\left(P_{1}+\frac{k_{s}}{A^{2}}\left(V_{2}-V_{1}\right)\right) V_{2}}{m R}\right)+\frac{P_{1} V_{1}}{m R}\right)\right)$.
The first law gives $U_{2}-U_{1}={ }_{1} Q_{2}-{ }_{1} W_{2}$, so

$$
{ }_{1} Q_{2}=U_{2}-U_{1}+{ }_{1} W_{2}
$$

Thus

$$
{ }_{1} Q_{2}=\left(\left(\frac{\left(P_{1}+\frac{k_{s}}{A^{2}}\left(V_{2}-V_{1}\right)\right) V_{2}}{R}\right)-\frac{P_{1} V_{1}}{R}\right)\left(c_{v o}+\frac{a}{2}\left(\left(\frac{\left(P_{1}+\frac{k_{s}}{A^{2}}\left(V_{2}-V_{1}\right)\right) V_{2}}{m R}\right)+\frac{P_{1} V_{1}}{m R}\right)\right)+P_{1}\left(V_{2}-V_{1}\right)+\frac{k_{s}}{2 A^{2}}\left(V_{2}-V_{1}\right)^{2}
$$

