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1. (20) A heat pump is used to heat a house in winter. The house’s temperature is maintained
at 23◦C. When the ambient temperature is −10◦C, the rate of heat lost from the house to
the surroundings is 25 kW . Calculate the minimum electrical power required to run the heat
pump under these conditions.

Solution

We have the first law which gives
Ẇ = Q̇H − Q̇L,

Ẇ = Q̇H

 

1 −

Q̇L

Q̇H

!

.

The best possible heat pump is a Carnot heat pump, for which

Q̇L

Q̇H

=
TL

TH

.

So,

Ẇ = Q̇H

„

1 −

TL

ṪH

«

,

Ẇ = (25kW )

„

1 −

−10 + 273.15

23 + 273.15

«

,

Ẇ = 2.79 kW.

The coefficient of performance is

COP =
Q̇H

Ẇ
,

COP = 8.974.

2. (40) A refrigeration cycle using R-134a as the working fluid consists of a compressor, a con-
denser, an expansion valve, and an evaporator. See Fig. 1. R134a at P2 = 1.000 MPa and
T2 = 50◦C enters the condenser. It leaves the condenser as a saturated liquid at the same
pressure. The pressure in the evaporator is 133.7 kPa. The processes in the condenser and
the evaporator are isobaric. The fluid enters the adiabatic compressor as a saturated vapor.

(a) Determine for the condenser Q̇out/ṁ.

(b) Determine T4 and x4.

(c) Determine for the evaporator Q̇in/ṁ.

(d) Determine the coefficient of performance of the cycle.

Solution

With P2 = 1000 kPa and T2 = 50◦C, we find from the superheated tables thath2 = 431.24 kJ/kg. We
then note that P3 = P2 = 1000 kPa, while x3 = 0. We can then interpolate the saturation tables to find
that h3 = 255.563 kJ/kg, T3 = 39◦C. After the expansion valve we have h4 = h3 = 255.563 kJ/kg. We



Figure 1: Schematic for refrigeration problem.

are given that P4 = 133.7 kPa. At this pressure, we note that hf < h4 < hg, so we have a saturated
mixture. The temperature at this state is

T4 = −20◦C.

We then get the quality at state 4 via

x4 =
h4 − hf

hfg

=

“

255.563 kJ
kg

”

−

“

173.74 kJ
kg

”

212.34 kJ
kg

= 0.385.

Then since x1 = 1 and P1 = P4 = 133.7 kPa, we find T1 = −20◦C, h1 = 386.08 kJ/kg. Thus,

Ẇ

ṁ
= h2 − h1 =

„

431.24
kJ

kg

«

−

„

386.08
kJ

kg

«

= 45.16
kJ

kg
.

For the condenser, we get

Q̇out

ṁ
= h2 − h3 =

„

431.24
kJ

kg

«

−

„

255.563
kJ

kg

«

= 175.667
kJ

kg
.

For the evaporator, we get

Q̇in

ṁ
= h1 − h4 =

„

386.08
kJ

kg

«

−

„

255.563
kJ

kg

«

= 130.517
kJ

kg
.

The coefficient of performance is

COP =
Q̇in/ṁ

Ẇ/ṁ
=

130.517 kJ
kg

45.16 kJ
kg

= 2.89.

3. (40) A calorically imperfect ideal gas of mass m with gas constant R and specific heat at
constant volume cv(T ) = cvo + aT exists in a piston-cylinder configuration at initial pressure
and volume P1 and V1. The piston, with cross-sectional area A, is restrained by a linear spring,
whose spring constant is ks. At the initial state, the spring exerts no force on the piston. The
gas is heated until its final volume is V2. Find the final temperature T2, the final pressure P2,
the work done 1W2 and the heat transfer 1Q2.

Solution

The relationship between pressure and volume for the linear spring is easily shown to be given by

P = P1 +
ks

A2
(V − V1).



Note when V = V1 that P = P1, as required. From the ideal gas law, PV = mRT , we get

T1 =
P1V1

mR
.

Now, we have been given V2, so from the force balance equation we find

P2 = P1 +
ks

A2
(V2 − V1).

From the ideal gas law, we have
P2V2

T2

=
P1V1

T1

.

Thus,

T2 = T1

P2V2

P1V1

.

Since we know P2, we can thus say

T2 = T1

“

P1 + ks

A2
(V2 − V1)

”

V2

P1V1

.

And since we know T1, we can further say

T2 =

“

P1 + ks

A2
(V2 − V1)

”

V2

mR
.

Now we know 1W2 =
R V2

V1
PdV , so

1W2 =

Z V2

V1

„

P1 +
ks

A2
(V − V1)

«

dV.

1W2 =

Z V2

V1

„

P1 +
ks

A2
(V − V1)

«

dV.

1W2 = P1(V2 − V1) +
ks

2A2
(V2 − V1)2.

Now we know for a calorically perfect ideal gas that

U2 − U1 =

Z T2

T1

cv(T )dT.

So for our gas, we have

U2 − U1 = m

Z T2

T1

(cvo + aT ) dT.

Integrating, we find

U2 − U1 = m
“

cvo(T2 − T1) +
a

2

`

T 2

2 − T 2

1

´

”

.

U2 − U1 = m(T2 − T1)
“

cvo +
a

2
(T2 + T1)

”

.

Substituting for known values of T1 and T2, we can say

U2 − U1 =

0

@

0

@

“

P1 + ks

A2
(V2 − V1)

”

V2

R

1

A

−

P1V1

R

1

A

0

@cvo +
a

2

0

@

0

@

“

P1 + ks

A2
(V2 − V1)

”

V2

mR

1

A+
P1V1

mR

1

A

1

A .

The first law gives U2 − U1 = 1Q2 − 1W2, so

1Q2 = U2 − U1 + 1W2.

Thus

1Q2 =

0

@

0

@

“

P1 + ks

A2
(V2 − V1)

”

V2

R

1

A

−

P1V1

R

1

A

0

@cvo +
a

2

0

@

0

@

“

P1 + ks

A2
(V2 − V1)

”

V2

mR

1

A+
P1V1

mR

1

A

1

A+ P1(V2 − V1) +
ks

2A2
(V2 − V1)2.


