- 1. 3.35, instead let the drive shaft rotate at 2000 rpm.
- $2. \ 3.40.$
- 3. 3.46, instead let the final pressure be 310 kPa.
- 4. 3.47, instead let the final volume be $V = 5 \text{ m}^3$.
- 5. (adopted from BS, 7th edition). Ammonia vapor is compressed inside a cylinder by an external force acting on the piston. The ammonia is initially at 30°C, 500 kPa, and the final pressure is 1400 kPa. The following data have been measured for the process:

Table 1: P - V data for ammonia compression

P (kPa)	$V(\mathbf{L})$
500	1.25
653	1.08
802	0.96
945	0.84
1100	0.72
1248	0.60
1400	0.50

Determine the work done by the ammonia by an appropriate numerical method to approximate $W = \int P \, dV$.

Include in your submission a professional quality plot of the process in P - V space. Label the axes appropriately, and include a plot of the vapor dome as a part of your plot.