## NAME: SOLUTION

AME 20231, Thermodynamics
Examination 1
Prof. J. M. Powers
11 February 2020

"Suppose the body to change its state, the points associated with the states through which the body passes will form a line, which we may call the path of the body." Transactions of the Connecticut Academy, II., pp. 309-342, April-May 1873.

Josiah Williard Gibbs, b. 11 February 1839, d. 28 April 1903
Happy 181st Birthday, Prof. Gibbs!

1. (10) A box with $V=1 \mathrm{~m}^{3}$ contains an ideal gas at $P=1 \mathrm{~Pa}$ and $T=100 \mathrm{~K}$. Determine the number of moles in the box.

## Solution

We use the ideal gas law

$$
P V=n \bar{R} T
$$

Solve for $n$, the number of moles, to get

$$
n=\frac{P V}{\bar{R} T}=\frac{(1 \mathrm{~Pa})\left(1 \mathrm{~m}^{3}\right)}{\left(8.3145 \frac{\mathrm{~J}}{\mathrm{~mol} \mathrm{~K}}\right)(100 \mathrm{~K})}=0.00120272 \mathrm{~mol} .
$$

2. (10) A two-phase liquid-vapor mixture of $\mathrm{H}_{2} \mathrm{O}$ at $v=0.013 \mathrm{~m}^{3} / \mathrm{kg}$ and $T=100^{\circ} \mathrm{C}$ is heated isochorically until it is a single phase. Determine the final temperature and pressure of the $\mathrm{H}_{2} \mathrm{O}$. Determine if the final state is solid, liquid, or gas. Sketch the process in the $T-v$ plane.

## Solution

From the tables, we see the critical volume $v_{c}=0.00315 \mathrm{~m}^{3} / \mathrm{kg}$. So we have $v>v_{c}$. If we heat isochorically under the dome, the temperature will rise until it reaches the saturated vapor dome. We see in the tables that that happens at

$$
T=330^{\circ} \mathrm{C}, \quad P=12845 \mathrm{kPa} .
$$

The final state is gas. The appropriate sketch is given here in


Figure 1: Sketch of isochoric heating of $\mathrm{H}_{2} \mathrm{O}$ (not to scale).
3. (20) $\mathrm{N}_{2}$ is at $P=2121 \mathrm{kPa}, T=140 \mathrm{~K}$.
(a) Find $v$ with the ideal gas law.
(b) Find $v$ with the superheated nitrogen tables.
(c) Find $v$ with the compressibility chart, Fig. D.1.
(d) Give an accurate sketch of the actual state of the $\mathrm{N}_{2}$ in the $P-v, T-v$, and $P-T$ planes. The state should be properly placed relative to the vapor domes and critical points, which should also be part of the sketch.

## Solution

First use the ideal gas law.

$$
v=\frac{R T}{P}=\frac{\left(0.2968 \frac{\mathrm{~kJ}}{\mathrm{~kg} \mathrm{~K}}\right)(140 \mathrm{~K})}{2121 \mathrm{kPa}}=0.0195908 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}
$$

We can interpolate Table B. 6.2 between $P=2000 \mathrm{kPa}$ and $P=3000 \mathrm{kPa}$. We get
$v=\left(0.01752 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}\right)+\left(\frac{0.01038 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}-0.01752 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}}{(3000 \mathrm{kPa})-(2000 \mathrm{kPa})}\right)((2121 \mathrm{kPa})-(2000 \mathrm{kPa}))=0.0166561 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}$.
Next use the compressibility charts. We have $P_{c}=3397.8 \mathrm{kPa}, T_{c}=126.2 \mathrm{~K}$. So

$$
P_{r}=\frac{2121 \mathrm{kPa}}{3397.8 \mathrm{kPa}}=0.624227, \quad T_{r}=\frac{140 \mathrm{~K}}{126.2 \mathrm{~K}}=1.10935
$$

Here we find $Z \sim 0.8$. Now $Z=P v / R / T$, so

$$
v=Z \frac{R T}{P}=0.8 \frac{\left(0.2968 \frac{\mathrm{~kJ}}{\mathrm{~kg} \mathrm{~K}}\right)(140 \mathrm{~K})}{2121 \mathrm{kPa}}=0.0156726 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}
$$

The appropriate sketches are given here in




Figure 2: State of $\mathrm{N}_{2}$ in $T-v, P-v$, and $P-T$ planes (not to scale).
4. (30) An ideal gas of mass $m$ and gas constant $R$ at pressure $P_{1}$ and temperature $T_{1}$ is compressed in an isochoric process until $T_{2}=2 T_{1}$. The gas is isothermally expanded back to $P_{3}=P_{1}$. The gas then undergoes an isobaric process to return to $P_{1}$ and $T_{1}$.
(a) Find $P_{2}$ in terms of $P_{1}, T_{1}, m$, and $R$.
(b) Find the work of each process in the cycle, ${ }_{1} W_{2},{ }_{2} W_{3}$, and ${ }_{3} W_{1}$ and $W_{\text {cycle }}$ in terms of $P_{1}$, $T_{1}, m$, and $R$.
(c) Sketch the cycle in the $P-v$ plane.

## Solution

First, we see that

$$
v_{1}=\frac{R T_{1}}{P_{1}}
$$

Because $1 \rightarrow 2$ is isochoric, we have

$$
v_{2}=v_{1}=\frac{R T_{1}}{P_{1}}
$$

Also note that

$$
\frac{P_{2} v_{2}}{T_{2}}=\frac{P_{1} v_{1}}{T_{1}}
$$

so

$$
\begin{gathered}
P_{2}=P_{1} \frac{v_{1}}{v_{2}} \frac{T_{2}}{T_{1}}=P_{1} \frac{v_{1}}{v_{1}} \frac{2 T_{1}}{T_{1}}, \\
P_{2}=2 P_{1} .
\end{gathered}
$$

For the isochoric process, we have

$$
{ }_{1} W_{2}=0
$$

Now we know that

$$
T_{3}=T_{2}=2 T_{1}
$$

And we have $P_{3}=P_{1}$, so

$$
v_{3}=\frac{R T_{3}}{P_{3}}=\frac{2 R T_{1}}{P_{1}}=2 v_{1}=2 v_{2}
$$

Thus $v_{3} / v_{2}=2$. For the isothermal process, we have

$$
{ }_{2} W_{3}=m R T_{2} \ln \frac{v_{3}}{v_{2}}=2 m R T_{1} \ln 2
$$

For the isobaric process from 3 to 1 , we have

$$
{ }_{3} W_{1}=m P_{1}\left(v_{1}-v_{3}\right)=m P_{1} v_{1}\left(1-\frac{v_{3}}{v_{1}}\right)=m R T_{1}(1-2)=-m R T_{1}
$$

Therefore, the total work of the cycle is

$$
W_{c y c l e}=0+2 m R T_{1} \ln 2-m R T_{1}
$$

$$
W_{\text {cycle }}=(2 \ln 2-1) m R T_{1}=0.386294 m R T_{1}
$$

Note that $W_{\text {cycle }}>0$.
The appropriate sketch is given next.


Figure 3: Sketch of cycle in $P-v$ plane.
5. (30) A fixed mass, $m=10 \mathrm{~kg}$, of $\mathrm{H}_{2} \mathrm{O}$ is initially at $P=100 \mathrm{kPa}, x=0.4$. It undergoes a two-step process. The first step is an isobaric heating until $T=200^{\circ} \mathrm{C}$. The second step is an isothermal compression until $P=500 \mathrm{kPa}$.
(a) Find $v$ at the end of the isobaric heating.
(b) Find the total work in the two-step process.
(c) Sketch the two-step process, including the vapor domes and saturation lines, in the $T-v$, $P-v$, and $P-T$ planes.

## Solution

Table B.1.2, the saturated water pressure entry table helps us with state 1 . At $P_{1}=100 \mathrm{kPa}$, we find $v_{f 1}=0.001045 \mathrm{~m}^{3} / \mathrm{kg}, v_{f g 1}=1.69296 \mathrm{~m}^{3} / \mathrm{kg}$. So

$$
v_{1}=v_{f 1}+x_{1} v_{f g 1}=\left(0.001045 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}\right)+(0.4)\left(1.69696 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}\right)=0.678227 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}
$$

Now when $T_{2}=200^{\circ} \mathrm{C}$ and $P_{2}=P_{1}=100 \mathrm{kPa}$. The tables reveal state 2 is a superheated vapor with

$$
v_{2}=2.17226 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}
$$

Now the work for the isobaric part of the process is straightforward,

$$
{ }_{1} W_{2}=m P_{1}\left(v_{2}-v_{1}\right)=(10 \mathrm{~kg})(100 \mathrm{kPa})\left(\left(2.17226 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}\right)-\left(0.678227 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}\right)\right)=1494.03 \mathrm{~kJ}
$$

We need the path in $P-v$ space to get the work for the isothermal compression. The points in the $P-v$ plane on the $T_{2}=T_{3}=200^{\circ} \mathrm{C}$ isotherm are found in the superheated water vapor tables. We find five points with values and those are

$$
\begin{array}{ll}
P_{a}=100 \mathrm{kPa}, & v_{a}=2.17226 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} \\
P_{b}=200 \mathrm{kPa}, & v_{b}=1.08034 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} \\
P_{c}=300 \mathrm{kPa}, & v_{c}=0.71629 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} \\
P_{d}=400 \mathrm{kPa}, & v_{d}=0.53422 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} \\
P_{e}=500 \mathrm{kPa}, & v_{e}=0.42492 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}
\end{array}
$$

Here state $a$ is the 2 state and state $e$ is the 3 state. As done in class, we approximate

$$
{ }_{2} W_{3}=m \int_{2}^{3} P d v=m \sum P_{a v e, i}\left(v_{i+1}-v_{i}\right)
$$

Doing this, we get

$$
\begin{aligned}
{ }_{2} w_{3}= & \left(\frac{P_{a}+P_{b}}{2}\right)\left(v_{b}-v_{a}\right) \\
& +\left(\frac{P_{b}+P_{c}}{2}\right)\left(v_{c}-v_{b}\right) \\
& +\left(\frac{P_{c}+P_{d}}{2}\right)\left(v_{d}-v_{c}\right) \\
& +\left(\frac{P_{d}+P_{e}}{2}\right)\left(v_{e}-v_{d}\right), \\
= & \left(\frac{(100 \mathrm{kPa})+(200 \mathrm{kPa})}{2}\right)\left(\left(1.08034 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}\right)-\left(2.17226 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}\right)\right) \\
& +\left(\frac{(200 \mathrm{kPa})+(300 \mathrm{kPa})}{2}\right)\left(\left(0.71629 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}\right)-\left(1.08034 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}\right)\right) \\
& +\left(\frac{(300 \mathrm{kPa})+(400 \mathrm{kPa})}{2}\right)\left(\left(0.53422 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}\right)-\left(0.71629 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}\right)\right) \\
& +\left(\frac{(400 \mathrm{kPa})+(500 \mathrm{kPa})}{2}\right)\left(\left(0.42492 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}\right)-\left(0.53422 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}\right)\right) \\
= & -367.71 \frac{\mathrm{~kJ}}{\mathrm{~kg}} .
\end{aligned}
$$

So

$$
{ }_{2} W_{3}=m_{2} w_{3}=(10 \mathrm{~kg})\left(-367.71 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right)=-3677.1 \mathrm{~kJ} .
$$

And for the total process

$$
{ }_{1} W_{3}={ }_{1} W_{2}+{ }_{2} W_{3}=(1494.03 \mathrm{~kJ})+(-3677.1 \mathrm{~kJ})=-2183.07 \mathrm{~kJ} .
$$

The plots follow.




Figure 4: Two-step isobaric, isothermal process in $T-v, P-v$, and $P-T$ planes (not to scale).
$\qquad$

