AME 20231
Homework 4
Due: Thursday, 4 March 2021, 9:00 AM, on Sakai

1. 3.30 , instead let the mass be 1200 kg .
2. 3.40 , instead let the mass of liquid water be 1.9 kg .

3 . 3.45 , instead let the final pressure be 110 kPa .
4. 3.47 , instead let the final volume be $V=5 \mathrm{~m}^{3}$.
5. (adopted from BS, 7th edition). Ammonia vapor is compressed inside a cylinder by an external force acting on the piston. The ammonia is initially at $30^{\circ} \mathrm{C}, 500 \mathrm{kPa}$, and the final pressure is 1400 kPa . The following data have been measured for the process:

Table 1: $P-V$ data for ammonia compression

$P(\mathrm{kPa})$	$V(\mathrm{~L})$
500	1.25
663	1.07
801	0.92
955	0.82
1140	0.71
1288	0.62
1400	0.50

Determine the work done by the ammonia by an appropriate numerical method to approximate $W=\int P d V$.
Include in your submission a professional quality plot of the process in $P-V$ space. Label the axes appropriately, and include a plot of the vapor dome as a part of your plot.

