NAME:

AME 20231, Thermodynamics
Examination 1
Prof. J. M. Powers
9 March 2021

1. (5) A three phase mixture of $\mathrm{H}_{2} \mathrm{O}$ exists at the triple point. The material is isothermally compressed to a pressure just above the triple point pressure. Which phase is observed: solid, liquid, or gas? Provide a sketch of the process in the $P-T$ plane that includes the various phase boundaries and the triple point.
2. (15) A box contains one kmole of the the noble gas helium, He, at $T=6.2 \mathrm{~K}, P=0.227 \mathrm{MPa}$. Determine the volume of the box by two different methods:
(a) assume an ideal gas,
(b) use the compressibility chart, Fig. D.1.
3. (15) The gas CO_{2} exists at $P=10000 \mathrm{kPa}, T=203^{\circ} \mathrm{C}$. Determine the specific volume of the gas by two different methods:
(a) assume an ideal gas,
(b) use Table B.3.2.
4. (30) A piston-cylinder arrangement contains an ideal gas with gas constant R at initial temperature, pressure, and volume T_{1}, P_{1}, V_{1}. The piston, of cross-sectional area A, is constrained by a nonlinear spring that exerts no force in the initial configuration. The force in the spring is given by the formula $F=k_{1} y+k_{2} y^{2}$, where y is the displacement of the spring from its initial unstreched position at $y=0$. The gas is heated to a final volume V_{2}. Find

(a) the initial specific volume, v_{1},
(b) the mass m of the gas,
(c) the atmospheric pressure,
(d) the final pressure P_{2},
(e) the work done in the process ${ }_{1} W_{2}$,
5. (35) A piston-cylinder configuration contains 10 kg of $\mathrm{H}_{2} \mathrm{O}$ at an initial state of $P_{1}=10000 \mathrm{kPa}$, and quality $x_{1}=0$. It is isothermally compressed to $P_{2}=15000 \mathrm{kPa}$. It is then isobarically heated to $T_{3}=600^{\circ} \mathrm{C}$. Find
(a) the intermediate specific volume v_{2},
(b) the final specific volume v_{3},
(c) the total work done in the process ${ }_{1} W_{3}$,
(d) sketches of the process in the $P-v, T-v$, and $P-T$ planes, taking special care to include relevant vapor domes and saturation lines and the correct orientation of the processes relative to these features.
