NAME: SOLUTION

AME 20231, Thermodynamics
Examination 1
Prof. J. M. Powers
9 March 2021

1. (5) A three phase mixture of $\mathrm{H}_{2} \mathrm{O}$ exists at the triple point. The material is isothermally compressed to a pressure just above the triple point pressure. Which phase is observed: solid, liquid, or gas? Provide a sketch of the process in the $P-T$ plane that includes the various phase boundaries and the triple point.

Solution

The figure shows a sketch of the process for water, a material that expands on freezing. For such a material, isothermal compression from the triple point leads to the
liquid
phase.

Figure 1: Sketch of process in the $P-T$ plane (not to scale).
2. (15) A box contains one kmole of the the noble gas helium, He, at $T=6.2 \mathrm{~K}, P=0.227 \mathrm{MPa}$. Determine the volume of the box by two different methods:
(a) assume an ideal gas,
(b) use the compressibility chart, Fig. D.1.

Solution

First use the ideal gas law. We must be careful with the units.

$$
\begin{gathered}
P V=n \bar{R} T \\
V=\frac{n \bar{R} T}{P}=\frac{(1 \mathrm{kmol})\left(8.314 \frac{\mathrm{~kJ}}{\mathrm{kmol} \mathrm{~K}}\right)(6.2 \mathrm{~K})}{0.227 \times 10^{3} \mathrm{kPa}}=0.227 \mathrm{~m}^{3} .
\end{gathered}
$$

For the compressibility charts, we need the critical temperature and pressure of Helium. Table A. 2 tells us $T_{c}=5.19 \mathrm{~K}$ and $P_{c}=0.227 \mathrm{MPa}$. Thus the reduced temperature and pressure of our system is

$$
\begin{aligned}
& T_{r}=\frac{T}{T_{c}}=\frac{6.2 \mathrm{~K}}{5.19 \mathrm{~K}}=1.194 \\
& P_{r}=\frac{P}{P_{c}}=\frac{0.227 \mathrm{MPa}}{0.227 \mathrm{MPa}}=1
\end{aligned}
$$

The Lee-Kessler generalized compressibility chart of Fig. D. 1 tells us then that $Z \sim 0.78$. So, we get

$$
\begin{gathered}
Z=\frac{P V}{n \bar{R} T} \\
V=Z \frac{n \bar{R} T}{P}=(0.78) \frac{(1 \mathrm{kmol})\left(8.314 \frac{\mathrm{~kJ}}{\mathrm{kmol} \mathrm{~K}}\right)(6.2 \mathrm{~K})}{0.227 \times 10^{3} \mathrm{kPa}}=0.177 \mathrm{~m}^{3} .
\end{gathered}
$$

3. (15) The gas CO_{2} exists at $P=10000 \mathrm{kPa}, T=203^{\circ} \mathrm{C}$. Determine the specific volume of the gas by two different methods:
(a) assume an ideal gas,
(b) use Table B.3.2.

Solution

First use the ideal gas law. We need the absolute temperature:

$$
T=203+273.15=476.15 \mathrm{~K}
$$

We also need R for CO_{2}. This is found in Table A.5, giving $R=0.1889 \mathrm{~kJ} / \mathrm{kg} / \mathrm{K}$. The ideal gas law gives

$$
v=\frac{R T}{P}=\frac{\left(0.1889 \frac{\mathrm{~kJ}}{\mathrm{~kg} \mathrm{~K}}\right)(476.15 \mathrm{~K})}{10000 \mathrm{kPa}}=0.00899 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}
$$

Next use Table B.3.2. We need to interpolate. We use the point slope formula to get

$$
v=\left(0.00819 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}\right)+\frac{\left(0.00868 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}\right)-\left(0.00819 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}\right)}{220^{\circ} \mathrm{C}-200^{\circ} \mathrm{C}}\left(203^{\circ} \mathrm{C}-200^{\circ} \mathrm{C}\right)=0.00826 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}
$$

4. (30) A piston-cylinder arrangement contains an ideal gas with gas constant R at initial temperature, pressure, and volume T_{1}, P_{1}, V_{1}. The piston, of cross-sectional area A, is constrained by a nonlinear spring that exerts no force in the initial configuration. The force in the spring is given by the formula $F=k_{1} y+k_{2} y^{2}$, where y is the displacement of the spring from its initial unstreched position at $y=0$. The gas is heated to a final volume V_{2}. Find

(a) the initial specific volume, v_{1},
(b) the mass m of the gas,
(c) the atmospheric pressure,
(d) the final pressure P_{2},
(e) the work done in the process ${ }_{1} W_{2}$,

Solution

The ideal gas law gives

$$
\begin{aligned}
& P_{1} v_{1}=R T_{1}, \\
& v_{1}=\frac{R T_{1}}{P_{1}} .
\end{aligned}
$$

so

The mass m is $m=V_{1} / v_{1}$, so

$$
m=\frac{V_{1}}{\frac{R T_{1}}{P_{1}}}=\frac{P_{1} V_{1}}{R T_{1}}
$$

We first need to consider the geometry. We must have

$$
V=V_{1}+A y .
$$

Thus

$$
y=\frac{V-V_{1}}{A} .
$$

We need a relationship between P and V. Newton's second law, assuming static equilibrium, gives

$$
P A=P_{\text {atm }} A+k_{1} y+k_{2} y^{2} .
$$

We can divide by A to get

$$
P=P_{a t m}+\frac{k_{1}}{A} y+\frac{k_{2}}{A} y^{2} .
$$

At the initial state $y=0$, and $P=P_{1}$ so for static equilibrium, we must have

$$
P_{1}=P_{\text {atm }} .
$$

Using this, and eliminating y in favor of V, we get

$$
P=P_{1}+\frac{k_{1}}{A}\left(\frac{V-V_{1}}{A}\right)+\frac{k_{2}}{A}\left(\frac{V-V_{1}}{A}\right)^{2} .
$$

The final pressure is thus

$$
P_{2}=P_{1}+\frac{k_{1}}{A}\left(\frac{V_{2}-V_{1}}{A}\right)+\frac{k_{2}}{A}\left(\frac{V_{2}-V_{1}}{A}\right)^{2} .
$$

We can integrate the relationship between P and V to get the work:

$$
{ }_{1} W_{2}=\int_{V_{1}}^{V_{2}} P d V .
$$

This gives

$$
{ }_{1} W_{2}=\int_{V_{1}}^{V_{2}}\left(P_{1}+\frac{k_{1}}{A}\left(\frac{V-V_{1}}{A}\right)+\frac{k_{2}}{A}\left(\frac{V-V_{1}}{A}\right)^{2}\right) d V .
$$

Performing the integration yields

$$
{ }_{1} W_{2}=P_{1}\left(V_{2}-V_{1}\right)+\frac{k_{1}}{2 A^{2}}\left(V_{2}-V_{1}\right)^{2}+\frac{k_{2}}{3 A^{3}}\left(V_{2}-V_{1}\right)^{3} .
$$

5. (35) A piston-cylinder configuration contains 10 kg of $\mathrm{H}_{2} \mathrm{O}$ at an initial state of $P_{1}=10000 \mathrm{kPa}$, and quality $x_{1}=0$. It is isothermally compressed to $P_{2}=15000 \mathrm{kPa}$. It is then isobarically heated to $T_{3}=600^{\circ} \mathrm{C}$. Find
(a) the intermediate specific volume v_{2},
(b) the final specific volume v_{3},
(c) the total work done in the process ${ }_{1} W_{3}$,
(d) sketches of the process in the $P-v, T-v$, and $P-T$ planes, taking special care to include relevant vapor domes and saturation lines and the correct orientation of the processes relative to these features.

Solution

From Table B.1.2, we learn $v_{1}=v_{f}=0.001452 \mathrm{~m}^{3} / \mathrm{kg}$ and $T_{1}=311.06{ }^{\circ} \mathrm{C}$. State 2 is a compressed liquid with $P_{2}=15000 \mathrm{kPa}$, and Table B.1.4 tells us by interpolating to $T_{2}=311.06{ }^{\circ} \mathrm{C}$ that

$$
\begin{gathered}
v_{2}=\left(0.001377 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}\right)+\frac{\left(0.001472 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}\right)-\left(0.001377 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}\right)}{320^{\circ} \mathrm{C}-300^{\circ} \mathrm{C}}\left(311.06^{\circ} \mathrm{C}-300^{\circ} \mathrm{C}\right) \\
v_{2}=0.00142954 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} .
\end{gathered}
$$

For the isobaric heating, we have $P_{3}=15000 \mathrm{kPa}$. With $T_{3}=600^{\circ} \mathrm{C}$, the final state is seen to be a superheated vapor, with supercritical temperature $T_{3}>T_{c}=374.14{ }^{\circ} \mathrm{C}$, and subcritical pressure, $P_{3}<P_{c}=22089 \mathrm{kPa}$. The superheated tables, Table B.1.3, tells us that

$$
v_{3}=0.02491 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}
$$

The total work is the sum of the work of the isothermal and isobaric processes:

$$
\begin{gathered}
{ }_{1} W_{3}={ }_{1} W_{2}+{ }_{2} W_{3} \\
{ }_{1} W_{3}=m_{1} w_{2}+m{ }_{2} w_{3}, \\
{ }_{1} W_{3}=m \int_{v_{1}}^{v_{2}} P d v+m \int_{v_{2}}^{v_{3}} P d v .
\end{gathered}
$$

The first integral for the isothermal process requires a numerical integration. We only have two points from the tables, so we will simply find the area of a simple trapezoid. The second integral for the isobaric process simplifies because the pressure is constant. Let us then take

$$
\begin{gathered}
{ }_{1} W_{3}=m\left(\frac{P_{1}+P_{2}}{2}\left(v_{2}-v_{1}\right)\right)+m P_{2}\left(v_{3}-v_{2}\right) . \\
{ }_{1} W_{3}=\quad(10 \mathrm{~kg})\left(\frac{10000 \mathrm{kPa}+15000 \mathrm{kPa}}{2}\left(\left(0.00142954 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}\right)-\left(0.001452 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}\right)\right)\right) \\
\\
=\quad+(10 \mathrm{~kg})(15000 \mathrm{kPa})\left(\left(0.02491 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}\right)-\left(0.00142954 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}\right)\right), \\
= \\
-2.80812 \mathrm{~kJ}+3522.07 \mathrm{~kJ} .
\end{gathered}
$$

Adding, we find

Figure 2: Sketch of process in $T-v, P-v$, and $P-T$ planes (not to scale).

