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1. (40) Consider the Rankine cycle below. Find

boiler

turbine

condenser

3

4

1

2

P3 = 10 MPa
T3 = 1000˚C

P4 = 10 kPa
x4 = 1

P1 = 10 kPa
x1 = 0

.

pump

P2 = 10 MPa
T2 = 60 ˚C

Q
boiler

 = 1000 MW

H
2
O:  working fluid

(a) the mass flow rate (kg/s),

(b) the work rate done by the turbine (kW),

(c) the work rate required to power the pump (kW),

(d) the overall thermal efficiency,

(e) a correctly oriented sketch, including the vapor dome and appropriate numerical values
of P and v, of the cycle on a P − v diagram,

Solution

The tables give us

h1 = 191.81
kJ

kg
, h2 = 259.47

kJ

kg
, h3 = 4611.04

kJ

kg
, h4 = 2584.63

kJ

kg

v1 = 0.001010
m3

kg
, v2 = 0.001013

m3

kg
, v3 = 0.05832

m3

kg
, v4 = 14.67355

m3

kg

For the boiler we have

2q3 = h3 − h2 =

(

4611.04
kJ

kg

)

−

(

259.47
kJ

kg

)

= 4351.57
kJ

kg

So we have
˙

2Q3 = ṁ 2q3

ṁ =
˙

2Q3

2q3
=

106 kW

4351.57 kJ
kg

= 229.802
kg

s

The specific turbine work is

3w4 = h3 − h4 =

(

4611.04
kJ

kg

)

−

(

2584.63
kJ

kg

)

= 2026.41
kJ

kg

So the turbine power output is

˙
3W4 = ṁ 3w4 =

(

229.802
kg

s

)(

2026.41
kJ

kg

)

= 465673 kW .



For the pump, we need the following work

˙
1W2 = ṁ(h1 − h2) =

(

229.802
kg

s

)(

191.81
kJ

kg

)

−

(

259.47
kJ

kg

)

= −15548.4 kW

So the thermal efficiency is

η =
Ẇnet

Q̇in

=
(465673 kW)− (15548.4 kW)

106 kW
= 0.450125

v (m3/kg)

P (kPa)

0.001013

1

2
3

4
10

0.05832 14.673550.001010

10000

22089

2. (30) A chamber with initial volume V1 = 1 m3 contains air at P1 = 100 kPa, T1 = 300 K. The
air is constrained by a piston attached to a linear spring. The air is heated to T2 = 3000 K,
P2 = 200 kPa. Find the heat transfer 1Q2 assuming air is a

(a) calorically perfect ideal gas, (use Table A.5),

(b) calorically imperfect ideal gas (use Table A.7.1).

(c) Give a one-sentence, qualitative, physics-based interpretation as to why one estimate is
different than the other.

Solution

The ideal gas law gives us
P2V2

T2

=
P1V1

T1

V2 =
P1

P2

T2

T1

V1

V2 =
100 kPa

200 kPa

3000 K

300 K
(1 m3).

V2 = 5 m3.

Now we know that for a linear spring 1W2 =
∫ 2

1
P dV gives us the area of a trapezoid, which is

1W2 =
P1 + P2

2
(V2 − V1)

1W2 =
100 kPa + 200 kPa

2
(5 m3 − 1 m3)

1W2 = 600 kJ

The first law then gives us
U2 − U1 = 1Q2 − 1W2



1Q2 = U2 − U1 + 1W2

1Q2 = m(u2 − u1) + 1W2

Now, we have

m =
P1V1

RT1

m =
(100 kPa)(1 m3)

(

0.287 kJ
kg K

)

(300 K)

m = 1.16144 kg

For a CPIG, we have u2 − u1 = cv(T2 − T1), and we take cv = 0.717 kJ/kg/K, so

1Q2 = mcv(T2 − T1) + 1W2

1Q2 = (1.16144 kg)

(

0.717
kJ

kg K

)

((3000 K)− (300 K)) + 600 kJ

1Q2 = 2848.43 kJ

For the CIIG, we have from the tables u2 = 2664.27 kJ/kg, u1 = 214.36 kJ/kg. So

1Q2 = (1.16144 kg)

((

2664.27
kJ

kg

)

−

(

214.36
kJ

kg

))

+ 600 kJ

1Q2 = 3445.54 kJ

For diatomic molecules, more heat is needed because some energy goes to vibrational and rotational modes.

3. (30) A 1 kg block of silver and a 1 kg block of gold are within in a closed, thermally insulated
chamber. The silver has initial temperature TS(0) = 1000 K, and the gold has initial temper-
ature TG(0) = 300 K. The two blocks come to a thermal equilibrium so that they have same
final temperature.

(a) Find the equilibrium temperature.

(b) Taking as a crude model for the heat transfer rate from silver to gold

Q̇ =

(

0.001
kW

K

)

(TS − TG),

find the time constant of equilibration.

Solution

For this problem, there is no work, so Ẇ = 0. For the silver and gold blocks, we have from the first law

dUS

dt
= −Q̇,

dUG

dt
= Q̇

Adding the two we see
d

dt
(US + UG) = 0

That is to say the thermal energy of the combined system is conserved. So

US + UG = (US + UG)|
t=0

Using the relation for a solid with constant specific heat that U is proportional to mcT , we can say

mScSTS +mGcGTG = mScSTSo +mGcGTGo

For us mS = mG = m, so we could say

cSTS + cGTG = cSTSo + cGTGo



So at a general time, we could say

TG(t) =
cS(TSo − TS(t)) + cGTGo

cG

TG(t) =
cS

cG
(TSo − TS(t)) + TGo

At the equilibrium state, TS = TG = TE , so

cSTE + cGTE = cSTSo + cGTGo

TE =
cSTSo + cGTGo

cS + cG

TE =

(

0.24 kJ
kg K

)

(1000 K) +
(

0.13 kJ
kg K

)

(300 K)
(

0.24 kJ
kg K

)

+
(

0.13 kJ
kg K

)

TE = 754.054 K

We can rewrite the first law for silver as

mcS
dTS

dt
= −h(TS − TG)

mcS
dTS

dt
= −h

(

TS −

(

cS

cG
(TSo − TS) + TGo

))

mcS
dTS

dt
= −h

(

TS

(

1 +
cS

cG

)

−

(

cS

cG
TSo + TGo

))

dTS

dt
= −

h

mcS

(

TS

(

1 +
cS

cG

)

−

(

cS

cG
TSo + TGo

))

By inspection, the time constant is

τ =
mcS

h

(

1 + cS

cG

) =
(1 kg)

(

0.24 kJ
kg K

)

(

0.001 kW
K

)

(

1 +
0.24 kJ

kg K

0.13 kJ
kg K

) = 84.32 s

As an aside, we can divide top and bottom by cS to rewrite τ as

τ =
m

h

(

1
cS

+ 1
cG

)

Defining chm as the harmonic mean specific heat:

chm =
2

1
cS

+ 1
cG

we could say

τ =
mchm

2h

One can solve for the differential equations and get

TS(t) = (754.054 K) + (245.946 K) exp(−t/(84.32 s))

TG(t) = (754.054 K)− (454.054 K) exp(−t/(84.32 s))
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