NAME: SOLUTION

AME 20231, Thermodynamics
Examination 2
Prof. J. M. Powers
13 April 2021

1. (40) Consider the Rankine cycle below. Find

(a) the mass flow rate $(\mathrm{kg} / \mathrm{s})$,
(b) the work rate done by the turbine (kW),
(c) the work rate required to power the pump ($\mathrm{kW)}$,
(d) the overall thermal efficiency,
(e) a correctly oriented sketch, including the vapor dome and appropriate numerical values of P and v, of the cycle on a $P-v$ diagram,

Solution

The tables give us

$$
\begin{gathered}
h_{1}=191.81 \frac{\mathrm{~kJ}}{\mathrm{~kg}}, \quad h_{2}=259.47 \frac{\mathrm{~kJ}}{\mathrm{~kg}}, \quad h_{3}=4611.04 \frac{\mathrm{~kJ}}{\mathrm{~kg}}, \quad h_{4}=2584.63 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
v_{1}=0.001010 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}, \quad v_{2}=0.001013 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}, \quad v_{3}=0.05832 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}, \quad v_{4}=14.67355 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}
\end{gathered}
$$

For the boiler we have

$$
{ }_{2} q_{3}=h_{3}-h_{2}=\left(4611.04 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right)-\left(259.47 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right)=4351.57 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

So we have

$$
\begin{gathered}
{ }_{2} \dot{Q}_{3}=\dot{m}_{2} q_{3} \\
\dot{m}=\frac{{ }_{2} \dot{Q}_{3}}{{ }_{2} q_{3}}=\frac{10^{6} \mathrm{~kW}}{4351.57 \frac{\mathrm{~kJ}}{\mathrm{~kg}}}=229.802 \frac{\mathrm{~kg}}{\mathrm{~s}}
\end{gathered}
$$

The specific turbine work is

$$
{ }_{3} w_{4}=h_{3}-h_{4}=\left(4611.04 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right)-\left(2584.63 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right)=2026.41 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

So the turbine power output is

$$
{ }_{3} \dot{W}_{4}=\dot{m}{ }_{3} w_{4}=\left(229.802 \frac{\mathrm{~kg}}{\mathrm{~s}}\right)\left(2026.41 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right)=465673 \mathrm{~kW} .
$$

For the pump, we need the following work

$$
{ }_{1} \dot{W}_{2}=\dot{m}\left(h_{1}-h_{2}\right)=\left(229.802 \frac{\mathrm{~kg}}{\mathrm{~s}}\right)\left(191.81 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right)-\left(259.47 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right)=-15548.4 \mathrm{~kW}
$$

So the thermal efficiency is

$$
\eta=\frac{\dot{W}_{n e t}}{\dot{Q}_{i n}}=\frac{(465673 \mathrm{~kW})-(15548.4 \mathrm{~kW})}{10^{6} \mathrm{~kW}}=0.450125
$$

2. (30) A chamber with initial volume $V_{1}=1 \mathrm{~m}^{3}$ contains air at $P_{1}=100 \mathrm{kPa}, T_{1}=300 \mathrm{~K}$. The air is constrained by a piston attached to a linear spring. The air is heated to $T_{2}=3000 \mathrm{~K}$, $P_{2}=200 \mathrm{kPa}$. Find the heat transfer ${ }_{1} Q_{2}$ assuming air is a
(a) calorically perfect ideal gas, (use Table A.5),
(b) calorically imperfect ideal gas (use Table A.7.1).
(c) Give a one-sentence, qualitative, physics-based interpretation as to why one estimate is different than the other.

Solution

The ideal gas law gives us

$$
\begin{gathered}
\frac{P_{2} V_{2}}{T_{2}}=\frac{P_{1} V_{1}}{T_{1}} \\
V_{2}=\frac{P_{1}}{P_{2}} \frac{T_{2}}{T_{1}} V_{1} \\
V_{2}=\frac{100 \mathrm{kPa}}{200 \mathrm{kPa}} 3000 \mathrm{~K} \\
V_{2}=500 \mathrm{~K} \\
\mathrm{~m}^{3} .
\end{gathered}
$$

Now we know that for a linear spring ${ }_{1} W_{2}=\int_{1}^{2} P d V$ gives us the area of a trapezoid, which is

$$
\begin{gathered}
{ }_{1} W_{2}=\frac{P_{1}+P_{2}}{2}\left(V_{2}-V_{1}\right) \\
{ }_{1} W_{2}=\frac{100 \mathrm{kPa}+200 \mathrm{kPa}}{2}\left(5 \mathrm{~m}^{3}-1 \mathrm{~m}^{3}\right) \\
{ }_{1} W_{2}=600 \mathrm{~kJ}
\end{gathered}
$$

The first law then gives us

$$
U_{2}-U_{1}={ }_{1} Q_{2}-{ }_{1} W_{2}
$$

$$
\begin{gathered}
{ }_{1} Q_{2}=U_{2}-U_{1}+{ }_{1} W_{2} \\
{ }_{1} Q_{2}=m\left(u_{2}-u_{1}\right)+{ }_{1} W_{2}
\end{gathered}
$$

Now, we have

$$
\begin{gathered}
m=\frac{P_{1} V_{1}}{R T_{1}} \\
m=\frac{(100 \mathrm{kPa})\left(1 \mathrm{~m}^{3}\right)}{\left(0.287 \frac{\mathrm{~kJ}}{\mathrm{~kg} \mathrm{~K}}\right)(300 \mathrm{~K})} \\
m=1.16144 \mathrm{~kg}
\end{gathered}
$$

For a CPIG, we have $u_{2}-u_{1}=c_{v}\left(T_{2}-T_{1}\right)$, and we take $c_{v}=0.717 \mathrm{~kJ} / \mathrm{kg} / \mathrm{K}$, so

$$
{ }_{1} Q_{2}=m c_{v}\left(T_{2}-T_{1}\right)+{ }_{1} W_{2}
$$

$$
{ }_{1} Q_{2}=(1.16144 \mathrm{~kg})\left(0.717 \frac{\mathrm{~kJ}}{\mathrm{~kg} \mathrm{~K}}\right)((3000 \mathrm{~K})-(300 \mathrm{~K}))+600 \mathrm{~kJ}
$$

$$
{ }^{1} Q_{2}=2848.43 \mathrm{~kJ}
$$

For the CIIG, we have from the tables $u_{2}=2664.27 \mathrm{~kJ} / \mathrm{kg}, u_{1}=214.36 \mathrm{~kJ} / \mathrm{kg}$. So

$$
\begin{gathered}
{ }_{1} Q_{2}=(1.16144 \mathrm{~kg})\left(\left(2664.27 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right)-\left(214.36 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right)\right)+600 \mathrm{~kJ} \\
{ }_{1} Q_{2}=3445.54 \mathrm{~kJ}
\end{gathered}
$$

For diatomic molecules, more heat is needed because some energy goes to vibrational and rotational modes.
3. (30) A 1 kg block of silver and a 1 kg block of gold are within in a closed, thermally insulated chamber. The silver has initial temperature $T_{S}(0)=1000 \mathrm{~K}$, and the gold has initial temperature $T_{G}(0)=300 \mathrm{~K}$. The two blocks come to a thermal equilibrium so that they have same final temperature.
(a) Find the equilibrium temperature.
(b) Taking as a crude model for the heat transfer rate from silver to gold

$$
\dot{Q}=\left(0.001 \frac{\mathrm{~kW}}{\mathrm{~K}}\right)\left(T_{S}-T_{G}\right)
$$

find the time constant of equilibration.

Solution

For this problem, there is no work, so $\dot{W}=0$. For the silver and gold blocks, we have from the first law

$$
\frac{d U_{S}}{d t}=-\dot{Q}, \quad \frac{d U_{G}}{d t}=\dot{Q}
$$

Adding the two we see

$$
\frac{d}{d t}\left(U_{S}+U_{G}\right)=0
$$

That is to say the thermal energy of the combined system is conserved. So

$$
U_{S}+U_{G}=\left.\left(U_{S}+U_{G}\right)\right|_{t=0}
$$

Using the relation for a solid with constant specific heat that U is proportional to $m c T$, we can say

$$
m_{S} c_{S} T_{S}+m_{G} c_{G} T_{G}=m_{S} c_{S} T_{S o}+m_{G} c_{G} T_{G o}
$$

For us $m_{S}=m_{G}=m$, so we could say

$$
c_{S} T_{S}+c_{G} T_{G}=c_{S} T_{S o}+c_{G} T_{G o}
$$

So at a general time, we could say

$$
\begin{gathered}
T_{G}(t)=\frac{c_{S}\left(T_{S o}-T_{S}(t)\right)+c_{G} T_{G o}}{c_{G}} \\
T_{G}(t)=\frac{c_{S}}{c_{G}}\left(T_{S o}-T_{S}(t)\right)+T_{G o}
\end{gathered}
$$

At the equilibrium state, $T_{S}=T_{G}=T_{E}$, so

$$
\begin{gathered}
c_{S} T_{E}+c_{G} T_{E}=c_{S} T_{S o}+c_{G} T_{G o} \\
T_{E}=\frac{c_{S} T_{S o}+c_{G} T_{G o}}{c_{S}+c_{G}} \\
T_{E}=\frac{\left(0.24 \frac{\mathrm{~kJ}}{\mathrm{~kg} \mathrm{~K}}\right)(1000 \mathrm{~K})+\left(0.13 \frac{\mathrm{~kJ}}{\mathrm{~kg} \mathrm{~K}}\right)(300 \mathrm{~K})}{\left(0.24 \frac{\mathrm{~kJ}}{\mathrm{~kg} \mathrm{~K}}\right)+\left(0.13 \frac{\mathrm{~kJ}}{\mathrm{~kg} \mathrm{~K}}\right)} \\
T_{E}=754.054 \mathrm{~K}
\end{gathered}
$$

We can rewrite the first law for silver as

$$
\begin{gathered}
m c_{S} \frac{d T_{S}}{d t}=-\mathrm{h}\left(T_{S}-T_{G}\right) \\
m c_{S} \frac{d T_{S}}{d t}=-\mathrm{h}\left(T_{S}-\left(\frac{c_{S}}{c_{G}}\left(T_{S o}-T_{S}\right)+T_{G o}\right)\right) \\
m c_{S} \frac{d T_{S}}{d t}=-\mathrm{h}\left(T_{S}\left(1+\frac{c_{S}}{c_{G}}\right)-\left(\frac{c_{S}}{c_{G}} T_{S o}+T_{G o}\right)\right) \\
\frac{d T_{S}}{d t}=-\frac{\mathrm{h}}{m c_{S}}\left(T_{S}\left(1+\frac{c_{S}}{c_{G}}\right)-\left(\frac{c_{S}}{c_{G}} T_{S o}+T_{G o}\right)\right)
\end{gathered}
$$

By inspection, the time constant is

$$
\tau=\frac{m c_{S}}{\mathrm{~h}\left(1+\frac{c_{S}}{c_{G}}\right)}=\frac{(1 \mathrm{~kg})\left(0.24 \frac{\mathrm{~kJ}}{\mathrm{~kg} \mathrm{~K}}\right)}{\left(0.001 \frac{\mathrm{~kW}}{\mathrm{~K}}\right)\left(1+\frac{0.24 \frac{\mathrm{~kJ}}{\mathrm{~kg} \mathrm{~K}}}{0.13 \frac{\mathrm{~kJ}}{\mathrm{~kg} \mathrm{~K}}}\right)}=84.32 \mathrm{~s}
$$

As an aside, we can divide top and bottom by c_{S} to rewrite τ as

$$
\tau=\frac{m}{\mathrm{~h}\left(\frac{1}{c_{S}}+\frac{1}{c_{G}}\right)}
$$

Defining $c_{h m}$ as the harmonic mean specific heat:

$$
c_{h m}=\frac{2}{\frac{1}{c_{S}}+\frac{1}{c_{G}}}
$$

we could say

$$
\tau=\frac{m c_{h m}}{2 \mathrm{~h}}
$$

One can solve for the differential equations and get

$$
\begin{aligned}
& T_{S}(t)=(754.054 \mathrm{~K})+(245.946 \mathrm{~K}) \exp (-t /(84.32 \mathrm{~s})) \\
& T_{G}(t)=(754.054 \mathrm{~K})-(454.054 \mathrm{~K}) \exp (-t /(84.32 \mathrm{~s}))
\end{aligned}
$$

