AME 20231 Homework 4

Due: Thursday, 3 February 2022, 9:00 AM, on Sakai

- 1. 3.32, instead let the air temperature be 285 K.
- 2. 3.40, instead let the mass of liquid water be 1.85 kg.
- 3. 3.44, instead let the final temperature be 820 K.
- 4. 3.47, instead let the final volume be $V = 4.5 \text{ m}^3$.
- 5. (adopted from BS, 7th edition). Ammonia vapor is compressed inside a cylinder by an external force acting on the piston. The ammonia is initially at 30° C, 450 kPa, and the final pressure is 1450 kPa. The following data have been measured for the process:

Table 1: P - V data for ammonia compression

P (kPa)	V(L)
450	1.25
661	1.07
801	0.92
950	0.82
1140	0.71
1288	0.62
1450	0.50

Determine the work done by the ammonia by an appropriate numerical method to approximate $W = \int P \ dV$.

Include in your submission a professional quality plot of the process in P-V space. Label the axes appropriately, and include a plot of the vapor dome as a part of your plot.