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INTRODUCTION 

No.3 

T HE recent development of various methods of modulation such as rCM 
and PPM which exchange bandwidth for signal-to-noise ratio has in

tensitied the interest in a general theory of communication. A basis for 
such a theory is contained in the important papers of Nyquist l and Hartley2 

on this subject. In the present paper we will extend the theory to include a 
number of new factors, in particular the effect of noise in the channel, and 
the savings possible due to the statistical structure of the original message 
and due to the nature of the tinal destination of the information. 

The fundamental problem of communication is that of reproducing at 
one point either exactly or approximately a message selected at another 
point. Frequently the messages have meaning; that is they refer to or are 
correlated according to some system with certain physical or conceptual 
entities. These semantic aspects of communication are irrelevant to the 
engineering problem. The significant aspect is that the actual message is 
one selected iro111 a set of possible messages. The system must be designed 
to operate for each possible selection, not just the one which will actually 
be chosen since this is unknown at the time of design. 

If the number of messages in the set is finite then this number or any 
monotonic function of this number can be regarded as a measure of the in
formation produced when one message is chosen from the set, all choices 
being equally likely. As was pointed out by Hartley the most natural 
choice is the logarithmic function. Although this definition must be gen
eralized considerably when we consider the inl1uence of the statistics of the 
message and when we have a continuous range of messages, we will in all 
cases use an essentially logarithmic measure. 

The logarithmic measure is more convenient for various reasons: 
1. It is practically more useful. Parameters of engineering importance 

1 Nyquist, H., "Certain Factors Affecting Telegraph Speed," Bell System Terlmical J,ll/r
Ilul, April 1924, p. 324; "Certain Topics in Telegraph Transmission Theory," A. I. E. E. 
T,ans., v. 47, April 1928, p. 617. 

2 Hartley, R. V. L., "Transmission of Information," Bell System Tec/mical JIJunllll, July 
1928, p. 535. 
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such as time, bandwidth, number of relays, etc., tend to vary linearly with 
the logarithm of the number of possibilities. For example, adding one relay ! 

to a group doubles the number of possible states of the relays. It adds 1 I 
to the base 2 logarithm of this number. Doubling the time roughly squares ..... 
the number of possible messages, or doubles the logarithm, etc. 

2. It is nearer to our intuitive feeling as to the proper measure. This is 
closely related to (1) since we intuitively measure entities by linear com- ! 
parison with common standards. One feels, for example, that two punched 
cards should have twice the capacity of one for information storage, and two 
identical channels twice the capacity of one for transmitting information. 

3. It is mathematically more suitable. Many of the limiting operations 
are simple in terms of the logarithm but would require clumsy restatement in 
terms of the number of possibilities. 

The choice of a logarithmic base corresponds to the choice of a unit for 
measuring information. If the base 2 is used the resulting units may he 
called binary digits, or more briedy bils, a word suggested by J. W. Tukey. 
A device with two stable positions, such as a relay or a flip-flop circuit, can 
store one bit of information. III such devices can store N bits, since the 
total number of possible states is 2.v and log22N = N. If the base 10 is 
used the units may be called decimal digits. Since 

log2 M = 10glO M /loglo2 

= 3.32 loglo }[, 

a decimal digit is about 3! bits. A digit wheel on a desk computing machine 
has ten stable positions and therefore has a storage capacity of one decimal 
digit. In analytical work where integration and differentiation are involved 
the base e is sometimes useful. The resulting units of information will he 
called natural units. Change from the base a. to base b merely requires 
multiplication by 10gb a. 

By a communication system we will mean a system of the type indicated 
schematically in Fig. 1. It consists of essentially five parts: 

1. An illformation source which produces a message or sequence of mes
sages to be communicated to the receiving temlinaL The message may he 
of various types: e.g. (a) A sequence of letters as in a telegraph or teletype 
system; (b) A single function of time j(t) as in radio or telephony; (c) A 
function of time and other variables as in black and white television--here 
the message may be thought of as a function j(x, y, t) of two space coordi
nates and time, the light intensity at point (x, y) and time t on a pickup tube 
plate; (d) Two or more functions of time, say jet), g(t), h(t)-this is the 
case in "three dimensional" sound transmission or if the system is intended 
to sen'ice several individual channels in multiplex; (e) Several fUllctions of 
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several variables--in color television the message consists of three functions 
j(.l:; y, t), g(x, y, I), hex, y, t) defined in a three-dimensional continuum
we may also think of these three functions as components of a vector tield 
~fined in the region-similarly, several black and white televi$ion sources 
,,{ould produce "messages" consisting of a llumber of functions of three 
variables; (f) Various combinations also occur, for example itl television 
with an associated audio channel. 

2. A trallsmitler which operates on the message in some way to produce a 
signal suitable for tra.nsmission over the channel. In telephony this opera
tion consists merely of changing sound pressure into a proportional electrical 
current. In telegraphy we have an encoding operation which prouuces a 
seqpence of dots, dashes and spaces on the channel corresponding to the 
messiige. In a multiplex PCM system the different speech functions must 
be sampled, compressed. quantized and encoded, and 1Inally interleaved 

ME~~AGE 

NOISE 
SOURCE 

MESSAGE 

Fig. l--Schematic diagram of a gem'ral communication system. 

llroperly to construct the signal. Voeoder systems, television, and fre
quency modulation are other examples of complex operations applied to the 
message to obtain the signal. 

3. The (hannel is merely the medium used to transmit the signal from 
transmitter to receiver. It may be a pair of wires, a coaxial cable, a baml of 
radio frequencies, a beam of light, etc. 

4. The receiver ordinarily performs the inverse operation of that done by 
the transmitter, reconstructing the message from the signal. 

S. The destination is the person (or thing) for whom the message is in
tended. 

We wish tu consider certain general problems involving cummunicatiun 
systems. To do this it is first necessary to represent the various clements 
involved as mathematical entities, suitably idealized from their physical 
counterparts. \:Ve may roughly classify communication systems into three 
main categories: discrete, continuous and mixt(l. By a discrete system we 
will mean one in which both the message and the signal are a sequence of 
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discrete symbols. A typical case is telegraphy where the message is a 
sequence of letters and the signal a sequence of dots, dashes and spaces. 
A continuous system is one in which the message and signal are both treated 
as continuous functions, e.g. radio or television. A mixed system is one in 
which both discrete and continuous variables appear, e.g., PCM transmis
sion of speech. 

\Ve first consider the discrete case. This case has applications not only 
in communication theory, but also in the theory of computing machines, 
the design of telephone exchanges and other fields. In addition the discrete 
case forms a foundation for the continuous and mixed cases which will be 
treated in the second half of the paper. 

PART I: DISCRETE NOISELESS SYSTEMS 

1. THE DISCRETE NOISELESS CHANNEL 

Teletype and telegraphy are two simple examples of a discrete channel 
for transnllttmg mtormation. Generally, a discrete channel will mean a 
system whereby a sequence of choices from a finite set of elementary sym
bols Sl ... S n can be transmitted from one point to another. Each of the 
symbols S; is assumed to have a certain duration in time Ii seconds (not 
necessarily the same for different S i , for example the dots and dashes in 
telegraphy). It is not required that all possible sequences of the Si be cap
able of transmission on the system; certain sequences only may be allowed. 
These will be possible signals for the channel. Thus in telegraphy suppose 
the symbols are: (1) A dot, consisting of line closure for a unit of time and 
then line open for a unit of time; (2) A dash, consisting of three time units 
of closure and one unit open; (3) A letter space consisting of, say, three units 
of line open; (4) A word space of si.x units of line open. We might place 
the restriction on allO\\'able sequences that no spaces follow each other (for 
if two letter spaces are adjacent, it is identical with a word space). The 
question we now consider is how one can measure the capacity of such a 
channel to transmit information. 

In the teletype case where all symbols are of the same duration, and any 
sequence of the 32 symbols is allowed the answer is easy. Each symbol 
represents five bits of information. If the system transmits n symbols , 
per second it is natural to say that the channel has a capacity of Sit bits per ~!. 
second. This does not mean that the teletype channel will always be trans
mitting information at this rate--this is the maximum possible rate and 
whether or not the actual rate reaches this maximum depends on the source
of information which feeds the channel, as will appear later. 
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In the more general case with different lengths of symbols and constraints 
on the allowed sequences, we make the following definition: 
Definition: The capacity C of a discrete channel is given by 

C = Lim l_og-i'\l:_(J~) 
T ->co 

where N (T) is the number of allowed signals of duration T. 
It is easily seen that in the teletype case this reduces to the previous 

result. It can be showll that the limit in question will exist as a finite num
ber in most cases of interest. Suppose all sequences of the symbols S\ , ... , 
Sn are allowed and these symbols have durations 11 , ... , in. What is the 
channel capacity? If N(t) represents the number of sequences of duration 
t we have 

N(t) = N(t - 11) + N(t - 12) + ... + N(t - In) 

The total number is equal to the sum of the numbers of sequences ending in 
51, S2 , ... ,Sn and these are NO - II), N(t - 12), ••• , N(t - In), respec
tively. According to a well known result in finite differences, N(t) is then 
asymptotic for large t to X~ where Xo is the largest real solution of the 
characteristic equation: 

X-tl + r t2 + ... + x-t,. = 1 

and therefore 

C = log Ko 

In case there are restrictions on allowed sequences we may still often ob
tain a difference equation of this type and find C from the characteristic 
equation. In the telegraphy case mentioned above 

N(t) = N(t - 2) + N(t - 4) + N(I - 5) + N(t - 7) + N(I - 8) 

+ N(t - 10) 

as we see by counting sequences of symbols according to the last or next to 
the last symbol occurring. Hence C is - log p.o where JAo is the positive 
root of 1 = fJ.2 + p.4 + fJ.5 + fJ.7 + fJ.8 + p.lO. Solving this we find C = 0.539. 

A very general type of restriction which may be placed on allowed se
quences is the following: We imagine a number of possible states al ,a2 , ... , 
am. For each state only certain symbols from the set Sl , ... , Sn can be 
transmitted (different subsets for the different states). When one of these 
has been transmitted, the state changes to a new state depending both on 
the old state and the particular symbol transmitted. The telegraph case is 
a simple example of this. There are twu states depending on whether or not 
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a space was the last symbul transmitted. Ii so then only a dot or a dash 
can be sent next and the state always changes. If not, any symbol can be 
transmitted and the state changes if a space is sent, otherwise it remains 
the same. The conditions can be indicated in a linear graph as shown in 
Fig. 2. The junction points correspond to the states and the lines indicate 
the symbols possible in a state and the resulting state. In Appendix I it is 
shown that if the conditions on allowed sequences can be described in this 
form C will exist and can be calculated in accordance with the following 
result: 

Theorem 1: Let bi;) be the duration of the sth symbol which is allowable in 
state i and leads to state J. Then the channel capacity C is equal to log 
11' where H' is the largest real root of the determinant equation: 

I'"' (,,) L.....J lV-b,) - Ojj I o. 

where Oil 1 if i = j and is zero otherwise. 

DASH 

DOT 

DASH 

WORD SPACE 

Fig. 2--Graphical representation of the constraints on telegraph symbols. 

For example, in the telegraph case (Fig. 2) the determinant is: 

- 1 Or-2 + 1l,-4) I 

I = 0 (Jr---;; + Jr'-- G) (TV-:! + W- 4 - 1) I 

On expansion this leads to the equation given above for this case. 

2. TIlE DISCRETE SOURCE OF INFORMATIOK 

We have seen that under very general conditions the logarithm of the 
number of possible signals in a discrete channel increases linearly with time. 
The capacity to transmit information can be specified by giving this rate of 
increase, the number of hits per second required to specify the particular 
signal used. 

We now consider the information source. How is an information source 
to be described mathematically, and how much information in bits per sec
ond i~ produced in a given source? The main point at issue is the effect of 
statistical knowledge about the sourCe in reducing the required capacity 

~ 
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of the channel, by the use of proper encuding of the information. In teleg
raphy, for example, the messages to be transmitted consist of sequences 
of letters. These sequences, however, are not completely random. In 
general, they form sentences and have the statistical structure of, say, Eng
lish. The letter E occurs mure frequently than Q, the sequence TH more 
frequently than XP, etc. The existence of this structure allows one to 
make a saving in time (or channel capacity) by properly encoding the mes
sage sequences into signal sequences. This is already done to a limited ex
tent in telegraphy by using the shortest channel symbol, a dot, for the most 
common English letter E; while the infrequent letters, Q, X, Z are repre
sented by longer sequences of dots and dashes. This idea is carried still 
further in certain conunercial codes where common words and phrases are 
represented by four- or five-letter code groups with a considerable saving in 
average time. The standardized greeting and anniversary telegrams now 
in use extend this to the point of encoding a sentence or two into a relatively 
short se4uence of numbers. 

We can think of a discrete source as generating the message, symbol by 
symbol. It will choose successive symbols according to certain probabilities 
depending, in general, on preceding choices as well as the particular symbols 
in question. A physical system, or a mathematical model of a system which 
produces such a sequence of symbols governed by a set of probabilities is 
known as a stochastic process.3 We may consider a discrete source, there
fore, to be represented by a stochastic pro::ess. Conversely, any stochastic 
process which produces a discrete sequence of symbols chosen from a finite 
set may be rO:lsidered a discrete source. Tbis will include such cases as: 
1. Natural written languages such as English, tierman, Chinese. 
2. Continuous information sources that have been rendered discrete by some 

quantlzlIlg process. For example, the quantized speech from a peM 
transmitter, or a quantized t60levision signal. 

3. Mathematical cases where we merely define abstractly a stuchastic 
process which generates a sequence of symbols. The following are ex
amples of this last type of source. 
(A) Suppose we have five letters A, B, C, D, E which are chosen each 

with probability .2, successive choices being independent. This 
would lead to a sequence of which the folluwing is a typical example. 
RDCBCECCCADCBDDAAECEEA 
ABBDAEECACEEBAEECBCEAD 
This was constructed with the use of a table of random numbers.' 

3 See, for example, S. Chandrasekhar, "Stochastic Problem~ in Physics and Astronomy," 
Ret'ie-,,'s 4 JJ odern PIi_vsics, v. 15, No.1, January 19-B. p. 1. 

I Kendall and Smith. "Tables of Random Samplin~ Numbers," ('alllbrid~('. 1939. 
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(B) Using the same tive letters let the probabilities be .4, .1, .2, .2,.1 
respectively, with successive choices independent. A typical 
message from this source is then: 
AAACDCBDCEAADADACEDA 
EADCABEDADDCECAAAAAD 

(C) A more complicated structure is obtained if successive symbols are 
not chosen independently but their probabilities depend on preced
ing letters. In the simplest case of this type a choice depends only 
on the preceding letter and not on ones before that. The statistical 
structure can then be described by a set of transition probabilities 
Pi(j), the probability that letter i is followed by letter j. The in
dices i and j range over all the possible symbols. A second equiv
alent way of specifying the structure is to give the "digram" prob
abilities p(i, j), i.e., the relative frequency of the digram i j. The 
letter irequencies pCi), (the probability of letter i), the transition 
probabilities P i(j) and the digram probabilities P(i, j) are related by 
the following formulas. 

p(i) = L p(i, j) = L p(j, i) L p(j)Pi(i) 
j i 

p(i, j) = P(i)Pi(j) 

L p.;(j) = L p(i) = L p(i, j)' = l. 
ii i.i 

As a specitic example suppose there are three letters A, B, C with the prob
ability tables: 

Pi(j) I .I p(i) p(i, j) I j 
A B C A B C 

____ 0 __ 

~---.------

A 0 " J_ A \I A 0 4 1 
5 5 --;.-f Yi, T"K 

B 1 1 0 B 16 B ~ 8 0 2 2 -2-"- 27 -2-7 

C I 2 1 Clf C 1 4 ] 

i 5 To :i'f Y~-5- r35 

A typical message from this source is the following: 
ABBABABABABABABBBABBBBBAB 
ABABARABBHACACABBABBBBABB 
ABACBBBABA 
The next increase in complexity would involve trigram frequencies 
but no more. The choice of a letter would depend on the preceding 
two letters but not on the message before that point. A set of tri
gram frequencies pU, j, k) or equivalently a set of transition prob-
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abilities piJ(k) would be required. Continuing in this way one ob
tains successively more complicated stochastic processes. In the 
general ll-graIll case a set of 1l-gram probabilities PUI , i2 , ••• , iT.) 
or of transition probabilities Pi l • iz ..... ;,,-1 (i,.) is required to 
specify the statistical structure. 

(D) Stochastic processes can also be defined which produce a text con
sisting of a sequence of "wonls." Suppose there are rive letters 
A, B, C, D, E and 16 "words" in the language with associated 
probabilities: 

.10 A .. 16 BEBE .11 CABED .04 DEB 

.04ADEB .04 BED .05 CEED .15 DEED 

.05 ADEE .02 BEED .08 DAB .01 EAB 

.01 BADD .05 CA .04 DAD .05 EE 

Suppose successive "words" are chosen independently and are 
separated by a space. A typical message might be: 
DAB EE A BEBE DEED DEB ADEE ADEE EE DEB BEBE 
BEBE BEBE ADEE BED DEED DEED CEED ADEE A DEED 
DEED BEBE CABED HEBE BED DAR DEED ADEB 
If all the words are of [mite length this process is equivalent to one 
of the preceding type, but tIlt' description may be simpler in terms 
of the word structure and probabilities. \Ve may also generalize 
here and introduce transition probabilities between words, etc. 

These artificial languages are useful in constructing simple problems and 
examples to illustrate various possibilities. We can also approximate to a 
natural language by means of a series of simple artiflcial languages. The 
zero-order approximation is obtained by choosing all letters with the same 
probability and independently. The first-order approximation is obtained 
by choosing successive letters independently but each letter having the 
same probability that it does in the natural language.5 Thus, in the first
order approximation to English, E is chosen with probability .12 (its fre
quency in nomlal English) and W with probability .02, but there is no in
fluence between adjacent letters and no tendency to form the preferred 
digrams such as TH, ED, etc. In the second-order approximation, digram 
structure is introduced. After a letter is chosen, the next one is chosen in 
accordance with the frequencies with which the various letters follow the 
first one. This requires a table of digram frequencies Pi(j). In the third
order approximation, trigram structure is introduced. Each letter is chosen 
with probabilities which depend on the preceding two letters. 

• Letter, digram and trigram irequencies are given in "Secret and Urgent" Ly FlctclllT 
Pratt, Blue Ribbon Books 1939. Word frequencies are taLulated in "Relative Frequency 
of English Speech Sounds," G. Dewey, Harvard University Press, 1923. 
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3. THE SERIES OF ApPl{OXLU.'l.TIONS TO ENGUSH 

To give a visual idea of how this series of J>rocesses approaches a language, 
typical sequences in the approximations to English have been constructed 
and are given below. In all cases we have assumed a 27-symbol "alphabet," 
the 26 letters and a space. 

1. Zero-order approximatioll (symbols iJl(lependem and equi-probable). 
XF()ML RXKHRJFFJUJ ZLPWCFWKCYJ 
FFJEYVK( \~SGXYD ()PAAMKBZAACIRZLHJQJJ 

2. First-order apl>roximation (symbols independent but with frequencies 
of English text). 

neRO HLI RCWR :NMl.ELWIS EU LL NBNESEHYA TH EEL 
ALHENHTTPA OOBTTVA NAH BRL 

3. Second-order approximation (digrani structure as in English). 
ON IE ANTSOLJTI~YS ARE T INCTORE ST BE S DEAMY 
ACHIN D ILONASIVE TUCOO\\'E AT TEASONARE FFSO 
TIZI\" ANDY TOBE SEACE CTISBE 

-1-'. Third-order approximation (trigram structure as in English). 
IX NO 1ST LAT WHEY CRATICT FROURE BIRS GROCID 
PUNDENOME OF DEMONSTFRES OF THE REPTAGIK IS 
REGOACTIONA OF eRE 

5. First-Order Word Approximation. Rather than continue with tetra
gram, ... , Il-gram structure it is easier and better to jump at this 
point to word units. Here words are chosen independently but with 
their appropriate frequencies. 

REPRESENTIN(~ A~D SPEEDILY IS A1\ (~OOD APT OR 
COME CAN DIFFERENT NATURAL HERE HE THE A IX 
CAME THE TO OF TO EXPERT GRAY COME TO FUR
NISHES THE LI~E MESSAGE HAD BE THESE. 

6. Second-Order Word Approximation. The word transition probabil-
ities are correct but no further structure is included. 

THE HEAD AND I~ FRONTAL ATTACK ON AN ENGLISH 
WRITER THAT THE CHARACTER OF THIS POINT IS 
THEREFORE AXOTHER METHOD FOR THE LETTERS 
THAT THE TIME OF WHO E\'ER TOLD THE PROBLEM 
FOR AX UNEXPECTED 

The re~elllblance to ordinary English text increases quite noticeably at 
each of the above steps. Note that these samples have reasonably good 
structure out to about twice the range that is taken into account in their 
constructioll. Thus in (3) the statistical process insures reasonable text 
for two-letter sequence, but four-letter sequences from the sample can 
usually be iitted into good sentences. In (6) sequences of four or more 
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words can easily he placed in sentences without unusual or strained con
structions. The particular sequence of ten words "attack on an English 
writer that the character of this" is 110t at all unreasonable. It appears 
then that a sufficiently complex stochastic process will give a satisfactory 
representation of a discrete source. 

The tirst two samples were constructed by the use of a book of random 
numbers in conjunction with (for example 2) a table of letter frequencies. 
This method might have been continued for (3), (-1-), and (5), since digram, 
trigram, and word frequency tables are available, but a simpler equivalent 
method was used. To construct (3) for example, one opens a book at ran
dom and selects a letter at random on the page. This letter is recorded. 
The book is then opened to another page and one reads until this letter is 
enrountered. The succeeding letter is then recorded. Turning to another 
page this second letter is searched for and the succeeding letter recorded, 
etc. A similar pn>cess was used for (-1-), (5), and (6). It would be interest
ing if further approximations could be cOllstructed, but the labor involved 
becomes enormous at the next stage. 

4. (;RAPIHCAL REPRESENTATWI\ m' A MARKOPF PR()CES~ 

Stochastic processes of the type described above are known mathe
matically as discrete Markoff processes and have been extensively studied in 
the literature.6 The general case can be described as follows: There exist a 
finite number of possible "states" of a system; SI , S2 , ... , Sn. In addi
tion there is a set of transition probabilities; Pi(j) the probability that if the 
system is in state S i it will next go to state Sj. To make this Markoff 
process into an information source we need only assume that a letter is pro
duced for each transition from one state to another. The states will corre
spond to the ':residue of influence" from preceding letters. 

The situation can be represented graphically as shown in Figs. 3, 4 and 5. 
The "states" are the junction points in the graph and the probabilities and 
letters produced for a transition are given beside the corresponding line. 
Figure 3 is for the example B in Section 2, while Fig. -1- corresponds to the 
example C. In Fig. 3 there is only one state since successive letters are 
independent. In Fig. -1- there are as many states as letters. If a trigram 
example were constructed there would be at most Jl2 states corresponuing 
to the possible pairs of letters preceding the OIle being chosen. Figure 5 
is a graph for the case of word structure in example D. Here S corresponds 
to the ':space" symbol. 

o For a detailed treatment see M. Frl'chet. ,. Methods des iunctions arhitraircs. Tlworie 
des enenements en chaine oans It' cas o'un nimllJre fini o'etats possilJlcs" Paris, Gauthi('r
Yillars. 1938. 
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5. ERGODIC AND MIXED SOURCES 

As we have indicated above a discrete source for our purposes can be con
sidered to be represented by a Markoff process. Among the possible discrete 
Markoff processes there is a group with special properties of significance in 

¥
A.lB !4 

E .2 

.1 C 

o .2 
Fig. 3-A graph correbponding to the source in example B. 

c 

Fig. 4-A graph corresponding to the source in example C. 

Fig. 5-A graph corrt:sponding to the source in example D. 

communication theory. This special class consists of the "ergodic" proc
esses and we shall call the corresponding sources ergodic sources. Although 
a rigorous definition of an ergodic process is somewhat involved, the general 
idea is simple. In an ergodic process every sequence produced by the proc-

I 
t 
~ 
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ess is the same in statistical properties. Thus the letter frequencies, 
digram frequencies, etc., obtained from particular sequences will, as the 
lengths of the sequences increase, approach defmite limits independent of 
the particular sequence. Actually this is not true of every sequence but the 
set for which it is false has probability zero. Roughly the ergodic property 
means statistical homogeneity. 

All the examples of artiticial language:-. given above arc ergodic. This 
property is related to the structure of the corresponding graph. If the graph 
has the following two properties7 the corresponding process will be ergodic: 

1. The graph does not consist of two isolated parts A and B such that it is 
impossible to go from junction points in part A to junction points in 
part B along lines of the graph in the direction of arrows and also im
possible to go from junctiolls in part B to junctions in part A. 

2. A closed series of lines in the graph with all arrO\vs on the lines pointing 
in the same orientation will be called a '·circuit." The "length" of a 
circuit is the number of lines in it. Thus in Fig. 5 the series BERES 
is a circuit of length 5. The second pruperty required is that the 
greatest common divisor uf the lengths of all circuits in the graph be 
one. 

n the first condition is satisfied but the secoml one violated by having the 
greatest common divisor equal to d > 1, the sequences have a certain type 
of periodic structure. The various sequences fall into d different classes 
which are statistically the same apart from a shift of the origin (i.e., which 
letter ill the sequence is called letter 1). By a shift of from 0 up to d - 1 
any sequence can be made statistically equivalclIt to any other. A simple 
example with d = 2 is the following: There are three possihle letters a, b, c. 

Letter a is followed with either b or c with probabilities 1 and 5 respec
tively. Either b or c is always followed by letter <1. Thus a typical sequence 
IS 

abacacacabacababacac 

This type of situation is not of much importance for our work. 
If the first condition is violated the graph may be separated into a set of 

subgraphs each of which satisfies the first condition. We will assume that 
the second condition is also satisfied for each suhgraph. We have in this 
case what may be called a "mixed" source made up of a number of pure 
components. The components correspond to the various suhgraphs. 
H L1 , L2 , L.3 , ••• are the component sources we may write 

L = PILI + PtL 2 + PaLa + ... 
where Pi is the probability of the component source Li . 

7 These are restatements in terms of the graph of conditions given in Freehet. 
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Physically the situation represented is this: There are several different 
sources 1.1 , L2 , L,l , ... which are each of homogeneous statistical structure 
(i.e., they are ergodic). vVe do not know a priori which is to be used, but 
once the sequence starts in a given pure component L i it continues indefi
nitely according to the statistical structure of that component. 

As an example one may take two of the processes defined ahove and 
assume PI = .2 and P2 = .8. A sequence from the mixed source 

L = .2 1.1 + .8 L2 

would be obtained by choosing first 1.1 or 1.2 with probabilities .2 and .S 
and after this choice generating a sequence from whichever was chosen. 

Except when the contrary is stated we shall assume a source to be ergodic. 
This assumption enables one to identify averages along a sequence with 
averages over the ensemble of possible sequences (the probability of a dis
crepancy being zero). For example the relative frequency of the letter A 
in ,a particular infinite sequence will be, with probability une, equal to its 
relative frequency in the ensemble of sequences. 

If P; is the probability of state i and Pi(j) the transition probability to 
state j, then for the process to be stationary it is dear that the Pi must 
satisfy equilihrium conditions: 

Pj = L Pi PiC)). 
i 

In t~e ergodic case it can be shown that with any starting conditions the 
probabilities Pj(N) of being in state) after N symbols, approach the equi
librium values as N ~ x,., 

6. CHOICE, UNCERTAINTY AND ENTRUPY 

We have represented a discrete information source as a Markoff process. 
Can we define a quantity which will measure, in some sense, how much in
formation is "produced" ,by such a process, or better, at what rate informa
tion is produced? 

Suppose we have a set of possible events whuse probabilities of occurrence 
are PI, h. , . " 'PI<' These probabilities are known but that is all we know 
concerning which event will occur. Can we find a measure of how much 
"choice" is involved in the selection of the event or of how uncertain we are 
of the ou tcome? 

If there is such a measure, say H(PI , P~ , ... ,p,,), it is reasonable to re
quire of it the following properties: 

1. H should be continuous in the Pi. 
. 1 .. , 

2. It all the Pi are equal, Pi = --, then H should be a monotomc mcreasmg 
11 

JJATHEMAT/CAJ. T1IFDkl" OF COMMUN1CATION- 393 

function of /l. With equally likely events there is more choice j or un
certainty, when there are more possible events. 

3. If a choice be broken down into two successive choices, the original 
H should be the weighted sum of the individual values of H. The 
meaning of this is illustrated in Fig. o. At the left we have three 
possibilities PI = L h = ~, p:; =~. On the right \ve first choose be
tween two possibilities each with probability ~, and if the second occurs 
make another choice ""ith probahilities ~, ~. The tinal results have 
the same probabilities as hefore. We require, in this special case, 
that 

H(~, L ~) = H(L!) + ~H(~, A) 
The coetticient .~ is because this second choice only occurs half the time. 

<E
/2 

13 

1/6 

1/2 

Fig. 6-Ikcolllposition of a choice from three possibilities. 

In Appendix II, the following result is established: 
Theorem 2: The only H satisfying the three above assumptions is of the 
form: 

" 
H = -K L Pi log Pi 

;=1 

where .Ii is a positive constant. 
This theorem, and the assumptions required for its proof, are in no way 

necessary for the present theory. It is given chiefly to lend a certain plausi
bility to some of our later definitions. The real justification of these defi
nitions, however, will reside in their implications. 

Quantities of the form H = -~ Pi log Pi (the constant K merely amount:-; 
to a choice of a unit of measure) playa central role in information theory as 
measures of information, choice and uncertainty. The form of H will be 
recognized as that of entropy as defined in certain formulations of statistical 
mechanics& where Pi is the probability of a system being in cell i of its phase 
space. H is then, for example, the II in :Boltzmann's famous 11 theorem. 
We shall call lJ = - 2: Pi log Pi the entropy of the set of prohabilitic:'! 

'See, for example, R. C. Tolman, "Principles of Statistical Mechanics," Oxiord. 
Clarencioll, 1938 . 
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PI, "', p". If X is a chance variable we will write H(x) for its entropy; 
thus x is not an argument of a function but a label for a number, to differen
tiate it from H(y) say, the entropy of the chance variable y. 

The entropy in the case of two possibilities with probabilities p and q = 
1 - p, namely 

H = - (p log P + q log q) 

is plotted in Fig. 7 as a function of p. 
The quantity H has a number of interesting properties which further sub

stantiate it as a reasonable measure of choice or information. 

1.0 

.9 

.8 

.7 

H .6 
BITS 

.5 

.41 

. 3 

.2 

00 .1 .2 .3 A .5 .6 .7 .8 .9 1.0 
P 

Fig. i-Entropy in the case of two possibilities with probabilities p and (1 _ p). 

1. 11 = 0 if and only if all the Pi but one are zero, this one having the 
value unity. Thus only when we are certain of the outcome does H vanish. 
Othenvise II is positive. 

2. For a given 1Z, H is a maximum and equal to log Jl when all the Pi are 

equal ( i.e., ~). This is also intuitively the most uncertain situation. 

3. Suppose there are two events, :r and y, in question with m possibilities 
for the first and n for the second. Let p(i, j) be the probability of the joint 
occurrence of i for the first and j for the second. The entropy of the joint 
event is 

H(x, y) = - L pCi, j) log pCi, j) 
"1' 

~. ''"-_.-. '" ... _-.,. 

ii 
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while 

H(x) = - L p(i, j) log L: p(~' j) 
i.i i, 

H(y) = - L: p(i, j) log L: p(i, j). 
'.j 

It is easily shown that 

H(x, y) ~ H(x) + H(y) 

with equality only if the events are independent (i.e., p(i, j) = pU) p(j»). 
The uncertainty of a joint event is less than or equal to the sum of the 
individual uncertainties. 

4. Any change toward equalization of the probabilities PI , Pz, ... , pn 
increases II. Thus if PI < h and we increase PI, decreasing pz an equal 
amount so that PI and h are more nearly equal, then H increases. More 
generally, if we perform any "averaging" operation on the Pi of the form 

p~ = L aij Pi 
j 

where L aij = L au = 1, and all aij :2: 0, then H increases (except in the 
• i 

special case where this transformation amounts to no more than a permuta
tion of the pj with H of course remaining the same) . 

5. Suppose there are two chance events x and y as in 3, not necessarily 
independent. For any particular value i that :r can assume there is a con
ditional probability pJj) that y has the value j. This is given by 

, . pC i, j) 
PiU) = L-jc'i, j) . 

i 

We define the conditiollal entropy of y, H z(y) as the average of the cntropy 
of y for each value of x, weighted according to the probability of getting 
that .particular x. That is 

FIx(y) = - L: p(i, j) log pJj). 
i.i 

This quantity measures how uncertain we are of y on the average when we 
know x. Substituting the value of p,(j) we obtain 

Ilx(Y) = - 2.: p(i, j) log p(i, j) + L p(i, j) log L p(i, j) 
i j ij j 

= H(x, y) - H(x) 

or 

H(x, y) = H(x) + H .(y) 

i 

I 
1 

I 

.---
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The uncertainty (or entropy) of the joint event x, y is the uncertainty of x 
plus the uncertainty of y when x is known. 

6. From 3 and 5 we have 

H(x) + HCy) ~ H(.r, y) = H(x) + H x(Y) 

Hence 

H(y) ~ H x(Y) 

The uncertainty of y is never increased by knowledge of x. It will be de
creased unless x and yare independent events, in which case it is not changed. 

7. THE ENTROPY ()F .\:\ Il\:FORMATIOl\ SOURCE 

Consider a discrete source of the ti.nite state type considered above. 
For each possible state i there will be a set of probabilities Pi(j) of pro
ducing the various possible symbols j. Thus there is an entropy Hi for 
each state. The entropy of the source will be defined as the average of 
these Hi weighted in accordance with the probability of occurrence of the 
states in question: 

1I = L P,Hi 
i 

= - L Pi Pi(j) log p;Ci) 
i.j 

This is the entropy oi the source per symbol of text. If the Markoff proc
ess is proceeding at a definite time rate there is also an entropy per second 

H' = .L f;Hi 
i 

wherefi is the average frequency (occurrences per second) of state i. Clearly 

H' = mH 

where In is the average number of symbols produced per second. H or H' 
measures the amount of information generated by the source per symbol 
or per second. If the logarithmic base is 2, they will represent bits per 
symbol or per second. 

If successive symbols are independent then H is simply - ~ Pi log P,· 
where Pi is the probability of symbol i. Suppose in this case we consider a 
long message of N symbols. It will contain with high probability about 
PIN occurrences of the first symbol, hN occurrences of the second, etc. 
Hence the probabili ty of. this particular message will he roughly 

P = til.\' tr.v· .. P;.",\ 

or 
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log P =-'= ;V L Pi log Pi 
i 

log P == -NIl 

11 -± It'll 1/ P 
.'Ii 

39i 

II is thus approximately the logarithm of the reciprocal probability of a 
typical long sequence divided by the number of symbols in the sequence. 
The same result holds for any source. Stated more precisely we have (see 
Append ix III): 
Theorem 3: Given any E > 0 and 0 > 0, we can find an No such that the se
quences of any length N ~ N u fall into two classes: 
1. A set whose total probability is less than E. 

2. The remainder, all of whose members have probabilities satisfying tl1(' 
inequality 

II~?g: -1 _ II I < 0 

log p.I 
In other words we are almost certain to havt> - -.rv- very close to 11 when N 

is large. 

A closely related result deals with the number of sequences of various 
probabilities. Consider again the sequences of length N and let them be 
arranged in order of decreasing probability. vVe define Il(q) to be the 
number we must take from this sct starting with the most probable one in 
order to accumulate a total probahility q for those taken. 
Theorem 4: 

Lim l~~g n(q) 
N~oo 5/ - 11 

when tj does 110t equal 0 or 1. 

We may interpret log 1l(1/) as the number of bits required to specify the 
sequence when we consider only the most probable sequences with a total 

probability q. Then 1?if,7v'!....(ql is the number of bits per symbol for the 

speCllIcation. The theorem says that for large iV this will be independent of 
q and equal to H. The rate of growth of the logarithm of the number of 
reasonably probable sequences is given by H, regardless of our interpreta
tion of ';reasonahly probable." ()ue to tllese results, which are proved in 
appendix III, it is possible for most purposes to treat the long sequences a:;. 
though there were just 21lX of them, each with a probability 2-- llN

• 
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The next two theorems show that Hand H' can be determined by limit
ing operations directly from the statistics of the message sequences, without. 
reference to the states and transition probabilities between states. 
Theorem 5: Let p(B.) be the probability of a sequence Bi of symbols from 
the source. Let 

&.v = - ~ ~ p(B;) log pCB;) 

where the sum is over all sequences B. containing N symbols. Then· G
N 

is a monotonic decreasing function of Nand 

Lim G ... = 11. 
N-+<XJ 

Theorem 6: Let pCB i , SJ be the probability of sequence B i followed by 
symbol Sj and PBi(SJ = pCB i , Sj)/p(B,:) be the conditional probability of 
Sj after B i. Let 

FN = - L p(B i , Sj) log PBi(Sj) 
i, i 

where the sum is over all blocks B i of N - 1 symbols and over all symbols 
Sj. Then FH is a monotonic decreasing function of iV, 

FN = NGN -(N - 1) GN - 1 , 

1 n 

GN = ]V ~ FI\", 

FN :::; GN , 

and Lim PN H. 
N-+<XJ 

These results are derived in appendix III. They show that a series of 
approximations to H can be obtained by considering only the statistical 
struct ure of the sequences extending over 1, 2, ... N symbols. F N is the 
better approximation. In fact F N is the entropy of the Nth order approxi
mation to the source of the type discussed above. If there are no statistical 
iniluences extending over more than N symbols, that is if the conditional 
probability of the next symbol knowing the preceding (N - 1) is not 
changed by a knowledge of any before that, then FIr = H. Ff'/ of course is 
the conditional entropy of the next symbol when the (N - 1) preceding 
ones are known, while G " .. is the entropy per symbol of blocks of N symbols. 

The ratio of the entropy of a source to the maximum value it could have 
while still restricted to the same symbols will be called its Tela/hie e1ltropy. 
This is tlle maximum compression possible when we encode into the same 
alphabet. One minus the relative entropy is the redundancy. The redun-
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~ancy of ordinary English, not considering statistical structure over greater 
Ilistances than about eight letters is roughly 50vicJ. This means that when 
we write English half of what we write is determined by the structure of the 
language and half is chosen freely. The fIgure 50% was found by several 
independent methods which all gave results in this neighborhood. One is 
by calculation of the entropy of the approximations to English. A second 
method is to delete a certain fraction of the letters from a sample of English 
text and then let someone attempt to resture them. If they can be re
stored when 50% are deleted the redundancy must be greater than 50%. 
.\ third method depends on certain known results in cryptography. 
ITwo extremes of redundancy in English prose are represented by Basic 
English and by James Joyces' book "Finigans Wake." The Basic English 
vGcabulary is limited to 850 words and the redundancy is very high. This 
is reflected in the expansion that occurs when a passage is translated into 
Basic English. Joyce on the other hand enlarges the vocabulary and is 
alleged to achieve a compression of semantic content. 

The redundancy of a language is related to the existence of cruss\vord 
puzzles. If the redundancy is zero any sequence of letters is a reasunable 
text in the language and any two dimensional array of letters forms a cross
word puzzle. If the redundancy is too high the language imposes too 
many constraints for large crossword puzzles to be possible. A more de
tailed analysis shows that if we assume the constraints imposed by the 
language arc of a rather chaotic and random nature, large crossword puzzles 
are just possible when the redundancy is 50%. If the redundancy is 33%, 
three dimensional crossword puzzles should be possible, etc. 

8. REPRESENTATION OF THE ENCODING AND DECODING OPERATIONS 

We have yet to represent mathematically the operations performed by 
the transmitter and receiver in encoding and decoding the information. 
Either of these will be called a discrete transducer. The inpu t to the 
transducer is a sequence of input symbols and its output a sequence of out
put symbols. The transducer may have an internal memory so that its 
output depends not only on the present input symbol but also on the past 
history. We assume that the internal memory is finite, i.e. there exists 
a finite number m of possible states of the transducer and that its output is 
a function of the present state and the present input symbol. The next 
state will be a second function of these two quantities. Thus a transducer 
can be described by two functions: 

Yn = j(:Xn , a,,) 

an+l g(xn , an) 

.J 
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where: Xn is the n tl• input symbol, 

a" is the state of the transducer when the ,/" input symbol is introduced, 
Y1l is the output symbol (or sequence of output symbols) produced when 

x" is introduced if the state is Ct". 

If the output symbols of one transducer can be identified with the input 
symbols of a second, they can be connected in tanJem and the result is also 
a transducer. If there exists a second transJucer which operates on the out
put of the 1irst and recovers the original input, the first transducer will be 
called non-singular and the second will be called its inverse. 

Theorem 7: The output of a finite state transducer driven by a finite state 
statistical source is a finite state statistical source, with entropy (per unit 
time) less than or equal to that of the input. If the transducer is non
singular they are equal. 

Let a represent the state of the source, which produces a sequence of 
symbols Xi ; and let (3 be the state of the transducer, which produces, in its 
output, blocks of symbols Yi. The combined system can be represented 
by the <'product state space" of pairs (a, p). Two points in the space, 
(aI, (31) and (a2 #2), are connected by a line if al can produce an x which 
changes 131 to ;:h , and this line is given the probability of that x in this case. 
The lille is labeled with the block of Yi symbols produced by the transducer. 
The entropy of the output can be calculated as the weighted sum over the 
states. If we sum first on (3 each resulting term is less than or equal to the 
corresponding term for a, hence the entropy is not increased. If the trans
ducer is non-singular let its output be connected to the inverse transducer. 
If H~ . 11; and H~ are the output entropies of the source, the first and 
second transducers respectively, then ll~ ~ H; ~ H; = H; and therefore 
H~ = H~. 

Suppose we have a system of constraints on possible sequences of the type 
which can be represented by a linear graph as in Fig. 2. If probabilities 
p~}) were assigned to the various lines connecting state i to state j this would 
become a source. There is one particular assignment which maximizes the 
resulting entropy (sec Appendix IV). 

Theorem 8: Let the system of constraints considered as a channel have a 
capacity C. If we assign 

(.j B j c-t(~) 
Pij = -- 'I 

Bi 

where f,~;) is the duration of the sth symbol leading from state i to state j 
and the R i satisfy 

H,. = L B) c-t~j) 
-'.j 

then H is maximized and equal to C. 
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By proper assigllllent of the transition probabilities the entropy of sym
bols on a channel can be maximized at the channel capacity. 

9. THE FUNDAMENTAL THEOREM FOR A NOISELESS CHANNEL 

We will now justify our interJ)retation oi H as the rate of generating 
information by proving that 11 determines the channel capacity required 
with most efficient coding. 
Theorem 9: Let a source have entroJ)Y H (bits per symbol) and a channel 
have a capacity C (bits per second). Then it is possible to encode the output 

. h' . C; ot t e source 111 such a way as to transmIt at. the average rate-- - f symbols 
II 

per second over the channel where f is arbitrarily small. It is not possihle 
C 

to transmit at an average rate greater than -- . 
II 

C 
The converse part of the theorem, that Ii cannot be exceeded, may be 

proved by noting that the entropy uf the channel input per second is equal 
to that of the source, since the transmitter must be non-singular, and also 
this entropy cannot exceed the channel capacity. Hence H' ~ C and the 
number of symbols per second = H'/11 ~ C/H. 

The first part of the theurem will be proved in two different ways. The 
first method is to consider the set of all sequences of.v symbols produced by 
the source. For N large we can divide these into two groups, one containing 
less than i/{-+-~I.\ members and the second containing less than 2H

l\' members 
(where R is the logarithm of the number of different symbols) and having a 
total probability less than J.I.. As N increases 'rJ and J.I. approach zero. The 
number of signals of duration T in the channel is greater than iC-IJ) T with 
8 small when T is large. If we choose 

T = (~+ x) N 

then there will be a sutlicient number of sequences of channel symbols for 
the high probability group when Nand T are sufficiently large (however 
small X) and also some additional ones. The high probability group is 
coded in an arbitrary one to one way into this set. The remaining sequences 
are represented by larger sequences, starting and ending with one of the 
sequences not used for the high prohability group. This special sequence 
acts as a start and stop signal for a different cocle. In between a sufficient 
time is allowed to give enough different sequences for all the low probability 
messages. This will require 

1\ = (~+ ~) LV 

~ 
i 
i 
~ 

1 

I 

I 
~ 

.,l 
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where rp is small. The mean rate of trallsmission in message symbols per 
second will then be greater than 

[ T TJ-l [ (11) ('R )J-l . (1 - 0) N + 0 N
1 

= (1 - 0) c + A + 0 C + rp 

As .:.V increases 0, A and rp approach zero and the rate approaches ~ . 

Another method of performing this coding and proving the theorem can 
be described as follows: Arrange the messages of length N in order of decreas
ing probability and suppose their probabilities are PI ~ h ~ Pa ... ~ Pn . .,-1 

Let p. = I: Pi ; that is p. is the cumulative probability up to, but not 
1 

.lll..:iadillg, p.,. We first encode into a binary system. The binary code for 
message s is obtained by expanding PM as a binary number. The expansion 
is carried out to m. places, where ms is the integer satisfying: 

1 1 
log2 - ~ ms < 1 + log2 -

P8 ps 
Thus the mes::oages of high probability are represented by short codes and 
those of low probability by long codes. From these inequalities we have 

1 1 -<p<--2"ns _.If 2ms- 1 . 

The cude fur P" will differ from all succeeding Olles in Olle or more of its 

m" places, since all the remaining Pi are at least -~- larger and their binary 
211", .. 

expansions therefore differ in the first m" places. Consequently all the codes 
are different and it is possible to recover the message from its code. If the 
channel sequences are not already sequences of binary digits, they can be 
ascribed binary numbers in an arbitrary fashion and the binary code thus 
translated into signals suitable for the channel. 

The average number II' of binal)' digits used per symbol of original mes
sage is easily estimated. We have 

1 
H' =]V 'J:.msps 

But, 

1 ~ ( 1 ) 1 " 1 ( 1 ) }V ~ log!! Ps ps ~ ]V .... maPs < ]V 2; 1 + log2 Ps P8 

and therefore, 

... --.,-.----~--. 
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- r.p, 10).." p" ::; H' < N 'i.ps log ps 

As N increases -'i:,ps log ps approaches H, the entropy of the source and H' 
approaches H. 

We see from this that the inefficiency in coding, when only a finite delay of 

N symbols is used, need not be greater than ~~ plus the dit1erence between 

the true entropy H and the entropy GN calculated for sequences of length N. 
The per cent excess time needed over the ideal is therefore less than 

GN 1 
Ij+HN-l. 

This method of encoding is substantially the same as one found inde
pendently by R. M. Fano.\! His method is to arrange the messages of length 
N in order of decreasing probability. Divide this series into two groups of 
as nearly equal proLability as possible. If the message is in the first group 
its 1irst binary digit will be 0, othenvise 1. The groups are similarly divided 
into subsets of nearly equal probability and the particular subset determines 
the second binary digit. This process is continued until each subset contains 
only one message. It is easily seen that apart from minor differences (gen
erally in the last digit) this anlt)unts to the same thing as the arithmetic 
process described above. 

10. DISCUSSION 

In order to obtain the maximum power transfer from a generator to a load 
a transformer must in general be introduced so that the generator as seen 
from the load has the load resistance. The situation here is roughly anal
ogous. The transducer which does the encoding should match the source 
to the channel in a statistical sense. The source as seen from the channel 
through the transducer should have the same statistical structure as the 
source which maximizes the entropy in the channel. The content of 
Theorem 9 is that, although an exact match is not in general possible, we can 
approximate it as closely as desired. The ratio of the actual rate of trans
mission to the capacity C may be called the efficiency of the coding system. 
This is of course equal to the ratio of the actual entropy of the channel 
symbols to the maximum possible entropy. 

In general, ideal or nearly ideal encoding requires a long delay in the 
transmitter and receiver. In the noiseless case which we have becn 
considering, the main function of this delay is to allow i.easonably good 

9 Technical Report No. oS, The Research LaLoratory uf Electronics, \J. J. T. 
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matching of probabilities to corresponding lengths of sequences. With a 
good code the logarithm of the reciprocal probability of a long message 
must Le proportional to the duration of the corresponding signal, in fart 

-1 i 

Il~)!/ _ C I 

must be small for all but a small fraction of the long messages. 
If a suurce can produce only one particular message its entropy is zero, 

and no channel is required. For example, a computing machine set up to 
calculate the successive digits of 7r produces a detlnite sequence with no 

chance element. No challiel is required tu "transmit" this to another 
point. One could construct a second machine to compute the same sequence 
at the point. However, this may Le impractical. In such a case we can 
choose to ignore some or all of the statistical knowledge we have of the 
source. We might consider the digits of 7r to be a random sequence in that 
we construct a system capable of sending any sequence of digits. In a 
similar way we may choose to use some of our statistlcal knowledge of Eng
lish in constructing a code, but not all of it. In such a case we consider the 
source with the maximum entropy subject to the statistical conditions we 
wish to retain. The entropy of this source determines the channel capacity 
which is necessary and sufficient. In the 7r example the only information 
retained is that all the digits are chosen from the set 0, 1, ... , 9. In the 
case of English one might wish to use the statistical saving possible due to 
letter frequencies, but nothing else. The maximum entropy source is then 
the first approximation to English and its entropy determines the required 
channel capacity. 

11. EXAMPLES 

As a simple example of some of these results consider a source which 
produces a sequence of letters chosen from among A, B, C, D with prob
abilities ~" L ~, 1, successive symbols being chosen independently. We 
have 

H = - 0 log! + t log 1 + ~ log 1) 

t bits per symbol. 

Thus we can approximate a coding system to encude messages from this 
source into binary digits with an average of t binary digit per symbol. 
In this case we can actually achieve the limiting value by the following code 
(obtained by the method of the second proof of Theorem 9): 

JrATHEMATlCAL 1'HEOR1' OF t:OMMl'N1CATlO,V ·lOS 

.A 0 
B 10 
C llU 
D 111 

The average number of binary digits used in encoding a sequence of N sym

bols will be 

N(~ X 1 + 1 X 2 + i X 3) = IN 

It is easily seen that the Linary digits 0, 1 have probabilities ~, l so the 11 fur 
the coded sequences is one bit per symbol. Since, on the average, we have ~ 
binary symbols per original letter, the entropies on a time basis are the 
same. The maximum possible entropy for the original set is log ..j. = 2, 
occurring when A, B, C, D have probabilities t, i, L {. Hence the relative 
entropy is~. We can translate the binary sequences into the original set of 
symbols on a two-to-one basis by the following table: 

00 A' 
01 H' 
10 C' 
11 D' 

This double process then encodes the original message into the same symbols 
but with an average compression ratio ~ . 

As a second example consider a source which produces a sequence oj .1 's 
and E's ,,,ith probability p for A and q for R. If P < < q we have 

H = -log pJl (I _ p) J p 

-p log P (1- p)(l~-J')IP 

e 
- p log-

p 

In such a case one can construct a fairly good coding of the message on a 
0, 1 channel by sending a special sequence, say 0000, for the infrequent 
:;ymbol A and then a sequence indicating the number of B's following it. 
This could be indicated by the binary representation with all numbers con
taining the special sequence deleted. All numbers up to 16 are represented 
as usual; 16 is represented by the next binary number after 16 which does 
not contain four zeros, namely 17 = 10001, etc. 

It can be shown that as p ~ 0 the coding approaches ideal provided the 

length of the special sequence is properly adjusted. 

, 
I 
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PART II: THE DISCRETE CHANNEL WITH NOISE 

11. REPRESENTATION Or' A NOISY DISCRETE CHANNEL 

W c now consider the case where the signal is perturbed by noise during 
transmission or at one or the other of the terminals. This means that the 
received signal is not necessarily the same as that sent out by the trans
mitter. Two cases may be distinguished. If a particular transmitted signal 
always produces the same received sil::,nal, i.e. the received signal is a definite 
function of the transmitted signal, thcn the effect may be called distortion. 
If this function has an inverse--no two transmitted signals producing the 
same received signal--distortion may be corrected, at least in principle, by 
merely performing the inverse functional operation on the received signal. 

The case of interest here is that in which the signal does not always undergo 
the same change in transmission. In this case ,ve may assume the received 
signal E to be a function of the transmitted signal S and a second variable, 
the noise N. 

E = f(5, N) 

The noise is considered to be a chance variable just as the message was 
above. In general it may be represented by a suitable stochastic process. 
The most general type of noisy discrete channel we shall consider is a general
ization of the finite state noise free channel described previously. We 
assume a finite number of states and a set of probabilities 

Pa,Jj3, j). 

This is the probability, if the channel is in state a and symbol i is trans
mitted, that symbol j will be received and the channel left in state p. Thus 
a and (3 range over the possible states, i over the possible transmitted signals 
and j over the possible received signals. In the case where successive sym
bols are independently perturbed by the noise there is only OIle state, and 
the channel is described by the set of transition probabilities Pi(j), the prob
ability of transmitted symbol i being received as j. 

If a noisy channel is fed by a source there are two statistical processes at 
work: the source and the noise. Thus there are a number of entropies that 
can be calculated. First there is the entropy H(x) of the source or of the 
input to the channel (these will be equal if the transmitter is non-singular). 
The entropy of the output of the channel, i.e. the received signal, will be 
denoted by H(y). In the noiseless case H(y) = H(x). The joint entropy of 
input and output will be H(xy). Finally there are two conditional entro
pies HAy) and H/x) , the entropy of the output when the input is known 
and conversely. Among these quantities we have the relations 

H(x, y) = H(x) + H .,(y) = H(y) + lly(x) 

- ...... "'l: .... \t ... '~. ______ _ 
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All of these entropies can be measured on a per-second or a per-~ymbol 
basis. 

12. EQUIVOCATION AND CHANNEL CAPACITY 

If the channel is noisy it is not in general possible to reconstruct the urig
inal message or the transmitted signal with certaiJlty by any operation on the 
received signal E. There are, however, ways of transmitting the information 
which are optimal in cumbating noise. This is the problem which we now 
consider. 

Suppose there are two possible sym bois 0 and 1, and we are transmitting 
at a rate of 1000 symbols per second with probabilities po = PI = ~. Thus 
our source is producing information at the rate of 1000 bits per second. Dur
ing transmission the noise introduces errors so that, on the average, 1 in 100 
is received incorrectly (a 0 as 1, or 1 as 0). What is the rate of transmission 
of information? Certainly less. than 1000 bits per second since about 1% 
of the received symbols are incorrect. Our first impulse might be to say the 
rate is 990 bits per second, merely subtracting the expected number of errors. 
This is not satisfactory since it fails to take into account the recipient's 
lack of knowledge of where the errors occur. We may carry it to an extreme 
case and suppose the noise so great that the received symbols are entirely 
independent of the transmitted symbols. The probability of receiving 1 is 
~ whatever was transmitted and similarly for O. Then about half of the 
received syn1bols are correct due to chance alone, and we would be giving 
the system credit for transmitting 500 bits per second while actually no 
information is being transmitted at all. Equally "good" transmission 
would be obtained by dispensing with the channel entirely a.nd flipping a 
coin at the receiving point. 

Evidently the proper correction to apply to the amount of information 
transmitted is thc amount of this information which is missing in the re
ceived signal, or alternatively the uncertainty when we have rcceived a 
signal of what was actually sent. From our previous discussion oi entropy 
as a measure of uncertainty it seems reasonable to use the conditional 
entropy of the message, knowing the received signal, as a measure of this 
missing information. This is indeed the proper definition, as we shall see 
later. Following this idea the rate of actual transmission, R, would be oh
tained by subtracting from the rate of production (i.e., the entropy of the 
source) the average rate of conditional entropy. 

R = l1(x) - Hy(x) 

The conditional entropy Hy(x) will, for convenience, he called the equi
vocation. It mea.sures the average ambiguity of the received signal. 

._, .... 
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In the example considered above, if a 0 is received the a postericri prob
ability that a 0 was transmitted is .99, and that a 1 was transmitted is 
.01. These figures are reversed if a 1 is received. Hence 

Hy(x) = - r.99 log .99 + 0.01 log 0.01] 

= J)S} bits/symbol 

or 81 hits per second. We may say that the system is transmitting at a rate 
1000 - S1 = <)19 bits per second. In the extreme case where a 0 is equally 
likely to be received as a 0 or 1 and similarly for 1, the a posteriori proba
bilities are 1, -} and 

Hy(x) - rt log 1 + ~ log ~] 

1 bit per symbol 

or 1000 bits per second. The rate of transmission is then 0 as it should 
be. 

The following theorem gives a direct intuitive interpretation of the 
equivocation and also serves to justify it as the unique appropriate measure . 
We consider a communication system and an observer (or auxiliary device) 
who can see both what is sent and what is recovered (with erro:s 
due to noise). This observer notes the errors in the recovered message and 
transmits data to the receiving point over a "correction channel" to enable 
the receiver to correct the errors. The situation is indicated schematically 
in Fig. 8. 

Theorem 10: If the correction channel has a capacity equal to Hy(x) it is 
possible to so encode the correction data as to send it over this channel 
and correct all but an arbitrarily small fraction E of the errors. This is not 
possible if the channel capacity is less than Hy(x). 

Roughly then, Hy(x) is the amount of additional information that must be 
supplied per second at the receiving point to correct the received message. 

To prove the 11rst part, consider long sequences of received message M' 
and corresponding original message M. There will be logarithmically 
THt,(x) of the llf's which could reasonably have produced each M'. Thus 
we have TlIlI (x) binary digits to send each T seconds. This can be done 
with E frequency of errors on a channel of capacity H.v(.r). 

The second part can be proved by noting, first, that for any discrete chance 
variables x, y, z 

H y(.1:, ;;) 2:: Hy(:x) 

The left-hand side can be expanded to give 

HII(;;) + Hyz(x) ~ 

lll1z(x) ~ Hy(x) - Hy(s) ~ 

, ..... "., .. -.'"" ... _, ..... _------

HJr) 

1J II (.r) lI(-:-) 
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If we identify x as the output of the source, y as the received signal and z 
as the signal sent over the correction channel, then the right-hand side is the 
equivocation less the rate of transmission over the correction channel. If 
the capacity of this channel is less than the equivocation the right-hand side 
will be greater than zero and HI.z(x) ~ O. But this is the uncertainty of 
what was sent, knO\ving both the received signal and the correction signal. 
If this is greater than zero the frequency of errors cannot be arbitrarily 
small. 
Example: 

r 

Suppose the errors occur at random in a sequence of hinary digits: proba
bility p that a digit is wrong and q = 1 - P that it is right. These errors 
can be corrected if their position is known. Thus the correction channel 
need only send information as to these positions. This amounts to trans-

CORRECTION DATA - - --

I 

OB5E RVER 

~M- -M~ 

50URCE l'RAN5MITTER RECEIVE 
DEVICE 

Fig. 8-Schematic diagram of a correction system . 

mittillg from a source which prorluces binary digits with probability p for 
1 (correct) and q for 0 (incorrect). This requires a channel of capacity 

- [p log P + q log q] 

which is the equivocation of the original system. 
The rate of transmission R Call be written in two other forms due to the 

identities noted above. We have 

R = H(x) - Hy(x) 

= H(y) - H:r;(y) 

= H(x) + H(y) - lJ(x, y). 

The first delining expression has already been interpreted as the amuunt of 
information sent less the uncertainty of what was sent. The serond meas-
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ures the amount received less the part of this which is due to noise. The 
third is the sum of the two amounts less the joint entropy and therefore in a 
sense is the number of bits per second common to the two. Thus all three 
expressions have a certaill intuitive significance. 

The capacity C of a noisy channel should be the maximum possible rate 
of transmission, i.e., the rate when the source is properly matched to the 
channel. We therefore define the channel capacity by 

C = Max (IJ(x) - Hy(x» 

where the maximum is with respect to all possible information sources used 
as input to the channel. If the channel is noiseless, Hy(x) = O. The defini
tion is then equivalent to that already given for a noiseless channel since the 
maximum entropy for the channel is its capacity. 

13. THE FUNDAMENTAL THEOREM FOR A DISCl<.ETE CHANNEL WITH 

NOISE 

It may seem surprising that we should define a definite capacity C for 
a noisy channel since we can never send certain information in such a case. 
It is clear, however, that by sending the information in a redundant form the 
probability of errors can be reduced. For example, by repeating the 
message many times and by a statistical study of the different received 
versions of the message the probability of errors could be made very c llal!. 
One would expect, however, that to make this probability of errors approach 
zero, the redundancy of the encoding must increase indefinitely, and the rate 
of transmission therefore approach zero. This is by no means true. If it 
were, there would not be a very well defined capacity, but only a capacity 
for a given frequency of errors, or a given equivocation; the capacity going 
down as the error requirements are made more stringent. Actually the 
capacity· C defined above has a very definite significance. It is possible 
to send information at the rate C through the channel with as small a fre
quency of errors or equivocation as desired by proper encoding. This state. 
ment is not true for any rate greater than C. If an attempt is made to 
transmit at a higher rate than C, say C + Rl , then there will necessarily 
be an equivocation equal to a greater than the excess R

1
• Nature takes 

payment by requiring just that much uncertainty, so that we are not 
actually getting any more than C through correctly. 

The situation is indicated in Fig. 9. The rate of information into the 
channel is plotted horizontally and the equivocation vertically. Any point 
above the heavy line in the shaded region can be attained and those below 
cannot. The points on the line cannot in general be attained, but there will 
usually be two points on the line that call. 

........ ., .~.,.,..--.---------
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These results are the main ju~ti1icati()n for the definition of C and will 
now be proved. 
Theorem 11. Let a discrete channel have the capacity C and a discrete 
source the entropy per second H. Ii H :s; C there exists a coding system 
such that the output of the source can be transmitted over the channel with 
an arbitrarily small frequency of errors ~ or an arbitrarily small equivocation). 
If H > C it is possible to encode the source ~o that the equivocation is less 
than 11 - C + E where E is arbitrarily small. There is no method of encod
ing which gives an equivocation less than H - C. 

The method of proving the first part of this theorem is not by exhibiting 
a coding method having the desired properties, but by showing that such a 

code must exist in a certain group of codes. In fact we will average the 
frequency of errors over this group and show that this average can be made 
less than E. If the average of a set of numbers is less than t there must 
exist at least one in the set which is less than E. This will establish the 
desired result. 

Fig. 9---Thc equivocation possible for a given input entropy to a channel. 

The capacity C of a noisy channel has been defined as 

C = Max (H(x) - lly(x» 

where x is the input and y the output. The maximization is over all sources 
which might be used as input to the channel. 

Let So be a source which achieves the maximum capacity C. If this 
maximum is not actually achieve(\ hy any source let So be a source which 
approximates to giving the maximum rate. Suppose So is used as input to 
the channel. We consider the possible transmitted and received sequences 
of a long duration T. The following will be true: 
1. The transmitted sequences f~ll into two classes, a high probability group 
with about 2TH (.r) members and the remaining sequences of small total 
probability. 
2. Similarly the received sequences have a high probability set of about 
2TH

(Y) members and a low probability set of remaining sequences. 
3. Each high probability output could he produced by about 2TH.ilr, inputs. 
The probability of all other cases has a small total prohability. . 
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All the f'S and b's implied by the words "small" and "about" in these 
statements approach zero as we allow T to increase and So to approach the 
maximizing source. 

The situation is summarized in Fig. 10 where the input sequences are 
points on the left and output sequences poinb on the right. The fan of 
cross lines represents the range of possible causes for a typical output. 

Now suppose \ve have another source producing information at rate R 
with R < c. In the period T this source will have 2TR high probability 
outputs. We wish to associate these' with a selection of the possible channe 

E 

• 
• 

M 

• • 
• • 

• 
2Hh"T~ 

HIGH PROBABILITY 2
H

(y)T 

MESSAGES • HIGH PROBABILITY 

RECEIVED SIGNALS 
-REASONABL'E CAUSES· 

FOR EACH E • • 
• • 

:~ 
~ 2 

• REASONABLE EFFECTS. 
FROM EACH M 

• 
Fig. lU-Schematic representation of the relations bet\\een. inputs and outputs in a 

channel. 

inputs in such a way as to get a small frequency of errors. \Ve will set up 
this association in all possible ways (using, however, only the high proba
bility group of inputs as determined by the source So) and average the fre
quency of errors for this large class of possible coding systems. This is the 
same as calculating the frequency of errors for a random association of the 
messages and channel inputs of duration T. Suppose a particular output 
Yl is observed. 'Vhat is the probability of more than one message in the set 
of possible causes of yt? There are 27'R messages distributed at random in 
21'1l(r) points. The probability oi a particular point being a message is 
thus 

2T (K-H(X» 

J.-...._ ........ _~~ ..... 
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The probability that nont' of the point:". in the fan is a message (apart from 
the actual originating message) is 

Xow R < H(x) 
Consequently 

P = [1 - 2T (n H(r))pl'H u (.c1 

Hy(.r) so R - H(x) -11~(x) - 7} with 7} positive. 

p = 11 2" TH:,\J')-T~j2l'lly(X) 

approaches (as T -'1 oc) 

1 - TT~ 

Hence the probability of an error approaches zero alld the tirst part of the 
theorem is proved. 

The second part of the theorem is easily shown by noting that we could 
merely send C bits per second from the source, completely neglecting the 
remainder of the information generated. At the receiver the neglected part 
gives an equivocation H(x) - C and the part transmitted need only add f. 
This limit can also be attained in many other ways, as will be shown when we 
consider the continuous case. 

The last statement of the theorem is a simple consequence of our definition 
of C. Suppose we can encode a source with R = C + u in such a way as to 
obtain an equivocation Hy(x) = U - f with t positive. Then R = H(x) = 

C + (] and 

H(.\:) - H lI (x) = C + f 

with f positive. This contradicts the definition of C as the maximum of 
l1(x) - Hy(x). 

Actually more has been proved than was stated in the theorem. If the 
average of a set of numbers is within t of their maximum, a fraction of at 
most y~-can be more than y;below the maximum. Since f is arbitrarily 
small we can say that almost all the systems are arbitrarily close to the ideal. 

14. DISCUSSION 

The demonstration of theorem 11, while not a pure existence proof, has 
some of the deficiencies of such proofs. An attempt to obtain a good 
approximation to ideal coding hy following the method of the proof is gen
erally impractical. In fact, apart from some rather trivial cases and 
certain limiting situations, no explicit description of a series of approxima
tion to the ideal has been found. Probahly this is no accident but is related 
to the difticulty of giving an explicit construction for a good approximation 
to a random sequence. 
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An approximation to the ideai would have the property that if the signal 
is altered in a reasonable way by the noise, the original can still be recovered. 
[n other words the alteration will not in general bring it closer to another 
reasonable signal than the original. This is accomplisherl at the cost of a 
certain amount of redunrlancy in the corling. The rerlundancy must be 
introduced in the proper way to combat the particular noise structure 
involved. However, any redundancy in the source will usually help if it is 
utilized at the receiving point. In particular, if the source already has a 
certain redundancy and no attempt is made to eliminate it in matching to the 
channel, this redundancy will help combat noise. For example, in a noiseless 
telegraph channel one could save about 50% in time by proper encoding of 
the messages. This is not done and most of the redundnacy of English 
remains in the channel symbols. This has the adYantage, however, of 
allowing considerable noise in the channel. A sizable fraction of the letters 
can be received incorrectly and still reconstructed by the context. In 
fact this is probably not a bad approximation to the ideal in many cases, 
since the statistical structure of English is rather involved and the reasonable 
English sequences are not too far (in the sense required for theorem) from a 
random selection. 

As in the noiseless case a delay is generally required to approach the ideal 
encoding. It now has the additional function of allowing a large sample of 
noise to affect the signal before any judgment is made at the receiving point 
as to the original message. Increasing the sample size always sharpens the 
possible statistical assertions. 

The content of theorem 11 and its proof can be formulated in a somewhat 
different way which exhibits the connection with the noiseless case more 
clearly. Consider the possible signals of duration T and suppose a subset 
of them is selected to be used. Let those in the subset all be used with equal 
probability, and suppose the receiver is constructed to select, as the original 
signal, the most probable cause from the subset, when a perturbed signal 
is received. We define N(T, q) to be the maximum number of signals we 
can choose for the subset such that the probability of an incorrect inter
pretation is less thaH or equal to 1/.. 

1'1 1) 1· log NCT, q). I ... h I I . 
rleurt:m -: .un --- -r--- = ( , w lere C IS t e C lamle rapaCIty, pro-

7 ~.QO 

vided that q does not eyual () or 1. 

In other words. no matter how we set our limib of reliability, we call 
distinguish reliably in time T enough messages to correspond to about CT 
bits, ,,,,hen T is sufficiently large. Theorem 12 can be compared with the 
definition of the capacity of a noiseless channel given in section 1. 

./ 
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15. EXAMPLE 01<' A. ])lSCREn: CHANNEL AND ITS CAPAcrn.: 

A simple example of a discrete channel is indicated in Fig. 11. There 
are three possible symbols. The first is never affected by noise. The second 
and third each have probability p of coming through undisturbed, and (/ 
of being changed into the other of the pair. We have (letting a = - [p log 

P 

TRANSMITTEOZRECEIVEO 
SYMBOLS SYMBOLS 

q 

P 
Fig. II-Example of a discrete channel. 

p + q log q] and P and (J be the probabilities of using the first or serond 
symbols) 

H(x) = -Plog P - 2(>logQ 

Hy(x) = 2Qa 

We wish to choose P and Q in such a way as to maximize H(x) - H y(x), 

subject to the constraint P + 2Q = 1. Hence we consider 

U = - P log P - 2Q log Q - 2Qa + XC]> + 2Q) 

Eliminating X 

aU 
aF 

au 
aQ 

-1 - log P + x = 0 

- 2 - 1 log Q - la + 2X = o. 

log P = log Q + u 

P = ()e" = Vfj 

? = JJ 
iJ +2 

1 
V~!i+2 

The challnel capacity is then 

c loc, {J + 2 
t"> -;i 
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:\ ote how this checks the obvious values in the cases p = 1 and P = !. 
In the first, ~ = 1 and C = log 3, which is correct since the channel isthen 
noiseless with three possible symbols. If P = ~, ~ = 2 and C = log 2. 
Here the second and third symbols cannot be distinguished at all and act 
together like one symbol. The first symbol is used with probability P = 

.~ and the second and third together with probability!. This may be 
distributed in any desired way and still achieve the maximum capacity. 

For intermediate values of P the channel capacity will lie between log 
2 and log 3. The distinction between the second and third symbols conveys 
some information but not as much as in the noiseless case. The first symbol 
is used somewhat more frequently than the other two because of its freedom 
from noise. 

16. THE CHAl\1\EL CAPACITY 11\ CEkTAIN SPECIAL CASES 

Ii the noise atIects successive channel symbols independently it can be 
described by a set of transition probabilities Pij. This is the probability, 
if symbol i is sent, that j will be received. The maximum channel rate is 
then given by the maximum of 

L PiPij log L PiP;j - L FiPii log Pij 
i. iii. i 

where we vary the Pi subject to ~Pi 1. This leads by the method of 
Lagrange to the equations, 

.l!L~_ = iJ. L psi log L Pi Pii 
i i 

s 1,2, .... 

Multiplying by P s and summing on s shows that iJ. = -C. Let the inverse 
uf P"i (if it exists) be h'l so that L hs/Psj = Dtj. Then: 

L:: h"t psi log psi - log L:: Pi Pit 
s.i i 

-c L:: h.t • 

Hence: 

L:: Pi P,:/ = exp lC L:: h"t + L:: h.t psi log Psi} 
i -" 8, i 

or, 

Pi = L:: hi! exp [C L:: It. t + L:: hst psi log Psi]. 
t • s.j 

This is the system of equations for determining the maximizing values of 
Pi, with C to be determined so that ~ Pi = 1. \Vhen this is done C will be 
the channel capacity, and the Pi the proper probabilities for the channel 
symbols to achieve this capacity. 
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If each input symbol has the same set of probabilities on the lines emerging 
irom it, and the same is true of each output symbol, the capacity can be 
easily calculated. Examples are shown in Fig. 12. In such a case ll:.(y) 
is independent of the distribution of probabilities on the input symbols, and 
is given by -~ Pi log Pi where the Pi are the values of the transition proba
bilities from any input symbol. The channel capacity is 

Max lH(y) flAY)! 

= MaxH(Y)+~PilogPi' 

The maximum of H(y) is clearly log m where m is the number oi output 

1/2 

abe 
Fig. 12-Exarnples of di:,crete channels with the same transition probahilities for each 

input and for each output. 

symbols, since it is possible to make them all equally probable by making 
the input symbols equaUy probable. The channel capacity is therefore 

C = log m + 2; Pi log Pi. 

In Fig. 12a it would be 

C = log 4 - log 2 = log 2 . 

This could be achieved by using only the 1st and 3d symbols. In Fig. 12b 

C = log 4 - 1 log 3 - Slog b 

= Jog 4 - log" - t log 2 

= log t 2;. 

In Fig. 12c we have 

C = log 3 - ~. log 2 - t log 3 - k log 6 

3 
log 2~-jY 6~ . 

-----
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Suppose the symbols fall into several groups such that the noise never 
causes a symbol in (Jne group to be mistaken for a symbol in another group. 
Let the capacity for the nth group be C" when we use only the symbols 
in this group. Then it is easily shov~'n that, for best use of the entire set, 
t he total probability P" of all symbols in the nth group should be 

2e
" 

P n i2c r< 

Within a group the probability is distributed just as it would be if these 
were the only symbols being used. The channel capacity is 

C = log ~2cl' • 

17. AN EXAMPLE OF E}'FICIENT CODING 

The following example, although somewhat unrealistic, is a case in which 
exact matching to a noisy channel is possible. There are two channel 
symbols, 0 and 1, and the noise affects them in blocks of seven symbols. A 
block of seven is either transmitted without error, or exactly one symbol of 
the seven is incorrect. These eight possibilities are equally likely. We have 

C = Max [H(y) - H.r(Y)] 

= +17 + -~logl] 
= 4 bits/symbol. 

An efficient code, allowing complete correction of errors and transmitting at 
the rate C, is the following (found by a method due to R. Hamming): 

Let a block of seven symbols be Xl, X 2, ••• X j . Of these ,\'3, Xli, X6 and 
X7 are message symbols and chosen arbitrarily by the source. The other 
three are redundant and calculated as follows: 

X.I is chosen to make a = X 4 + Xli + X6 + X7 even 
v- .. 

... '1. 2 

lor ,; 
..'\.1 

" {:J = X2 + Xa + Xs + X7 •• 

l' = Xl + X3 + Xli + X, 

When a block of seven is received a, {3 and l' are calculated and if even called 
zero, if odd called one. The binary number a j3 l' then gives the subscript 
of the Xi that is incorrect (if 0 there was no error). 

APPENDIX 1 

THE GROWTH OF THE NUMBER Q}' BLOCKS OE SYMBOLS WITH A 
FINITE STATE CONDITION 

Let N i(L) be the number of blocks of symbols of length L ending in state 
i. Then we have 

-"AI,) = L X;\L - b~"/) 
i. 
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where bL , b~j , ... b7i are the length of the symbols which may be chot>en 
in state i and lead to state j. These are linear difference equations and the 

behavior as L ~ Xi must be of the type 

N j = AjU"/' 

Substituting in the difference equation 

or 

/I) II'L L: Ai WL-bj-:) 
-i.oS 

1 - '"' 4 jr--b (.~ ) ,i } L....J 4. i ~ , I , I 

'is 

'"' ,'"' • bl' i ) ~ ~~ H - ij - Oij .L = O. 
s 

For this to be possible the determinant 

, - • • '"' (S ) I DOV) = \ au I = : ~ IJ'b;i - Oij 
,; 

must vanish and this determines 11', which is, of course, the largest real root 

of D = O. 
The quantity C is then given by 

C = Lim ~o_~_ ~~ .. l~!f~~ log W 
].->00 L 

and we also note that the same growth properties result if we require that all 

blocks start in the same (arbitrarily chosen) state. 

APPENDIX 2 

DERiVATlON OF H = -~ Pi log Pi 

L (
1 1 1) () -, 1" -- -et H ---, --, ... ,- = A 11. 1< rom con( alOn (3) we can decompose 
n It It 

a choice from slll equally likely possihilities into a series of m choices each 

from s equally likely possibilities and obtain 

A(sm) = In A(s) 

Similarly 

A (til) = 1/ .-t (I) 

We can choose 11 arbitrarily large alltl rind an In to satisfy 

s'" ::; t < /111+1) 
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Thus, taking logarithms and dividing by Il log s, 

In log t In 1 --< --- <-- + -- or 
n - log s - n 17 

1

'm _ log! I < E 

i1, log s I 
where E is arbitrarily small. 

Now from the monotonic property of A (It) 

A (s"') ~ A (t) ~ A (S"'+I) 

m A(s) ~ nA(t) ~ (m + 1) .ti(s) 

Hence, dividiug by nA(j), 

'?! < ~0 < ,!t + ~ or 
11 - A(s) - It 1l /

' f!t _ A (t) I 
11 A(s) < E 

I 
A (t) _ log t j < 2E 

,A(s) log s - A(t) = -:-K log t 

where K must be positive to satisfy (2). 

N ow suppose we have a choice from 11 possibilities with commeasurable prob-

abilities Pi = ~ where the Iti are integers. We can break down a choice !tn,-

from ~Jlj possibilities into a choice from n possibilities with probabilities 
Pi . .. P" and then, if the ith was chosen, a choice from 1l; with equal prob
abilities. Using conditiun 3 again, we equate the total choice from 2;llj 

as computed by two methods 

1'; log 2:.ni = R(PI , ... , pn) + K~ Pi log Iti 

Hence 

II = K [~ Pi log ~ lIi - !t Pi log Id 

L - " 1 It; L - ",,' I 
-.l\. - Pi og ~- = -.l\. ~ Pi og Pi . 

2;n i 

If the Pi are incommeasuraule, they may be approximated by rationals ar.d 
the same expression must hold by our continuity assumption. Thus the 
expression holds in general. The choice of coefficient K is a matter of con
venience and amounts to the choice of a unit of measure. 

APPENDLX 3 

THEO.KEMS OK ERGODIC SOURCES 

If it is possible to go from any state with P > 0 to any other along a path 
of probability P > 0, the system is ergodic and the strong law of large num
bers can be applied. Thus the number of times a given path Pij in the net-

. ~~-~--~----------------
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work is traversed in a long sequence of length 1"1 is about proportiunal to the 
probability of being at i and then choosing this path, P ipijN. If N is large 
enough the probability of percentage error ± 0 in this is less than t: so that 
for all but a set of small probability the actual numbers lie within the limits 

(P iPij ± b)'y 

Hence nearly all sequences have a probability p given by 

P = IIp~~il"i.t:b)N 

and ~o~p is limited by 

or 

~~g P = ~(p,: Pij ± 0) log Pij 
N 

I log p, ;\ 
: - N- - ~Pi Pij log Pij < '1· 

This proves theorem 3. 
Theoreill -1 follows immediately frum this on calculating upper and lower 

bounds for Il(q) based on the possihle range uf values of p in Theorem 3. 
In the mixed (nut ergodic) case if 

L = ~ Pi Li 

and the entropies of .the compollents are H1 ~ H2 ~ ... 2:: Hn we have the 

1'1 L' log n(q) ( ) . i . .. fleorem: nn -- -- = .p q IS a ( ecreaslllg step tunctlOn, 
N->oo N 

~-l s 

",(q) = 11 s in the interval 1: ai < q < 1: ai . 
1 1 

To prove theorems 5 and 6 lirst note that FN is munotonic decreasing be
cause increasing N adds a subscript to a conditional entropy. A simple 
substitution for PH, (Sj) in the definition of FN shows that 

FN = N GN - (N - 1) GN - 1 

and summing this for all N gives GN = ~ ~ F N • Hence GN ~ F ... and GN 

monotonic decreasing. Also they must approach the same limit. By using 
theorem 3 we see that Lim GN = H. 

l'{-too 

APPENDIX -1 

MAXTMlZING THE RATE :FOR A SVSTEiI.l OF l \INST1U1NT~ 

Suppose we have a set of constraints on sequences of symbols that is of 
the finite state type and can be represented therefore by a linear graph . 
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Let C~i) be the lengths of the various ::;ymbols that can occur in passing from 
state i to state j. What distribution of probabilities Pi for the different 
states and p~i) for choosing symbol s in state i and going to state j maximizes 
the rate of generating information under these con::;traints? The constraints 
define a discrete channel and the maximum rate must be less than or equal 
to the capacity C of this channel, since if all blocks of large length were 
equally likely, this rate would result, and if possible this would be best. We 
will show that this rate can be achieved by proper choice of the p. and p~i). 

The rate in question is 

- ';;PiP~·;> log t~'/ N 
~p~p("'> .e~8)-- ~1 

..., (d I.} 'I .i~ 

L t f "" pl-) E' l If' (.) k j'(8) 'I'h e ij L.- 1; j • • VI< ent y or a maXImum Pi] exp {ij • e COI1-

straints on maximizatiun are '2;P i 1, L p,:j 
i 

1, ~ P,(pij - OiJ = o. 
Hence we maximize 

(' = _~_~iPiiJ!!'tk Pii + A L P, + 'J:./J-,pij + '2;rJjP
i
(p'J - hii ) 

"LP i Pij iii i . 

ae ~l1PJl + log Pii~.±}i~i!~j + A + /J-i + TJi p, = o. - -~M2 apij 

Solving for Pii 

pij = .·LBjD-fii. 

Since 

L Pij 1, Ail = L BjD-f;j 

P'ii 
BjIJ--tij 

2:- B,-D~r..: . 

The correct value of J) is the capacity C and the Bj are solutions of 

Hi = ~ BjC-I;i 

for then 

or 

B· i 
Pij = __ J C- .j 

Bi 

"Lp. ~t C-iij = P 
'Bi J 

lvlATHElvlA.TICAL fHEORl' OF CO.lvIMUN1CATION 

So that if A i satisfy 

" 1!.-,: C-J'i j 
.. Bi 

Pj 
13i 

"" C-(i l ""'''Y i . "Yi 

Pi = Ri"Yi 
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Both of the sets of equations for B i amI "Y; can be satisfied since C is ::;uch that 

\ C-{ i i - Oij I = 0 

In this case the rate is 

but 

~1\ P'j log i: C-(~j 

c 

'2;Pi Pij (ij 

Hi 
-;:;p,: Pij log 13i 

ip~p~ fij 

~Pi P'i(log Bi - log Hi) = L Pi log Bi - -;:;Pi log Hi = 0 
j 

Hence the rate is C and as this could never be exceeded this is the maximum, 

justifying the assumed solution. 
(1'0 be colllillwd) 


