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What is the qualitative character of entropy? Several examples from statistical mechasticing

liquid crystal reentrant phases, two different lattice gas models, and the game of gekemstrate
facets of this difficult question and point toward an answer. The common answer of “entropy as
disorder” is regarded here as inadequate. An alternative but equally problematic analogy is
“entropy as freedom.” Neither simile is perfect, but if both are used cautiously and not too literally,
then the combination provides considerable insight. 2600 American Association of Physics Teachers.

Of all the difficult concepts of classical physics—conceptsfound simply by counting: One counts the numbgof mi-
like acceleration, energy, electric field, and time—the mostrostates that correspond to the given macrostate, and com-
difficult is entropy. Even von Neumahmlaimed that “no-  putes the entropy of the macrostate through
body really knows what entropy is anyway.” It is concerning S—kalNW (1)
entropy that students are most likely to invert their familiar B ’
lament and say “l can do the problems, but | just can'twherekg is Boltzmann's constant. Clearly is high for a
understand the material.” macrostate when many microstates correspond to that mac-

The qualitative character of entropy has been discussegstate, whereas it is low when few microstates correspond.
widely,2"*3 although often only in the restricted context of The entropy of a macrostate measures the number of ways in
gases or even in the highly restricted context of noninteractwhich a system can be different microscopically and yet still
ing gases. The metaphoric images invoked for entropy inbe a member of the same macroscopic stffée corre-
clude “disorder,” “randomness,” “smoothness,” “disper- sponding microstates are often called “accessible” for rea-
sion,” and “homogeneity.” In a posthumous fragment, sons relating to ergodic theory. Because ergodic theory is
Gibbs* mentioned “entropy as mixed-up-ness.” Images rarely discussed at the undergraduate level, | feel it best to
such as these can be useful and important, but if taken togvoid that term. Other synonyms for “a microstate corre-
literally they can confuse as well as enlighten, and whersponding to a macrostate” are “‘a microstate consistent with
misused>'® they can result in simple error. Analogies and (or compatible with a macrostate” or “a permissible mi-
visualizationsshould be employed, but their limitations as crostate.’]
well as their strengths must be kept firmly in mind. Note that it requires some skill and interpretation to trans-

Section | of this paper serves to set the stage and fix thiate this formal definition into an expression applicable to
terminology by presenting the formal, mathematical defini-specific situations. For example, suppose the macrostate of
tion of microcanonical entropy in statistical mechanid@he the system is specified by an energy fréno E+ AE. If the
definition is extended to other ensembles in the Appendix.system in question is quantum mechanical with discrete en-
Section Il (“Cautionary Tales’) gives three examples of the ergy levels, then one must count not all quantal states with
surprises nature provides when this definition is applied tqnean energies in this range, nor all energy eigenstates with
physical systems, and hence illustrates the difficulties inenergies in this range, but instead the number of elements of
volved in seeking qualitative insight into entropy. This sur-an energy eigenbasis with eigenvalues in this rafigeother
vey serves to frame the terms of debate and show why somgords, one must properly count degenerate energy stéttes.
visualizations of entropy aneot acceptable. Section Ill goes the system is a collection df identical classical particles,
to the heart of the matter by examining two versions of ayhether interacting or not, then the macroscopic state may
simple model systenithe “lattice gas) in which the rela-  pe a gas, liquid, or solid, but in all casésis the volume of
tionship between microscopic configurations and maCf(Uahase space corresponding to this energy range, divided by
scopic thermodynamic states is particularly clear. Section | (N'h3Y). (In classical statistical mechanids, is an arbi-

t Dok d Sec. V d s The ideal I etrary constant with the dimensions of action. In quantal sta-
Of poKer, and Sec. V draws conclusions. 1€ 1deal CoNClUggtical mechanics, it takes on the value of Planck’s constant.
sion for this paper would be to resolve the difficulties raisedry o so-called delabeling factoN!, reflects the fact thah!

: PYjifferent phase space points correspond to the same physical
that appeals to both the gut and the intellect. | am not able t@ystem. Thes@l! points all represenhl particles atN given

do this. But | am able to use a combination of mathematic§q:ations and with corresponding given velocities, and differ
and analogy to illuminate the character of entropy.

only in the labels affixed to the various particles. On a more

pragmatic vein, if the factor ofN! were absent, then the
I. MATHEMATICAL DEFINITION OF ENTROPY resulting entropy would not be extensit/e.

(MICROCANONCIAL ENSEMBLE )

In statistical mechanics, many microstates may corresponf -aUTIONARY TALES
to a single macrostatéA macrostate is also called a “ther-

modynamic state”: for exampld,, V, andN for the canoni- Before seeking qualitative insight into this formal defini-
cal ensemble o, V, and N for the microcanonical en- tion, we examine three situations that demonstrate just how
semble). In the microcanonical ensemble the entropy ishazardous our search for insight can be.
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A. The monatomic ideal gas 80 isotropic
The entropy of a pure classical monatomic ideal gas, as a 3 )
function of energyE, volumeV, and particle numbeN, is 0 60— nematic
given by the Sackur—Tetrode formula E
3 [4mmEV3 5 540F  smectic
= = + . 2
S(E.V.N)=kgN| 5In TN 2 E oL

Let us examine this result qualitatively to see whether it
agrees with our understanding of entropy as proportional to % 0]1 0‘2 0'3 0'4 0.5
the number of microstates that correspond to a given mac- " composition '

rostate. If the volume& is increased, then the formula states _ o _ _ _

that the entropys increases, which certainly seems reasonfig- 1. Phase diagram of a liquid crystal mixture. The variable “composi-

able: If the volume goes up then each particle has mor jon” refers to the molecular weight ratio of 60CB to 80CB. Figure modi-
) . ’ . ﬁed from Refs. 21, 22.

places where it can be, so the entropy ought to increase.

the energyE is increased, thers increases, which again

seems reasonable: If there is more energy around, then thege ., ,,oneous bowl of meltwater, yet it is the ice slivers that
will be more different ways to split it up and share it among ave the lower entropy. The moral here is that the huge

the particles, so we expect the entropy to increase. But wh mber of microscopic degrees of freedom in the meltwater

gntgecgaﬁjsirgrﬁfaergctr;]epnggé?uigcéi?%eigéfesr?egtral(ljyr’] ars mpletely overshadow the minute number of macroscopic
P Py of, say, arg egrees of freedom in the jumbled ice slivers. But the analo-

krypton under identical conditio§) Our formula shows ies of entropy to “disorder” or “smoothness” invite us to

that entropy increases with mass, but is there any way t nore this moral and concentrate on the system’s gross ap-

understand this qualitatively? - :
In fact | can qproduce r¥ot just one but two qualitative pearance and nearly irrelevant macroscopic features.

arguments concerning the dependenceé&ahn m. Unfortu-
nately the two arguments give opposite results! The first reC. Reentrant phases

lies upon the fact that When the temperature falls at constant pressure, most pure

1 5 materials pass from gas to liquid to solid. But the unusual
E= EE Pis 3 materials called “liquid crystals,” which consist of rodlike
: molecules, display a larger number of phafeBor typical
so for a given energ¥, any individual particle may have a liquid crystals, the high-temperature liquid phase is isotropic,
momentum ranging from 0 tg2mE. A larger mass implies meaning that the positions and the orientations of the mol-
a wider range of possible momenta, which suggests morgcules are scattered about nearly at random. At lower tem-
microstates and a greater entropy. The second argument reeratures, the substance undergoes a transition into the so-

lies upon the fact that called “nematic” phase, in which the molecules tend to
orient in the same direction but in which positions are still

E:TZ V2 4) scattered. At still lower temperatures it passes into the
245 7" “smectic” phase, in which the molecules orient in the same

: Lo . direction and their positions tend to fall into planes. Finally,
so for a given energ¥, any individual particle may have a 5 eyen lower temperatures, the molecules freeze into a con-
speed ranging from O tq2E/m. A larger mass implies a yentional solid. The story told so far reinforces the picture of
narrowed range of possible speeds, which suggests fewegntropy as disorder,” with lower-temperatutaence lower
microstates and a smaller entropy. The mré simple:  entropy phases showing more and more qualitative order.
Qualitative arguments can backfire! But not all liquid crystals behave in exactly this fashion.
One material called “hexyloxycyanobiphenyl” or “60CB”
passes from isotropic liquid to nematic to smeditd then
back to nematic agaias the temperature is lowerét??The

It is common to hear entropy associated with “disorder,” first transition suggests that the nematic phase is “less or-
“smoothness,” or “homogeneity.” How do these associa- derly” than the smectic phase, while the second transition
tions stand up to the simple situation of a bowl of liquid suggests the opposite!
water placed into a freezer? Initially the water is smooth and One might argue that the lower-temperature nematic
homogeneous. As its temperature falls, the sample remairmghase—the so-called “reentrant nematic’—is somehow
homogeneous until the freezing point is reached. At thequalitatively different in character from the higher-
freezing temperature the sample is an inhomogeneous mixemperature nematic, but the experiments summarized in Fig.
ture of ice and liquid water until all the liquid freezes. Then 1 demonstrate that this is not the case. These experiments
the sample is homogeneous again as the temperature continvolve a similar liquid crystal material called “octyloxy-
ues to fall. Thus the sample has passed from homogeneousdganobiphenyl” or “80CB” which has no smectic phase at
inhomogeneous to homogeneous, yet all the while its entropgll. Adding a bit of 8B0OCB into a sample of 60CB reduces
has decreased. the temperature range over which the smectic phase exists.

Suppose the ice is then cracked out of its bowl to makeAdding a bit more reduces that range further. Finally, addi-
slivers, which are placed back into the bowl and allowed tation of enough 80CB makes the smectic phase disappear
rest at room temperature until they melThe jumble of altogether. The implication of Fig. 1 is clear: there is no
irregular ice slivers certainly seems disordered relative to thgualitative difference between the usual nematic and the re-

B. Freezing water
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entrant nematic phases—you can move continuously from--®-~ - W W W
one to the other in the temperature—composition phase dia|: w.m-% .. . . . % @i a% ar: Bum.
gram. A A ol
The implication of reentrant phagédor entropy is pro- Y I R R R O
found: Under some conditions the nematic phase has morq. . :iiji!j come ‘E. .. .mm. . jij!j ;e
entropy than the smectic phase and under other conditiong: = = =« ==« v o e v e e e e v L R LK
less, while in all cases the nematic is qualitatively less or-|: - - .. [ mee o, i il el
dered. b DA
Reentrant phases are also encountered in type-li- - -HEEE®E-B: - oot ooy = -m--
superconductor¥. For example, when the temperature is jg..%. . 0. 0 i laum. . .
lowered at constant magnetic field, some superconductorys < = = ===« == s e s s e ne s s e e e
o 90 o . e o o s o e e e v [ I SR H-H-N-: -0
pass from the “vortex liquid” phase to the “vortex glass” |-« -m- B« +« s oo v v v v e ennn I I
phase and then back to the “vortex liquid” phase. The usual|; ;. . (gl ... i W W o g Wi
and reentrant instances of the vortex liquid are the samg- - -®- - - - - ] R | IR m--u
phase, as can be demonstrated by making them merge ba: © . ‘m- - mm. . onv.e.e . "0 oum..B.....®
changing both the temperature and the magnetic field. e meme A Ak
A third example of a reentrant phase appears in the phas{. - - . . . . m-- RIS RUNIRY | IRIIRIPEPEPEE
diagram of the mixture of water and nicotifeFor a wide it e m
range of mixing ratios, this mixture is a homogeneous solu-|* = = - - LIS . SR
tion at high temperatures, segregates into water-rich ands . & .. . .m.vone ol imm. . ime
nicotine-rich phases at moderate temperatures, yet become: ;[ . g g . @1 Q- go- RE o
homogeneous again at low temperatures. At mixing ratios{- « = » - - « - - - . | RSN W - [ B KRS R

closer to pure water or pure nicotine, the mixture is homo-

geneous at all temperatures. Thus the high-temperature and Fig- 2. A lattice gas configuration generated by the progiarssl

reentrant homogeneous phases are in fact the same phase.

An obvious question at this point is “Why do reentrant

phases exist?” The answer is “I don’t know.” | don't know classes, two pools, of microstates, and that | used my two

why water has the phases that it does either. Nature displaygomputer programs to select one member from each of those

an extraordinary variety of phase behavithsll of which  two pools. The selection was done at random, so the selected

come about through maximizing the entropy of an isolatedconfiguration should be considered typical. Thus my ques-

system, and none of which caat presentbe calculated tion should have been “Which configuration was drawn

from first principles. We can only grope at why some phasdrom the larger pool?”, or “Which configuration is typical

diagrams are relatively simple and others are mindof the larger class?”. Given this corrected question, you

numbingly complex. Such gropings are exciting and impor-might want to go back and look at the configurations again.

tant, but they do little to illuminate the qualitative character | have asked these questions of a number of pedyth

of entropy. That illumination comes instead through examin-students and professionalnd most of them guess that Fig.

ing a simpler—rather than a more complex—model. 3 is typical of the class with larger entropy. That configura-
tion is smoother, less clumpy. They look at the configuration

in Fig. 2 and see patterns, which suggests some orderly pro-
[ll. ENTROPY AND THE LATTICE GAS

The three examples above should caution us about relying

on qualitative arguments concerning entropy. Here is anothe|. - ™ i g: (™ (™ o g LT el el
situatiorf” to challenge your intuition: Figures 2 and 3 show e DR L B
two configurations of 13=169 squares tossed down on an m- - -m« « - « - Moo L I
area that has 3635=1225 empty spaces, each of which |- m- " . m m. ;e ... o Mg g™
could hold a square. This system, called the “lattice gas|: g ™ :®™: .. ™ ®a % i al:
model,” lacks some familiar featurde.g., energy and tem- |- - - e i!: :!i': il el :i:!' <.
peraturg, yet it is nevertheless a legitimate and well-studied |g. - . .. % .5 ... .o ... ... o E. . oW
thermodynamic systeff. The two configurations shown | :: mem e
were produced by two different computer prografsssl IR EETIE C ENTIRY I  IRIRIRIRR .
andToss2 that used different rules to position the squées. ™. ;. ®;;;;;;;;®..#a-----#&-@4------"--
(The rules will be presented in due course; for the moment - - :i!:i:i: - :i:!:!:!: coc|e
shall reveal only that both rules employ random numbers. |. .m- ... .. ... B B rvreeeae e -
Which configuration do you_thlnk_has the greater entropy?|: : jij!j i mem. .. m.e ‘.- ‘m.om. . :!:ij -
Be sure to look at the configurations, ponder, and make g|- « - -« - - | IO IR IR - -H-N
guess(no matter how ill-informetl before reading on. Pl D P NN
Before analyzing these pictures, | must first confess that/z - ®: -®-®- - - -®- 2" @8- - W8 -
my question was very misleading. | asked “Which configu- |- - . . m- .. .. L S R L I
ration has the greater entropy?,” but entropy is not defined in|; ™ ; ;g ;@ ®- - -- - W B E T
terms of a single configuratiof@a single microstade Instead, LR R L R Moo
A J A [P, Wvov v oo 00086000 e s Rl B

entropy is defined for a macrostate, and is related to thel. . .. ... ... ... P T W oorae e
number of microstates that the system can take on and stil{; ; ;o ::®:®-- - BB oWl

be classified in that same macrostate. Instead of asking the
question | did, | should have pointed out that | had two Fig. 3. A lattice gas configuration generated by the progiarss2
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cess for producing that configuration, while the smoothnesg« =+ = = =+ + = =+ - v« v+« v e v v e s oo e T e
of the lower configuration suggests a random, disorderly|. . . ... ... . Ll Lo
construction process. Lo

Having posed the central question, let me end the suspeng« « - « « « o v v e v v o i v u e L I T
and tell you how the computer programs produced the twoj. . . .. ... ... ji!i!‘ D
configurations. Figure 2 was produced by tossing 169 - =« === - - L LR N
_ 2 e T I e I S I I ST R} - . - . - . . . .............
=(13)” squares down at random onto an area wittk35 |- - o oo e e oL HoE-E-E-W e
=1225 locations, subject only to the rule that two squares|: - . ... . a m m m u m m ;..
could not fall on the same location. Figure 3 was produced inj: @ ;:: ;M W B W -B B B B B 00
exactly the same manner except that there was an additiong- « - - - - - (NN DD D I R
rule, namely that two squares could not fall on adjacent lo-|2 [ [ ! L il Tl il il il i
cations either. Thus Fig. 2 was drawn from the poolatf T :!l.l.lll.i!i!i.l.l.l.l!: T
patterns with 169 squares, while Fig. 3 was drawn from thej. . . . . . .. H-B-B -8B B -B-Beococcoo
much smaller pool of patterns with 169 squaaesl with no I sl Bl il i L S S e
two squares adjacenfThe configuration of Fig. 2 is typical |-« «« -« - LI B BN B KN IR
of the class with more configurations and hence greater]: . . ... . " a®a"u " m ..
entropy?” SERESSEREREREL KL XL ER SRS

Look again at Fig. 3. You will notice that there are no [+ + « « « v a v v o v v vt e I IR A
squares immediately adjacent to any given square. Thig; ;1. ioiiolo oIt
“nearest neighbor exclusion” rule acts to spread out thej: - =+« v v rereemeeeneminnen e
squares, giving rise to the smooth appearance that tricks S|. . . . .. .. ... L
many into guessing that the configuration of Fig. 3istypical lLs =+« « ¢ = ¢ ¢ o o o v+ o v 000 v 2 v v 0 0 v v 00 pp v v

Ofs Clasls Vl\(”th hlgh etntlgqpy-z v il ti hol d Fig. 4. An orderly lattice gas configuration that is a member of both the
Ow 100K again at k9. . You will notice holes an large class and the small class of configurations.

clumps of squares, the inhomogeneities that lead many to
guess that it is typical of a small class. But in fact one should

expecta random configuration to have holes—only a verypecayse this hand is a member of an enormous class of not-
exceptional configuration is perfectly smodthThis in- particularly-valuable poker hands. But the probability of be-
volves the distinction betweentgpical configuration and an g gealt this hand iexactlythe same as the probability of
average configuration. Typical configurations have holes: peing dealt the royal flush of hearts. The reason that one
some have holes in the upper right, some in the middle |eftyanq js memorable and the other is not has nothing to do
some in the very center. Because the holes fall in variou§ith the rarity of that particular hand; it has everything to do
locations, the average configuration—the one produced byt the size of the class of which that hand is a member.
adding all the configurations and dividing by the number of s howerful and graphic illustration of the importance of

configurations—is smooth. The average configuration is acg|ass rather than of individual configuration may be called
tually atypical.(Analogy: A typical person is not of average e poker paradox.”

height. A typical person is somewhat taller or somewhat

shorter than average, and very few people are exactly of

average height. Any clothing manufacturer that producea/- CONCLUSION

only shirts of average size would quickly go bankrufiie 1 is often said that entropy measures the disorder of a
presence of holes or clumps, therefore, need not be an indiystem This qualitative concept has at least three failings:
cation of a pattern or of a design. However, we humans tengrs; it is vague. There is no precise definition of disorder.
to find patterns wherever we look, even when no design igome find the abstract paintings of Jackson Pollock to be

present. In just this way the ancient Greeks looked into thejisorderly: others find them pregnant with structure. Second,
nighttime sky, with stars sprinkled about at random, and saw ses an emotionally charged word. Most of us have feel-
the animals, gods, and heroes that became our constellauor;ﬁgs about disordefeither for it or against jt and the anal-

ogy encourages us to transfer that like or dislike from disor-
der, where our feelings are appropriate, to entropy, where
they are not. The most important failing, however, is that the
analogy between entropy and disorder invites us to think

by the card game poker. There are many possible hands ﬁﬁgout a single configuration rather than a class of configura-

ns. In the lattice gas model there are many “orderly”
Egﬁzr’ some valuable and most less so. For example, th(éaonfigurations(such as the checkerboard pattern of Fig. 4

that are members of both classes. There are many other “or-
AV K¥ Q¥ J¥ 10V derly” configurations(such as the solid block pattern of Fig.
is an example of a royal flush, the most powerful hand in

5) thglztsglre members only of the largénigher entropy)
poker. There are only four royal flushéke royal flush of class.The poker hand
hearts, of diamonds, of spades, and of cJuosd any poker

_ 2,44 69 .84 104
folﬁre]év;’g; r(;?shiesvg EZ?“fgealt aroyal flush will remember IItS very orderly, but a member of a very large class of nearly

By contrast, no one can remember whether he or she ha\{go(;t_hlesshpok?ar handso.l f L ,
been dealt the hand iven the clear need for an intuition concerning entropy,
and the appealing but unsatisfactory character of the simile
44.36.,J92A.7¢ “entropy as disorder,” what is to be done? | suggest an

IV. ENTROPY AND POKER

An excellent illustration of the nature of entropy is given
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Fig. 5. An orderly lattice gas configuration that is a member of only the

large (high entropy) class of configurations.

additional simile, namely “entropy as freedom,” which is to
be used not by itself but only in conjunction with “entropy

as disorder.”

microscopically disordered” directs attentiawayfrom glib
emotional baggage arntdwardthe perspective of “more en-
tropy means more microstates.”

“The unexamined life is not worth living,” claims
Socrates. Similarly, the unexamined analogy is as likely to
mislead as to edify. Using two different analogies, which
superficially appear in opposition, can help insure that both

........... ESEEEEEEEEEEER: - ¢ ¢ o ¢« o o f e
___________ EEESEEEEEEEEE - - . - oo o analogies are used critically and thoughtfully.
........... SEEEEEEEEEEEE: - ¢ ¢ ¢ s ¢ 0o oo
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APPENDIX: GENERAL MATHEMATICAL
DEFINITION OF ENTROPY

The formal statistical-mechanical definition of entropy,
valid for any equilibrium ensembile, is

S=— kB%‘, PN P, (A1)

wherekg is Boltzmann’s constant, the sum runs over all the
microstatesn of the system, ang,, is the probability that
microstatem is occupied in the given ensembfeThe en-
tropy is a function of the system’s macrostéa¢so called its
“thermodynamic state”: for examplel, V, andN for the
canonical ensemble d&, V, andN for the microcanonical

tropy” means a range of possible microstates. If only onefunctions of that macrostate.

microstate corresponds to a certain macrostate, then the sys-Note that the function-Inx is monotonically decreasing
tem has no freedom to choose its microstate—and it has zegnd that

entropy. If you are free to manage your own bedroom, then

you may keep it either neat or messy, just as high entropy S=—kg(lnp,) where E pm=1. (A2)
macrostates encompass both orderly and disorderly mi- m

crostates. The entropy gives the number of ways that th§hese three facts together give us a good picture of the rela-
constituents of a system can be arranged and still be a mefjpy petween the occupation probabilitigs, and the en-

ber of the club(or class. If the class entropy is high, then yqny The Jargest value of,, corresponds to the smallest
there are a number of different ways to satisfy the classg_ of—Inp,., and becausp,, is large this small value is
membership criteria. If the class entropy is low, then that . m m
class is very demanding—uvery restrictive—about which mi-éighed heavily when forming the average (In py.

crostates it will admit as members. In short, the advantage df/€ary, @ small entropy comes from having a few mi-

the “entropy as freedom” analogy is that it focuses attentionCrostates with high occupation probabilities while all the rest
on the variety of microstates corresponding to a macrostat82ve small occupation probabilitiedndeed, the minimum
whereas the “entropy as disorder” analogy invites focus onvalué S=0 comes whenever one microstate fpgs=1 and

a single microstate. all the rest havep,,=0.) Just as clearly, a large entropy

While “entropy as freedom” has these benefits, it also hascomes when the occupation probability is nearly equally
two of the drawbacks of “entropy as disorder.” First, the shared among the several possible microstdtedeed, us-
term “freedom” is laden with even more emotional baggageing Lagrange multipliers it is a trivial matter to show that the
than the term “disorder.” Second, it is even more vague;Maximum value ofS comes when all the occupation prob-
political movements from the far right through the center toabilities are equal.In short, the entropy of a given mac-
the extreme left all characterize themselves as “freedoniostate measures the extent to which the occupation prob-
fighters.” Is there any way to reap the benefits of this anal-abilites p, are “spread around” among the various
ogy without sinking into the mire of drawbacks? microstates corresponding to the macrostate.

For maximum pedagogical advantage, | suggest using The significance of the “spread around” quality is most
both of these analogies. The emotions and vaguenesses &learly seen in the microcanonical ensemble, as described in
tached to “freedom” are very different from those attachedSec. I.(In an undergraduate course, | feel that the general
to “disorder,” so using them together tends to cancel out theargument of this Appendix shoulibt be used, and only the
emotion. A simple sentence like “For macrostates of highmicrocanonical-specific argument of Sec. | presentéal.
entropy, the system has the freedom to chose one of a lardbis ensemble, microstates are either “inp,{=a constant)
number of microstates, and the bulk of such microstates ané they correspond to the given macrostate or else they're
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“out” ( p,=0) if they do not. If the number of correspond-
ing microstates iV, then the nonvanishing probabilities are
pm=1M, and the general entropy definition E@A1l) be-
comes

S: kB |n W,
which is Eq.(1) of Sec. I.

(A3)

aE|ectronic mail: Dan.Styer@oberlin.edu
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(where all microstates are “accessib)jethe microstate most likely to be
occupied is the ground state, and that this is &uany positive tempera-
ture, no matter how highThe ground state energy is not the most probable
energy, nor is the ground state typical, yet the ground state is the most
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probable microstate. In specific, even at a temperature of 1 000 000 K, aabout entropy, but it holds only for the microcanonical ensemble. The

sample of helium is more likely to be in a particular crystalline microstate definition Eq.(Al) is harder to understand but is also more general, ap-

than in any particular plasma microstate. However, there are so many plying to any ensemble. The two definitions are logically equivalent. See,

more plasma than crystalline microstates tlirathe thermodynamic limijt for example, Richard E. Wilde and Surjit Sing8tatistical Mechanics:

the sample occupies a plasma macrostate with probability 1. Fundamentals and Modern Applicatiof@/iley, New York, 1998, Sec.
34The definition of entropy in Eq(1) is the best starting place for teaching  1.6.1.

COMPUTERS IN THE CLASSROOM

I've paid my dues in physics and astronomy, and in those basic sciences, computers have
nothing to do with learning.
No computer can help someone understand the meaning of a wave function, angular momen-
tum, or the relativistic-twins paradox. Software can simulate these on a glass screen, but these
simplifications depend on someone else’s understanding, which may be quite limited.
Up and down the line, computer programs feed us someone else’s logic, instead of encoyraging
us to develop our own. When confronted by a quandary, we're fed someone else’s rubric [rather
than creating our own assaults on the problem.

Clifford Stoll, Silicon Snake OilDoubleday, New York, 1995 p. 121.
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