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What is the qualitative character of entropy? Several examples from statistical mechanics~including
liquid crystal reentrant phases, two different lattice gas models, and the game of poker! demonstrate
facets of this difficult question and point toward an answer. The common answer of ‘‘entropy as
disorder’’ is regarded here as inadequate. An alternative but equally problematic analogy is
‘‘entropy as freedom.’’ Neither simile is perfect, but if both are used cautiously and not too literally,
then the combination provides considerable insight. ©2000 American Association of Physics Teachers.
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Of all the difficult concepts of classical physics—conce
like acceleration, energy, electric field, and time—the m
difficult is entropy. Even von Neumann1 claimed that ‘‘no-
body really knows what entropy is anyway.’’ It is concernin
entropy that students are most likely to invert their famil
lament and say ‘‘I can do the problems, but I just ca
understand the material.’’

The qualitative character of entropy has been discus
widely,2–13 although often only in the restricted context
gases or even in the highly restricted context of noninter
ing gases. The metaphoric images invoked for entropy
clude ‘‘disorder,’’ ‘‘randomness,’’ ‘‘smoothness,’’ ‘‘disper-
sion,’’ and ‘‘homogeneity.’’ In a posthumous fragmen
Gibbs14 mentioned ‘‘entropy as mixed-up-ness.’’ Imag
such as these can be useful and important, but if taken
literally they can confuse as well as enlighten, and wh
misused15,16 they can result in simple error. Analogies an
visualizationsshould be employed, but their limitations a
well as their strengths must be kept firmly in mind.

Section I of this paper serves to set the stage and fix
terminology by presenting the formal, mathematical defi
tion of microcanonical entropy in statistical mechanics.~The
definition is extended to other ensembles in the Append!
Section II~‘‘Cautionary Tales’’! gives three examples of th
surprises nature provides when this definition is applied
physical systems, and hence illustrates the difficulties
volved in seeking qualitative insight into entropy. This su
vey serves to frame the terms of debate and show why s
visualizations of entropy arenot acceptable. Section III goe
to the heart of the matter by examining two versions o
simple model system~the ‘‘lattice gas’’! in which the rela-
tionship between microscopic configurations and mac
scopic thermodynamic states is particularly clear. Section
reinforces the ideas of Sec. III by applying them to the ga
of poker, and Sec. V draws conclusions. The ideal conc
sion for this paper would be to resolve the difficulties rais
by producing a concise yet accurate visualization for entr
that appeals to both the gut and the intellect. I am not abl
do this. But I am able to use a combination of mathema
and analogy to illuminate the character of entropy.

I. MATHEMATICAL DEFINITION OF ENTROPY
„MICROCANONCIAL ENSEMBLE …

In statistical mechanics, many microstates may corresp
to a single macrostate.~A macrostate is also called a ‘‘ther
modynamic state’’: for example,T, V, andN for the canoni-
cal ensemble orE, V, and N for the microcanonical en
semble.! In the microcanonical ensemble the entropy
1090 Am. J. Phys.68 ~12!, December 2000 http://ojps.aip.or
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found simply by counting: One counts the numberW of mi-
crostates that correspond to the given macrostate, and c
putes the entropy of the macrostate through

S5kB ln W, ~1!

wherekB is Boltzmann’s constant. Clearly,S is high for a
macrostate when many microstates correspond to that m
rostate, whereas it is low when few microstates correspo
The entropy of a macrostate measures the number of way
which a system can be different microscopically and yet s
be a member of the same macroscopic state.@The corre-
sponding microstates are often called ‘‘accessible’’ for re
sons relating to ergodic theory. Because ergodic theor
rarely discussed at the undergraduate level, I feel it bes
avoid that term. Other synonyms for ‘‘a microstate corr
sponding to a macrostate’’ are ‘‘a microstate consistent w
~or compatible with! a macrostate’’ or ‘‘a permissible mi
crostate.’’#

Note that it requires some skill and interpretation to tra
late this formal definition into an expression applicable
specific situations. For example, suppose the macrostat
the system is specified by an energy fromE to E1DE. If the
system in question is quantum mechanical with discrete
ergy levels, then one must count not all quantal states w
mean energies in this range, nor all energy eigenstates
energies in this range, but instead the number of elemen
an energy eigenbasis with eigenvalues in this range.~In other
words, one must properly count degenerate energy state! If
the system is a collection ofN identical classical particles
whether interacting or not, then the macroscopic state m
be a gas, liquid, or solid, but in all casesW is the volume of
phase space corresponding to this energy range, divide
(N!h0

3N). ~In classical statistical mechanics,h0 is an arbi-
trary constant with the dimensions of action. In quantal s
tistical mechanics, it takes on the value of Planck’s const
The so-called delabeling factor,N!, reflects the fact thatN!
different phase space points correspond to the same phy
system. TheseN! points all representN particles atN given
locations and with corresponding given velocities, and dif
only in the labels affixed to the various particles. On a mo
pragmatic vein, if the factor ofN! were absent, then the
resulting entropy would not be extensive.17!

II. CAUTIONARY TALES

Before seeking qualitative insight into this formal defin
tion, we examine three situations that demonstrate just h
hazardous our search for insight can be.
1090g/ajp/ © 2000 American Association of Physics Teachers
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A. The monatomic ideal gas

The entropy of a pure classical monatomic ideal gas, a
function of energyE, volumeV, and particle numberN, is
given by the Sackur–Tetrode formula

S~E,V,N!5kBNF3

2
lnS 4pmEV2/3

3h0
2N5/3 D 1

5

2G . ~2!

Let us examine this result qualitatively to see whethe
agrees with our understanding of entropy as proportiona
the number of microstates that correspond to a given m
rostate. If the volumeV is increased, then the formula stat
that the entropyS increases, which certainly seems reaso
able: If the volume goes up, then each particle has m
places where it can be, so the entropy ought to increas
the energyE is increased, thenS increases, which again
seems reasonable: If there is more energy around, then
will be more different ways to split it up and share it amo
the particles, so we expect the entropy to increase. But w
if the massm of each particle increases?~Experimentally,
one could compare the absolute entropy of, say, argon
krypton under identical conditions.18! Our formula shows
that entropy increases with mass, but is there any way
understand this qualitatively?

In fact, I can produce not just one but two qualitati
arguments concerning the dependence ofS on m. Unfortu-
nately the two arguments give opposite results! The first
lies upon the fact that

E5
1

2m(
i

pi
2, ~3!

so for a given energyE, any individual particle may have
momentum ranging from 0 toA2mE. A larger mass implies
a wider range of possible momenta, which suggests m
microstates and a greater entropy. The second argumen
lies upon the fact that

E5
m

2 (
i

v i
2, ~4!

so for a given energyE, any individual particle may have
speed ranging from 0 toA2E/m. A larger mass implies a
narrowed range of possible speeds, which suggests fe
microstates and a smaller entropy. The moral19 is simple:
Qualitative arguments can backfire!

B. Freezing water

It is common to hear entropy associated with ‘‘disorder
‘‘smoothness,’’ or ‘‘homogeneity.’’ How do these associ
tions stand up to the simple situation of a bowl of liqu
water placed into a freezer? Initially the water is smooth a
homogeneous. As its temperature falls, the sample rem
homogeneous until the freezing point is reached. At
freezing temperature the sample is an inhomogeneous
ture of ice and liquid water until all the liquid freezes. The
the sample is homogeneous again as the temperature co
ues to fall. Thus the sample has passed from homogeneo
inhomogeneous to homogeneous, yet all the while its entr
has decreased.

Suppose the ice is then cracked out of its bowl to ma
slivers, which are placed back into the bowl and allowed
rest at room temperature until they melt.9 The jumble of
irregular ice slivers certainly seems disordered relative to
1091 Am. J. Phys., Vol. 68, No. 12, December 2000
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homogeneous bowl of meltwater, yet it is the ice slivers t
have the lower entropy. The moral here is that the hu
number of microscopic degrees of freedom in the meltwa
completely overshadow the minute number of macrosco
degrees of freedom in the jumbled ice slivers. But the ana
gies of entropy to ‘‘disorder’’ or ‘‘smoothness’’ invite us to
ignore this moral and concentrate on the system’s gross
pearance and nearly irrelevant macroscopic features.

C. Reentrant phases

When the temperature falls at constant pressure, most
materials pass from gas to liquid to solid. But the unus
materials called ‘‘liquid crystals,’’ which consist of rodlike
molecules, display a larger number of phases.20 For typical
liquid crystals, the high-temperature liquid phase is isotrop
meaning that the positions and the orientations of the m
ecules are scattered about nearly at random. At lower t
peratures, the substance undergoes a transition into the
called ‘‘nematic’’ phase, in which the molecules tend
orient in the same direction but in which positions are s
scattered. At still lower temperatures it passes into
‘‘smectic’’ phase, in which the molecules orient in the sam
direction and their positions tend to fall into planes. Final
at even lower temperatures, the molecules freeze into a
ventional solid. The story told so far reinforces the picture
‘‘entropy as disorder,’’ with lower-temperature~hence lower
entropy! phases showing more and more qualitative orde

But not all liquid crystals behave in exactly this fashio
One material called ‘‘hexyloxycyanobiphenyl’’ or ‘‘6OCB’’
passes from isotropic liquid to nematic to smecticand then
back to nematic againas the temperature is lowered.21,22The
first transition suggests that the nematic phase is ‘‘less
derly’’ than the smectic phase, while the second transit
suggests the opposite!

One might argue that the lower-temperature nema
phase—the so-called ‘‘reentrant nematic’’—is someh
qualitatively different in character from the highe
temperature nematic, but the experiments summarized in
1 demonstrate that this is not the case. These experim
involve a similar liquid crystal material called ‘‘octyloxy
cyanobiphenyl’’ or ‘‘8OCB’’ which has no smectic phase
all. Adding a bit of 8OCB into a sample of 6OCB reduc
the temperature range over which the smectic phase ex
Adding a bit more reduces that range further. Finally, ad
tion of enough 8OCB makes the smectic phase disapp
altogether. The implication of Fig. 1 is clear: there is
qualitative difference between the usual nematic and the

Fig. 1. Phase diagram of a liquid crystal mixture. The variable ‘‘compo
tion’’ refers to the molecular weight ratio of 6OCB to 8OCB. Figure mod
fied from Refs. 21, 22.
1091Daniel F. Styer
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entrant nematic phases—you can move continuously f
one to the other in the temperature–composition phase
gram.

The implication of reentrant phases23 for entropy is pro-
found: Under some conditions the nematic phase has m
entropy than the smectic phase and under other condit
less, while in all cases the nematic is qualitatively less
dered.

Reentrant phases are also encountered in typ
superconductors.24 For example, when the temperature
lowered at constant magnetic field, some superconduc
pass from the ‘‘vortex liquid’’ phase to the ‘‘vortex glass
phase and then back to the ‘‘vortex liquid’’ phase. The us
and reentrant instances of the vortex liquid are the sa
phase, as can be demonstrated by making them merg
changing both the temperature and the magnetic field.

A third example of a reentrant phase appears in the ph
diagram of the mixture of water and nicotine.25 For a wide
range of mixing ratios, this mixture is a homogeneous so
tion at high temperatures, segregates into water-rich
nicotine-rich phases at moderate temperatures, yet beco
homogeneous again at low temperatures. At mixing ra
closer to pure water or pure nicotine, the mixture is hom
geneous at all temperatures. Thus the high-temperature
reentrant homogeneous phases are in fact the same pha

An obvious question at this point is ‘‘Why do reentra
phases exist?’’ The answer is ‘‘I don’t know.’’ I don’t know
why water has the phases that it does either. Nature disp
an extraordinary variety of phase behaviors,26 all of which
come about through maximizing the entropy of an isola
system, and none of which can~at present! be calculated
from first principles. We can only grope at why some pha
diagrams are relatively simple and others are mi
numbingly complex. Such gropings are exciting and imp
tant, but they do little to illuminate the qualitative charac
of entropy. That illumination comes instead through exam
ing a simpler—rather than a more complex—model.

III. ENTROPY AND THE LATTICE GAS

The three examples above should caution us about rel
on qualitative arguments concerning entropy. Here is ano
situation27 to challenge your intuition: Figures 2 and 3 sho
two configurations of 1325169 squares tossed down on
area that has 3533551225 empty spaces, each of whic
could hold a square. This system, called the ‘‘lattice g
model,’’ lacks some familiar features~e.g., energy and tem
perature!, yet it is nevertheless a legitimate and well-studi
thermodynamic system.28 The two configurations shown
were produced by two different computer programs~Toss1
andToss2! that used different rules to position the squares29

~The rules will be presented in due course; for the mome
shall reveal only that both rules employ random numbe!
Which configuration do you think has the greater entrop
Be sure to look at the configurations, ponder, and mak
guess~no matter how ill-informed! before reading on.

Before analyzing these pictures, I must first confess t
my question was very misleading. I asked ‘‘Which config
ration has the greater entropy?,’’ but entropy is not define
terms of a single configuration~a single microstate!. Instead,
entropy is defined for a macrostate, and is related to
number of microstates that the system can take on and
be classified in that same macrostate. Instead of asking
question I did, I should have pointed out that I had tw
1092 Am. J. Phys., Vol. 68, No. 12, December 2000
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classes, two pools, of microstates, and that I used my
computer programs to select one member from each of th
two pools. The selection was done at random, so the sele
configuration should be considered typical. Thus my qu
tion should have been ‘‘Which configuration was draw
from the larger pool?’’, or ‘‘Which configuration is typica
of the larger class?’’. Given this corrected question, y
might want to go back and look at the configurations aga

I have asked these questions of a number of people~both
students and professionals! and most of them guess that Fig
3 is typical of the class with larger entropy. That configur
tion is smoother, less clumpy. They look at the configurat
in Fig. 2 and see patterns, which suggests some orderly

Fig. 2. A lattice gas configuration generated by the programToss1.

Fig. 3. A lattice gas configuration generated by the programToss2.
1092Daniel F. Styer
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cess for producing that configuration, while the smoothn
of the lower configuration suggests a random, disorde
construction process.

Having posed the central question, let me end the susp
and tell you how the computer programs produced the
configurations. Figure 2 was produced by tossing 1
5(13)2 squares down at random onto an area with 35335
51225 locations, subject only to the rule that two squa
could not fall on the same location. Figure 3 was produce
exactly the same manner except that there was an addit
rule, namely that two squares could not fall on adjacent
cations either. Thus Fig. 2 was drawn from the pool ofall
patterns with 169 squares, while Fig. 3 was drawn from
much smaller pool of patterns with 169 squaresand with no
two squares adjacent. The configuration of Fig. 2 is typica
of the class with more configurations and hence gre
entropy.30

Look again at Fig. 3. You will notice that there are n
squares immediately adjacent to any given square. T
‘‘nearest neighbor exclusion’’ rule acts to spread out
squares, giving rise to the smooth appearance that trick
many into guessing that the configuration of Fig. 3 is typi
of a class with high entropy.

Now look again at Fig. 2. You will notice holes an
clumps of squares, the inhomogeneities that lead man
guess that it is typical of a small class. But in fact one sho
expecta random configuration to have holes—only a ve
exceptional configuration is perfectly smooth.31 This in-
volves the distinction between atypical configuration and an
average configuration. Typical configurations have hole
some have holes in the upper right, some in the middle
some in the very center. Because the holes fall in vari
locations, the average configuration—the one produced
adding all the configurations and dividing by the number
configurations—is smooth. The average configuration is
tually atypical.~Analogy: A typical person is not of averag
height. A typical person is somewhat taller or somew
shorter than average, and very few people are exactly
average height. Any clothing manufacturer that produc
only shirts of average size would quickly go bankrupt.! The
presence of holes or clumps, therefore, need not be an
cation of a pattern or of a design. However, we humans t
to find patterns wherever we look, even when no design
present. In just this way the ancient Greeks looked into
nighttime sky, with stars sprinkled about at random, and s
the animals, gods, and heroes that became our constellat

IV. ENTROPY AND POKER

An excellent illustration of the nature of entropy is give
by the card game poker. There are many possible hand
poker, some valuable and most less so. For example,
hand

Ak,Kk,Qk,Jk,10k

is an example of a royal flush, the most powerful hand
poker. There are only four royal flushes~the royal flush of
hearts, of diamonds, of spades, and of clubs! and any poker
player who has ever been dealt a royal flush will remembe
for the rest of his or her life.

By contrast, no one can remember whether he or she
been dealt the hand

4l,3l,Jk,2;,7l
1093 Am. J. Phys., Vol. 68, No. 12, December 2000
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because this hand is a member of an enormous class of
particularly-valuable poker hands. But the probability of b
ing dealt this hand isexactlythe same as the probability o
being dealt the royal flush of hearts. The reason that
hand is memorable and the other is not has nothing to
with the rarity of that particular hand; it has everything to
with the size of the class of which that hand is a membe

This powerful and graphic illustration of the importance
class rather than of individual configuration may be cal
‘‘the poker paradox.’’

V. CONCLUSION

It is often said that entropy measures the disorder o
system. This qualitative concept has at least three failin
First, it is vague. There is no precise definition of disord
Some find the abstract paintings of Jackson Pollock to
disorderly; others find them pregnant with structure. Seco
it uses an emotionally charged word. Most of us have fe
ings about disorder~either for it or against it!, and the anal-
ogy encourages us to transfer that like or dislike from dis
der, where our feelings are appropriate, to entropy, wh
they are not. The most important failing, however, is that
analogy between entropy and disorder invites us to th
about a single configuration rather than a class of configu
tions. In the lattice gas model there are many ‘‘orderly
configurations~such as the checkerboard pattern of Fig.!
that are members of both classes. There are many other
derly’’ configurations~such as the solid block pattern of Fig
5! that are members only of the larger~higher entropy!!
class.32,33 The poker hand

2',4l,6k,8;,10'

is very orderly, but a member of a very large class of nea
worthless poker hands.

Given the clear need for an intuition concerning entrop
and the appealing but unsatisfactory character of the sim
‘‘entropy as disorder,’’ what is to be done? I suggest

Fig. 4. An orderly lattice gas configuration that is a member of both
large class and the small class of configurations.
1093Daniel F. Styer
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additional simile, namely ‘‘entropy as freedom,’’ which is
be used not by itself but only in conjunction with ‘‘entrop
as disorder.’’

‘‘Freedom’’ means a range of possible actions, while ‘‘e
tropy’’ means a range of possible microstates. If only o
microstate corresponds to a certain macrostate, then the
tem has no freedom to choose its microstate—and it has
entropy. If you are free to manage your own bedroom, th
you may keep it either neat or messy, just as high entr
macrostates encompass both orderly and disorderly
crostates. The entropy gives the number of ways that
constituents of a system can be arranged and still be a m
ber of the club~or class!. If the class entropy is high, the
there are a number of different ways to satisfy the cl
membership criteria. If the class entropy is low, then t
class is very demanding—very restrictive—about which m
crostates it will admit as members. In short, the advantag
the ‘‘entropy as freedom’’ analogy is that it focuses attent
on the variety of microstates corresponding to a macros
whereas the ‘‘entropy as disorder’’ analogy invites focus
a single microstate.

While ‘‘entropy as freedom’’ has these benefits, it also h
two of the drawbacks of ‘‘entropy as disorder.’’ First, th
term ‘‘freedom’’ is laden with even more emotional bagga
than the term ‘‘disorder.’’ Second, it is even more vagu
political movements from the far right through the center
the extreme left all characterize themselves as ‘‘freed
fighters.’’ Is there any way to reap the benefits of this an
ogy without sinking into the mire of drawbacks?

For maximum pedagogical advantage, I suggest us
both of these analogies. The emotions and vaguenesse
tached to ‘‘freedom’’ are very different from those attach
to ‘‘disorder,’’ so using them together tends to cancel out
emotion. A simple sentence like ‘‘For macrostates of hi
entropy, the system has the freedom to chose one of a l
number of microstates, and the bulk of such microstates

Fig. 5. An orderly lattice gas configuration that is a member of only
large ~high entropy!! class of configurations.
1094 Am. J. Phys., Vol. 68, No. 12, December 2000
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microscopically disordered’’ directs attentionawayfrom glib
emotional baggage andtoward the perspective of ‘‘more en
tropy means more microstates.’’

‘‘The unexamined life is not worth living,’’ claims
Socrates. Similarly, the unexamined analogy is as likely
mislead as to edify. Using two different analogies, whi
superficially appear in opposition, can help insure that b
analogies are used critically and thoughtfully.
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APPENDIX: GENERAL MATHEMATICAL
DEFINITION OF ENTROPY

The formal statistical-mechanical definition of entrop
valid for any equilibrium ensemble, is

S52kB(
m

pm ln pm , ~A1!

wherekB is Boltzmann’s constant, the sum runs over all t
microstatesm of the system, andpm is the probability that
microstatem is occupied in the given ensemble.34 The en-
tropy is a function of the system’s macrostate~also called its
‘‘thermodynamic state’’: for example,T, V, and N for the
canonical ensemble orE, V, and N for the microcanonical
ensemble!. The microstate probabilitiespm are of course also
functions of that macrostate.

Note that the function2 ln x is monotonically decreasing
and that

S52kB^ ln pm& where (
m

pm51. ~A2!

These three facts together give us a good picture of the r
tion between the occupation probabilitiespm and the en-
tropy. The largest value ofpm corresponds to the smalles
value of2 ln pm, and becausepm is large this small value is
weighed heavily when forming the average2^ ln pm&.
Clearly, a small entropy comes from having a few m
crostates with high occupation probabilities while all the r
have small occupation probabilities.~Indeed, the minimum
valueS50 comes whenever one microstate haspm51 and
all the rest havepm50.! Just as clearly, a large entrop
comes when the occupation probability is nearly equa
shared among the several possible microstates.~Indeed, us-
ing Lagrange multipliers it is a trivial matter to show that th
maximum value ofS comes when all the occupation prob
abilities are equal.! In short, the entropy of a given mac
rostate measures the extent to which the occupation p
abilities pm are ‘‘spread around’’ among the variou
microstates corresponding to the macrostate.

The significance of the ‘‘spread around’’ quality is mo
clearly seen in the microcanonical ensemble, as describe
Sec. I. ~In an undergraduate course, I feel that the gene
argument of this Appendix shouldnot be used, and only the
microcanonical-specific argument of Sec. I presented.! In
this ensemble, microstates are either ‘‘in’’ (pm5a constant)
if they correspond to the given macrostate or else they
1094Daniel F. Styer
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‘‘out’’ ( pm50) if they do not. If the number of correspond
ing microstates isW, then the nonvanishing probabilities a
pm51/W, and the general entropy definition Eq.~A1! be-
comes

S5kB ln W, ~A3!

which is Eq.~1! of Sec. I.
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probable microstate. In specific, even at a temperature of 1 000 000
sample of helium is more likely to be in a particular crystalline microst
than in any particular plasma microstate. However, there are so m
more plasma than crystalline microstates that~in the thermodynamic limit!
the sample occupies a plasma macrostate with probability 1.

34The definition of entropy in Eq.~1! is the best starting place for teachin
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about entropy, but it holds only for the microcanonical ensemble. T
definition Eq.~A1! is harder to understand but is also more general,
plying to any ensemble. The two definitions are logically equivalent. S
for example, Richard E. Wilde and Surjit Singh,Statistical Mechanics:
Fundamentals and Modern Applications~Wiley, New York, 1998!, Sec.
1.6.1.
COMPUTERS IN THE CLASSROOM

I’ve paid my dues in physics and astronomy, and in those basic sciences, computers have
nothing to do with learning.

No computer can help someone understand the meaning of a wave function, angular momen-
tum, or the relativistic-twins paradox. Software can simulate these on a glass screen, but these
simplifications depend on someone else’s understanding, which may be quite limited.

Up and down the line, computer programs feed us someone else’s logic, instead of encouraging
us to develop our own. When confronted by a quandary, we’re fed someone else’s rubric rather
than creating our own assaults on the problem.

Clifford Stoll, Silicon Snake Oil~Doubleday, New York, 1995!, p. 121.
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