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1. (5) Write an appropriate first sentence for the abstract of Unit 2, Flow Visualization.

Solution
There are many varieties of first sentences. Qualities which I sought were efficiency, good grammar, good
sentence structure, completeness, lack of ambiguity, and direct application to the laboratory. A good
first sentence might be

“Laminar, turbulent, and flows in transition were studied with dye injection visualization techniques for
internal and external flows.”

Common errors included use of multiple sentences, lack of a comprehensive statement, fuzzy sentence
structure, and use of statements which were too broad and imprecise.

2. (20) Write a short paragraph which identifies Bernoulli’s equation and explains its significance.
Your explanation will be assessed for both its technical and linguistic merits, consistent with
the expectations of AME 332.

Solution
Qualities which were viewed in a positive light here included a correct identification of Bernoulli’s equa-
tion, an identification of the variables and constants in the equation, a discussion of the physical signif-
icance and physical origins of the equation, a discussion of the assumptions necessary for its use, and a
possible application of the equation.

A good paragraph might read as follows:

“Bernoulli’s equation has fundamental importance in fluid mechanics. There is not universal agreement
on the best way to express it, but one common form is

p

ρ
+

v · v
2

+ gz = C. (1)

Here p is the pressure, ρ is the density, v is the velocity vector, z is the height, g is the constant
gravitational acceleration, and C is a constant (valid for all space and time). The equation is a statement
of the conservation of linear momentum of the fluid for the special case in which the flow is steady,
incompressible, inviscid, and irrotational. Slight relaxation of these assumptions can lead to other versions
of Bernoulli’s equation. It can also be interpreted as a statement of conservation of mechanical energy
of the flow where the term v · v/2 represents the specific kinetic energy, the term gz represents the
gravitational potential energy, and p/ρ is a potential energy associated with the fluid’s pressure. A
variety of physical phenomena can be understood by simple application of the Bernoulli equation and its
variants including flow over airfoils and flow in ducts.”

Common deficiencies included imprecise identification of the equation, using words which did little more
than repeat precisely what the equation itself said, using wordy statements which said little more than
knowing all variables except one, the other can be determined, and lack of any discussion of the origins,
assumptions, or physical interpretation of the equation.



3. (20) For turbulent flow in pipes at sufficiently low Reynolds number, ReD, the Blasius corre-
lation for the friction factor f is appropriate:

f =
0.316
Re0.25

D

, ReD < 105.

If v = 10 ± 0.3 m/s, D = 0.01 ± 0.005 m, ν = 1 × 10−5 ± 1 × 10−6 m2/s, find f and, using
the method developed in class involving partial derivatives, estimate the error in f .

Solution
First find f .

ReD =
vD

ν
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(10)(0.01)

10−5
= 104,

f = 0.316Re
−1/4
D = 0.316

(
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)−1/4
= 0.0316.

Now get the uncertainty.
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Assuming the errors are uncorrelated, we then estimate the error as
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∆f = 0.004035

So
f = 0.0316 ± 0.004035.

The most common error here was a lack of fundamental understanding of how to compute the error using
the partial derivative expansion. There were also several calculational errors.

4. (20) Water, ρ = 997 kg/m3, flows in a slot of height 0.003 m. The width of the slot is
sufficiently large so that three dimensional effects can be neglected, and the flow can be taken
to be steady and fully developed in the streamwise direction. The velocity parallel to the
slot wall at a point 0.001 m above the bottom of the slot is measured to be 0.11 m/s, and
the velocity at a point 0.002 m above the bottom of the slot is measured to be 0.08 m/s.
Estimate the mass flow rate per unit width of the slot.



Solution
Assuming the flow is steady, the mass flow rate is obtained by the following integral

ṁ =

∫ h

0

ρv · ndA.

Here ṁ is the mass flow rate, ρ is the fluid density, v is the fluid velocity vector, n is the unit normal
vector to the cross sectional area of interest, h is the height of the slot, and dA is the differential area.
Defining the depth of the slot to be b, taking the cross-sectional area to be normal to the slot, as well as
the velocity, and taking y to be the distance variable which traverses the slot, taking the velocity vector
to be v = u(y), and taking the density to be constant, we reduce the formula to

ṁ = ρb

∫ h

0

u(y) dy.

There are a variety of ways to evaluate the integral
∫ h

0
u(y) dy. Importantly, one should account for

the fact the wall boundaries have zero velocity. A straightforward way to evaluate the integral is the
trapezoidal rule: ∫ h

0

u(y) dy ∼ ∆y

2
(u0 + 2u1 + 2u2 + u3) .∫ h

0

u(y) dy ∼ 0.001

2
(0 + 2(0.08) + 2(0.11) + 0) = 0.00019

m2

s
.

So, we get

ṁ

b
= ρ

∫ h

0

u(y) dy =
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)(
0.00019

m2

s

)
= 0.189

kg

m s
.

There are many other ways to evaluate the integral, none of which require memorization of the trapezoidal
rule. Simply modeling the area under the curve as a set of rectangles, and adding the areas of the
rectangles gives a good approximation.

5. (10) The equation for the free surface of a rotating fluid, z = ω2r2

2g , is valid for turbulent flow,
after appropriate averages are taken into account. TRUE or FALSE; give a short defense of
your answer.

Solution
FALSE. The equation is derived from a limiting case of the Navier-Stokes equations in which the fluid
is rotating as a rigid body. Hence there can be no convection, no viscous stress, no turbulence, and no
unsteadiness. The only mechanisms in play from the linear momentum equation are pressure gradients,
body forces, and centripetal acceleration.

6. (10) As viscosity increases, all else held equal, the Strouhal number will remain constant.
TRUE or FALSE; give a short defense of your answer.

Solution
FALSE. While for Re > 1000 it is an empirical fact that St is roughly constant, it is also an empirical
fact that as Re → 0, St → 0. Physically this means that very viscous flows do not shed vortices. One
can imagine the flow of honey over a salt shaker and easily accept the fact that it would be unlikely to
see a vortex shed for typical flow conditions which could be achieved.



7. (10) The equation to determine velocity in a total head probe

v =

√
2(po − p)

ρ
,

is valid for compressible flows. TRUE or FALSE; give a short defense of your answer.

Solution
FALSE. This equation was derived from a limiting case of Bernoulli’s equation in which the density was
constant. A different version of this equation could be developed for compressible flows.

8. (10) Fluid particles in the entrance region of pipe flow are accelerating. TRUE or FALSE;
give a short defense of your answer.

Solution
TRUE. By definition, a fluid particle in the entrance region of a pipe has not yet entered the fully
developed region in which there is no variation in the axial direction. So in general, a fluid particle
in the entrance region will experience a change in its velocity as it travels through the region, so it is
accelerating.

The following question has nothing to do with this course and is included solely to see how ND
engineers do compared to 168 physics and engineering students at Iowa State. Your answers on
this will not influence your grade in any way. On this question 120 out of 168 Iowa State students
got the correct answer. I’m thinking we can do better! The question is

If a pen is dropped on the moon, will it
a) float away,
b) float where it is,
c) fall to the surface of the moon.

Solution
Well, it is C. I think there were five incorrect answers, although one of the incorrect answers was given in

a spirit of contrarian protest. So I think we topped the Cyclones on this.


