
A Short Note on Error Analysis

Let us say we have a theory to predict experimental results based on our observations. Let
us say our theory is intended to predict y, where y has a dependency on n independent
variables x1, . . . xn and m parameters µ1, . . . µm.

y = F (x1, x2, . . . , xn; µ1, µ2, . . . µm), (1)

for some function F , then the error 4yi, in the final result y, due to the error 4µi, in
measurement of µi, is given by

4yi =
∂F

∂µi

4µi. (2)

Note that our theory is accounting for the variation in xi, so as far as the theory goes, we
need not compute its error. We may have independent estimates of our measurement error,
however. The total error 4y is then given by

4y =

√√√√ m∑
i=1

(4yi)
2. (3)

Here as an example we work out the error in the theoretical prediction of a free surface
under rotation in Unit 1b. The equation for the free surface is given by

z =
ω2r2

2g
. (4)

Here z is the height of the free surface, ω is the angular velocity of the surface, r is the local
radial coordinate, and g is the acceleration due to gravity. Now we actually use the formula

ω =
2πN

T
, (5)

to determine ω, where N is the measured number of revolutions, and T is the measured time
of revolution, so in terms of quantities which are directly measured, we have

z =
2π2N2

gT 2
r2. (6)

Here, we take the dependent variable y to be z, there is only one independent variable, so
n = 1, and x1 = r, and the parameters µ1, µ2, and µ3 are N , T , and g.

There will be an error 4T , in the measurement of time T . We also assume that there is
an error 4g, in the acceleration due to gravity g, inside the laboratory, as well as an error
4N in our measurement of the number of revolutions N . Taking the sum of the partial
derivatives, we can estimate the total error as

∆z =
∂z

∂T
∆T +

∂z

∂g
∆g +

∂z

∂N
∆N, (7)

= −4N2π2r2

gT 3
∆T − 2N2π2r2

g2T 2
∆g +

4Nπ2r2

gT 2
∆N. (8)

1



Now we assume that the errors in T , g, and N , are known or can be estimated, and that
they are random and uncorrelated. Thus, we might expect a total error to be of the order
of the square root of the sum of the squares of the individual errors:

∆z =
2N2π2r2

gT 2

√√√√(2∆T

T

)2

+

(
∆g

g

)2

+
(

2∆N

N

)2

. (9)

As an exercise one can verify Eq. (9) by deriving it. The theoretical prediction of the free
surface is plotted in Fig. (1) using Eq. (4). Also plotted is the error in the theoretical
prediction, by plotting z ±4z vs. r. Here, we have actually taken data and estimated the
random errors. Now, no figure is perfect. Some criticisms which could be leveled at this
curve include

• One axis is dimensionless, while the other is dimensional.

• It is very busy, and hard to figure out everything.

• The least squares curve fit does not add a lot, and could be just included as an equation
in the text.

• Negative r usually does not make sense, although it is rather visually effective here.
Strictly speaking mathematically, it would be better to plot one result at for z versus
r at θ = 0, and another for z versus r at θ = π.

If we neglect all errors except the one due to the stopwatch used for measuring time T ,
then the error 4T is ±0.01 s, which is the smallest fraction of time the stopwatch provided
can measure. But we know that there are other errors involved such as human error in
estimating when N rotations are over. One way to estimate the the error is to make M
observations of time T taken for N rotations. Then one can find the mean and standard
deviation as following

T =
T1 + T2 + · · ·+ TM

M
, (10)

σ =

√∑M
i=1(Ti − T )2

M
, (11)

where Ti is the time measured in the ith observation, T is the mean time, and σ is the
standard deviation. Now one can quote the error in T in terms of the standard deviation.
This tends to be valid for random errors such as human error. Hence, one can substitute
4T = ±σ and T = T in Eq. (9).

Another way to depict errors is using error bars as done for the data points in Fig. (1).
There are several sources of errors when taking data in Unit 1b. One quantifiable error is the
smallest length measured by the scale in vertical direction, which is ±1 mm, and the other
quantifiable error is the smallest length measured by the scale in the horizontal direction,
which is ±0.01 in. These errors are plotted as error bars in the two directions in the figure.
Note that both z and r for the data points are relative lengths. For example in z = h − ho,
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both h and ho have a quantifiable error of ±1 mm, hence, the quantifiable error in h− ho is
±√

2 mm following the error analysis on page 1. The following commands in matlab can be
useful in producing plots and visualizing errors.

• polyfit

• polyval (not very robust)

• errorbar

Finally a review of the undergraduate text on measurements and error analysis is recom-
mended.
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Figure 1: Free surface of water in rotating cylinder.
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