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This document will give a summary of the necessary mathematical operations necessary
to cast the conservation of mass and energy principles in a traditional control volume for-
mulation. The analysis presented has been amalgamated from a variety of sources. Most
directly, it is an specialization of my course notes for AME 538. 1 Basic mathematical
foundations are covered well by Kaplan. 2 A very detailed a readable description, which has
a stronger emphasis on fluid mechanics, is given in the undergraduate text of Whitaker. 3

A very rigorous treatment of the development of all equations presented here is included in
the graduate text of Aris. 4 Popular mechanical engineering undergraduate fluids texts have
closely related expositions. 5 6 However, despite their detail, these texts have some minor
flaws! The treatment given in the AME 327 text by Sonntag, Borgnakke, and Van Wylen
7 (SBVW) is not as detailed. This document will use a notation generally consistent with
SBVW and show in detail how to arrive at its results.

1 Relevant mathematics

We will use several theorems which are developed in vector calculus. Here we give short
motivations and presentations. The reader should consult a standard mathematics text for
detailed derivations.

1.1 Fundamental theorem of calculus

The fundamental theorem of calculus is as follows

∫ x=b

x=a
φ(x) dx =

∫ x=b

x=a

(

dψ

dx

)

dx = ψ(b) − ψ(a). (1)

It effectively says that to find the integral of a function φ(x), which is the area under the
curve, it suffices to find a function ψ, whose derivative is φ, i.e. dψ

dx
= φ(x), evaluate ψ at

each endpoint, and take the difference to find the area under the curve.

1J. M. Powers, 2003, Lecture Notes on Intermediate Fluid Mechanics, University of Notre Dame,

http : //www.nd.edu/ ∼ powers/ame.538/notes.pdf .
2W. Kaplan, 2003, Advanced Calculus, Fifth Edition, Addison-Wesley, New York.
3S. Whitaker, 1992, Introduction to Fluid Mechanics, Krieger, Malabar, Florida.
4R. Aris, 1962, Vectors, Tensors, and the Basic Equations of Fluid Mechanics, Dover, New York.
5F. M. White, 2002, Fluid Mechanics, Fifth Edition, McGraw-Hill, New York.
6R. W. Fox, A. T. McDonald, and P. J. Pritchard, 2003, Introduction to Fluid Mechanics, Sixth Edition,

John Wiley, New York.
7R. E. Sonntag, C. Borgnakke, and G. J. Van Wylen, 2003, Fundamentals of Thermodynamics, Sixth

Edition, John Wiley, New York.
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1.2 Gauss’s theorem

Gauss’s 8 theorem is the analog of the fundamental theorem of calculus extended to volume
integrals. Let us define the following quantities:

• t→ time,

• x → spatial coordinates,

• Va(t) → arbitrary moving and deforming volume,

• Aa(t) → bounding surface of the arbitrary moving volume,

• n → outer unit normal to moving surface,

• φ(x, t) → arbitrary scalar function of x and t

Gauss’s theorem is as follows:
∫

Va(t)
∇φ dV =

∫

Aa(t)
φn dA (2)

The surface integral is analogous to evaluating the function at the end points in the funda-
mental theorem of calculus.

Note if we take φ to be the scalar of unity (whose derivative must be zero), Gauss’s
theorem reduces to

∫

Va(t)
∇(1) dV =

∫

Aa(t)
(1)n dA, (3)

0 =
∫

Aa(t)
(1)n dA, (4)

∫

Aa(t)
n dA = 0. (5)

That is the unit normal to the surface integrated over the surface, cancels to zero when the
entire surface is included.

1.3 Divergence theorem

The extension of Gauss’s theorem (2) to vector functions is the divergence theorem and is
as follows: ∫

Va(t)
∇ · α dV =

∫

Aa(t)
α · n dA. (6)

Here α is an arbitrary vector function.
We will use the divergence theorem (6) extensively. It allows us to convert sometimes

difficult volume integrals into easier interpreted surface integrals. It is often useful to use
this theorem as a means of toggling back and forth from one form to another.

8Carl Friedrich Gauss, 1777-1855, Brunswick-born German mathematician, considered the founder of

modern mathematics. Worked in astronomy, physics, crystallography, optics, biostatistics, and mechanics.

Studied and taught at Göttingen.
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Figure 1: Sketch of the motion of an arbitrary volume Va(t). The boundaries of Va(t) move
with velocity w. The outer normal to Va(t) is Aa(t). Here we focus on just two regions: I,
where the volume is leaving material behind, and II, where the volume is sweeping up new
material.

1.4 Leibniz’s theorem

Leibniz’s 9 theorem relates time derivatives of integral quantities to a form which distin-
guishes changes which are happening within the boundaries to changes due to fluxes through
boundaries.

Let us consider the scenario sketched in Figure 1. Say we have some value of interest, Φ,
which results from an integration of a kernel function φ over Va(t), for instance

Φ =
∫

Va(t)
φ dV. (7)

We are often interested in the time derivative of Φ, the calculation of which is complicated
by the fact that the limits of integration are time-dependent. From the definition of the
derivative, we find that

dΦ

dt
=

d

dt

∫

Va(t)
φ dV = lim

∆t→0

∫

Va(t+∆t) φ(t+ ∆t) dV −
∫

Va(t) φ(t) dV

∆t
. (8)

Now we have
Va(t + ∆t) = Va(t) + VII(∆t) − VI(∆t). (9)

9Gottfried Wilhelm von Leibniz, 1646-1716, Leipzig-born German philosopher and mathematician. In-

vented calculus independent of Newton and employed a superior notation to that of Newton.
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Here VII(∆t) is the amount of new volume swept up in time increment ∆t, and VI(∆t) is the
amount of volume abandoned in time increment ∆t. So we can break up the first integral
into
∫

Va(t+∆t)
φ(t+∆t) dV =

∫

Va(t)
φ(t+∆t) dV +

∫

VII (∆t)
φ(t+∆t) dV −

∫

VI (∆t)
φ(t+∆t) dV, (10)

which gives us then

d

dt

∫

Va(t)
φ dV =

lim
∆t→0

∫

Va(t) φ(t+ ∆t) dV +
∫

VII(∆t) φ(t+ ∆t) dV −
∫

VI (∆t) φ(t+ ∆t) dV −
∫

Va(t) φ(t) dV

∆t
.(11)

Rearranging (11) by combining terms with common limits of integration, we get

d

dt

∫

Va(t)
φ dV = lim

∆t→0

∫

Va(t) (φ(t+ ∆t) − φ(t)) dV

∆t

+ lim
∆t→0

∫

VII (∆t) φ(t+ ∆t) dV −
∫

VI(∆t) φ(t+ ∆t) dV

∆t
. (12)

Let us now further define

• w → velocity vector of points on the moving surface Va(t),

Now the volume swept up by the moving volume in a given time increment ∆t is

dVII = w · n
︸ ︷︷ ︸

positive

∆t dAII = wII∆t
︸ ︷︷ ︸

distance

dAII , (13)

and the volume abandoned is

dVI = w · n
︸ ︷︷ ︸

negative

∆t dAI = − wI∆t
︸ ︷︷ ︸

distance

dAI. (14)

Substituting into our definition of the derivative, we get

d

dt

∫

Va(t)
φ dV = lim

∆t→0

∫

Va(t)

(φ(t+ ∆t) − φ(t))

∆t
dV

+ lim
∆t→0

∫

AII(∆t) φ(t+ ∆t)wII∆t dAII +
∫

AI(∆t) φ(t+ ∆t)wI∆t dAI

∆t
(15)

Now we note that

• We can use the definition of the partial derivative to simplify the first term on the right
side of (15),

• The time increment ∆t cancels in the area integrals of (15), and

• Aa(t) = AI + AII ,
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so that
d

dt

∫

Va(t)
φ dV

︸ ︷︷ ︸

total time rate of change

=
∫

Va(t)

∂φ

∂t
dV

︸ ︷︷ ︸

intrinsic change within volume

+
∫

Aa(t)
φw · n dA

︸ ︷︷ ︸

net flux into volume

. (16)

This is the three-dimensional scalar version of Leibniz’s theorem.
We can also apply the divergence theorem (6) to Leibniz’s theorem (16) to convert the

area integral into a volume integral to get

d

dt

∫

Va(t)
φ dV =

∫

Va(t)

(

∂φ

∂t
+ ∇ · (φw)

)

dV. (17)

Say we have the very special case in which φ = 1; then Leibniz’s theorem (16) reduces to

d

dt

∫

Va(t)
dV =

∫

Va(t)

∂

∂t
(1) dV +

∫

Aa(t)
(1)w · n dA, (18)

d

dt
Va(t) =

∫

Aa(t)
w · n dA. (19)

This simply says the total volume of the region, which we call Va(t), changes in response to
net motion of the bounding surface.

Leibniz’s theorem (16) reduces to a more familiar result in the one-dimensional limit. We
can then say

d

dt

∫ x=b(t)

x=a(t)
φ(x, t) dx =

∫ x=b(t)

x=a(t)

∂φ

∂t
dx+

db

dt
φ(b(t), t) −

da

dt
φ(a(t), t). (20)

As in the fundamental theorem of calculus (1), for the one-dimensional case, we do not have
to evaluate a surface integral; instead, we simply must consider the function at its endpoints.
Here db

dt
and da

dt
are the velocities of the bounding surface and are equivalent to w. The terms

φ(b(t), t) and φ(a(t), t) are equivalent to evaluating φ on Aa(t).

1.5 General Transport Theorem

Let B be an arbitrary extensive thermodynamic property, and β be the corresponding in-
tensive thermodynamic property so that

dB = βdm. (21)

The product of a differential amount of mass dm with the intensive property β give a
differential amount of the extensive property. Since

dm = ρdV, (22)

where ρ is the mass density and dV is a differential amount of volume, we have

dB = βρdV. (23)
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If we take the arbitrary φ = ρβ, the Leibniz theorem becomes our general transport theorem:

d

dt

∫

Va(t)
ρβ dV =

∫

Va(t)

∂

∂t
(ρβ) dV +

∫

Aa(t)
ρβ (w · n) dA. (24)

Applying the divergence theorem to the general transport theorem, we find

d

dt

∫

Va(t)
ρβ dV =

∫

Va(t)

(

∂

∂t
(ρβ) + ∇ · (ρβw)

)

dV. (25)

1.6 Reynolds transport theorem

We get the well known Reynolds 10 transport theorem if we force the arbitrary velocity of
the moving volume to take on the velocity of a fluid particle, i.e. take

w = v (26)

In this case, our arbitrary volume is no longer arbitrary. Instead, it always contains the
same fluid particles. We call this volume a material volume, Vm(t). The proper way to
generalize laws of nature which were developed for point masses is to consider collections of
fixed point masses, which will always reside within a material volume. That said, it is simple
to specialize the general transport theorem to obtain the Reynolds transport theorem. Here
we give two versions, the first using area integrals, and the second using volume integrals
only:

d

dt

∫

Vm(t)
ρβ dV =

∫

Vm(t)

∂

∂t
(ρβ) dV +

∫

Am(t)
ρβ (v · n) dA, (27)

d

dt

∫

Vm(t)
ρβ dV =

∫

Vm(t)

(

∂

∂t
(ρβ) + ∇ · (ρβv)

)

dV. (28)

1.7 Fixed (control) volumes

If we take our arbitrary volume to be fixed in space, it is most often known as a control

volume. For such volumes
w = 0. (29)

Thus the arbitrary volume loses its time dependency, so that

Va(t) = V, Aa(t) = A, (30)

and the general transport theorem reduces to

d

dt

∫

V
ρβ dV =

∫

V

∂

∂t
(ρβ) dV. (31)

10Osborne Reynolds, 1842-1912, Belfast-born British engineer and physicist, educated in mathematics at

Cambridge, first professor of engineering at Owens College, Manchester, did fundamental experimental work

in fluid mechanics and heat transfer.
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2 Conservation axioms

A fundamental goal of mechanics is to take the verbal notions which embody the basic
axioms into usable mathematical expressions. First, we must list those axioms. The axioms
themselves are simply principles which have been observed to have wide validity as long as
length scales are sufficiently large to contain many molecules. Many of these axioms can be
applied to molecules as well. The axioms cannot be proven. They are simply statements
which have been useful in describing the universe.

A summary of the axioms in words is as follows

• Mass conservation principle: The time rate of change of mass of a material region is
zero.

• Linear momenta principle: The time rate of change of the linear momenta of a material
region is equal to the sum of forces acting on the region. This is Euler’s generalization
of Newton’s second law of motion.

• Angular momenta principle: The time rate of change of the angular momenta of a
material region is equal to the sum of the torques acting on the region. This was first
formulated by Euler.

• Energy conservation principle: The time rate of change of energy within a material
region is equal to the rate that energy is received by heat and work interactions. This
is the first law of thermodynamics.

• Entropy inequality: The time rate of change of entropy within a material region is
greater than or equal to the ratio of the rate of heat transferred to the region and the
absolute temperature of the region. This is the second law of thermodynamics.

Here we shall systematically convert two of these axioms, the mass conservation principle
and the energy conservation principle, into mathematical form.

2.1 Mass

Mass is an extensive property for which we have

B = m, β = 1. (32)

The mass conservation axiom is simple to state mathematically. It is

d

dt
m = 0. (33)

A relevant material volume is sketched in Figure 2. We can define the mass enclosed within
a material volume based upon the local value of density:

m =
∫

Vm(t)
ρdV. (34)
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ρ dV

dA
w  = v

n

Figure 2: Sketch of finite material region Vm(t), infinitesimal mass element ρdV , and in-
finitesimal surface element dA with unit normal n, and general velocity w equal to fluid
velocity v.

So the mass conservation axiom is

d

dt

∫

Vm(t)
ρdV = 0. (35)

Invoking the Reynolds transport theorem (27), d
dt

∫

Vm(t)[ ]dV =
∫

Vm(t)
∂
∂t

[ ]dV +
∫

Am(t) v·n[ ]dA,
we get

d

dt

∫

Vm(t)
ρ dV =

∫

Vm(t)

∂ρ

∂t
dV +

∫

Am(t)
ρv · n dA = 0. (36)

Now we invoke the divergence theorem, Eq. (6)
∫

V (t) ∇ · [ ]dV =
∫

A(t) n · [ ]dA, to convert a
surface integral to a volume integral to get the mass conservation axiom to read as

∫

Vm(t)

∂ρ

∂t
dV +

∫

Vm(t)
∇ · (ρv) dV = 0, (37)

∫

Vm(t)

(

∂ρ

∂t
+ ∇ · (ρv)

)

dV = 0. (38)

Now, in an important step, we realize that the only way for this integral, which has absolutely
arbitrary limits of integration, to always be zero, is for the integrand itself to always be zero.
Hence, we have

∂ρ

∂t
+ ∇ · (ρv) = 0. (39)

This is the very important differential form of the mass conservation principle.
We can get a very useful control volume formulation by integrating the mass conservation

principle (39) over a fixed volume V :

∫

V

(

∂ρ

∂t
+ ∇ · (ρv)

)

dV =
∫

V
0 dV. (40)
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Now the integral of 0 over a fixed domain must be zero. This is equivalent to saying
∫ b
a 0dx =

0, where the area under the curve of 0 has to be zero. So we have

∫

V

(

∂ρ

∂t
+ ∇ · (ρv)

)

dV = 0. (41)

Next apply the divergence theorem (6) to (41) to get

∫

V

∂ρ

∂t
dV +

∫

A
ρv · n dA = 0. (42)

Applying now the result from (31) to (42), we see for the fixed volume that

d

dt

∫

V
ρ dV +

∫

A
ρv · n dA = 0. (43)

We note now that at an inlet to a control volume that v points in an opposite direction to
n, so we have

v · n < 0, at inlets. (44)

At exits to a control volume v and n point in the same direction so that

v · n > 0, at exits. (45)

If now, we take the simplifying assumption that ρ and v have no spatial variation across
inlets and exits, we get for a control volume with one inlet and one exit that

d

dt

∫

V
ρ dV + ρe|ve|Ae − ρi|vi|Ai = 0. (46)

Here the subcript i denotes inlet, and the subscript e denotes exit. Rearranging (46), we
find

d

dt

∫

V
ρ dV = ρi|vi|Ai − ρe|ve|Ae. (47)

We now define the mass in the control volume mcv as

mcv =
∫

V
ρ dV. (48)

Here (48) is equivalent to the equation on the top of p. 164 of SBVW. If we make the further
simplifying assumption that ρ does not vary within V , we find that

dmcv

dt
︸ ︷︷ ︸

rate of change of mass

= ρi|vi|Ai
︸ ︷︷ ︸

mass rate in

− ρe|ve|Ae
︸ ︷︷ ︸

mass rate out

. (49)

Here mcv is the mass enclosed in the control volume. If there is no net rate of change of
mass the control volume is in steady state, and we can say that the mass flow in must equal
the mass flow out:

ρi|vi|Ai = ρe|ve|Ae. (50)
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We define the mass flow rate ṁ as
ṁ = ρ|v|A. (51)

For steady flows with a single entrance and exit, we have

ṁ = constant. (52)

For unsteady flows with a single entrance and exit, we can rewrite (49) as

dmcv

dt
= ṁi − ṁe. (53)

For unsteady flow with many entrances and exits, we can generalize (49) as

dmcv

dt
︸ ︷︷ ︸

rate of change of mass

=
∑

ρi|vi|Ai
︸ ︷︷ ︸

mass rate in

−
∑

ρe|ve|Ae
︸ ︷︷ ︸

mass rate out

, (54)

dmcv

dt
︸ ︷︷ ︸

rate of change of mass

=
∑

ṁi
︸ ︷︷ ︸

mass rate in

−
∑

ṁe
︸ ︷︷ ︸

mass rate out

(55)

Note that (55) is fully equivalent to SBVW’s Eq. (6.1), but that it actually takes a good deal
of effort to get to this point with rigor! For steady state conditions with many entrances and
exits we can say

∑

ρi|vi|Ai =
∑

ρe|ve|Ae, (56)
∑

ṁi =
∑

ṁe. (57)

Here (56) is the same as SBVW’s (6.9).

2.2 Energy

For energy, we must consider the total energy which includes internal, kinetic, and potential.
Our extensive property B is thus

B = E = U +
1

2
mv · v +mgz. (58)

Here we have assumed the fluid resides in a gravitational potential field in which the gravi-
tational potential energy varies linearly with height z. The corresponding intensive property
β is

β = e = u+
1

2
v · v + gz. (59)

We recall the first law of thermodynamics, which states the the change of a material
volume’s total energy is equal to the heat transferred to the material volume less the work
done by the material volume. Mathematically, this is stated as

dE = δQ− δW (60)
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We recall the total derivative is used for dE, since energy is a property and has an exact
differential, while both heat transfer and work are not properties and do not have exact
differentials. It is more convenient to express the first law as a rate equation, which we get
by dividing (60) by dt to get

dE

dt
=
δQ

dt
−
δW

dt
. (61)

Recall that the upper case letters denote extensive thermodynamic properties. For example,
E is total energy, inclusive of internal and kinetic and potential 11 , with SI units of J . Let us
consider each term in the first law of thermodynamics in detail and then write the equation
in final form.

2.2.1 Total energy term

For a fluid particle, the differential amount of total energy is

dE = ρ
(

u+
1

2
v · v + gz

)

dV, (62)

= ρdV
︸ ︷︷ ︸

mass

(

u+
1

2
v · v + gz

)

︸ ︷︷ ︸

internal +kinetic +potential

. (63)

2.2.2 Work term

Let us partition the work into work Wp done by a pressure force Fp and work done by other
sources, which we shall call Wmv, where the subscript “mv” indicates “material volume.”

W = Wp +Wmv. (64)

Taking a time derivative, we get

δW

dt
=
δWp

dt
+ Ẇmv. (65)

The work done by other sources is often called shaft work and represents inputs of such
devices as compressors, pumps, and turbines. Its modeling is often not rigorous.

Recall that work is done when a force acts through a distance, and a work rate arises when
a force acts through a distance at a particular rate in time (hence, a velocity is involved).
Recall also that it is the dot product of the force vector with the position or velocity that
gives the true work or work rate. In shorthand, we can say that the differential work done
by the pressure force Fp is

δWp = Fp · dx, (66)

δWp

dt
= Fp ·

dx

dt
= Fp · v. (67)

11Strictly speaking our derivation will only be valid for potentials which are time-independent. This is the

case for ordinary gravitational potentials. The modifications for time-dependent potentials are straightfor-

ward, but require a more nuanced interpretation than space permits here.
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v
v v

F = pAnp

n

 = F   v > 0 for expansion
δW
dt

p
p
.

Figure 3: Sketch of fluid element doing work.

Here W has the SI units of J , and Fp has the SI units of N . Now let us consider the work
done by the pressure force. In a piston-cylinder arrangement in which a fluid exists with
pressure p within the cylinder and the piston is rising with velocity v, the work rate done
by the fluid is positive. We can think of the local stress vector in the fluid as pointing in
the same direction as the fluid is moving at the piston surface, so that the dot product is
positive. Now we can express the pressure force in terms of the pressure by

Fp = pAn. (68)

Substituting (67) into (68), we get

δWp

dt
= pAn · v. (69)

It is noted that we have been a little loose distinguishing local areas from global areas. Better
stated, we should say for a material volume that

δWp

dt
=
∫

Am(t)
pn · v dA. (70)

This form allows for p and v to vary with location.
This is summarized in the sketch of Figure 3.
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2.2.3 Heat transfer term

If we were considering temperature fields with spatial dependency, we would define a heat
flux vector. This approach is absolutely necessary to describe many real-world devices, and
is the focus of a standard undergraduate course in heat transfer. Here we will take a very
simplified assumption that the only heat fluxes are easily specified and are all absorbed into
a lumped scalar term we will call Q̇mv. This term has units of J/s = W in SI. So we have
then

δQ

dt
= Q̇mv. (71)

2.2.4 The first law of thermodynamics

Putting the words of the first law into equation form, we get

d

dt

∫

Vm(t)
ρ
(

u+
1

2
v · v + gz

)

dV =
δQ

dt
−
δW

dt
. (72)

We next introduce our simplification of heat transfer (71) and partition of work (65) along
with (70) into (72) to get

d

dt

∫

Vm(t)
ρ
(

u+
1

2
v · v + gz

)

dV = Q̇mv −

(

Ẇmv +
∫

Am(t)
pn · v dA

)

. (73)

Now we bring the pressure work integral to the right side of (73) to get

d

dt

∫

Vm(t)
ρ
(

u+
1

2
v · v + gz

)

dV +
∫

Am(t)
pn · v dA = Q̇mv − Ẇmv. (74)

We next invoke the Reynolds transport theorem (27) into (74) to expand the derivative of
the first integral so as to obtain

∫

Vm(t)

∂

∂t

(

ρ
(

u+
1

2
v · v + gz

))

dV +
∫

Am(t)

(

ρ
(

u+
1

2
v · v + gz

))

v · n dA

+
∫

Am(t)
pn · v dA = Q̇mv − Ẇmv. (75)

We next note that the two area integrals have the same limits and can be combined to form

∫

Vm(t)

∂

∂t

(

ρ
(

u+
1

2
v · v + gz

))

dV +
∫

Am(t)

(

ρ

(

u+
p

ρ
+

1

2
v · v + gz

))

v · n dA

= Q̇mv − Ẇmv. (76)

We recall now the definition of enthalpy h,

h = u+
p

ρ
(77)

Invoking (77) into (76), we get
∫

Vm(t)

∂

∂t

(

ρ
(

u+
1

2
v · v + gz

))

dV +
∫

Am(t)

(

ρ
(

h+
1

2
v · v + gz

))

v · n dA

= Q̇mv − Ẇmv. (78)
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Next use the divergence theorem (6) to rewrite (78) as

∫

Vm(t)

∂

∂t

(

ρ
(

u+
1

2
v · v + gz

))

dV +
∫

Vm(t)
∇ ·

(

ρv
(

h+
1

2
v · v + gz

))

dV

= Q̇mv − Ẇmv. (79)

Now, for convenience, let us define the specific control volume heat transfer and work qmv
and wmv, each with SI units J/kg such that

Q̇mv =
∫

Vm(t)

∂

∂t
(ρqmv) dV, (80)

Ẇmv =
∫

Vm(t)

∂

∂t
(ρwmv) dV, (81)

so that by substituting (80) and (81) into (79), we get

∫

Vm(t)

∂

∂t

(

ρ
(

u+
1

2
v · v + gz

))

dV +
∫

Vm(t)
∇ ·

(

ρv
(

h+
1

2
v · v + gz

))

dV

=
∫

Vm(t)

∂

∂t
(ρqmv) dV −

∫

Vm(t)

∂

∂t
(ρwmv) dV. (82)

Now all terms in (82) have the same limits of integration, so they can be grouped to form

∫

Vm(t)

(

∂

∂t

(

ρ
(

u+
1

2
v · v + gz

))

+ ∇ ·
(

ρv
(

h+
1

2
v · v + gz

))

−
∂

∂t
(ρqmv) +

∂

∂t
(ρwmv)

)

dV = 0. (83)

As with the mass equation, since the integral is zero, in general we must expect the integrand
to be zero, giving us

∂

∂t

(

ρ
(

u+
1

2
v · v + gz

))

+ ∇ ·
(

ρv
(

h+
1

2
v · v + gz

))

−
∂

∂t
(ρqmv) +

∂

∂t
(ρwmv) = 0. (84)

To get the standard control volume form of the equation, we then integrate (84) over a
fixed control volume V to get

∫

V

(

∂

∂t

(

ρ
(

u+
1

2
v · v + gz

))

+ ∇ ·
(

ρv
(

h +
1

2
v · v + gz

))

−
∂

∂t
(ρqmv) +

∂

∂t
(ρwmv)

)

dV = 0. (85)

Now defining the control volume heat transfer rate and work rate, Q̇cv and Ẇcv,

Q̇cv =
∫

V

∂

∂t
(ρqmv) dV, (86)

Ẇcv =
∫

V

∂

∂t
(ρwmv) dV, (87)
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we employ (86) and (87) in (85) to get

∫

V

(

∂

∂t

(

ρ
(

u+
1

2
v · v + gz

))

+ ∇ ·
(

ρv
(

h+
1

2
v · v + gz

)))

dV = Q̇cv − Ẇcv. (88)

Applying the divergence theorem (6) to (88) to convert a portion of the volume integral
into an area integral, and (31) to bring the time derivative outside the integral for the fixed
volume, we get

d

dt

∫

V
ρ
(

u+
1

2
v · v + gz

)

dV +
∫

A
ρv · n

(

h+
1

2
v · v + gz

)

dA = Q̇cv − Ẇcv. (89)

We now define the total energy in the control volume as

Ecv =
∫

V
ρ
(

u+
1

2
v · v + gz

)

dV. (90)

Next assume that all properties across entrances and exits are uniform so that the area
integral in (88) reduces to

∫

A
ρv · n

(

h +
1

2
v · v + gz

)

dA =

∑

ṁe

(

he +
1

2
ve · ve + gze

)

−
∑

ṁi

(

hi +
1

2
vi · vi + gzi

)

. (91)

Substituting (90) and (91) into (89), we get

dEcv
dt

+
∑

ṁe

(

he +
1

2
ve · ve + gze

)

−
∑

ṁi

(

hi +
1

2
vi · vi + gzi

)

= Q̇cv − Ẇcv. (92)

Rearranging (92), we get

dEcv
dt
︸ ︷︷ ︸

rate of CV energy change

= Q̇cv
︸︷︷︸

CV heat transfer rate

− Ẇcv
︸︷︷︸

CV shaft work rate

+
∑

ṁi

(

hi +
1

2
vi · vi + gzi

)

︸ ︷︷ ︸

total enthalpy rate in

−
∑

ṁe

(

he +
1

2
ve · ve + gze

)

︸ ︷︷ ︸

total enthalpy rate out

. (93)

Here (93) is equivalent to SBVW’s Eq. (6.7). Note that the so-called total enthalpy is often
defined as

htot = h +
1

2
v · v + gz. (94)

Employing (94) in (93), we find

dEcv
dt

= Q̇cv − Ẇcv +
∑

ṁihtot,i −
∑

ṁehtot,e. (95)

Here (95) is equivalent to SBVW’s (6.8).
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If there is a single entrance and exit, we lose the summation, so that (93) becomes

dEcv
dt

= Q̇cv − Ẇcv + ṁi

(

hi +
1

2
vi · vi + gzi

)

− ṁe

(

he +
1

2
ve · ve + gze

)

. (96)

If the flow is steady, we have dEcv

dt
= 0 and ṁi = ṁe = ṁ, so the first law with a single

entrance and exit becomes

0 = Q̇cv − Ẇcv + ṁ
(

hi − he +
1

2
(vi · vi − ve · ve) + g(zi − ze)

)

. (97)

Defining the specific control volume heat transfer and work as

q =
Q̇cv

ṁ
, w =

Ẇcv

ṁ
, (98)

and substituting (98) into (97), we get

0 = q − w + hi − he +
1

2
(vi · vi − ve · ve) + g(zi − ze), (99)

Now (99) can be rearranged to form SBVW’s (6.14):

q + hi +
1

2
vi · vi + gzi = w + he +

1

2
ve · ve + gze. (100)

If the flow is adiabatic, steady, has one entrance and one exit, and there is no shaft work,
we find that the total enthalpy must remain constant:

hi +
1

2
vi · vi + gzi = he +

1

2
ve · ve + gze (101)
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