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Preface

These are lecture notes for AME 50531 Intermediate Thermodynamics (AME 54531 for
students in our London and Rome programs), the second of two undergraduate courses in
thermodynamics taught in the Department of Aerospace and Mechanical Engineering at
the University of Notre Dame. Most of the students in this course are juniors or seniors
majoring in aerospace or mechanical engineering. The objective of the course is to survey
both practical and theoretical problems in classical thermodynamics.

The notes draw heavily on the text specified for the course, Borgnakke and Sonntag’s
(BS) Fundamentals of Thermodynamics, Ninth Edition, John Wiley, New York, 2017, es-
pecially Chapters 8-14. In general the nomenclature of BS is used, and much of the notes
follow a similar structure as that text. In addition, Abbott and van Ness’s Thermodynamics,
McGraw-Hill, New York, 1972, has been used to guide some of the mathematical develop-
ments. Many example problems have been directly taken from BS and other texts; specific
citations are given where they arise.

These notes emphasize both problem-solving as well as some rigorous undergraduate-level
development of the underlying classical theory. It should also be remembered that practice is
essential to the learning process; the student would do well to apply the techniques presented
here by working as many problems as possible.

The notes, along with information on the course, can be found on the world wide web at
https://www3.nd.edu/∼powers/ame.50531. At this stage, anyone is free to make copies
for their own use. I would be happy to hear from you about suggestions for improvement.

Joseph M. Powers
powers@nd.edu

https://www3.nd.edu/∼powers

Notre Dame, Indiana; USA
CC© BY:© $\© =© 28 March 2025

The content of this book is licensed under Creative Commons Attribution-Noncommercial-No Derivative

Works 3.0.
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Chapter 1

Review

Review BS, Chapters 1-7.

Here we give a brief review of some standard concepts from a first course in thermodynam-
ics. In this review, we confine attention to a pure substance, defined as a material that
has homogeneous and invariable composition. An example would be pure helium. Later,
beginning in Ch. 3, we shall study mixtures, for example hydrogen-oxygen-nitrogen mixtures
that could react exothermically and convert chemical energy into thermal energy.

• property: characterizes the thermodynamics state of the system

– extensive: proportional to system’s extent, upper case variables

∗ V : total volume, SI-based units are m3,

∗ U : total internal energy, SI-based units are kJ,

∗ H : total enthalpy, SI-based units are kJ,

∗ S: total entropy, SI-based units are kJ/K.

– intensive: independent of system’s extent, lower case variables (exceptions are
temperature T and pressure P , which are intensive). Intensive properties can be
on a mass basis or a molar basis:

∗ v: specific volume, SI-based units are m3/kg,

∗ u: specific internal energy, SI-based units are kJ/kg,

∗ h: specific enthalpy, SI-based units are kJ/kg,

∗ s: specific entropy, SI-based units are kJ/kg/K.

∗ v: molar specific volume, SI-based units are m3/kmole,

∗ u: molar specific internal energy, SI-based units are kJ/kmole,

∗ h: molar specific enthalpy, SI-based units are kJ/kmole,

∗ s: molar specific entropy, SI-based units are kJ/kmole/K.

9



10 CHAPTER 1. REVIEW

• density:

ρ =
1

v
, (1.1)

mass per unit volume, SI-based units are kg/m3.

• equations of state: relate properties

– Calorically Perfect Ideal Gas (CPIG) has for a pure substance

Pv = RT, u− uo = cv(T − To). (1.2)

– Calorically Imperfect Ideal Gas (CIIG) has for a pure substance

Pv = RT, u− uo =

∫ T

To

cv(T̂ ) dT̂ . (1.3)

– Non-ideal state equations has for a pure substance

P = P (T, v), u = u(T, v). (1.4)

• Any intensive thermodynamic property can be expressed as a function of at most two
other intensive thermodynamic properties for simple compressible pure substances.

– e.g. the thermal equation of state for a pure ideal gas,

P (T, v) =
RT

v
. (1.5)

SI-based units are kPa.

– e.g. the sound speed for CPIG:

c(P, v) =
√
kPv. (1.6)

SI-based units for c are m/s; here we have

k =
cP
cv
, (1.7)

the ratio of specific heats. A more common alternate notation for the ratio of
specific heats of a CPIG is cP/cv = γ.

• energy:

E︸︷︷︸
total energy

= U︸︷︷︸
internal

+
1

2
m(v · v)
︸ ︷︷ ︸

kinetic

+ mgz︸︷︷︸
potential

. (1.8)
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• first law:
dE = δQ− δW. (1.9)

If kinetic and potential energies are ignored,

dU = δQ− δW. (1.10)

With reversible heat transfer δQ = T dS and reversible work δW = P dV , we get the
Gibbs equation in extensive form

dU = T dS − P dV. (1.11)

Sometimes this version of the Gibbs equation is called the “fundamental thermody-
namic equation.”

• second law:

dS ≥ δQ

T
. (1.12)

Here the heat transfer δQ can be reversible, in which case the equality holds, or irre-
versible, in which case the inequality holds.

• process: moving from one state to another, in general with accompanying heat trans-
fer and work.

• cycle: process which returns to initial state.

• specific reversible work:

1w2 =

∫ 2

1

P dv, δw = P dv. (1.13)

• specific reversible heat transfer:

1q2 =

∫ 2

1

T ds, δq = T ds. (1.14)

Figure 1.1 gives an example of an isothermal thermodynamic process going from state 1
to state 2 in various thermodynamic planes. Figure 1.2 gives a sketch of a thermodynamic
cycle.

Example 1.1
Consider an ideal gas in the T − s plane. Compare the slope of an isochore to that of an isobar at

a given point.

Recall the Gibbs equation for a simple compressible substance, which is obtained by scaling the
extensive Eq. (1.11) by mass m to get the more common intensive form:

T ds = du+ P dv. (1.15)
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Figure 1.1: Sketch of isothermal thermodynamic process.

Here we have used ds = dS/m, du = dU/m, and dv = dV/m. We have for the ideal gas

du = cv dT, if ideal gas. (1.16)

This holds for all ideal gases, be they calorically perfect or imperfect. Thus, the Gibbs equation can be
rewritten as

T ds = cv dT︸ ︷︷ ︸
=du

+P dv. (1.17)

On an isochore, v is constant, so dv = 0. So on an isochore, we have

T ds = cv dT, on an isochore. (1.18)

or, using the partial derivative notation,

∂T

∂s

∣∣∣∣
v

=
T

cv
. (1.19)

Next recall the definition of enthalpy, h:

h = u+ Pv. (1.20)
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v

P

s

T

Figure 1.2: Sketch of thermodynamic cycle in P − v and T − s planes.

We can differentiate Eq. (1.20) to get

dh = du+ P dv + v dP. (1.21)

Substitute Eq. (1.21) into the Gibbs equation, (1.15), to eliminate du in favor of dh to get

T ds = dh− P dv − v dP︸ ︷︷ ︸
=du

+P dv, (1.22)

= dh− v dP. (1.23)

For an ideal gas, dh = cP dT , where cP is at most a function of T , so

T ds = cP dT︸ ︷︷ ︸
=dh

−v dP. (1.24)

Now for the isobar, dP = 0. Thus on an isobar, we have

T ds = cP dT, on an isobar. (1.25)

And so the slope on an isobar in the T − s plane is

∂T

∂s

∣∣∣∣
P

=
T

cP
. (1.26)

Recall for an ideal gas that Mayer’s relation holds:

cP (T )− cv(T ) = R > 0. (1.27)

Because cP > cv, we can say that the slope of the isochore is steeper than the isobar in the T − s plane.

Example 1.2
Consider the following isobaric process for air, modeled as a CPIG, from state 1 to state 2. P1 =

100 kPa, T1 = 300 K, T2 = 400 K. Show the second law is satisfied.

CC BY-NC-ND. 28 March 2025, J. M. Powers.

https://creativecommons.org/licenses/by-nc-nd/3.0/


14 CHAPTER 1. REVIEW

Because the process is isobaric, P = 100 kPa describes a straight line in the P −v and P −T planes
and P2 = P1 = 100 kPa. Because we have an ideal gas, we have for the v − T plane:

v =

(
R

P

)
T, straight lines! (1.28)

v1 =
RT1
P1

=

(
0.287 kJ

kg K

)
(300 K)

100 kPa
= 0.861

m3

kg
, (1.29)

v2 =
RT2
P2

=

(
0.287 kJ

kg K

)
(400 K)

100 kPa
= 1.148

m3

kg
. (1.30)

Because the gas is ideal:

du = cv dT. (1.31)

Because our ideal gas is also calorically perfect, cv is a constant, and we get

∫ u2

u1

du = cv

∫ T2

T1

dT , (1.32)

u2 − u1 = cv(T2 − T1), (1.33)

=

(
0.7175

kJ

kg K

)
(400 K− 300 K), (1.34)

= 71.750
kJ

kg
. (1.35)

Also we have

T ds = du+ P dv, (1.36)

T ds = cv dT + P dv, (1.37)

from ideal gas : v =
RT

P
: dv =

R

P
dT − RT

P 2
dP, (1.38)

T ds = cv dT +R dT − RT

P
dP, (1.39)

ds = (cv +R)
dT

T
−R

dP

P
, (1.40)

= (cv + cP − cv)
dT

T
−R

dP

P
, (1.41)

= cP
dT

T
−R

dP

P
, (1.42)

∫ s2

s1

ds = cP

∫ T2

T1

dT

T
−R

∫ P2

P1

dP

P
, (1.43)

s2 − s1 = cP ln

(
T2
T1

)
−R ln

(
P2

P1

)
. (1.44)

(1.45)
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Now because P is a constant,

s2 − s1 = cP ln

(
T2
T1

)
, (1.46)

=

(
1.0045

kJ

kg K

)
ln

(
400 K

300 K

)
, (1.47)

= 0.2890
kJ

kg K
. (1.48)

Then one finds

1w2 =

∫ v2

v1

P dv = P

∫ v2

v1

dv, (1.49)

= P (v2 − v1) , (1.50)

= (100 kPa)

(
1.148

m3

kg
− 0.861

m3

kg

)
, (1.51)

= 28.700
kJ

kg
. (1.52)

Now

du = δq − δw, (1.53)

δq = du+ δw, (1.54)
∫ 2

1

δq =

∫ 2

1

du+

∫ 2

1

δw, (1.55)

1q2 = (u2 − u1) + 1w2, (1.56)

= 71.750
kJ

kg
+ 28.700

kJ

kg
, (1.57)

= 100.450
kJ

kg
. (1.58)

Now in this process the gas is heated from 300 K to 400 K. One would expect at a minimum that the
surroundings were at 400 K. Check for second law satisfaction.

s2 − s1 ≥ 1q2
Tsurr

? (1.59)

0.2890
kJ

kg K
≥ 100.450 kJ/kg

400 K
? (1.60)

0.2890
kJ

kg K
≥ 0.2511

kJ

kg K
, yes. (1.61)

Let us review non-constant specific heat in some more detail. For calorically imperfect
ideal gases (CIIG), e.g. O2 at moderate to high temperatures (300 K < T < 6000 K):

• u = u(T ),
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Figure 1.3: Sketch for isobaric example problem.

• cv = cv(T ),

• h = h(T ),

• cP = cP (T ).

For such temperatures, our assumption of constant cv is not as valid. But for ideal gases,
we can still take cv = cv(T ), so

du

dT
= cv(T ). (1.62)

We can integrate via separation of variables to get

du = cv(T ) dT, (1.63)∫ 2

1

du =

∫ 2

1

cv(T ) dT, (1.64)

u2 − u1 =

∫ 2

1

cv(T ) dT. (1.65)

We can interpret the difference in u as the area under the curve in a plot of cv(T ) versus T
as plotted in Fig. 1.4. More generally, we could say
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TT
1

T
2

Figure 1.4: Relation between u2 − u1 and area under curve in a plot of cv(T ) for calorically
imperfect ideal gas.

u(T ) = uo +

∫ T

To

cv(T̂ ) dT̂ , (1.66)

valid for all ideal gases.

Here, T̂ is a dummy variable of integration. Similarly, we could show

h2 − h1 =

∫ T2

T1

cP (T ) dT, (1.67)

and more generally,

h(T ) = ho +

∫ T

To

cP (T̂ ) dT̂ , (1.68)

valid for all ideal gases.

Now, cv, cP and R all have units of kJ/kg/K. Let us consider the ratio

cv
R

=
cvM

RM
=

cv
M
R
M

=
cv

R
. (1.69)

The ratio is now in terms of molar specific properties with cv and R having units of
kJ/kmole/K. Note that R is the universal gas constant. A plot of cv/R versus T for a
variety of simple molecules is given in Fig. 1.5. We note some remarkable facts:

• For monatomic gases, such as Ar, O, and H, cv/R = 3/2 for a wide variety of temper-
atures.

• For diatomic gases, such as O2 and H2 for T < 600 K, cv/R ∼ 5/2, and for T > 600 K,
cv/R→ 7/2.
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Figure 1.5: cv/R as a function of T for several molecules.

• For larger molecules such as CO2 or H2O, cv/R is larger still.

What we are seeing actually reflects some fundamental physics. We first note that sta-
tistical thermodynamics proves

• Temperature is a measure of the average translational kinetic energy of a set of molecules.

Now, we consider some features of Fig. 1.5.

• Monatomic molecules, such as Ar, O or H have three fundamental modes of kinetic
energy: translation in the x, y, and z directions. Each mode contributes 1/2 to cv/R,
that sums to 3/2.

• For diatomic molecules, we summarize the behavior in the sketch given in Fig. 1.6.

– At very low temperatures, diatomic molecules, such as H2 or O2, act like monatomic
molecules.

– At low temperatures, diatomic molecules begin to rotate, and the rotational en-
ergy becomes an important component. In fact when energy is added to diatomic
molecules, some is partitioned to translation and some is partitioned to rota-
tion. There are two non-trivial axes of rotation, each adding 1/2 to cv/R, giving
cv/R ∼ 5/2.
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T (K)1    3                     600                                     2000

trans            trans+rot                                trans+rot+vib

k ~1.4                          variable k

model diatomic
ideal gas

7/2

5/2

3/2

Figure 1.6: Sketch of cv/R as a function of T for a model diatomic gas. Sketch adapted
from J. D. Anderson, 1989, Hypersonic and High Temperature Gas Dynamics, McGraw-Hill,
New York, p. 442. Note that a real gas would liquefy in the low temperature region of the
plot! So this model is really for a non-existent gas that has no liquid-inducing intermolecular
forces.

– At higher temperatures, diatomic molecules begin to vibrate as well, and this
energy becomes an important component. There are two vibrational modes, one
for kinetic energy and one for potential energy. Each adds another 1/2 to cv/R,
giving cv/R ∼ 7/2 at high temperature.

– At higher temperatures still, the diatomic molecules begin to dissociate, e.g. O2+
O2 → 2O + O2.

– At even higher temperatures, its electrons are stripped, and it becomes an ionized
plasma. This is important in engineering applications ranging from welding to
atmospheric re-entry vehicles.

• For triatomic molecules such as H2O or CO2, there are more modes of motion that can
absorb energy, so the specific heat is higher still.

The dissociation and ionization behavior of the components of air is clearly displayed in
Fig. 1.7. Here we see at low temperatures, T < 1000 K, diatomic N2 and O2 are dominant
in air. Both of these major components begin to dissociate at higher temperatures. For
T > 6000 K, we no longer find diatomic N2 and O2, but instead find their monatomic
components N and O. At higher temperatures still, the molecule loses electrons, and positive
ions remain.
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Figure 1.7: Equilibrium composition of air at low density and various temperatures. Figure
from W. E. Moeckel and K. C. Weston, 1958, Composition and thermodynamic properties
of air in chemical equilibrium, NACA Technical Note 4265.

Feynman1 summarizes the argument that this preference for one type of energy over
another (translation, rotational, vibrational) depending on temperature is surprising to those
not versed in quantum mechanics and violates standard assumptions of classical statistical
mechanics. In fact, he notes that Maxwell had a hint of the problem as early as 1859, and
stated this concern more directly in 1869. Maxwell summarized those concerns in an 1875
lecture, transcribed in Nature.2 Feynman argues that the reason for the energy partition
observed in diatomic gases is a “failure of classical physics” and instead is a pure effect
of quantum mechanics; that is to say k = cP (T )/cv(T ) = k(T ) is a non-classical result!
Employment of the theories of quantum and statistical mechanics allows an accounting for
the observation that there is a preference of molecules to exist in lower energy states, and at
those states, the discrete quantization is important. High energy vibrational states are less
likely than translational states at low temperature. At higher temperature, there is a higher

1R. P. Feynman, R. B. Leighton, and M. Sands, 1963, The Feynman Lectures on Physics, Volume 1,
Addison-Wesley, Reading, Massachusetts, pp. 40-7–40-10.

2J. C. Maxwell, 1875, “On the dynamical evidence of the molecular constitution of bodies,” Nature,
11(280): 374-377.
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probability that all states are populated, and one recovers results consistent with classical
physics.

Let us also recall that cP (T )− cv(T ) = R; thus, cP (T )− cv(T ) = R. Let us summarize

• for monatomic gases,

cv =
3

2
R, (1.70)

cP = cv +R =
5

2
R, (1.71)

cP
cv

= k =
5
2
R

3
2
R

=
5

3
= 1.6667. (1.72)

• for diatomic gases at moderate temperature, 50 K < T < 600 K,

cv =
5

2
R, (1.73)

cP = cv +R =
7

2
R, (1.74)

cP
cv

= k =
7
2
R

5
2
R

=
7

5
= 1.4. (1.75)

To summarize, usually the most problematic case is whether or not specific heats vary
with temperature in ideal gases. For low temperatures, the specific heat is well modeled as a
constant; here the internal energy change is strictly proportional to the temperature change.
For moderate to high temperatures, a temperature-variation of the specific heat is observed.
Changes in internal energy are no longer strictly proportional to changes in temperature.
The behavior is analogous to solid mechanics. At low strain ǫ, stress σ is proportional to
strain, and the constant of proportionality is the modulus of elasticity E. For high strains,
the linearity is lost; we could say the elastic modulus becomes a function of strain. We give
a sketch in Fig. 1.8 of the comparison to solid mechanics

There are four main ways to calculate changes in enthalpy for ideal gases:

• assumption of constant cP evaluated at 298 K,

• assumption of constant cP evaluated at an intermediate temperature,

• using a known analytic form of cP (T ) in the direct integration of
∫ 2

1
cP (T ) dT , or

• estimation using the ideal gas tables.

Example 1.3
Calculate the heat transferred per unit mass to N2 in an isobaric process that starts at T1 = 300 K

and finishes at T2 = 1000 K. Use the four different means of calculating enthalpy changes to estimate
the heat transfer.
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Figure 1.8: Sketch of comparison of stress-strain behavior in solids with ideal gas internal
energy-temperature behavior.

The first law on a per mass basis gives

u2 − u1 = 1q2 − 1w2. (1.76)

For an isobaric process, 1w2 =
∫ 2

1
P dv = P (v2 − v1) = P2v2 − P1v1. So

1q2 = u2 − u1 + P2v2 − P1v1 = h2 − h1 = ∆h =

∫ 2

1

cP (T ) dT. (1.77)

• Constant cP at 298 K. From Table A.5 in BS, we find cP = 1.042 kJ/kg/K. Thus, we estimate

∆h = h2 − h1 = cP (T2 − T1) =

(
1.042

kJ

kg K

)
((1000 K)− (300 K)) = 729.4

kJ

kg
. (1.78)

• Constant cP at the average temperature. The average temperature is

Tave =
T1 + T2

2
=

300 K + 1000 K

2
= 650 K. (1.79)

Table A.6 in BS has polynomial curve fits for cP . For N2, we find from Table A.6 that

cP = C0 + C1θ + C2θ
2 + C3θ

3, θ ≡ T

1000 K
. (1.80)

The numbers Co, . . . , C3 actually have units and are designed to yield a value for cP in kJ/kg/K. We
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get

cP =

(
1.11

kJ

kg K

)
−
(
0.48

kJ

kg K

)(
T

1000 K

)
+

(
0.96

kJ

kg K

)(
T

1000 K

)2

−
(
0.42

kJ

kg K

)(
T

1000 K

)3

, (1.81)

=

(
1.11

kJ

kg K

)
−
(
0.48

kJ

kg K

)(
650 K

1000 K

)
+

(
0.96

kJ

kg K

)(
650 K

1000 K

)2

−
(
0.42

kJ

kg K

)(
650 K

1000 K

)3

, (1.82)

= 1.08826
kJ

kg K
. (1.83)

So the improved prediction of the enthalpy change is

∆h = cP (T2 − T1) =

(
1.08826

kJ

kg K

)
((1000 K)− (300 K)) = 761.78

kJ

kg
. (1.84)

• Direct integration. We know

∆h = h2 − h1 =

∫ T2

T1

cP (T ) dT. (1.85)

Let us change variables from T to θ. We have θ = T/(1000 K), so dθ = dT/(1000 K), and dT =
(1000 K) dθ. Thus,

∆h =

∫ θ2

θ1

(
C0 + C1θ + C2θ

2 + C3θ
3
)
((1000 K) dθ), (1.86)

= (1000 K)

[
C0θ + C1

θ2

2
+ C2

θ3

3
+ C3

θ4

4

]θ2

θ1

, (1.87)

= (1000 K)

[(
1.11

kJ

kg K

)
θ −

(
0.48

kJ

kg K

)
θ2

2

+

(
0.96

kJ

kg K

)
θ3

3
−
(
0.42

kJ

kg K

)
θ4

4

] 1000 K
1000 K

300 K
1000 K

. (1.88)

The final value is

∆h = 765.81
kJ

kg
. (1.89)

• Use of ideal gas tables. Lastly, we can use the ideal gas tables. For us, Table A.8 of BS is best. We
find h(300 K) = 311.67 kJ/kg and h(1000 K) = 1075.91 kJ/kg. So

∆h = h2 − h1 =

(
1075.91

kJ

kg

)
−
(
311.67

kJ

kg

)
= 764.24

kJ

kg
. (1.90)

CC BY-NC-ND. 28 March 2025, J. M. Powers.

https://creativecommons.org/licenses/by-nc-nd/3.0/


24 CHAPTER 1. REVIEW

Example 1.4
A calorically imperfect ideal gas is known to have

cP (T ) = cPo + aT. (1.91)

A sample of this gas begins at P1, T1. It is heated isobarically to T2, and expanded isochorically to T3.
Find the change in internal energy of the gas, u3 − u1.

Because internal energy changes are path-independent, we need not worry about any details of
the process, including its path. That is because we know the end states. So we can use a version of
Eq. (1.65) to get

u3 − u1 =

∫ T3

T1

cv(T ) dT. (1.92)

We are given cP , but need cv. We can use Mayer’s relation, Eq. (??) to get

cv(T ) = cP (T )−R = (cPo −R) + aT. (1.93)

So

u3 − u1 =

∫ T3

T1

((cPo −R) + aT )︸ ︷︷ ︸
cv(T )

dT. (1.94)

Integrating, we find

u3 − u1 = (cPo −R)(T3 − T1) +
a

2
(T 2

3 − T 2
1 ). (1.95)

Had we been asked to find the heat transfer, 1Q3, we would have had to calculate the work 1W3, and
the details of the path would have been required. Because internal energy is a state function, only the
end states are required to evaluate the change in internal energy.
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Chapter 2

Cycle analysis

Read BS, Chapters 5, 8, 9, 10.

2.1 Carnot

The Carnot cycle is the most well-known thermodynamic cycle. It is a useful idealization,
but is difficult to realize in practice. Its real value lies in serving as a standard to which
other cycles can be compared. These are usually fully covered in introductory courses. The
cycle can be considered as follows

• 1 → 2: isentropic compression,

• 2 → 3: isothermal expansion,

• 3 → 4: isentropic expansion, and

• 4 → 1: isothermal compression.

This forms a rectangle in the T − s plane The P − v plane is more complicated. Both are
shown in Figure 2.1.

2.1.1 Analysis for a calorically perfect ideal gas

For this discussion, consider a calorically perfect ideal gas. The isotherms are then straight-
forward and are hyperbolas described by

P = RT
1

v
. (2.1)

The slope of the isotherms in the P − v plane is found by differentiation:

∂P

∂v

∣∣∣∣
T

= −RT 1

v2
, (2.2)

= −P
v
. (2.3)
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Figure 2.1: Sketch of P − v and T − s planes for a CPIG in a Carnot cycle.

The slope of the isentrope is found in the following way. Consider first the Gibbs equation,
Eq. (1.15):

T ds = du+ P dv. (2.4)

Because the gas is calorically perfect, one has

du = cv dT, (2.5)

so the Gibbs equation, Eq. (2.4), becomes

T ds = cv dT + P dv. (2.6)

Now for the ideal gas, one has

Pv = RT, (2.7)

P dv + v dP = R dT, (2.8)

P dv + v dP

R
= dT. (2.9)
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So then

T ds = cv

(
P dv + v dP

R

)

︸ ︷︷ ︸
=dT

+P dv, (2.10)

T ds =
(cv
R

+ 1
)
P dv +

cv
R
v dP, Take ds = 0, (2.11)

0 =
(cv
R

+ 1
)
P +

cv
R
v
∂P

∂v

∣∣∣∣
s

, (2.12)

∂P

∂v

∣∣∣∣
s

= −
cv
R
+ 1
cv
R

P

v
, (2.13)

= −
cv

cP−cv
+ 1

cv
cP−cv

P

v
, (2.14)

= −cv + cP − cv
cv

P

v
, (2.15)

= −cP
cv

P

v
, (2.16)

= −k P

v
. (2.17)

Because k > 1, the magnitude of the slope of the isentrope is greater than the magnitude of
the slope of the isotherm: ∣∣∣∣

∂P

∂v

∣∣∣∣
s

∣∣∣∣ >
∣∣∣∣
∂P

∂v

∣∣∣∣
T

∣∣∣∣ . (2.18)

Example 2.1
(Adapted from BS) Consider an ideal gas Carnot cycle with air in a piston cylinder with a high

temperature of 1200 K and a heat rejection at 400 K. During the heat addition, the volume triples.
The gas is at 1.00 m3/kg before the isentropic compression. Analyze.

Take state 1 to be the state before the compression. Then

T1 = 400 K, v1 = 1.00
m3

kg
. (2.19)

By the ideal gas law

P1 =
RT1
v1

=

(
0.287 kJ

kg K

)
(400 K)

1.00 m3

kg

= 1.148× 102 kPa. (2.20)

Now isentropically compress to state 2. By the standard relations for a CPIG, one finds

T2
T1

=

(
v1
v2

)k−1

=

(
P2

P1

) k−1
k

. (2.21)
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So

v2 = v1

(
T1
T2

) 1
k−1

=

(
1.00

m3

kg

)(
400 K

1200 K

) 1
1.4−1

= 0.06415
m3

kg
. (2.22)

Note that v2 < v1 as is typical in a compression. The isentropic relation between pressure and volume
can be rearranged to give the standard

P2v
k
2 = P1v

k
1 . (2.23)

Thus, one finds that

P2 = P1

(
v1
v2

)k
= (1.148× 102 kPa)

(
1.00 m3

kg

0.06415 m3

kg

)1.4

= 5.36866× 103 kPa. (2.24)

The pressure has increased in the isentropic compression. Check to see if the ideal gas law is satisfied
at state 2:

P2 =
RT2
v2

=

(
0.287 kJ

kg K

)
(1200 K)

0.06415 m3

kg

= 5.36866× 103 kPa. (2.25)

This matches. Now the expansion from state 2 to 3 is isothermal. This is the heat addition step in
which the volume triples. So one gets

v3 = 3v2 = 3

(
0.06415

m3

kg

)
= 0.19245

m3

kg
, (2.26)

T3 = T2 = 1200 K. (2.27)

The ideal gas law then gives

P3 =
RT3
v3

=

(
0.287 kJ

kg K

)
(1200 K)

0.19245 m3

kg

= 1.78955× 103 kPa. (2.28)

Process 3 to 4 is an isentropic expansion back to 400 K. Using the isentropic relations for the CPIG,
one gets

v4 = v3

(
T3
T4

) 1
k−1

=

(
0.19245

m3

kg

)(
1200 K

400 K

) 1
1.4−1

= 3.000
m3

kg
, (2.29)

P4 = P3

(
v3
v4

)k
= (1.78955× 103 kPa)

(
0.19245 m3

kg

3.000 m3

kg

)1.4

= 3.82667× 101 kPa. (2.30)

Check:

P4 =
RT4
v4

=

(
0.287 kJ

kg K

)
(400 K)

3.000 m3

kg

= 3.82667× 101 kPa. (2.31)

A summary of the states is given in Table 2.1.
Now calculate the work, heat transfer and efficiency. Take the adiabatic exponent for air to be

k = 1.4. Now because of Eq. (1.7) k = cP /cv, and Meyer’s relation, Eq. (1.27), cP − cv = R, one gets

k =
R+ cv
cv

, (2.32)

kcv = R+ cv, (2.33)

cv(k − 1) = R, (2.34)

cv =
R

k − 1
=

0.287 kJ
kg K

1.4− 1
= 0.7175

kJ

kg K
. (2.35)
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T (K) P (kPa) v (m
3

kg
)

1 400 1.148× 102 1.000
2 1200 5.36886× 103 0.06415
3 1200 1.78955× 103 0.19245
4 400 3.82667× 102 3.000

Table 2.1: State properties for Carnot cycle.

Recall the first law, u2−u1 = 1q2− 1w2. Recall also the caloric equation of state for a CPIG: u2−u1 =
cv(T2 − T1). Now process 1 → 2 is isentropic, so it is also adiabatic, hence 1q2 = 0, so one has

u2 − u1 = 1q2︸︷︷︸
=0

−1w2, (2.36)

cv(T2 − T1) = −1w2, (2.37)(
0.7175

kJ

kg K

)
(1200 K− 400 K) = −1w2, (2.38)

1w2 = −5.7400× 102
kJ

kg
. (2.39)

The work is negative as work is being done on the system in the compression process.

Process 2 → 3 is isothermal, so there is no internal energy change. The first law gives

u3 − u2 = 2q3 − 2w3, (2.40)

cv(T3 − T2)︸ ︷︷ ︸
=0

= 2q3 − 2w3, (2.41)

0 = 2q3 − 2w3, (2.42)

2q3 = 2w3 =

∫ v3

v2

P dv, (2.43)

=

∫ v3

v2

RT

v
dv, (2.44)

= RT2

∫ v3

v2

dv

v
, (2.45)

= RT2 ln
v3
v2
, (2.46)

=

(
0.287

kJ

kg K

)
(1200 K) ln

0.19245 m3

kg

0.06415 m3

kg

, (2.47)

= 3.78362× 102
kJ

kg
. (2.48)

The work is positive, which is characteristic of the expansion process.
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Process ∆u
(

kJ
kg

)
q
(

kJ
kg

)
w
(

kJ
kg

)

1 → 2 5.74000× 102 0 −5.74000× 102

2 → 3 0 3.78362× 102 3.78362× 102

3 → 4 −5.74000× 102 0 5.74000× 102

4 → 1 0 −1.26121× 102 −1.26121× 102

Total 0 2.52241× 102 2.52241× 102

Table 2.2: First law parameters for Carnot cycle.

Process 3 → 4 is adiabatic so 3q4 = 0. The first law analysis gives then

u4 − u3 = 3q4︸︷︷︸
=0

−3w4, (2.49)

cv(T4 − T3) = −3w4, (2.50)(
0.7175

kJ

kg K

)
(400 K− 1200 K) = −3w4, (2.51)

3w4 = 5.74000× 102
kJ

kg
. (2.52)

Process 4 → 1 is isothermal. Similar to the other isothermal process, one finds

u1 − u4 = 4q1 − 4w1, (2.53)

cv(T1 − T4)︸ ︷︷ ︸
=0

= 4q1 − 4w1, (2.54)

0 = 4q1 − 4w1, (2.55)

4q1 = 4w1 =

∫ v1

v4

P dv, (2.56)

=

∫ v1

v4

RT

v
dv, (2.57)

= RT4 ln
v1
v4
, (2.58)

=

(
0.287

kJ

kg K

)
(400 K) ln

1.0000 m3

kg

3.0000 m3

kg

, (2.59)

= −1.26121× 102
kJ

kg
. (2.60)

Table 2.2 summarizes the first law considerations. The cycle work is found by adding the work of each
individual process:

wcycle = 1w2 + 2w3 + 3w4 + 4w1, (2.61)

= (−5.74 + 3.78362+ 5.74− 1.26121)× 102 = 2.52241× 102
kJ

kg
. (2.62)

The cycle heat transfer is

qcycle = 1q2 + 2q3 + 3q4 + 4q1, (2.63)

= (0 + 3.78362 + 0− 1.26121)× 102 = 2.52241× 102
kJ

kg
. (2.64)
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Note that
wcycle = qcycle. (2.65)

Check now for the cycle efficiency. Recall that the thermal efficiency is

η =
what you want

what you pay for
=
wcycle
qin

. (2.66)

Here this reduces to

η =
wcycle

2q3
=

2.52241× 102 kJ
kg

3.78362× 102 kJ
kg

= 0.6667. (2.67)

Recall that the efficiency for any Carnot cycle should be

η = 1− Tlow
Thigh

. (2.68)

So general Carnot theory holds that the efficiency should be

η = 1− 400 K

1200 K
=

2

3
∼ 0.6667. (2.69)

Recall further that for a Carnot cycle, one has

qlow
qhigh

=
Tlow
Thigh

. (2.70)

For this problem then one has

−4q1

2q3
=

Tlow
Thigh

, (2.71)

1.26121× 102 kJ
kg

3.78362× 102 kJ
kg

=
400 K

1200 K
, (2.72)

1

3
=

1

3
. (2.73)

Indeed, the appropriate relation holds.

2.1.2 Exergy

Here we will introduce the concept of exergy, which relies on a Carnot cycle for its motivation.
This concept is widely used in some industrial design applications; its use in the fundamental
physics literature is not extensive, likely because it is not a thermodynamic property of a
material, but also includes mechanical properties. This system quantity is one measure of
how much useful work can be extracted from a system which is brought into equilibrium
with a so-called reference rest state.
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Carnot
engine

control
volume

Figure 2.2: Sketch of control volume balance for exergy discussion.

First let us imagine that the surroundings are at a reference temperature of To and a
reference pressure of Po. This yields a reference enthalpy of ho and a reference entropy of so.
We also take the surroundings to be at rest with a velocity of v = 0, and a reference height
of zo.

Consider the sketch of Fig. 2.2. Let us consider a steady flow into and out of a control
volume. The conservation of mass equation yields

dmcv

dt
= ṁin − ṁout. (2.74)

For steady flow conditions, we have d/dt = 0, so we recover

ṁin = ṁout = ṁ. (2.75)

The first law of thermodynamics for the control volume yields

dEcv

dt
= Q̇cv − Ẇcv + ṁin

(
hin +

1

2
vin · vin + gzin

)

−ṁout

(
hout +

1

2
vout · vout + gzout

)
. (2.76)

We will soon relate Q̇cv/ṁ to qH,Carnot as sketched in Fig. 2.2; this will introduce a sign
convention problem. For now, we will maintain the formal sign convention associated with
Q̇cv connoting heat transfer into the control volume. For steady flow conditions, we get

0 = Q̇cv − Ẇcv + ṁ

(
hin − hout +

1

2
(vin · vin − vout · vout) + g(zin − zout)

)
. (2.77)
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Now take the “in” state to be simply a generic state with no subscript, and the “out”
state to be the reference state, so

0 = Q̇cv − Ẇcv + ṁ

(
h− ho +

1

2
(v · v) + g(z − zo)

)
. (2.78)

Let us next scale by ṁ so as to get

0 = qcv − wcv + h− ho +
1

2
v · v + g(z − zo). (2.79)

Here we have taken qcv ≡ Q̇cv/ṁ and wcv = Ẇcv/ṁ.
Now, let us insist that wcv = 0, and solve for qcv to get

qcv = −
(
h− ho +

1

2
v · v + g(z − zo)

)
. (2.80)

Now, we imagine the working fluid to be at an elevated enthalpy, velocity, and height
relative to its rest state. Thus in the process of bringing it to its rest state, we will induce
qcv < 0. By our standard sign convention, this means that thermal energy is leaving the
system. This energy which leaves the system can be harnessed, in the best of all possible
worlds, by a Carnot engine in contact with a thermal reservoir at temperature To to generate
useful work. It is this work which represents the available energy, also known as the exergy.

For the Carnot engine, we have

wCarnot = qH,Carnot − qL,Carnot. (2.81)

The standard sign convention for work and heat transfer is abandoned for the Carnot
analysis! It is wCarnot which gives the availability or exergy, which we define as ψ:

ψ = qH,Carnot − qL,Carnot. (2.82)

Now let us require that the heat input to the Carnot engine be the heat associated with the
heat transfer from the control volume. Because of the inconsistency in sign conventions, this
requires that

qcv = −qH,Carnot. (2.83)

Now for Carnot cycles, we know that

qH,Carnot = T (s− so), (2.84)

qL,Carnot = To(s− so). (2.85)

So, by substituting Eqs. (2.83) and (2.85) into Eq. (2.82), the availability ψ is

ψ = −qcv − To(s− so). (2.86)
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Now use Eq. (2.80) to eliminate qcv from Eq. (2.86) to get

ψ =

(
h− ho +

1

2
v · v + g(z − zo)

)
− To(s− so), (2.87)

ψ =

(
h− Tos+

1

2
v · v + gz

)
− (ho − Toso + gzo) . (2.88)

So the exergy, that is, the ability to useful work, is enhanced by

• high enthalpy h, which for ideal gases implies high temperature T ,

• high velocity v,

• high height z, and

• low entropy (or high order or structure) s.

Example 2.2
Find the exergy for a CPIG.

For a CPIG, we have

h− ho = cP (T − To), (2.89)

s− so = cP ln

(
T

To

)
−R ln

(
P

Po

)
. (2.90)

So we get

ψ = cP (T − To)− To

(
cP ln

(
T

To

)
−R ln

(
P

Po

))
+

1

2
v · v + g(z − zo). (2.91)

For T ∼ To P ∼ Po, we can use Taylor series to simplify this somewhat. First, we recall the general
Taylor series for a log function near unity. Consider

y(x) = lnx, (2.92)

for x ∼ 1. For a Taylor series near x = 1, we have

y(x) ∼ y(1) +
dy

dx

∣∣∣∣
x=1

(x− 1) +
1

2

d2y

dx2

∣∣∣∣
x=1

(x − 1)2 + . . . . (2.93)

Now for y = lnx, we have

dy

dx
=

1

x
,

d2y

dx2
= − 1

x2
, (2.94)
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and thus

y(1) = ln(1) = 0,
dy

dx

∣∣∣∣
x=1

= 1,
d2y

dx2

∣∣∣∣
x=1

= −1. (2.95)

So

y(x) = lnx ∼ 0 + (x− 1)− 1

2
(x− 1)2 + . . . (2.96)

We then expand ψ via the following steps:

ψ = cP (T − To)− cPTo ln

(
T

To

)
+RTo ln

(
P

Po

)
+

1

2
v · v + g(z − zo), (2.97)

= cPTo

((
T

To
− 1

)
− ln

(
T

To

)
+
k − 1

k
ln

(
P

Po

))
+

1

2
v · v + g(z − zo), (2.98)

= cPTo

((
T

To
− 1

)
−
((

T

To
− 1

)
− 1

2

(
T

To
− 1

)2

+ . . .

)
+
k − 1

k

(
P

Po
− 1 + . . .

))

+
1

2
v · v + g(z − zo), (2.99)

= cPTo

((
1

2

(
T

To
− 1

)2

+ . . .

)
+
k − 1

k

(
P

Po
− 1 + . . .

))
+

1

2
v · v + g(z − zo). (2.100)

In the neighborhood of the ambient state, relative pressure differences are more effective than relative
temperature differences at inducing high exergy.

2.2 Rankine

2.2.1 Classical

The Rankine cycle forms the foundation for the bulk of power generating devices which
utilize steam as a working fluid. The ideal cycle is described by

• 1 → 2: isentropic pumping process in the pump,

• 2 → 3: isobaric heat transfer in the boiler,

• 3 → 4: isentropic expansion in the turbine, and

• 4 → 1: isobaric heat transfer in the condenser.

To increase cycle efficiency one can

• lower the condenser pressure (increases liquid water in turbine),

• superheat the steam, or
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pump

boiler
turbine

condenser
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1
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3

4

Figure 2.3: Schematic for Rankine cycle and the associated T − s plane.

• increase the pressure during heat addition.

A schematic for the Rankine cycle and the associated path in the T − s plane is shown
in Figure 2.3.

Example 2.3
(adopted from Moran and Shapiro) Consider steam in an ideal Rankine cycle. Saturated vapor

enters the turbine at 8.0 MPa. Saturated liquid exits the condenser at P = 0.008 MPa. The net power
output of the cycle is 100 MW. Find

• thermal efficiency

• back work ratio

• mass flow rate of steam

• rate of heat transfer Q̇in to the fluid in the boiler

• rate of heat transfer Q̇out in the condenser

• mass flow rate of condenser cooling water if the cooling water enters at 15 ◦C and exits at 35 ◦C.

Use the steam tables to fix the state. At the turbine inlet, one has P3 = 8.0 MPa, and x3 = 1
(saturated steam). This gives two properties to fix the state, so that

h3 = 2758
kJ

kg
, s3 = 5.7432

kJ

kg K
. (2.101)

State 4 has P4 = 0.008 MPa and s4 = s3 = 5.7432 kJ/kg/K, so the state is fixed. From the saturation
tables, it is found then that

x4 =
s4 − sf
sg − sf

=

(
5.7432 kJ

kg K

)
−
(
0.5926 kJ

kg K

)

7.6361 kJ
kg K

= 0.6745. (2.102)
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The quality is 0 ≤ x4 ≤ 1, as it must be. The enthalpy is then

h4 = hf + x4hfg =

(
173.88

kJ

kg

)
+ (0.6745)

(
2403.1

kJ

kg

)
= 1794.8

kJ

kg
. (2.103)

State 1 is saturated liquid at 0.008 MPa, so x1 = 0, P1 = 0.008 MPa. One then gets h1 = hf =
173.88 kJ/kg, v1 = vf = 0.0010084 m3/kg.

Now state 2 is fixed by the boiler pressure and s2 = s1. But this requires use of the sparse
compressed liquid tables. Alternatively, the pump work is easily approximated by assuming an incom-
pressible fluid so that

h2 = h1 +
Ẇ

ṁ
= h1 + v1(P2 − P1), (2.104)

=

(
173.88

kJ

kg

)
+

(
0.0010084

m3

kg

)
(8000 kPa− 8 kPa) = 181.94

kJ

kg
. (2.105)

The net power is

Ẇcycle = Ẇt + Ẇp. (2.106)

Now the first law for the turbine and pump give

Ẇt

ṁ
= h3 − h4,

Ẇp

ṁ
= h1 − h2. (2.107)

The energy input that is paid for is

Q̇in
ṁ

= h3 − h2. (2.108)

The thermal efficiency is then found by

η =
Ẇt + Ẇp

Q̇in
=

(h3 − h4) + (h1 − h2)

h3 − h2
, (2.109)

=

((
2758 kJ

kg

)
−
(
1794.8 kJ

kg

)
+
(
173.88 kJ

kg

)
−
(
181.94 kJ

kg

))

((
2758 kJ

kg

)
−
(
181.94 kJ

kg

)) , (2.110)

= 0.371. (2.111)

By definition the back work ratio bwr is the ratio of pump work to turbine work:

bwr =

∣∣∣∣∣
Ẇp

Ẇt

∣∣∣∣∣ , (2.112)

=

∣∣∣∣
h1 − h2
h3 − h4

∣∣∣∣ , (2.113)

=

∣∣∣∣∣∣

((
173.88 kJ

kg

)
−
(
181.94 kJ

kg

))

((
2758 kJ

kg

)
−
(
1794.8 kJ

kg

))

∣∣∣∣∣∣
, (2.114)

= 0.00837. (2.115)
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The desired mass flow can be determined because we know the desired net power. Thus

ṁ =
Ẇcycle

(h3 − h4) + (h1 − h2)
, (2.116)

=
100× 103 kW((

2758 kJ
kg

)
−
(
1794.8 kJ

kg

)
+
(
173.88 kJ

kg

)
−
(
181.94 kJ

kg

)) , (2.117)

= 104.697
kg

s
, (2.118)

=

(
104.697

kg

s

)(
3600

s

hr

)
= 3.769× 105

kg

hr
. (2.119)

The necessary heat transfer rate in the boiler is then

Q̇in = ṁ(h3 − h2), (2.120)

=

(
104.697

kg

s

)((
2758

kJ

kg

)
−
(
181.94

kJ

kg

))
, (2.121)

= 269706 kW, (2.122)

= 269.7 MW. (2.123)

In the condenser, one finds

Q̇out = ṁ(h1 − h4), (2.124)

=

(
104.697

kg

s

)((
173.88

kJ

kg

)
−
(
1794.8

kJ

kg

))
, (2.125)

= −169705 kW, (2.126)

= −169.7 MW. (2.127)

For the cycle that one should find

Ẇcycle = Q̇in + Q̇out = (269.7 MW)− (169.7 MW) = 100 MW. (2.128)

For the condenser mass flow rate now perform a mass balance:

dEcv
dt︸ ︷︷ ︸
=0

= Q̇cv︸︷︷︸
=0

− Ẇcv︸︷︷︸
=0

+ṁc(hin − hout) + ṁ(h4 − h1), (2.129)

0 = ṁc(hin − hout) + ṁ(h4 − h1), (2.130)

ṁc = −ṁ(h4 − h1)

hin − hout
, (2.131)

= −

(
104.697 kg

s

)((
1794.8 kJ

kg

)
−
(
173.88 kJ

kg

))

((
62.99 kJ

kg

)
−
(
146.68 kJ

kg

)) , (2.132)

= 2027.79
kg

s
, (2.133)

=

(
2027.79

kg

s

)(
3600 s

hr

)
, (2.134)

= 7.3× 106
kg

hr
. (2.135)
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The enthalpy for the cooling water was found by assuming values at the saturated state at the respective
temperatures of 15 ◦C and 35 ◦C.

Example 2.4
Compute the exergy at various points in the flow of a Rankine cycle as considered in the previous

example problem.

For that example, we had at state 1, the pump inlet that

h1 = 173.88
kJ

kg
, s1 = 0.5926

kJ

kg K
. (2.136)

After the pump, at state 2, we have

h2 = 181.94
kJ

kg
, s2 = 0.5926

kJ

kg K
. (2.137)

After the boiler, at state 3, we have

h3 = 2758
kJ

kg
, s3 = 5.7432

kJ

kg K
. (2.138)

After the turbine, at state 4, we have

h4 = 1794.8
kJ

kg
, s4 = 5.7432

kJ

kg K
. (2.139)

Now for this example, kinetic and potential energy contributions to the exergy are negligible, so we
can say in general that

ψ = (h− Tos)− (ho − Toso). (2.140)

Now for this problem, we have To = 298.15 K, ho = 104.89 kJ/kg, so = 0.3674 kJ/kg/K. We have
estimated ho and so as the enthalpy and entropy of a saturated liquid at 25 ◦C = 298.15 K.

So the exergies are as follows. At the pump entrance, we get

ψ1 = (h1 − Tos1)− (ho − Toso) , (2.141)

=

((
173.88

kJ

kg

)
− (298.15 K)

(
0.5926

kJ

kg K

))

−
((

104.89
kJ

kg

)
− (298.15 K)

(
0.3674

kJ

kg K

))
, (2.142)

= 1.84662
kJ

kg
. (2.143)

After the pump, just before the boiler, we have

ψ2 = (h2 − Tos2)− (ho − Toso) , (2.144)

=

((
181.94

kJ

kg

)
− (298.15 K)

(
0.5926

kJ

kg K

))

−
((

104.89
kJ

kg

)
− (298.15 K)

(
0.3674

kJ

kg K

))
, (2.145)

= 9.90662
kJ

kg
. (2.146)
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So the exergy has gone up. Here ψ2 − ψ1 = h2 − h1 because the process is isentropic. Here ψ2 − ψ1 =
h2 = h1 = 181.94− 173.88 = 8.06 kJ/kg.

After the boiler, just before the turbine, we have

ψ3 = (h3 − Tos3)− (ho − Toso) , (2.147)

=

((
2758

kJ

kg

)
− (298.15 K)

(
5.7432

kJ

kg K

))

−
((

104.89
kJ

kg

)
− (298.15 K)

(
0.3674

kJ

kg K

))
, (2.148)

= 1050.32
kJ

kg
. (2.149)

Relative to the pump, the boiler has added much more exergy to the fluid. After the turbine, just
before the condenser, we have

ψ4 = (h4 − Tos4)− (ho − Toso) , (2.150)

=

((
1794.8

kJ

kg

)
− (298.15 K)

(
5.7432

kJ

kg K

))

−
((

104.89
kJ

kg

)
− (298.15 K)

(
0.3674

kJ

kg K

))
, (2.151)

= 87.1152
kJ

kg
. (2.152)

Note that ψ4 − ψ3 = h4 − h3 because the process is isentropic. The actual exergy (or available work)
at the exit of the turbine is relative low, even though the enthalpy state at the turbine exit remains at
an elevated value.

2.2.2 Reheat

In a Rankine cycle with reheat, the steam is extracted from an intermediate stage of the
turbine and reheated in the boiler. It is then expanded through the turbine again to the
condenser pressure. One also avoids liquid in the turbine with this strategy. This generally
results in a gain in cycle efficiency. Geometrically, the behavior on a T − s diagram looks
more like a Carnot cycle. This is often covered in an introductory thermodynamics class, so
no formal example will be given here. A schematic for the Rankine cycle with reheat and
the associated T − s diagram is shown in Figure 2.4.

2.2.3 Regeneration

In a Rankine cycle with regeneration, some steam is extracted from the turbine and used
to pre-heat the liquid which is exiting the pump. This can lead to an increased thermal
efficiency, all else being equal. The analysis is complicated by the need to take care of more
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Figure 2.4: Schematic for Rankine cycle with reheat along with the relevant T − s diagram.

complex mass and energy balances in some components. A schematic for the Rankine cycle
with regeneration and open feedwater heating is shown in Figure 2.5.

Example 2.5
(adopted from BS) Steam leaves a boiler and enters a turbine at 4 MPa, 400 ◦C. After expansion

to 400 kPa, some steam is extracted for heating feedwater in an open feedwater heater. Pressure in
feedwater heater is 400 kPa, and water leaves it at a saturated state at 400 kPa. The rest of the steam
expands through the turbine to 10 kPa. Find the cycle efficiency.

• 1 → 2: compression through pump P1,

• 2 & 6 → 3: mixing in open feedwater heater to saturated liquid state,

• 3 → 4: compression through pump P2,

• 4 → 5: heating in boiler,

• 5 → 6: partial expansion in turbine,

• 5 → 7: completion of turbine expansion, and

• 7 → 1: cooling in condenser.

From the tables, one can find

h5 = 3213.6
kJ

kg
, h6 = 2685.6

kJ

kg
, h7 = 2144.1

kJ

kg
, h1 = 191.8

kJ

kg
, h3 = 604.73

kJ

kg
,

v1 = 0.00101
m3

kg
, v3 = 0.001084

m3

kg
. (2.153)

First consider the low pressure pump.

h2 = h1 + v1(P2 − P1), (2.154)

=

(
191.8

kJ

kg

)
+

(
0.00101

m3

kg

)
((400 kPa)− (10 kPa)) , (2.155)

= 192.194
kJ

kg
. (2.156)
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Figure 2.5: Schematic for Rankine cycle with regeneration and open feedwater heating.

The pump work is

wP1 = v1(P1 − P2), (2.157)

=

(
0.00101

m3

kg

)
((10 kPa)− (400 kPa)) , (2.158)

= −0.3939
kJ

kg
. (2.159)

A sign convention consistent with work done by the fluid is used here. At this point the text abandons
this sign convention instead.

Now consider the turbine

dmcv

dt︸ ︷︷ ︸
=0

= ṁ5 − ṁ6 − ṁ7, (2.160)

ṁ5 = ṁ6 + ṁ7, (2.161)

1 =
ṁ6

ṁ5
+
ṁ7

ṁ5
, (2.162)

dEcv
dt︸ ︷︷ ︸
=0

= Q̇cv︸︷︷︸
=0

−Ẇcv + ṁ5h5 − ṁ6h6 − ṁ7h7, (2.163)

Ẇcv = ṁ5h5 − ṁ6h6 − ṁ7h7. (2.164)
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On a per mass basis, we get,

wt =
Ẇcv

ṁ5
= h5 −

ṁ6

ṁ5
h6 −

ṁ7

ṁ5
h7, (2.165)

= h5 −
ṁ6

ṁ5
h6 −

(
1− ṁ6

ṁ5

)
h7, (2.166)

= h5 − h6 + h6 −
ṁ6

ṁ5
h6 −

(
1− ṁ6

ṁ5

)
h7, (2.167)

= h5 − h6 + h6

(
1− ṁ6

ṁ5

)
−
(
1− ṁ6

ṁ5

)
h7, (2.168)

= h5 − h6 +

(
1− ṁ6

ṁ5

)
(h6 − h7). (2.169)

Now consider the feedwater heater. The first law for this device gives

dEcv
dt︸ ︷︷ ︸
=0

= Q̇cv︸︷︷︸
=0

− Ẇcv︸︷︷︸
=0

+ṁ2h2 + ṁ6h6 − ṁ3h3, (2.170)

h3 =
ṁ2

ṁ3
h2 +

ṁ6

ṁ3
h6, (2.171)

=
ṁ7

ṁ5
h2 +

ṁ6

ṁ5
h6, (2.172)

=

(
1− ṁ6

ṁ5

)
h2 +

ṁ6

ṁ5
h6, (2.173)

(
604.73

kJ

kg

)
=

(
1− ṁ6

ṁ5

)(
192.194

kJ

kg

)
+
ṁ6

ṁ5

(
2685.6

kJ

kg

)
, (2.174)

ṁ6

ṁ5
= 0.165451. (2.175)

Now get the turbine work

wt = h5 − h6 +

(
1− ṁ6

ṁ5

)
(h6 − h7), (2.176)

=

(
3213.6

kJ

kg

)
−
(
2685.6

kJ

kg

)

+(1− 0.165451)

((
2685.6

kJ

kg

)
−
(
2144.1

kJ

kg

))
, (2.177)

= 979.908
kJ

kg
. (2.178)

Now get the work for the high-pressure pump

wP2 = v3(P3 − P4), (2.179)

=

(
0.001084

m3

kg

)
((400 kPa)− (4000 kPa)) , (2.180)

= −3.9024
kJ

kg
. (2.181)
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Now

h4 = h3 + v3(P4 − P3), (2.182)

=

(
604.73

kJ

kg

)
+

(
0.001084

m3

kg

)
((4000 kPa)− (400 kPa)) , (2.183)

= 608.6
kJ

kg
. (2.184)

Now get the net work

Ẇnet = ṁ5wt + ṁ1wP1 + ṁ5wP2, (2.185)

wnet = wt +
ṁ1

ṁ5
wP1 + wP2, (2.186)

= wt +
ṁ7

ṁ5
wP1 + wP2, (2.187)

= wt +

(
1− ṁ6

ṁ5

)
wP1 + wP2, (2.188)

=

(
979.908

kJ

kg

)
+ (1− 0.165451)

(
−0.3939

kJ

kg

)
−
(
3.9024

kJ

kg

)
, (2.189)

= 975.677
kJ

kg
. (2.190)

Now for the heat transfer in the boiler, one has

qh = h5 − h4, (2.191)

=

(
3213.6

kJ

kg

)
−
(
608.6

kJ

kg

)
, (2.192)

= 2605.0
kJ

kg
. (2.193)

Thus, the thermal efficiency is

η =
wnet
qh

=
975.677 kJ

kg

2605.0 kJ
kg

= 0.375. (2.194)

This does represent an increase of efficiency over a comparable Rankine cycle without regeneration,
which happens to be 0.369.

2.2.4 Losses

• Turbine: These are typically the largest losses in the system. The turbine efficiency is
defined by

η =
wt

wts

=
h3 − h4
h3 − h4s

. (2.195)

Here h4s and wts are the enthalpy and work the working fluid would have achieved had
the process been isentropic. This is for a control volume.
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• Pump: Pump losses are usually much smaller in magnitude than those for turbines.
The pump efficiency for a control volume is defined by

η =
wps

wp
=
h2s − h1
h2 − h1

. (2.196)

• Piping: pressure drops via viscous and turbulent flow effects induce entropy gains
in fluid flowing through pipes. There can also be heat transfer from pipes to the
surroundings and vice versa.

• Condenser: Losses are relatively small here.

Losses will always degrade the overall thermal efficiency of the cycle.

2.2.5 Cogeneration

Often steam is extracted after the boiler for alternative uses. A good example is the Notre
Dame power plant, where steam at high pressure and temperature is siphoned from the
turbines to heat the campus in winter. The analysis for such a system is similar to that for
a system with regeneration.

A schematic for cogeneration cycle is shown in Figure 2.6.

2.3 Air standard cycles

It is useful to model several real engineering devices by what is known as an air standard
cycle. This is based on the following assumptions:

• CPIG,

• no inlet or exhaust stages,

• combustion process replaced by heat transfer process,

• cycle completed by heat transfer to surroundings (not exhaust), and

• all process internally reversible.

In some cycles, it is common to model the working fluid as a fixed mass. In others, it is
common to model the system as a control volume.
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Figure 2.6: Schematic for Rankine cycle with cogeneration.

2.4 Brayton

2.4.1 Classical

The Brayton cycle is the air standard model for gas turbine engines. It is most commonly
modeled on a control volume basis. It has the following components:

• 1 → 2: isentropic compression,

• 2 → 3: isobaric heat transfer to combustion chamber,

• 3 → 4: isentropic expansion through turbine, and

• 4 → 1: isobaric heat exchange with surroundings.

A schematic for the Brayton cycle is shown in Figure 2.7. Diagrams for P − v and T − s for
the Brayton cycle are shown in Figure 2.8.

The efficiency of the air standard Brayton cycle is found as

η =
wnet

qH
. (2.197)
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Figure 2.7: Schematic for Brayton cycle.
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Figure 2.8: P − v and T − s diagrams for the Brayton cycle.

For the cycle, the first law holds that

wnet = qnet = qH − qL. (2.198)

One notes for an isobaric control volume combustor that

dEcv

dt︸ ︷︷ ︸
=0

= Q̇cv − Ẇcv︸︷︷︸
=0

+ṁhin − ṁhout. (2.199)
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So

Q̇cv = ṁ(hout − hin), (2.200)

Q̇cv

ṁ
= hout − hin, (2.201)

q = hout − hin, (2.202)

= cP (Tout − Tin). (2.203)

One might wonder about the work going from 2 to 3, which has area under the curve in the
P − v diagram of Fig. 2.8. In the combustor there is no shaft work, so Ẇcv = 0. But the
work of the expanding fluid is recognized by the enthalpy difference. Our Eq. (2.203) for
the combustor predicts q = h3 − h2 = cP (T3 − T2). Using the definition of h, it also says
q = u3 + P3v3 − (u2 + P2v2). And because P3 = P2, we get q = u3 − u2 + P2(v3 − v2). So for
the isobaric combustor, we could cast the first law as ∆u = q − P∆v.

So the thermal efficiency for the Brayton cycle is

η =
wnet

qH
=
qH − qL
qH

= 1− qL
qH

= 1− cP (T4 − T1)

cP (T3 − T2)
= 1−

T1

(
T4

T1
− 1
)

T2

(
T3

T2
− 1
) . (2.204)

Now because of the definition of the process, one also has

P3

P4

=
P2

P1

. (2.205)

And because 1 → 2 and 3 → 4 are isentropic, one has

P2

P1
=

(
T2
T1

)k/(k−1)

=
P3

P4
=

(
T3
T4

)k/(k−1)

. (2.206)

So one then has
T2
T1

=
T3
T4
. (2.207)

Cross-multiplying, one finds
T3
T2

=
T4
T1
. (2.208)

Subtracting unity from both sides gives

T3
T2

− 1 =
T4
T1

− 1. (2.209)

So the thermal efficiency takes the form

η = 1− T1
T2

= 1− 1
T2

T1

= 1− 1
(

P2

P1

)(k−1)/k
. (2.210)
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If a Carnot cycle were operating between the same temperature bounds, its efficiency,
ηCarnot = 1 − T1/T3, would be greater than that for the Brayton cycle. Relative to the
Rankine cycle, the Brayton cycle has a large fraction of compressor work. So the backwork
ratio bwr is larger.

One must also account for deviations from ideality. These effects are summarized in
component efficiencies. The relevant efficiencies here, assuming a control volume approach,
are

ηc =
h2s − h1
h2 − h1

, (2.211)

ηt =
h3 − h4
h3 − h4s

. (2.212)

For a CPIG, one gets then

ηc =
T2s − T1
T2 − T1

, (2.213)

ηt =
T3 − T4
T3 − T4s

. (2.214)

Example 2.6
(adopted from Moran and Shapiro). Air enters the compressor of an air-standard Brayton cycle

at 100 kPa, 300 K with a volumetric flow rate is 5 m3/s. The pressure ratio in the compressor is 10.
The turbine inlet temperature is 1400 K. Find the thermal efficiency, the back work ratio and the net
power. Both the compressor and turbine have efficiencies of 0.8.

First calculate the state after the compressor if the compressor were isentropic.

P2

P1
=

(
T2s
T1

)k/(k−1)

= 10, (2.215)

T2s = T1(10)
(k−1)/k, (2.216)

= (300 K)(10)(1.4−1)/1.4, (2.217)

= 579.209 K. (2.218)

Now

ηc =
T2s − T1
T2 − T1

, (2.219)

T2 = T1 +
T2s − T1

ηc
, (2.220)

= (300 K) +
(579.209 K)− (300 K)

0.8
, (2.221)

= 649.012 K. (2.222)

Now state three has T3 = 1400 K. Recall that 2 → 3 involves heat addition in a combustion chamber.
Now calculate T4s for the ideal turbine. Recall that the expansion is to the same pressure as the
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compressor inlet so that P3/P4 = 10. The isentropic relations give

(
T4s
T3

)k/(k−1)

=
P4

P3
, (2.223)

T4s = T3

(
P4

P3

)(k−1)/k

, (2.224)

= (1400 K)

(
1

10

)(1.4−1)/1.4

, (2.225)

= 725.126 K. (2.226)

Now account for the actual behavior in the turbine:

ηt =
T3 − T4
T3 − T4s

, (2.227)

T4 = T3 − ηt(T3 − T4s), (2.228)

= (1400 K)− (0.8)((1400 K)− (725.126 K)), (2.229)

= 860.101 K. (2.230)

Now calculate the thermal efficiency of the actual cycle.

η =
wnet
qH

=
qH − qL
qH

= 1− qL
qH

= 1− cP (T4 − T1)

cP (T3 − T2)
= 1− T4 − T1

T3 − T2
, (2.231)

= 1− 860.101 K− 300 K

1400 K− 649.012 K
, (2.232)

= 0.254181. (2.233)

If the cycle were ideal, one would have

ηideal =
wnet
qH

=
qH − qL
qH

= 1− qL
qH

= 1− cP (T4s − T1)

cP (T3 − T2s)
= 1− T4s − T1

T3 − T2s
, (2.234)

= 1− (725.126 K)− (300 K)

(1400 K)− (579.209 K)
, (2.235)

= 0.482053. (2.236)

For the ideal cycle one also has

ηideal = 1− T1
T2s

= 1− 300 K

579.209 K
= 0.482053. (2.237)

The back work ratio is

bwr =
wcomp
wturb

, (2.238)

=
cP (T2 − T1)

cP (T3 − T4)
, (2.239)

=
T2 − T1
T3 − T4

, (2.240)

=
(649.012 K)− (300 K)

(1400 K)− (860.101 K)
, (2.241)

= 0.646439. (2.242)
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If the process were ideal, the back work ratio would have been

bwrideal =
wcomp
wturb

, (2.243)

=
cP (T2s − T1)

cP (T3 − T4s)
, (2.244)

=
T2s − T1
T3 − T4s

, (2.245)

=
(579.209 K)− (300 K)

(1400 K)− (725.126 K)
, (2.246)

= 0.413721. (2.247)

Now get the net work. First get the mass flow rate from the volume flow rate. This requires the specific
volume.

v1 =
RT1
P1

=

(
0.287 kJ

kg K

)
(300 K)

100 kPa
= 0.861

m3

kg
. (2.248)

Now

ṁ = ρ1V̇ =
V̇

v1
=

5 m3

s

0.861 m3

kg

= 5.8072
kg

s
. (2.249)

Recall cP = kcv = 1.4(717.5 J/kg/K) = 1004.5 J/kg/K = 1.0045 kJ/kg/K. Now

Ẇcycle = ṁcP ((T3 − T4)− (T2 − T1), (2.250)

=

(
5.8072

kg

s

)(
1.0045

kJ

kg K

)
((1400 K)− (860.101 K)− (649.012 K) + (300 K)),(2.251)

= 1113.51 kW. (2.252)

If the cycle were ideal, one would have

Ẇideal = ṁcP ((T3 − T4s)− (T2s − T1), (2.253)

=

(
5.8072

kg

s

)(
1.0045

kJ

kg K

)
((1400 K)− (725.126 K)− (579.209 K) + (300 K)),(2.254)

= 2308.04 kW. (2.255)

The inefficiencies had a significant effect on both the back work ratio and the net work of the engine.

2.4.2 Regeneration

One can improve cycle efficiency by regeneration. The hot gas in the turbine is used to
preheat the gas exiting the compressor before it enters the combustion chamber. In this
cycle, one takes

• 1 → 2: compression,

• 2 → x: compression exit gas goes through regenerator (heat exchanger),
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• x→ 3: combustion chamber,

• 3 → 4: expansion in turbine, and

• 4 → y: turbine exit gas goes through regenerator (heat exchanger).

A schematic for the Brayton cycle is shown in Figure 2.9.

turbinecompressor

1

4

w

regenerator

combustion
chamber2 3

x

y

Figure 2.9: Schematic for Brayton cycle with regeneration.

For this to work, the gas at the turbine exit must have a higher temperature than the gas
at the compressor exit. If the compression ratio is high, the compressor exit temperature is
high, and there is little benefit to regeneration.

Now consider the regenerator, which is really a heat exchanger. The first law holds that

dEcv

dt︸ ︷︷ ︸
=0

= Q̇cv︸︷︷︸
=0

− Ẇcv︸︷︷︸
=0

+ṁh2 − ṁhx + ṁh4 − ṁhy, (2.256)

0 = h2 − hx + h4 − hy, (2.257)

= cP (T2 − Tx) + cP (T4 − Ty), (2.258)

= T2 − Tx + T4 − Ty. (2.259)

Now consider the inlet temperatures to be known. Then the first law constrains the outlet
temperatures such that

T2 + T4 = Tx + Ty. (2.260)

If the heat exchanger were an ideal co-flow heat exchanger, one might expect the outlet
temperatures to be the same, that is, Tx = Ty, and one would have Tx = Ty = (1/2)(T2+T4).
But in fact one can do better. If a counter-flow heat exchanger is used, one could ideally
expect to find

Tx = T4, Ty = T2. (2.261)
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The thermal efficiency is

η =
wnet

qH
, (2.262)

=
wt − wc

qH
, (2.263)

=
cP (T3 − T4)− cP (T2 − T1)

cP (T3 − Tx)
, (2.264)

=
(T3 − T4)− (T2 − T1)

T3 − Tx
, (2.265)

=
(T3 − T4)− (T2 − T1)

T3 − T4
, (2.266)

= 1− T2 − T1
T3 − T4

, (2.267)

= 1−
T1

(
T2

T1
− 1
)

T3

(
1− T4

T3

) , (2.268)

= 1−
T1

((
P2

P1

)(k−1)/k

− 1

)

T3

(
1−

(
P4

P3

)(k−1)/k
) , (2.269)

= 1−
T1

((
P2

P1

)(k−1)/k

− 1

)

T3

(
1−

(
P1

P2

)(k−1)/k
) , (2.270)

= 1− T1
T3

(
P2

P1

)(k−1)/k 1−
(

P1

P2

)(k−1)/k

1−
(

P1

P2

)(k−1)/k
, (2.271)

= 1− T1
T3

(
P2

P1

)(k−1)/k

. (2.272)

This is the Carnot efficiency moderated by the pressure ratio. As the pressure ratio rises,
the thermal efficiency declines.

The regenerator itself will not be perfect. To achieve the performance postulated here
would require infinite time or an infinite area heat exchanger. As both increase, viscous
losses increase, and so there is a trade-off. One can summarize the behavior of an actual
regenerator by an efficiency defined as

ηreg =
hx − h2
h′x − h2

=
actual

ideal
. (2.273)
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If we have a CPIG, then

ηreg =
Tx − T2
T ′
x − T2

. (2.274)

Example 2.7
(adapted from Moran and Shapiro) How would the addition of a regenerator affect the thermal

efficiency of the isentropic version of the previous example problem?

One may take the rash step of trusting the analysis to give a prediction from Eq. (2.272) of

η = 1− T1
T3

(
P2

P1

)(k−1)/k

, (2.275)

= 1−
(

300 K

1400 K

)
(10)(1.4−1)/1.4 = 0.586279. (2.276)

Without regeneration, the thermal efficiency of the ideal Brayton cycle had a value of 0.482053. Had
the engine used a Carnot cycle between the same temperature limits, the efficiency would have been
0.785714.

2.4.3 Ericsson cycle

If one used isothermal compression and expansion, which is slow and impractical, in place
of isentropic processes in the Brayton cycle, one would obtain the Ericsson cycle. Diagrams
for P − v and T − s for the Ericsson cycle are shown in Figure 2.10.

P

v

T

s

12

3 4

1

2 3

4

isotherm

isotherm
isobar

isobar

Figure 2.10: P − v and T − s diagram for the Ericsson cycle.

One can outline the Ericsson cycle as follows:
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• 1 → 2: isothermal compression,

• 2 → 3: isobaric heating in the combustion chamber,

• 3 → 4: isothermal expansion in turbine, and

• 4 → 1: isobaric heat transfer in surroundings.

One also takes the control volume approach.

First consider the work in the isothermal compressor. For the control volume, one recalls
that the work is given by the enthalpy difference, and that dh = T ds + v dP = δqc − δwc,
with δqc = T ds and δwc = −v dP , so

wc = −
∫ 2

1

v dP = −RT1
∫ 2

1

dP

P
= −RT1 ln

P2

P1
. (2.277)

Note that P2/P1 > 1, so wc < 0; work is done on the fluid in the compressor.

For the turbine, again for the control volume, the key is the enthalpy difference and
dh = T ds+ v dP = δqt − δwt, with δqt = T ds and δwt = −v dP . The turbine work would
be

wt = −
∫ 4

3

v dP = −RT3
∫ 4

3

dP

P
= −RT3 ln

P4

P3
. (2.278)

But because P2 = P3 and P1 = P4, the turbine work is also

wt = −RT3 ln
P1

P2
= RT3 ln

P2

P1
. (2.279)

Because P2/P1 > 1, the turbine work is positive.

In the combustion chamber, one has from the first law

qC = h3 − h2 = cP (T3 − T2). (2.280)

For the isothermal turbine, one has dh = cP dT = 0 = qt − wt, so qt = wt. The heat
transfer necessary to keep the turbine isothermal is

qt = wt = RT3 ln
P2

P1
. (2.281)

So the total heat that one pays for is

qH = qC + qt = cP (T3 − T1) +RT3 ln
P2

P1
. (2.282)
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So the thermal efficiency is

η =
wt + wc

qH
, (2.283)

η =
R(T3 − T1) ln

P2

P1

cP (T3 − T1) +RT3 ln
P2

P1

, (2.284)

=

(
1− T1

T3

)
ln P2

P1

k
k−1

(
1− T1

T3

)
+ ln P2

P1

, (2.285)

=

(
1− T1

T3

)
ln
(

P2

P1

)(k−1)/k

(
1− T1

T3

)
+ ln

(
P2

P1

)(k−1)/k
, (2.286)

=

(
1− T1

T3

)



1

1 +
1−

T1
T3

ln
(

P2
P1

)(k−1)/k


 , (2.287)

∼
(
1− T1

T3

)

︸ ︷︷ ︸
Carnot


1−

1− T1

T3

ln
(

P2

P1

)(k−1)/k
+ . . .




︸ ︷︷ ︸
correction

. (2.288)

This is expressed as a Carnot efficiency modified by a correction which degrades the efficiency.
The efficiency is less than that of a Carnot cycle. For high temperature ratios and high
pressure ratios, the efficiency approaches that of a Carnot engine.

Now if one used multiple staged intercooling on the compressors and multiple staged
expansions with reheat on the turbines, one can come closer to the isothermal limit, and
better approximate the Carnot cycle.

2.4.4 Jet propulsion

If one modifies the Brayton cycle so that the turbine work is just sufficient to drive the
compressor and the remaining enthalpy at the turbine exit is utilized in expansion in a
nozzle to generate thrust, one has the framework for jet propulsion. Here the control volume
approach is used. A schematic for a jet engine is shown in Figure 2.11. Diagrams for P − v
and T − s for the jet propulsion Brayton cycle are shown in Figure 2.12. An important
component of jet propulsion analysis is the kinetic energy of the flow. In the entrance region
of the engine, the flow is decelerated, inducing a ram compression effect. For high velocity
applications, this effect provides sufficient compression for the cycle and no compressor or
turbine are needed! However, such a device, known as a ramjet, is not self-starting, and so
is not practical for many applications.
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Figure 2.11: Schematic for jet propulsion.
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Figure 2.12: P − v and T − s diagrams for jet propulsion Brayton cycle.

One can outline the ideal jet propulsion cycle as follows:

• 1 → a: deceleration and ram compression in diffuser,

• a→ 2: isentropic compression in the compressor,

• 2 → 3: isobaric heating in the combustion chamber,

• 3 → 4: isentropic expansion in turbine,

• 4 → 5: isentropic conversion of thermal energy to kinetic energy in nozzle, and

• 5 → 1: isobaric heat transfer in surroundings.

The goal of the jet propulsion cycle is to produce a thrust force which is necessary to
balance a fluid-induced aerodynamic drag force. When such a balance exists, the system is
in steady state. One can analyze such a system in the reference frame in which the engine
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is stationary. In such a frame, Newton’s second law gives

d

dt
(mCV vCV )

︸ ︷︷ ︸
=0

= F︸︷︷︸
thrust force

+P1A1i− P5A5i︸ ︷︷ ︸
small

+ṁv1 − ṁv5. (2.289)

Solving for the thrust force, neglecting the small differences in pressure, one gets,

F = ṁ (v5 − v1) . (2.290)

The work rate done by the thrust force is the product of this force and the air speed, v1.
This gives

|Ẇp| = |F · v1| = |ṁ(v5 − v1) · v1| . (2.291)

Now the efficiency of the cycle is a bit different. The net work of the turbine and compressor
is zero. Instead, the overall efficiency is defined as

ηo =
propulsive power

energy input rate
=

|Ẇp|
|Q̇H |

=
|ṁv1 · (v5 − v1)|
ṁ|(h3 − h2)|

. (2.292)

Note the following unusual behavior for flight in an ideal inviscid atmosphere in which
the flow always remains attached. In such a flow D’Alembert’s paradox holds: there is
no aerodynamic drag. Consequently there is no need for thrust generation in steady state
operation. Thrust would only be needed to accelerate to a particular velocity. For such
an engine then the exit velocity would equal the entrance velocity: v5 = v1 and F = 0.
Moreover, the overall efficiency is ηo = 0.

Other efficiencies are often defined in jet propulsion. The propulsive efficiency, ηp is often
defined as the propulsive power scaled by the net change in kinetic energy per unit time.
Using our notation, and assuming negligible mass flow rate of the fuel relative to that of the
air, we have

ηp =
|Ẇp|

ṁ
(

v25

2
− v21

2

) , (2.293)

=
ṁv1(v5 − v1)

ṁ
(

v25

2
− v21

2

) , (2.294)

=
v1(v5 − v1)(

v25

2
− v21

2

) , (2.295)

=
2v1(v5 − v1)

(v5 − v1) (v5 + v1)
, (2.296)

=
2v1

v5 + v1
, (2.297)

=
2

1 + v5

v1

. (2.298)
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If v5 = v1, we get ηp = 1. However, there is no thrust force in this limit!
We can think of

ηp =
|Ẇp|

|∆ ˙KE|
, ηo =

|Ẇp|
|Q̇H |

. (2.299)

It is common in propulsion to define the thermal efficiency ηth as

ηth =
|∆K̇E|
|Q̇H |

. (2.300)

With these definitions, we get the overall efficiency to be the product of the thermal and
propulsive efficiencies.

ηo = ηthηp. (2.301)

Example 2.8
(adopted from Çengal and Boles). A turbojet flies with a velocity of 850 ft/s at an altitude where

the air is at 5 psia and −40 F. The compressor has a pressure ratio of 10, and the temperature at
the turbine inlet is 2000 F. Air enters the compressor at a rate of ṁ = 100 lbm/s. Assuming an air
standard with CPIG air, find the

• temperature and pressure at the turbine exit,

• velocity of gas at nozzle exit,

• overall efficiency, and

• propulsive efficiency.

For the English units of this problem, one recalls that

1 Btu = 777.5 ft lbf, gc = 32.2
lbm ft

lbf s2
, 1

Btu

lbm
= 25037

ft2

s2
. (2.302)

For air, one has

cP = 0.240
Btu

lbm ◦R
, R = 53.34

ft lbf

lbm ◦R
= 1717.5

ft2

s2 ◦R
= 0.0686

Btu

lbm ◦R
, k = 1.4. (2.303)

First one must analyze the ram compression process. An energy balance gives

h1 +
v1 · v1

2
= ha +

va · va
2︸ ︷︷ ︸

small

. (2.304)

It is usually sufficient to neglect the kinetic energy of the fluid inside the engine. While it still has
a non-zero velocity, it has been slowed enough so that enthalpy dominates kinetic energy inside the
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engine. So one takes

ha = h1 +
v1 · v1

2
, (2.305)

0 = h1 − ha +
v1 · v1

2
, (2.306)

= cP (T1 − Ta) +
v1 · v1

2
, (2.307)

Ta = T1 +
v1 · v1
2cP

. (2.308)

The ambient temperature is

T1 = −40 + 460 = 420 ◦R. (2.309)

So after ram compression, the temperature at the inlet to the compressor is

Ta = (420 ◦R) +

(
850 ft

s

)2

2
(
0.240 Btu

lbm ◦R

) 1 Btu
lbm

25037 ft2

s2

= 480 ◦R. (2.310)

Now get the pressure at the compressor inlet via the isentropic relations:

Pa = P1

(
Ta
T1

)k/(k−1)

= (5 psia)

(
480 ◦R

420 ◦R

)1.4/(1.4−1)

= 8.0 psia. (2.311)

Now consider the isentropic compressor.

P2 = 10Pa = 10(8.0 psia) = 80 psia. (2.312)

Now get the temperature after passage through the compressor.

T2 = Ta

(
P2

Pa

)(k−1)/k

= (480 ◦R) (10)(1.4−1)/1.4 = 927 ◦R. (2.313)

The temperature at the entrance of the turbine is known to be 2000 F = 2460 ◦R. Now the turbine
work is equal to the compressor work, so

wc = wt, (2.314)

h2 − ha = h3 − h4, (2.315)

cP (T2 − Ta) = cP (T3 − T4), (2.316)

T2 − Ta = T3 − T4, (2.317)

T4 = T3 − T2 + Ta, (2.318)

= 2460 ◦R− 927 ◦R + 480 ◦R, (2.319)

= 2013 ◦R. (2.320)

Use the isentropic relations to get P4:

P4 = P3

(
T4
T3

)k/(k−1)

= (80 psia)

(
2013 ◦R

2460 ◦R

)1.4/(1.4−1)

= 39.7 psia. (2.321)
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Expansion through the nozzle completes the cycle. Assume an isentropic nozzle, therefore

T5 = T4

(
P5

P4

)(k−1)/k

, (2.322)

= T4

(
P1

P4

)(k−1)/k

, (2.323)

= = (2013 ◦R)

(
5 psia

39.7 psia

)(1.4−1)/1.4

, (2.324)

= 1114 ◦R. (2.325)

Now consider the energy balance in the nozzle:

h5 +
v5 · v5

2
= h4 +

v4 · v4
2︸ ︷︷ ︸

small

, (2.326)

0 = h5 − h4 +
v
2
5

2
, (2.327)

= cP (T5 − T4) +
v5 · v5

2
, (2.328)

v5 =
√
2cP (T4 − T5), (2.329)

=

√√√√2

(
0.240

Btu

lbm ◦R

)
(2013 ◦R− 1114 ◦R)

(
25037 ft2

s2

1Btu
lbm

)
, (2.330)

= 3288
ft

s
. (2.331)

Now find the thrust force magnitude

|F| = ṁ(v5 − v1) =

(
100

lbm

s

)(
3288

ft

s
− 850

ft

s

)
= 243800

ft lbm

s2
, (2.332)

=
243800 ft lbm

s2

32.2 lbm ft
lbf s2

, (2.333)

= 7571.4 lbf. (2.334)

The power is the product of the thrust force and the air speed, so

|ẆP | = |F · v1| = (7571.4 lbf)

(
850

ft

s

)(
Btu

777.5 ft lbf

)
, (2.335)

= 8277
Btu

s
, (2.336)

=

(
8277

Btu

s

)(
1.415 hp

Btu
s

)
, (2.337)

= 11711 hp. (2.338)
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Now for the heat transfer in the combustion chamber

Q̇H = ṁ(h3 − h2), (2.339)

= ṁcP (T3 − T2), (2.340)

=

(
100

lbm

s

)(
0.240

Btu

lbm ◦R

)
(2460 ◦R− 927 ◦R), (2.341)

= 36792
Btu

s
. (2.342)

So the overall efficiency is

ηo =
ẆP

Q̇H
=

8277 Btu
s

36792 Btu
s

= 0.225. (2.343)

The remainder of the energy is excess kinetic energy and excess thermal energy, both of which ultimately
dissipate so as to heat the atmosphere.

The propulsive efficiency is

ηp =
2

1 + v5

v1

=
2

1 + 3288 ft/s
850 ft/s

= 0.410826. (2.344)

We also get the thermal efficiency to be

ηth =
ηo
ηp

=
0.225

0.410826
= 0.547677. (2.345)

Other variants of the turbojet engine include the very important turbofan engine in which
a large cowling is added to the engine and a an additional fan in front of the compressor
forces a large fraction of the air to bypass the engine. The turbofan engine is used in most
large passenger jets. Analysis reveals a significant increase in overall efficiency as well as
a reduction in jet noise. Other important variants include the turboprop, propfan, ramjet,
scramjet, jet with afterburners, and rocket.

2.5 Reciprocating engine power cycles

Here are some common notions for engines that depend on pistons driving in cylinders. The
piston has a bore diameter B. The piston is connected to the crankshaft, and the stroke S
of the piston is twice the radius of the crank, Rcrank:

S = 2Rcrank. (2.346)

See Figure 2.13 for an illustration of this geometry for a piston-cylinder arrangement in two
configurations. The total displacement for all the cylinders is

Vdispl = Ncyl(Vmax − Vmin) = NcylAcylS. (2.347)
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B

2Rcrank

S

Figure 2.13: Piston-cylinder configurations illustrating geometric definitions.

Note that

Acyl = π
B2

4
. (2.348)

The compression ratio is not the ratio of pressures; it is the ratio of volumes:

rv = CR =
Vmax

Vmin
. (2.349)

For these engines the volumes are closed in expansion and compression, so the net work is

wnet =

∮
P dv = Pmeff(vmax − vmin). (2.350)

Here one has defined a mean effective pressure: Pmeff . The net work per cylinder per cycle
is

Wnet = mwnet = Pmeffm(vmax − vmin) = Pmeff (Vmax − Vmin). (2.351)

Now consider the total power developed for all the cylinders. Assume the piston operates at
a frequency of ν cycles/s:

Ẇnet = NcylPmeff(Vmax − Vmin)ν. (2.352)

It is more common to express ν in revolutions per minute: RPM = ν(60 s
min

), so

Ẇnet = Pmeff Ncyl(Vmax − Vmin)︸ ︷︷ ︸
=Vdispl

RPM

60 s
min

, (2.353)

= PmeffVdispl
RPM

60 s
min

. (2.354)

This applies for a two-stroke engine. If the engine is a four stroke engine, the net power is
reduced by a factor of 1/2.
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2.6 Otto

The air-standard Otto cycle approximates the gasoline engine. It employs a fixed mass
approach. Diagrams for P − v and T − s for the Otto cycle are shown in Figure 2.14.

P

v

T

s

1

2

3

4

isochore

isochore

1

2

3

4isentrope

isentrope

Figure 2.14: P − v and T − s diagrams for the Otto cycle.

One can outline the Otto cycle as follows:

• 1 → 2: isentropic compression in the compression stroke,

• 2 → 3: isochoric heating in the combustion stroke during spark ignition,

• 3 → 4: isentropic expansion in power stroke, and

• 4 → 1: isochoric rejection of heat to the surroundings.

For isochoric heating, such as 2 → 3, in a fixed mass environment, the first law gives

u3 − u2 = 2q3 − 2w3, (2.355)

= 2q3 −
∫ v3

v2

P dv, but v2 = v3, (2.356)

= 2q3 −
∫ v2

v2

P dv

︸ ︷︷ ︸
=0

, (2.357)

2q3 = u3 − u2, (2.358)

= cv(T3 − T2), if CPIG. (2.359)
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The thermal efficiency is found as follows:

η =
wnet

qH
, (2.360)

=
qH − qL
qH

, (2.361)

= 1− qL
qH
, (2.362)

= 1− cv(T4 − T1)

cv(T3 − T2)
, (2.363)

= 1− T4 − T1
T3 − T2

, (2.364)

= 1−
T1

(
T4

T1
− 1
)

T2

(
T3

T2
− 1
) . (2.365)

Now one also has the isentropic relations:

T2
T1

=

(
V1
V2

)k−1

, (2.366)

T3
T4

=

(
V4
V3

)k−1

. (2.367)

But V4 = V1 and V2 = V3, so

T3
T4

=

(
V1
V2

)k−1

=
T2
T1
. (2.368)

Cross multiplying the temperatures, one finds

T3
T2

=
T4
T1
. (2.369)

Thus the thermal efficiency reduces to

η = 1− T1
T2
. (2.370)

In terms of the compression ratio rv =
V1

V2
, one has

η = 1− r1−k
v = 1− 1

rk−1
v

. (2.371)

If the compression ratio increases, the thermal efficiency increases. High compression ratios
introduce detonation in the fuel air mixture. This induces strong pressure waves in the
cylinder and subsequent engine knock. It can cause degradation of piston walls.

Some deviations of actual performance from that of the air-standard Otto cycle are as
follows:
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• specific heats actually vary with temperature,

• combustion may be incomplete (induces pollution and lowers fuel efficiency),

• work of inlet and exhaust ignored, and

• losses of heat transfer to engine walls ignored.

Example 2.9
(adopted from Moran and Shapiro). The temperature at the beginning of the compression process

of an air-standard Otto cycle with a compression ratio of 8 is 540 ◦R, the pressure is 1 atm, and the
cylinder volume is 0.02 ft3. The maximum temperature is 3600 ◦R. Find

• temperature and pressure at each stage of the process,

• thermal efficiency, and

• Pmeff in atm.

For the isentropic compression,

T2 = T1

(
V1
V2

)k−1

, (2.372)

= (540 ◦R)(8)1.4−1, (2.373)

= 1240.69 ◦R. (2.374)

One can use the ideal gas law to get the pressure at state 2:

P2V2
T2

=
P1V1
T1

, (2.375)

P2 = P1
V1
V2

T2
T1
, (2.376)

= (1 atm)(8)

(
1240.69 ◦R

540 ◦R

)
, (2.377)

= 18.3792 atm. (2.378)

Now V3 = V2 because the combustion is isochoric. And the maximum temperature is T3 = 3600 ◦R.
This allows use of the ideal gas law to get P3:

P3V3
T3

=
P2V2
T2

, (2.379)

P3 = P2
V2
V3︸︷︷︸
=1

T3
T2
, (2.380)

= (18.3792 atm)(1)

(
3600 ◦R

1240.59 ◦R

)
, (2.381)

= 53.3333 atm. (2.382)
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One uses the isentropic relations for state 4:

T3
T4

=

(
V4
V3

)k−1

, (2.383)

T4
T3

=

(
V3
V4

)k−1

, (2.384)

T4 = T3

(
V2
V1

)k−1

, (2.385)

= T3

(
V1
V2

)1−k

, (2.386)

= (3600 ◦R)(8)1−1.4, (2.387)

= 1566.99 ◦R. (2.388)

For the pressure at state 4, use the ideal gas law:

P4V4
T4

=
P3V3
T3

, (2.389)

P4 = P3
V3
V4

T4
T3
, (2.390)

= P3
V2
V1

T4
T3
, (2.391)

= (53.3333 atm)

(
1

8

)
1566.99 ◦R

3600 ◦R
, (2.392)

= 2.90184 atm. (2.393)

The thermal efficiency is

η = 1− 1

rk−1
v

, (2.394)

= 1− 1

81.4−1
, (2.395)

= 0.564725. (2.396)

CC BY-NC-ND. 28 March 2025, J. M. Powers.

https://creativecommons.org/licenses/by-nc-nd/3.0/


68 CHAPTER 2. CYCLE ANALYSIS

Now get the mean effective pressure Pmeff .

Wnet = Pmeff (Vmax − Vmin), (2.397)

Pmeff =
Wnet

Vmax − Vmin
, (2.398)

=
m(u3 − u4) +m(u1 − u2)

V1 − V2
, (2.399)

= m
cv
V1

T3 − T4 + T1 − T2

1− V2

V1

, (2.400)

=
P1V1
RT1

cv
V1

T3 − T4 + T1 − T2

1− V2

V1

, (2.401)

=
P1

T1

cv
R

T3 − T4 + T1 − T2

1− V2

V1

, (2.402)

=
P1

T1

1

k − 1

T3 − T4 + T1 − T2

1− V2

V1

, (2.403)

=
1 atm

540 ◦R

1

1.4− 1

3600 ◦R− 1566.99 ◦R+ 540 ◦R− 1240.59 ◦R

1− 1
8

, (2.404)

= 7.04981 atm. (2.405)

2.7 Diesel

The air standard Diesel cycle approximates the behavior of a Diesel engine. It is modeled
as a fixed mass system. Here the compression is done before injection, so there is no danger
of premature ignition due to detonation. No spark plugs are used. Diagrams for P − v and
T − s for the Diesel cycle are shown in Figure 2.15. One can outline the Diesel cycle as
follows:

• 1 → 2: isentropic compression in the compression stroke,

• 2 → 3: isobaric heating in the combustion stroke,

• 3 → 4: isentropic expansion in power stroke, and

• 4 → 1: isochoric rejection of heat to the surroundings.
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Figure 2.15: P − v and T − s diagrams for the Diesel cycle.

The thermal efficiency is found as follows:

η =
wnet

qH
, (2.406)

=
qH − qL
qH

, (2.407)

= 1− qL
qH
, (2.408)

= 1− u4 − u1
h3 − h2

, (2.409)

= 1− cv(T4 − T1)

cP (T3 − T2)
, (2.410)

= 1− 1

k

T1
T2

T4

T1
− 1

T3

T2
− 1

. (2.411)

All else being equal, the Otto cycle will have higher efficiency than the Diesel cycle.
However, the Diesel can operate at higher compression ratios because detonation is not as
serious a problem in the compression ignition engine as it is in the spark ignition.

Example 2.10
(adopted from BS). An air standard Diesel cycle has a compression ratio of 20, and the heat

transferred to the working fluid has 1800 kJ/kg. Take air to be an ideal gas with variable specific heat.
At the beginning of the compression process, P1 = 0.1 MPa, and T1 = 15 ◦C. Find

• Pressure and temperature at each point in the process,

• Thermal efficiency,

• Pmeff , the mean effective pressure.
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The enthalpies and entropies at the reference pressure for variable specific heat air are tabulated
as functions of temperature in Table A7.1. Recall that

h(T ) = href +

∫ T

Tref

cP (T̂ ) dT̂ . (2.412)

Recall further that

T ds = dh− v dP, (2.413)

ds =
dh

T
− v

T
dP. (2.414)

Now for an ideal gas it can be shown that dh = cP (T ) dT ; one also has v/T = R/P . Making these
substitutions into Eq. (2.414) gives

ds =
cP (T ) dT

T
−R

dP

P
. (2.415)

Integrating gives

s(T, P ) = sref +

∫ T

Tref

cP (T̂ )

T̂
dT̂

︸ ︷︷ ︸
=so

T

−R ln
P

Pref
, (2.416)

= soT (T )−R ln
P

Pref
. (2.417)

Here the reference pressure is Pref = 0.1 MPa. This happens to be the inlet state, which is a coincidence;
so at the inlet there is no correction to the entropy for pressure deviation from its reference value. At

the inlet, one has T1 = 15 + 273.15 = 288.15 K. One then gets from interpolating Table A7.1 that

h1 = 288.422
kJ

kg
, soT1

= s1 = 6.82816
kJ

kg K
, u1 = 205.756

kJ

kg
. (2.418)

For the isentropic compression, one has

s2 = s1 = 6.82816
kJ

kg K
, V2 =

1

20
V1. (2.419)

Now from the ideal gas law, one has

P2V2
T2

=
P1V1
T1

, (2.420)

P2

P1
=

T2
T1

V1
V2
, (2.421)

P2

Pref
= 20

T2
288 K

. (2.422)

Now

s2(T2, P2) = soT2
−R ln

P2

Pref
, (2.423)

(
6.82816

kJ

kg K

)
= soT2

−
(
0.287

kJ

kg K

)
ln

(
20

T2
288 K

)
, (2.424)

0 = soT2
−
(
0.287

kJ

kg K

)
ln

(
20

T2
288 K

)
−
(
6.82816

kJ

kg K

)
≡ F (T2). (2.425)
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T2 (K) soT2

(
kJ

kg K

)
F (T2)

(
kJ

kg K

)

900 8.01581 8.57198× 10−4

1000 8.13493 8.97387× 10−2

800 7.88514 −9.60091× 10−2

850 7.95207 −4.64783× 10−2

899.347 8.01237 −2.37449× 10−3

Table 2.3: Iteration for T2.

This then becomes a trial and error search in Table A7.1 for the T2 which satisfies the previous equa-
tion. If one guesses T2 ∼ 900 K, one gets soT2

= 8.01581 kJ/kg/K, and the right side evaluates to
0.000857198 kJ/kg/K. Performing a trial and error procedure, one finds the results summarized in

Table 2.3. Take T2 = 900 K as close enough!
Then

P2 = P1
T2
T1

V1
V2
, (2.426)

= (0.1 MPa)
900 K

288 K
(20), (2.427)

= 6.25 MPa. (2.428)

Now at state 2, T2 = 900 K, one finds that

h2 = 933.15
kJ

kg
, u2 = 674.82

kJ

kg
. (2.429)

The heat is added at constant pressure, so

qH = h3 − h2, (2.430)

h3 = h2 + qH , (2.431)

=

(
933.15

kJ

kg

)
+

(
1800

kJ

kg

)
, (2.432)

= 2733.15
kJ

kg
. (2.433)

One can then interpolate Table A7.1 to find T3 and soT3

T3 = (2350 K) +

(
2733.15 kJ

kg

)
−
(
2692.31 kJ

kg

)

(
2755 kJ

kg

)
−
(
2692.31 kJ

kg

) ((2400 K)− (2350 K)), (2.434)

= 2382.17 K, (2.435)

soT3
=

(
9.16913

kJ

kg K

)

+

(
2733.15 kJ

kg

)
−
(
2692.31 kJ

kg

)

(
2755 kJ

kg

)
−
(
2692.31 kJ

kg

)
((

9.19586
kJ

kg K

)
−
(
9.16913

kJ

kg K

))
, (2.436)

= 9.18633
kJ

kg K
. (2.437)
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T4 (K) soT4

(
kJ

kg K

)
F (T4)

(
kJ

kg K

)

400 7.15926 −9.34561× 10−1

800 7.88514 −4.07614× 10−1

1400 8.52891 7.55464× 10−2

1200 8.34596 −6.31624× 10−2

1300 8.44046 8.36535× 10−3

1250 8.39402 −2.68183× 10−2

1288 8.42931 −1.23117× 10−4

Table 2.4: Iteration for T4.

One also has P3 = P2 = 6.25 MPa. Now get the actual entropy at state 3:

s3(T3, P3) = soT3
−R ln

P3

Pref
, (2.438)

=

(
9.18633

kJ

kg K

)
−
(
0.287

kJ

kg K

)
ln

(
6.25 MPa

0.1 MPa

)
, (2.439)

= 7.99954
kJ

kg K
. (2.440)

Now 3 → 4 is an isentropic expansion to state 4, which has the same volume as state 1; V1 = V4. So
the ideal gas law gives

P4V4
T4

=
P1V1
T1

, (2.441)

P4

P1
=

T4
T1

V1
V4
, (2.442)

P4

Pref
=

T4
T1

V1
V4
. (2.443)

Now consider the entropy at state 4, which must be the same as that at state 3:

s4(T4, P4) = soT4
−R ln

P4

Pref
, (2.444)

s3 = soT4
−R ln



T4
T1

V1
V4︸︷︷︸
=1


 , (2.445)

(
7.99954

kJ

kg K

)
= soT4

−
(
0.287

kJ

kg K

)
ln

(
T4

288 K

)
, (2.446)

0 = soT4
−
(
0.287

kJ

kg K

)
ln

(
T4

288 K

)
−
(
7.99954

kJ

kg K

)
= F (T4). (2.447)

Using Table A7.1, this equation can be iterated until T4 is found. So T4 = 1288 K. At this temperature,
one has

h4 = 1381.68
kJ

kg
, u4 = 1011.98

kJ

kg
. (2.448)
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Now one can calculate the cycle efficiency:

η = 1− u4 − u1
h3 − h2

, (2.449)

= 1−

(
1011.98 kJ

kg

)
−
(
205.756 kJ

kg

)

(
2733.15 kJ

kg

)
−
(
933.15 kJ

kg

) , (2.450)

= 0.552098. (2.451)

Now one has

qL = u1 − u4 =

(
205.756

kJ

kg

)
−
(
1011.98

kJ

kg

)
= −806.224

kJ

kg
. (2.452)

So

wnet = qH + qL =

(
1800

kJ

kg

)
−
(
806.224

kJ

kg

)
= 993.776

kJ

kg
. (2.453)

So

Pmeff =
Wnet

Vmax − Vmin
, (2.454)

=
wnet

vmax − vmin
, (2.455)

=
wnet
v1 − v2

, (2.456)

=
wnet

RT1

P1
− RT2

P2

, (2.457)

=
993.776 kJ

kg(
0.287 kJ

kg K

) (
288 K

100 kPa − 900 K
6250 kPa

) , (2.458)

= 1265.58 kPa. (2.459)

2.8 Stirling

Another often-studied air-standard engine is given by the Stirling cycle. This is similar to
the Otto cycle except the adiabatic processes are replaced by isothermal ones. The efficiency
can be shown to be equal to that of a Carnot engine. Stirling engines are difficult to build.
Diagrams for P − v and T − s for the Stirling cycle are shown in Figure 2.16.

One can outline the Stirling cycle as follows:

• 1 → 2: isothermal compression in the compression stroke,

• 2 → 3: isochoric heat transfer in the combustion stroke,

• 3 → 4: isothermal expansion in power stroke, and

• 4 → 1: isochoric rejection of heat to the surroundings.

CC BY-NC-ND. 28 March 2025, J. M. Powers.

https://creativecommons.org/licenses/by-nc-nd/3.0/


74 CHAPTER 2. CYCLE ANALYSIS

P

v

T

s

12

3 4

isochore

isochore

1

2

3

4isotherm

isotherm

Figure 2.16: P − v and T − s diagrams for the Stirling cycle.

2.9 Refrigeration

A simple way to think of a refrigerator is a cyclic heat engine operating in reverse. Rather
than extracting work from heat transfer from a high temperature source and rejecting heat
to a low temperature source, the refrigerator takes a work input to move heat from a low
temperature source to a high temperature source.

2.9.1 Vapor-compression

A common refrigerator is based on a vapor-compression cycle. This is a Rankine cycle in
reverse. While one could employ a turbine to extract some work, it is often impractical.
Instead the high pressure gas is simply irreversibly throttled down to low low pressure.

One can outline the vapor-compression refrigeration cycle as follows:

• 1 → 2: isentropic compression,

• 2 → 3: isobaric heat transfer to high temperature reservoir in condenser,

• 3 → 4: adiabatic expansion in throttling valve, and

• 4 → 1: isobaric (and often isothermal) heat transfer to low temperature reservoir in
evaporator.

A schematic and associated T − s diagram for the vapor-compression refrigeration cycle is
shown in Fig. 2.17.

The efficiency does not make sense for a refrigerator as 0 ≤ η ≤ 1. Instead a coefficient
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Figure 2.17: Schematic and T − s diagrams for the vapor-compression refrigeration cycle.

of performance, β, is defined as

β =
what one wants

what one pays for
, (2.460)

=
qL
wc
. (2.461)

A heat pump is effectively the same as a refrigerator, except one desires qH rather than
qL. So for a heat pump, the coefficient of performance, β ′, is defined as

β ′ =
qH
wc

. (2.462)

It is possible for both β and β ′ to be greater than unity.

Example 2.11
(from Moran and Shapiro) R − 12 is the working fluid in an ideal vapor-compression refrigeration

cycle that communicates thermally with a cold region at 20 ◦C and a warm region at 40 ◦C. Saturated
vapor enters the compressor at 20 ◦C and saturated liquid leaves the condenser at 40 ◦C. The mass
flow rate of the refrigerant is 0.008 kg/s. Find

• compressor power in kW,

• refrigeration capacity in ton,
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• coefficient of performance, and

• coefficient of performance of an equivalent Carnot cycle.

At the compressor inlet for the ideal cycle, one has a saturated vapor.

T1 = 20 ◦C, x1 = 1. (2.463)

The tables then give

h1 = 195.78
kJ

kg
, s1 = 0.6884

kJ

kg K
, P1 = 5.6729 bar. (2.464)

Now at the end of the condenser (state 3), one has T3 = 40 ◦C. The condenser is on an isobar, so the
pressure is the saturation pressure at the temperature, which is

P3 = P2 = 9.6065 bar. (2.465)

So, two properties at the end of the compression are known: pressure and entropy. The allows deter-
mination of the enthalpy at the end of compression via the tables:

h2 = 205.1
kJ

kg
. (2.466)

State 3 is at the end of the condenser, so x3 = 0, and one finds the enthalpy from the tables to be

h3 = 74.59
kJ

kg
. (2.467)

Now the throttling device has constant enthalpy, so

h4 = h3 = 74.59
kJ

kg
. (2.468)

However, the fluid has been throttled to a lower pressure: that of the evaporator, which is the same as
state 1, the compressor inlet, so

P4 = P1 = 5.6729 bar. (2.469)

The compressor work is

Ẇc = ṁ(h2 − h1), (2.470)

=

(
0.008

kg

s

)((
205.1

kJ

kg

)
−
(
195.78

kJ

kg

))
, (2.471)

= 0.075 kW. (2.472)

Now one desires the heat which leaves the cold region to be high for a good refrigerator. This is the
heat transfer at the low temperature part of the T − s diagram, which here gives

Q̇L = ṁ(h1 − h4), (2.473)

=

(
0.008

kg

s

)((
195.78

kJ

kg

)
−
(
74.59

kJ

kg

))
, (2.474)

= 0.9695 kW, (2.475)

=

(
0.9695

kJ

s

)(
60 s

min

)(
1 ton

211 kJ
min

)
, (2.476)

= 0.276 ton. (2.477)
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The unit of ton is used for power and is common in the refrigeration industry. It is the power required
to freeze one “short ton” of water at 0 ◦C in 24 hours. It is 12000 Btu/hr, 3.516853 kW, or 4.7162 hp.
A short ton is a U.S ton, which is 2000 lbm. A long ton is British and is 2240 lbm or 1016.047 kg. A
metric ton, also called a tonne, is 1000 kg and is 2204 lbm.

The coefficient of performance is

β =
Q̇L

Ẇc

, (2.478)

=
0.9695 kW

0.075 kW
, (2.479)

= 12.93. (2.480)

The equivalent Carnot refrigerator would have

βmax =
Q̇L

Ẇc

, (2.481)

=
Q̇L

Q̇H − Q̇L
, (2.482)

=
1

Q̇H

Q̇L
− 1

, (2.483)

=
1

TH

TL
− 1

, (2.484)

=
TL

TH − TL
, (2.485)

=
20 + 273.15

40 + 273.15− (20 + 273.15)
, (2.486)

= 14.6575. (2.487)

2.9.2 Air standard

This is effectively the inverse Brayton cycle. It is used in the liquefaction of air and other
gases. It is also used in aircraft cabin cooling. It has the following components:

• 1 → 2: isentropic compression,

• 2 → 3: isobaric heat transfer to a high temperature environment,

• 3 → 4: isentropic expansion through an expander, and

• 4 → 1: isobaric heat exchange with low temperature surroundings.

A schematic for the air standard refrigeration cycle is shown in Figure 2.18. A T −s diagram
for the air standard refrigeration cycle is shown in Figure 2.19.
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Figure 2.18: Schematic for air standard refrigeration cycle.

2.10 Rejected thermal energy on a national scale

We see that the second law characterizes the necessary rejection of heat in processes involving
heat and work. Let us briefly examine this on a national scale. Figure 2.20 reports US energy
usage in 2022 from a wide variety of sources directed to a wide variety of applications. The
basic unit of energy here is the quad where 1 quad = 1015 Btu = 1.055× 1018 J = 1.055 EJ,
where EJ is an “exajoule.” Much can be gleaned from this chart. Overall US energy use
is estimated at 100.3 quad for the year indicated. As far as the second law is concerned,
electricity generation rejects 24.2 quad waste heat per annum and transportation rejects
21.7 quad waste heat per annum. In total, 67.3 quad is rejected, and 33.0 quad is directed
towards a useful intended purpose. Thus, the thermal efficiency of the US in 2022 was

ηUS =
33.0 quad

(33.0 quad) + (67.3 quad)
= 0.329. (2.488)

Figure 2.21 shows a comparable plot for 2011. One can see evolution of the energy
budget.

Example 2.12
If all the waste heat in the US in 2022 were directed into Lake Michigan, find its temperature rise.
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Figure 2.19: T − s diagram for air standard refrigeration Brayton cycle.

In more convenient units, the waste heat for a given year is

Q = (67.3 quad)

(
1.055× 1018 J

quad

)
= 7.10× 1019 J. (2.489)

Now, Lake Michigan has a volume of 4900 km3. Therefore the mass of water in Lake Michigan is
roughly

m = ρV =

(
997

kg

m3

)(
4900 km3

)(103 m

km

)3

= 4.88× 1015 kg. (2.490)

If all the waste energy were dumped into Lake Michigan, we could expect from a first law analysis to
find a temperature rise of

∆T =
Q

mcP
=

7.10× 1019 J

(4.88× 1015 kg)
(
4180 J

kg K

) = 3.5 K. (2.491)

Locally on the University of Notre Dame campus, both St. Mary’s and St. Joseph’s Lakes would be
vaporized many times over.
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Figure 2.20: Chart of distribution of energy sources and usage in the US in 2022. Data from
Lawrence Livermore National Laboratory, https://flowcharts.llnl.gov/.
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Figure 2.21: Chart of distribution of energy sources and usage in the US in 2011. Data from
Lawrence Livermore National Laboratory, https://flowcharts.llnl.gov/.
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Chapter 3

Gas mixtures

Read BS, Chapter 11.
See for background Powers, 2016, Chapter 2.
See for background Sandler, Chapter 7.
See for background Smith, van Ness, and Abbott, Chapter 10.
See for background Tester and Modell.

One is often faced with mixtures of simple compressible substances, and it the thermody-
namics of such mixtures upon which attention is now fixed. Here a discussion of some of
the fundamentals of mixture theory will be given. In general, thermodynamics of mixtures
can be a challenging topic about which much remains to be learned. In particular, these
notes will focus on ideal mixtures of ideal gases, for which results are often consistent with
intuition. The chemical engineering literature contains a full discussion of the many nuances
associated with non-ideal mixtures of non-ideal materials.

3.1 Some general issues

Here the notation of BS will be used. There is no effective consensus on notation for mixtures.
That of BS is more unusual than most; however, the ideas are correct, which is critical.
Consider a mixture of N components, each a pure substance, so that the total mass and
total number of moles are

m = m1 +m2 +m3 + · · ·+mN =

N∑

i=1

mi, mass, units=kg, (3.1)

n = n1 + n2 + n3 + · · ·+ nN =

N∑

i=1

ni, moles, units=kmole. (3.2)
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Recall 1 mole = 6.02214179× 1023 molecule. The mass fraction of component i is defined as
ci

1:

ci ≡
mi

m
, mass fraction, dimensionless. (3.3)

The mole fraction of component i is defined as yi
2:

yi ≡
ni

n
, mole fraction, dimensionless. (3.4)

Now the molecular mass of species i is the mass of a mole of species i. It units are typically
g/mole. This is an identical unit to kg/kmole. Molecular mass is sometimes called “molec-
ular weight,” but this is formally incorrect, as it is a mass measure, not a force measure.
Mathematically the definition of Mi corresponds to

Mi ≡
mi

ni

,

(
kg

kmole
=

g

mole

)
. (3.5)

Then one gets mass fraction in terms of mole fraction as

ci =
mi

m
, (3.6)

=
niMi

m
, (3.7)

=
niMi∑N
j=1mj

, (3.8)

=
niMi∑N
j=1 njMj

, (3.9)

=
niMi

n
1
n

∑N
j=1 njMj

, (3.10)

=
niMi

n∑N
j=1

njMj

n

, (3.11)

=
yiMi∑N
j=1 yjMj

. (3.12)

1Note that ci is the unusual notation for mass fraction used by BS, to which we adhere. A more common
notation for mass fraction from the combustion and physical chemistry literature is Yi.

2The notation yi for mole fraction is also the notation of BS and much of the combustion and physical
chemistry literature.
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Similarly, one finds mole fraction in terms of mass fraction by the following:

yi =
ni

n
, (3.13)

=

mi

Mi∑N
j=1

mj

Mj

, (3.14)

=

mi

Mim∑N
j=1

mj

Mjm

, (3.15)

=
ci
Mi∑N
j=1

cj
Mj

. (3.16)

The mixture itself has a mean molecular mass:

M ≡ m

n
, (3.17)

=

∑N
i=1mi

n
, (3.18)

=
N∑

i=1

niMi

n
, (3.19)

=

N∑

i=1

yiMi. (3.20)

Example 3.1
Air is often modeled as a mixture in the following molar ratios:

O2 + 3.76N2. (3.21)

Find the mole fractions, the mass fractions, and the mean molecular mass of the mixture.

Take O2 to be species 1 and N2 to be species 2. Consider the number of moles of O2 to be

n1 = 1 kmole, (3.22)

and N2 to be
n2 = 3.76 kmole. (3.23)

The molecular mass of O2 is M1 = 32 kg/kmole. The molecular mass of N2 is M2 = 28 kg/kmole. The
total number of moles is

n = 1 kmole + 3.76 kmole = 4.76 kmole. (3.24)

So the mole fractions are

y1 =
1 kmole

4.76 kmole
= 0.2101, (3.25)

y2 =
3.76 kmole

4.76 kmole
= 0.7899. (3.26)
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Note that
N∑

i=1

yi = 1. (3.27)

That is to say y1 + y2 = 0.2101 + 0.7899 = 1. Now for the masses, one has

m1 = n1M1 = (1 kmole)

(
32

kg

kmole

)
= 32 kg, (3.28)

m2 = n2M2 = (3.76 kmole)

(
28

kg

kmole

)
= 105.28 kg. (3.29)

So one has
m = m1 +m2 = 32 kg + 105.28 kg = 137.28 kg. (3.30)

The mass fractions then are

c1 =
m1

m
=

32 kg

137.28 kg
= 0.2331, (3.31)

c2 =
m2

m
=

105.28 kg

137.28 kg
= 0.7669. (3.32)

Note that
N∑

i=1

ci = 1. (3.33)

That is c1 + c2 = 0.2331 + 0.7669 = 1. Now for the mixture molecular mass, one has

M =
m

n
=

137.28 kg

4.76 kmole
= 28.84

kg

kmole
. (3.34)

Check against another formula.

M =

N∑

i=1

yiMi = y1M1 + y2M2 = (0.2101)

(
32

kg

kmole

)
+ (0.7899)

(
28

kg

kmole

)
= 28.84

kg

kmole
. (3.35)

Now postulates for mixtures are not as well established as those for pure substances.
The literature has much controversial discussion of the subject. A strong advocate of the
axiomatic approach, Truesdell (1984), proposed the following “metaphysical principles” for
mixtures, which are worth considering.

1. All properties of the mixture must be mathematical consequences of properties of the
constituents.

2. So as to describe the motion of a constituent, we may in imagination isolate it from the
rest of the mixture, provided we allow properly for the actions of the other constituents
upon it.

3. The motion of the mixture is governed by the same equations as is a single body.
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Most important for the present discussion is the first principle. When coupled with fluid
mechanics, the second two take on additional importance. The approach of mixture theory
is to divide and conquer. One typically treats each of the constituents as a single material
and then devises appropriate average or mixture properties from those of the constituents.

The best example of this is air, which is not a single material, but is often treated as
such.

3.2 Ideal and non-ideal mixtures

A general extensive property, such as U , for an N -species mixture will be such that

U = U(T, P, n1, n2, . . . , nN). (3.36)

A partial molar property is a generalization of an intensive property, and is defined such that
it is the partial derivative of an extensive property with respect to number of moles, with T
and P held constant. For internal energy, then the partial molar internal energy is

ui ≡
∂U

∂ni

∣∣∣∣
T,P,nj,i 6=j

. (3.37)

Pressure and temperature are held constant because those are convenient variables to control
in an experiment. One also has the partial molar volume

vi =
∂V

∂ni

∣∣∣∣
T,P,nj,i 6=j

. (3.38)

It shall be soon seen that there are other natural ways to think of the volume per mole.
Now in general one would expect to find

ui = ui(T, P, n1, n2, . . . , nN), (3.39)

vi = vi(T, P, n1, n2, . . . , nN). (3.40)

This is the case for what is known as a non-ideal mixture. An ideal mixture is defined as a
mixture for which the partial molar properties ui and vi are not functions of the composition,
that is

ui = ui(T, P ), if ideal mixture, (3.41)

vi = vi(T, P ), if ideal mixture. (3.42)

An ideal mixture also has the property that hi = hi(T, P ), while for a non-ideal mixture
hi = hi(T, P, n1, . . . , nN ). Though not obvious, it will turn out that some properties of an
ideal mixture will depend on composition. For example, the entropy of a constituent of an
ideal mixture will be such that

si = si(T, P, n1, n2, . . . , nN). (3.43)
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3.3 Ideal mixtures of ideal gases

The most straightforward mixture to consider is an ideal mixture of ideal gases. Even here,
there are assumptions necessary that remain difficult to verify absolutely.

3.3.1 Dalton model

The most common model for a mixture of ideal gases is the Dalton model. Key assumptions
define this model

• Each constituent shares a common temperature.

• Each constituent occupies the entire volume.

• Each constituent possesses a partial pressure which sums to form the total pressure of
the mixture.

The above characterize a Dalton model for any gas, ideal or non-ideal. One also takes for
convenience

• Each constituent behaves as an ideal gas.

• The mixture behaves as a single ideal gas.

It is more convenient to deal on a molar basis for such a theory. For the Dalton model,
additional useful quantities, the species mass concentration ρi, the mixture mass concentra-
tion ρ, the species molar concentration ρi, and the mixture molar concentration ρ, can be
defined. As will be seen, these definitions for concentrations are useful; however, they are not
in common usage. Following BS, the bar notation, ·, will be reserved for properties which
are mole-based rather than mass-based. As mentioned earlier, the notion of a partial molal
property is discussed extensively in the chemical engineering literature and has implications
beyond those considered here. For the Dalton model, in which each component occupies the
same volume, one has

Vi = V. (3.44)

The mixture mass concentration, also called the density is simply

ρ =
m

V
,

(
kg

m3

)
. (3.45)

The mixture molar concentration is

ρ =
n

V
,

(
kmole

m3

)
. (3.46)
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For species i, the equivalents are

ρi =
mi

V
,

(
kg

m3

)
, (3.47)

ρi =
ni

V
,

(
kmole

m3

)
. (3.48)

One can find a convenient relation between species molar concentration and species mole
fraction by the following operations

ρi =
ni

V

n

n
, (3.49)

=
ni

n

n

V
, (3.50)

= yiρ. (3.51)

A similar relation exists between species molar concentration and species mass fraction via

ρi =
ni

V

m

m

Mi

Mi

, (3.52)

=
m

V

=mi︷ ︸︸ ︷
niMi

mMi
, (3.53)

= ρ

=ci︷︸︸︷
mi

m

1

Mi

, (3.54)

= ρ
ci
Mi

. (3.55)

The specific volumes, mass and molar, are similar. One takes

v =
V

m
, v =

V

n
, (3.56)

vi =
V

mi

, vi =
V

ni

. (3.57)

This definition of molar specific volume is not the partial molar volume defined in the chem-
ical engineering literature, which takes the form vi = ∂V/∂ni|T,P,nj,i 6=j.

For the partial pressure of species i, one can say for the Dalton model

P =

N∑

i=1

Pi. (3.58)
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For species i, one has

PiV = niRT, (3.59)

Pi =
niRT

V
, (3.60)

N∑

i=1

Pi

︸ ︷︷ ︸
=P

=

N∑

i=1

niRT

V
, (3.61)

P =
RT

V

N∑

i=1

ni

︸ ︷︷ ︸
=n

. (3.62)

So, for the mixture, one has

PV = nRT. (3.63)

One could also say

P =
n

V︸︷︷︸
=ρ

RT = ρRT. (3.64)

Here n is the total number of moles in the system. Additionally R is the universal gas
constant with value

R = 8.314472
kJ

kmole K
= 8.314472

J

mole K
. (3.65)

Sometimes this is expressed in terms of kB, the Boltzmann constant, and N , Avogadro’s
number:

R = kBN , (3.66)

N = 6.02214179× 1023
molecule

mole
, (3.67)

kB = 1.380650× 10−23 J

K molecule
. (3.68)

Example 3.2
Compare the molar specific volume defined here with the partial molar volume from the chemical

engineering literature.

The partial molar volume vi, is given by

vi =
∂V

∂ni

∣∣∣∣
T,P,nj ,i6=j

. (3.69)
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For the ideal gas, one has

PV = RT

N∑

k=1

nk, (3.70)

V =
RT

∑N
k=1 nk
P

, (3.71)

∂V

∂ni

∣∣∣∣
T,P,nj ,i6=j

=
RT

∑N
k=1

∂nk

∂ni

P
, (3.72)

=
RT

∑N
k=1 δki
P

, (3.73)

=

RT




=0︷︸︸︷
δ1i +

=0︷︸︸︷
δ2i + · · ·+

=1︷︸︸︷
δii + · · ·+

=0︷︸︸︷
δNi




P
, (3.74)

vi =
RT

P
, (3.75)

=
V

∑N
k=1 nk

, (3.76)

=
V

n
. (3.77)

Here the so-called Kronecker delta function has been employed, which is much the same as the identity
matrix:

δki = 0, k 6= i, (3.78)

δki = 1, k = i. (3.79)

Contrast this with the earlier adopted definition of molar specific volume

vi =
V

ni
. (3.80)

So, why is there a difference? The molar specific volume is a simple definition. One takes the
instantaneous volume V , which is shared by all species in the Dalton model, and scales it by the
instantaneous number of moles of species i, and acquires a natural definition of molar specific volume
consistent with the notion of a mass specific volume. On the other hand, the partial molar volume
specifies how the volume changes if the number of moles of species i changes, while holding T and P
and all other species mole numbers constant. One can imagine adding a mole of species i, which would
necessitate a change in V in order to guarantee the P remain fixed.

3.3.1.1 Binary mixtures

Consider now a binary mixture of two components A and B. This is easily extended to a
general mixture of N components. First the total number of moles is the sum of the parts:

n = nA + nB. (3.81)
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Now, write the ideal gas law for each component:

PAVA = nARTA, (3.82)

PBVB = nBRTB. (3.83)

But by the assumptions of the Dalton model, VA = VB = V , and TA = TB = T , so

PAV = nART, (3.84)

PBV = nBRT. (3.85)

One also has

PV = nRT. (3.86)

Solving for n, nA and nB, one finds

n =
PV

RT
, (3.87)

nA =
PAV

RT
, (3.88)

nB =
PBV

RT
. (3.89)

Now n = nA + nB, so one has

PV

RT
=

PAV

RT
+
PBV

RT
. (3.90)

P = PA + PB. (3.91)

That is the total pressure is the sum of the partial pressures. This is a mixture rule for
pressure

One can also scale each constituent ideal gas law by the mixture ideal gas law to get

PAV

PV
=

nART

nRT
, (3.92)

PA

P
=

nA

n
, (3.93)

= yA, (3.94)

PA = yAP. (3.95)

Likewise

PB = yBP. (3.96)

Now, one also desires rational mixture rules for energy, enthalpy, and entropy. Invoke Trues-
dell’s principles on a mass basis for internal energy. Then the total internal energy U (with
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units J) for the binary mixture must be

U = mu = mAuA +mBuB, (3.97)

= m
(mA

m
uA +

mB

m
uB

)
, (3.98)

= m (cAuA + cBuB) , (3.99)

u = cAuA + cBuB. (3.100)

For the enthalpy, one has

H = mh = mAhA +mBhB, (3.101)

= m
(mA

m
hA +

mB

m
hB

)
, (3.102)

= m (cAhA + cBhB) , (3.103)

h = cAhA + cBhB. (3.104)

It is easy to extend this to a mole fraction basis rather than a mass fraction basis. One can
also obtain a gas constant for the mixture on a mass basis. For the mixture, one has

PV = nRT ≡ mRT, (3.105)

PV

T
≡ mR = nR, (3.106)

= (nA + nB)R, (3.107)

=

(
mA

MA

+
mB

MB

)
R, (3.108)

=

(
mA

R

MA

+mB
R

MB

)
, (3.109)

= (mARA +mBRB) , (3.110)

R =
(mA

m
RA +

mB

m
RB

)
, (3.111)

R = (cARA + cBRB) . (3.112)

For the entropy, one has

S = ms = mAsA +mBsB, (3.113)

= m
(mA

m
sA +

mB

m
sB

)
, (3.114)

= m (cAsA + cBsB) , (3.115)

s = cAsA + cBsB. (3.116)

Note that sA is evaluated at T and PA, while sB is evaluated at T and PB. For a CPIG, one
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has

sA = so298,A + cPA ln

(
T

To

)

︸ ︷︷ ︸
≡soT,A

−RA ln

(
PA

Po

)
, (3.117)

= so298,A + cPA ln

(
T

To

)
− RA ln

(
yAP

Po

)
. (3.118)

Likewise

sB = so298,B + cPB ln

(
T

To

)

︸ ︷︷ ︸
≡soT,B

−RB ln

(
yBP

Po

)
. (3.119)

Here the “o” denotes some reference state. As a superscript, it typically means that the
property is evaluated at a reference pressure. For example, soT,A denotes the portion of the
entropy of component A that is evaluated at the reference pressure Po and is allowed to vary
with temperature T . Note also that sA = sA(T, P, yA) and sB = sB(T, P, yB), so the entropy
of a single constituent depends on the composition of the mixture and not just on T and P .
This contrasts with energy and enthalpy for which uA = uA(T ), uB = uB(T ), hA = hA(T ),
hB = hB(T ) if the mixture is composed of ideal gases. Occasionally, one finds hoA and hoB
used as a notation. This denotes that the enthalpy is evaluated at the reference pressure.
However, if the gas is ideal, the enthalpy is not a function of pressure and hA = hoA, hB = hoB.

If one is employing a calorically imperfect ideal gas model, then one finds for species i
that

si = soT,i − Ri ln

(
yiP

Po

)
, i = A,B. (3.120)

3.3.1.2 Entropy of mixing

Example 3.3
Initially calorically perfect ideal gases A and B are segregated within the same large volume by

a thin frictionless, thermally conducting diaphragm. Thus, both are at the same initial pressure and
temperature, P1 and T1. The total volume is thermally insulated and fixed, so there are no global heat
or work exchanges with the environment. The diaphragm is removed, and A and B are allowed to mix.
Assume A has mass mA and B has mass mB. The gases are allowed to have distinct molecular masses,
MA and MB. Find the final temperature T2, pressure P2, and the change in entropy.

The ideal gas law holds that at the initial state

VA1 =
mARAT1

P1
, VB1 =

mBRBT1
P1

. (3.121)

At the final state one has

V2 = VA2 = VB2 = VA1 + VB1 = (mARA +mBRB)
T1
P1
. (3.122)
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Mass conservation gives
m2 = m1 = mA +mB. (3.123)

One also has the first law

U2 − U1 = 1Q2 − 1W2, (3.124)

= 0, (3.125)

U2 = U1, (3.126)

m2u2 = mAuA1 +mBuB1, (3.127)

(mA +mB)u2 = mAuA1 +mBuB1, (3.128)

0 = mA(uA1 − u2) +mB(uB1 − u2), (3.129)

= mAcvA(T1 − T2) +mBcvB(T1 − T2), (3.130)

T2 =
mAcvAT1 +mBcvBT1
mAcvA +mBcvB

, (3.131)

= T1. (3.132)

The final pressure by Dalton’s law then is

P2 = PA2 + PB2, (3.133)

=
mARAT2

V2
+
mBRBT2

V2
, (3.134)

=
mARAT1

V2
+
mBRBT1

V2
, (3.135)

=
(mARA +mBRB)T1

V2
. (3.136)

Substitute for V2 from Eq. (3.122) to get

P2 =
(mARA +mBRB)T1

(mARA +mBRB)
T1

P1

, (3.137)

= P1. (3.138)

So the initial and final temperatures and pressures are identical.
Now the entropy change of gas A is

sA2 − sA1 = cPA ln

(
TA2

TA1

)
−RA ln

(
PA2

PA1

)
, (3.139)

= cPA ln

(
T2
T1

)
−RA ln

(
yA2P2

yA1P1

)
, (3.140)

= cPA ln

(
T1
T1

)

︸ ︷︷ ︸
=0

−RA ln

(
yA2P1

yA1P1

)
, (3.141)

= −RA ln

(
yA2P1

(1)P1

)
, (3.142)

= −RA ln yA2. (3.143)

Likewise

sB2 − sB1 = −RB ln yB2. (3.144)
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So the change in entropy of the mixture is

∆S = mA(sA2 − sA1) +mB(sB2 − sB1), (3.145)

= −mARA ln yA2 −mBRB ln yB2, (3.146)

= − (nAMA)︸ ︷︷ ︸
=mA

(
R

MA

)

︸ ︷︷ ︸
=RA

ln yA2 − (nBMB)︸ ︷︷ ︸
=mB

(
R

MB

)

︸ ︷︷ ︸
=RB

ln yB2, (3.147)

= −R(nA ln yA2 + nB ln yB2), (3.148)

= −R


nA ln

(
nA

nA + nB

)

︸ ︷︷ ︸
≤0

+nB ln

(
nB

nA + nB

)

︸ ︷︷ ︸
≤0


 , (3.149)

≥ 0. (3.150)

We can also scale Eq. (3.148) by Rn to get

1

R

∆S

n︸︷︷︸
=∆s

= −



nA
n︸︷︷︸

=yA2

ln yA2 +
nB
n︸︷︷︸

=yB2

ln yB2


 , (3.151)

∆s

R
= − (yA2 ln yA2 + yB2 ln yB2) , (3.152)

= − (ln yyA2

A2 + ln yyB2

B2 ) , (3.153)

= − ln (yyA2

A2 y
yB2

B2 ) . (3.154)

For an N -component mixture, mixed in the same fashion such that P and T are constant,
this extends to

∆S = −R
N∑

k=1

nk ln yk, (3.155)

= −R
N∑

k=1

nk ln

(
nk∑N
i=1 ni

)

︸ ︷︷ ︸
≤0

≥ 0, (3.156)

= −R
N∑

k=1

nk

n
n ln yk, (3.157)

= −Rn
N∑

k=1

nk

n
ln yk, (3.158)

= −Rm
M

N∑

k=1

yk ln yk, (3.159)
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= −Rm
N∑

k=1

ln yykk , (3.160)

= −Rm (ln yy11 + ln yy22 + · · ·+ ln yyNN ) , (3.161)

= −Rm ln (yy11 y
y2
2 . . . yyNN ) , (3.162)

= −Rm ln

(
N∏

k=1

yykk

)
, (3.163)

Dividing by m to recover an intensive property and R to recover a dimensionless property,
we get

∆s

R
=

∆s

R
= − ln

(
N∏

k=1

yykk

)
. (3.164)

There is a fundamental dependency of the mixing entropy on the mole fractions. Because
0 ≤ yk ≤ 1, the product is guaranteed to be between 0 and 1. The natural logarithm of such
a number is negative, and thus the entropy change for the mixture is guaranteed positive
semi-definite. For the entropy of mixing, Truesdell’s third principle is not enforced.

Now if one mole of pure N2 is mixed with one mole of pure O2, one certainly expects
the resulting homogeneous mixture to have a higher entropy than the two pure components.
But what if one mole of pure N2 is mixed with another mole of pure N2. Then we would
expect no increase in entropy. However, if we had the unusual ability to distinguish N2

molecules whose origin was from each respective original chamber, then indeed there would
be an entropy of mixing. Increases in entropy thus do correspond to increases in disorder.

3.3.1.3 Mixtures of constant mass fraction

If the mass fractions, and thus the mole fractions, remain constant during a process, the
equations simplify. This is often the case for common non-reacting mixtures. Air at moderate
values of temperature and pressure behaves this way. In this case, all of Truesdell’s principles
can be enforced. For a CPIG, one would have

u2 − u1 = cAcvA(T2 − T1) + cBcvB(T2 − T1), (3.165)

= cv(T2 − T1). (3.166)

where

cv ≡ cAcvA + cBcvB . (3.167)

Similarly for enthalpy

h2 − h1 = cAcPA(T2 − T1) + cBcPB(T2 − T1), (3.168)

= cP (T2 − T1). (3.169)

CC BY-NC-ND. 28 March 2025, J. M. Powers.

https://creativecommons.org/licenses/by-nc-nd/3.0/


98 CHAPTER 3. GAS MIXTURES

where

cP ≡ cAcPA + cBcPB. (3.170)

For the entropy

s2 − s1 = cA(sA2 − sA1) + cB(sB2 − sB1), (3.171)

= cA

(
cPA ln

(
T2
T1

)
−RA ln

(
yAP2

yAP1

))
+ cB

(
cPB ln

(
T2
T1

)
− RB ln

(
yBP2

yBP1

))
,

= cA

(
cPA ln

(
T2
T1

)
−RA ln

(
P2

P1

))
+ cB

(
cPB ln

(
T2
T1

)
− RB ln

(
P2

P1

))
,(3.172)

= cP ln

(
T2
T1

)
−R ln

(
P2

P1

)
. (3.173)

The mixture behaves as a pure substance when the appropriate mixture properties are de-
fined. One can also take

k =
cP
cv
. (3.174)

3.3.2 Summary of properties for the Dalton mixture model

Listed here is a summary of mixture properties for an N -component mixture of ideal gases
on a mass basis:

M =
N∑

i=1

yiMi, (3.175)

ρ =

N∑

i=1

ρi, (3.176)

v =
1∑N
i=1

1
vi

=
1

ρ
, (3.177)

u =

N∑

i=1

ciui, (3.178)

h =
N∑

i=1

cihi, (3.179)

R =
R

M
=

N∑

i=1

ciRi =
N∑

i=1

yi

=R︷ ︸︸ ︷
MiRi

N∑

j=1

yjMj

︸ ︷︷ ︸=M

=
R

M

N∑

i=1

yi

︸ ︷︷ ︸
=1

, (3.180)
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cv =
N∑

i=1

cicvi, (3.181)

cv = cP − R, if ideal gas, (3.182)

cP =

N∑

i=1

cicPi, (3.183)

k =
cP
cv
, (3.184)

s =

N∑

i=1

cisi, (3.185)

ci =
yiMi

M
, (3.186)

Pi = yiP, (3.187)

ρi = ciρ, (3.188)

vi =
v

ci
=

1

ρi
, (3.189)

V = Vi, (3.190)

T = Ti, (3.191)

hi = hoi , if ideal gas, (3.192)

hi = ui +
Pi

ρi
= ui + Pivi = ui +RiT︸ ︷︷ ︸

if ideal gas

, (3.193)

hi = ho298,i +

∫ T

298

cPi(T̂ ) dT̂

︸ ︷︷ ︸
if ideal gas

, (3.194)

si = so298,i +

∫ T

298

cPi(T̂ )

T̂
dT̂

︸ ︷︷ ︸
=soT,i

−Ri ln

(
Pi

Po

)

︸ ︷︷ ︸
if ideal gas

, (3.195)

si = soT,i − Ri ln

(
yiP

Po

)

︸ ︷︷ ︸
if ideal gas

= soT,i − Ri ln

(
Pi

Po

)

︸ ︷︷ ︸
if ideal gas

, (3.196)

Pi = ρiRiT = ρRiTci =
RiT

vi︸ ︷︷ ︸
if ideal gas

, (3.197)
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P = ρRT = ρRT
N∑

i=1

ci
Mi

=
RT

v
︸ ︷︷ ︸

if ideal gas

, (3.198)

h =
N∑

i=1

cih
o
298,i +

∫ T

298

cP (T̂ ) dT̂

︸ ︷︷ ︸
if ideal gas

, (3.199)

h = u+
P

ρ
= u+ Pv = u+RT︸ ︷︷ ︸

if ideal gas

, (3.200)

s =

N∑

i=1

cis
o
298,i +

∫ T

298

cP (T̂ )

T̂
dT̂ −R ln

(
P

Po

)
−R ln

(
N∏

i=1

yyii

)
.

︸ ︷︷ ︸
if ideal gas

(3.201)

These relations are not obvious. A few are derived in examples here.

Example 3.4
Derive the expression h = u+ P/ρ.

Start from the equation for the constituent hi, multiply by mass fractions, sum over all species,
and use properties of mixtures:

hi = ui +
Pi
ρi
, (3.202)

cihi = ciui + ci
Pi
ρi
, (3.203)

N∑

i=1

cihi =

N∑

i=1

ciui +

N∑

i=1

ci
Pi
ρi
, (3.204)

N∑

i=1

cihi

︸ ︷︷ ︸
=h

=

N∑

i=1

ciui

︸ ︷︷ ︸
=u

+

N∑

i=1

ci
ρiRiT

ρi
, (3.205)

h = u+ T
N∑

i=1

ciRi

︸ ︷︷ ︸
=R

, (3.206)

= u+RT, (3.207)

= u+
P

ρ
. (3.208)
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Example 3.5
Find the expression for mixture entropy of the ideal gas.

si = so298,i +

∫ T

298

cPi(T̂ )

T̂
dT̂ −Ri ln

(
Pi
Po

)
, (3.209)

cisi = cis
o
298,i + ci

∫ T

298

cPi(T̂ )

T̂
dT̂ − ciRi ln

(
Pi
Po

)
, (3.210)

s =

N∑

i=1

cisi =

N∑

i=1

cis
o
298,i +

N∑

i=1

ci

∫ T

298

cPi(T̂ )

T̂
dT̂ −

N∑

i=1

ciRi ln

(
Pi
Po

)
, (3.211)

=

N∑

i=1

cis
o
298,i +

∫ T

298

N∑

i=1

cicPi(T̂ )

T̂
dT̂ −

N∑

i=1

ciRi ln

(
Pi
Po

)
, (3.212)

= so298 +

∫ T

298

cP (T̂ )

T̂
dT̂ −

N∑

i=1

ciRi ln

(
Pi
Po

)
. (3.213)

All except the last term are natural extensions of the property for a single material. Consider now the
last term involving pressure ratios.

−
N∑

i=1

ciRi ln

(
Pi
Po

)
= −

(
N∑

i=1

ciRi ln

(
Pi
Po

)
+R ln

P

Po
−R ln

P

Po

)
, (3.214)

= −R
(

N∑

i=1

ci
Ri
R

ln

(
Pi
Po

)
+ ln

P

Po
− ln

P

Po

)
, (3.215)

= −R
(

N∑

i=1

ci
R/Mi∑N

j=1 cjR/Mj

ln

(
Pi
Po

)
+ ln

P

Po
− ln

P

Po

)
, (3.216)

= −R




N∑

i=1

(
ci/Mi∑N
j=1 cj/Mj

)

︸ ︷︷ ︸
=yi

ln

(
Pi
Po

)
+ ln

P

Po
− ln

P

Po



, (3.217)

= −R
(

N∑

i=1

yi ln

(
Pi
Po

)
+ ln

P

Po
− ln

P

Po

)
, (3.218)

= −R
(

N∑

i=1

ln

(
Pi
Po

)yi
− ln

P

Po
+ ln

P

Po

)
, (3.219)

= −R
(
ln

(
N∏

i=1

(
Pi
Po

)yi)
+ ln

Po
P

+ ln
P

Po

)
, (3.220)

= −R
(
ln

(
Po
P

N∏

i=1

(
Pi
Po

)yi)
+ ln

P

Po

)
, (3.221)

= −R
(
ln

(
Po

P
∑

N
i=1

yi

1

P
∑

N
i=1

yi
o

N∏

i=1

(Pi)
yi

)
+ ln

P

Po

)
, (3.222)
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= −R
(
ln

(
N∏

i=1

(
Pi
P

)yi)
+ ln

P

Po

)
, (3.223)

= −R
(
ln

(
N∏

i=1

(
yiP

P

)yi)
+ ln

P

Po

)
, (3.224)

= −R
(
ln

(
N∏

i=1

yyii

)
+ ln

P

Po

)
. (3.225)

So the mixture entropy becomes

s = so298 +

∫ T

298

cP (T̂ )

T̂
dT̂ −R

(
ln

(
N∏

i=1

yyii

)
+ ln

P

Po

)
, (3.226)

= so298 +

∫ T

298

cP (T̂ )

T̂
dT̂ −R ln

P

Po︸ ︷︷ ︸
classical entropy of a single body

−R ln

(
N∏

i=1

yyii

)

︸ ︷︷ ︸
non−Truesdellian

. (3.227)

The extra entropy is not found in the theory for a single material, and in fact is not in the form suggested
by Truesdell’s postulates. While it is in fact possible to redefine the constituent entropy definition in
such a fashion that the mixture entropy in fact takes on the classical form of a single material via

the definition si = so298,i +
∫ T
298(cPi(T̂ )/T̂ ) dT̂ − Ri ln (Pi/Po) + Ri ln yi, this has the disadvantage of

predicting no entropy change after mixing two pure substances. Such a theory would suggest that this
obviously irreversible process is in fact reversible.

On a molar basis, one has the equivalents

ρ =
N∑

i=1

ρi =
n

V
=

ρ

M
, (3.228)

v =
1∑N
i=1

1
vi

=
V

n
=

1

ρ
= vM, (3.229)

u =

N∑

i=1

yiui = uM, (3.230)

h =
N∑

i=1

yihi = hM, (3.231)

cv =

N∑

i=1

yicvi = cvM, (3.232)

cv = cP − R, (3.233)

cP =
N∑

i=1

yicPi = cPM, (3.234)
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k =
cP
cv
, (3.235)

s =
N∑

i=1

yisi = sM, (3.236)

ρi = yiρ =
ρi
Mi

, (3.237)

vi =
V

ni
=
v

yi
=

1

ρi
= viMi, (3.238)

vi =
∂V

∂ni

∣∣∣∣
P,T,nj

=
V

n
= v = vM

︸ ︷︷ ︸
if ideal gas

, (3.239)

Pi = yiP, (3.240)

P = ρRT =
RT

v︸ ︷︷ ︸
if ideal gas

, (3.241)

Pi = ρiRT =
RT

vi︸ ︷︷ ︸
if ideal gas

, (3.242)

h = u+
P

ρ
= u+ Pv = u+RT︸ ︷︷ ︸

if ideal gas

= hM, (3.243)

hi = h
o

i , if ideal gas, (3.244)

hi = ui +
Pi

ρi
= ui + Pivi = ui + Pvi = ui +RT︸ ︷︷ ︸

if ideal gas

= hiMi, (3.245)

hi = h
o

298,i +

∫ T

298

cPi(T̂ ) dT̂

︸ ︷︷ ︸
if ideal gas

= hiMi, (3.246)

si = so298,i +

∫ T

298

cPi(T̂ )

T̂
dT̂

︸ ︷︷ ︸
=soT,i

−R ln

(
yiP

Po

)

︸ ︷︷ ︸
if ideal gas

, (3.247)

si = soT,i −R ln

(
yiP

Po

)

︸ ︷︷ ︸
if ideal gas

= siMi, (3.248)

s =
N∑

i=1

yis
o
298,i +

∫ T

298

cP (T̂ )

T̂
dT̂ − R ln

(
P

Po

)
− R ln

(
N∏

i=1

yyii

)

︸ ︷︷ ︸
if ideal gas

= sM. (3.249)
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3.3.3 Amagat model

The Amagat model is an entirely different paradigm than the Dalton model. It is not used
as often. In the Amagat model,

• all components share a common temperature T ,

• all components share a common pressure P , and

• each component has a different volume.

Consider, for example, a binary mixture of calorically perfect ideal gases, A and B. For
the mixture, one has

PV = nRT, (3.250)

with
n = nA + nB. (3.251)

For the components one has

PVA = nART, (3.252)

PVB = nBRT. (3.253)

Then n = nA + nB reduces to

PV

RT
=
PVA

RT
+
PVB

RT
. (3.254)

Thus

V = VA + VB, (3.255)

1 =
VA
V

+
VB
V
. (3.256)

3.4 Gas-vapor mixtures

Next consider a mixture of ideal gases in which one of the components may undergo a phase
transition to its liquid state. The most important practical example is an air-water mixture.
Assume the following:

• The solid or liquid contains no dissolved gases.

• The gaseous phases are all well modeled as ideal gases.

• When the gas mixture and the condensed phase are at a given total pressure and tem-
perature, the equilibrium between the condensed phase and its vapor is not influenced
by the other component. So for a binary mixture of A and B where A could have both
gas and liquid components PA = Psat. That is the partial pressure of A is equal to its
saturation pressure at the appropriate temperature.
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Considering an air water vapor mixture, one models the water vapor as an ideal gas and
expresses the total pressure as

P = Pa + Pv. (3.257)

Here v denotes vapor and a denotes air. A good model for the enthalpy of the water vapor
is to take

hv(T, low P ) = hg(T ). (3.258)

If T is given in degrees Celsius, a good model from the steam tables is

hg(T ) = 2501.3
kJ

kg
+

(
1.82

kJ

kg ◦C

)
T. (3.259)

Some definitions:

• absolute humidity: ω, the mass of water present in a unit mass of dry air, also called
humidity ratio,

ω ≡ mv

ma
, (3.260)

=
Mvnv

Mana

, (3.261)

=
Mv

Ma

PvV
RT
PaV
RT

, (3.262)

=
MvPv

MaPa

, (3.263)

=

(
18.015 kg

kmole

)
Pv(

28.97 kg
kmole

)
Pa

, (3.264)

= 0.622
Pv

Pa
, (3.265)

= 0.622
Pv

P − Pv

. (3.266)

• dew point: temperature at which the vapor condenses when it is cooled isobarically.

• saturated air: The vapor in the air-vapor mixture is at the saturation temperature and
pressure.

• relative humidity: The ratio of the mole fraction of the vapor in the mixture to the mole
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fraction of vapor in a saturated mixture at the same temperature and total pressure:

φ ≡
nv

n
ng

n

, (3.267)

=
nv

ng
, (3.268)

=
PvV
RT
PgV

RT

, (3.269)

=
Pv

Pg

. (3.270)

Here the subscript g denotes saturated gas values. Combining, one can relate the
relative humidity to the absolute humidity:

φ =
ωPa

0.622Pg
. (3.271)

Example 3.6
(from Çengal and Boles) A 5 m× 5 m× 3 m room contains air at 25 ◦C and 100 kPa at a relative

humidity of 75%. Find the

• partial pressure of dry air,

• absolute humidity (i.e. humidity ratio),

• masses of dry air and water vapor in the room, and the

• dew point.

The relation between partial and total pressure is

P = Pa + Pv. (3.272)

Now from the definition of relative humidity,

Pv = φPg . (3.273)

Here Pg is the saturation pressure at the same temperature, which is 25 ◦C. At 25 ◦C, the tables give

Pg|25 ◦C = 3.169 kPa. (3.274)

So
Pv = 0.75(3.169 kPa) = 2.3675 kPa. (3.275)

So from the definition of partial pressure

Pa = P − Pv, (3.276)

= 100 kPa− 2.3675 kPa, (3.277)

= 97.62 kPa. (3.278)
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Now for the absolute humidity (or specific humidity), one has

ω = 0.622
Pv
Pa
, (3.279)

= 0.622
2.3675 kPa

97.62 kPa
, (3.280)

= 0.0152
kg H2O

kg dry air
. (3.281)

Now for the masses of air and water, one can use the partial pressures:

ma =
PaV

RT
Ma, (3.282)

=
PaV

RaT
, (3.283)

=
(97.62 kPa)

(
75 m3

)
(

8.314 kJ
kmole K

28.97 kg

kmole

)
(298 K)

, (3.284)

= 85.61 kg. (3.285)

mv =
PvV

RT
Mv, (3.286)

=
PvV

RvT
, (3.287)

=
(2.3675 kPa)

(
75 m3

)
(

8.314 kJ
kmole K

18.015 kg

kmole

)
(298 K)

, (3.288)

= 1.3 kg. (3.289)

Also one could get mv from

mv = ωma, (3.290)

= (0.0152)(85.61 kg), (3.291)

= 1.3 kg. (3.292)

Now the dew point is the saturation temperature at the partial pressure of the water vapor. With
Pv = 2.3675 kPa, the saturation tables give

Tdew point = 20.08 ◦C. (3.293)

3.4.1 First law

The first law can be applied to air-water mixtures.
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Example 3.7
(adopted from BS). An air-water vapor mixture enters the cooling coils of an air conditioner unit.

The inlet is at P1 = 105 kPa, T1 = 30 ◦C, φ1 = 0.80. The exit state is P2 = 100 kPa, T2 = 15 ◦C,
φ2 = 0.95. Liquid water at 15 ◦C also exits the system. Find the heat transfer per kilogram of dry air.

Mass conservation for air and water give

ṁa1 = ṁa2 ≡ ṁa, (3.294)

ṁv1 = ṁv2 + ṁl2. (3.295)

At state 2, the mass flow of water is in both liquid and vapor form.
The first law for the control volume give

dEcv
dt︸ ︷︷ ︸
=0

= Q̇cv − Ẇcv︸︷︷︸
=0

+ṁaha1 + ṁv1hv1 − ṁaha2 − ṁv2hv2 − ṁl2hl2, (3.296)

Q̇cv + ṁaha1 + ṁv1hv1 = ṁaha2 + ṁv2hv2 + (ṁv1 − ṁv2)hl2, (3.297)

Q̇cv
ṁa

+ ha1 +
ṁv1

ṁa
hv1 = ha2 +

ṁv2

ṁa
hv2 +

ṁv1 − ṁv2

ṁa
hl2, (3.298)

Q̇cv
ṁa

+ ha1 + ω1hv1 = ha2 + ω2hv2 + (ω1 − ω2)hl2, (3.299)

Q̇cv
ṁa

= ha2 − ha1 − ω1hv1 + ω2hv2 + (ω1 − ω2)hl2, (3.300)

= cpa(T2 − T1)− ω1hv1 + ω2hv2 + (ω1 − ω2)hl2. (3.301)

Now at the inlet, one has from the definition of relative humidity

φ1 =
Pv1
Pg1

. (3.302)

Here Pg is the saturated vapor pressure at the inlet temperature, T1 = 30 ◦C. This is Pg1 = 4.246 kPa.
So one gets

Pv1 = φ1Pg1, (3.303)

= (0.80)(4.246 kPa), (3.304)

= 3.397 kPa. (3.305)

Now the absolute humidity (humidity ratio) is

ω1 = 0.622
Pv1

P1 − Pv1
, (3.306)

= 0.622
3.397 kPa

105 kPa− 3.397 kPa
, (3.307)

= 0.0208. (3.308)

At the exit temperature, the saturation pressure is Pg2 = 1.705 kPa. So

Pv2 = φ2Pg2, (3.309)

= (0.95)(1.705 kPa), (3.310)

= 1.620 kPa. (3.311)
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Now the absolute humidity (humidity ratio) is

ω2 = 0.622
Pv2

P2 − Pv2
, (3.312)

= 0.622
1.620 kPa

100 kPa− 1.620 kPa
, (3.313)

= 0.0102. (3.314)

Then, substituting, one gets

Q̇cv
ṁa

=

(
1.004

kJ

kg K

)
(15 ◦C− 30 ◦C)− 0.0208

(
2556.3

kJ

kg

)

+0.0102

(
2528.9

kJ

kg

)
+ (0.0208− 0.0102)

(
62.99

kJ

kg

)
, (3.315)

= −41.77
kJ

kg dry air
. (3.316)

3.4.2 Adiabatic saturation

In an adiabatic saturation process, an air-vapor mixture contacts a body of water in a well
insulated duct. If the initial humidity of the mixture is less than 100%, some water will
evaporate and join the mixture. If the mixture leaving the duct is saturated, and the process
is adiabatic, the exit temperature is the adiabatic saturation temperature. Assume the liquid
water entering the system enters at the exit temperature of the mixture.

Mass conservation for air and water and the first law for the control volume give

dmair
cv

dt︸ ︷︷ ︸
=0

= ṁa1 − ṁa2, air (3.317)

dmwater
cv

dt︸ ︷︷ ︸
=0

= ṁv1 + ṁl − ṁv2, water (3.318)

dEcv

dt︸ ︷︷ ︸
=0

= Q̇cv︸︷︷︸
=0

− Ẇcv︸︷︷︸
=0

+ṁa1ha1 + ṁv1hv1 + ṁlhl − ṁa2ha2 − ṁv2hv2. (3.319)

For steady state results, these reduce to

0 = ṁa1 − ṁa2, air (3.320)

0 = ṁv1 + ṁl − ṁv2, water (3.321)

0 = ṁa1ha1 + ṁv1hv1 + ṁlhl − ṁa2ha2 − ṁv2hv2. (3.322)
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Now mass conservation for air gives

ṁa1 = ṁa2 ≡ ṁa. (3.323)

Mass conservation for water gives

ṁl = ṁv2 − ṁv1. (3.324)

Then energy conservation becomes

0 = ṁaha1 + ṁv1hv1 + (ṁv2 − ṁv1)hl − ṁaha2 − ṁv2hv2, (3.325)

= ha1 +
ṁv1

ṁa

hv1 +

(
ṁv2

ṁa

− ṁv1

ṁa

)
hl − ha2 −

ṁv2

ṁa

hv2, (3.326)

= ha1 + ω1hv1 + (ω2 − ω1)hl − ha2 − ω2hv2, (3.327)

= ha1 − ha2 + ω1(hv1 − hl) + ω2(hl − hv2), (3.328)

−ω1(hv1 − hl) = ha1 − ha2 + ω2(hl − hv2), (3.329)

ω1(hv1 − hl) = ha2 − ha1 + ω2(hv2 − hl), (3.330)

= cpa(T2 − T1) + ω2hfg2. (3.331)

Example 3.8
(adopted from BS). The pressure of the mixture entering and leaving the adiabatic saturater is

14.7 psia, the entering temperature is 84 F, and the temperature leaving is 70 F, which is the adiabatic
saturation temperature. Calculate the humidity ratio and the relative humidity of the air-water vapor
mixture entering.

The exit state 2 is saturated, so
Pv2 = Pg2. (3.332)

The tables give Pv2 = Pg2 = 0.363 psia. Thus one can calculate the absolute humidity by its definition:

ω2 = 0.622
Pv2

P2 − Pv2
, (3.333)

= 0.622
0.363 psia

(14.7 psia)− (0.363 psia)
, (3.334)

= 0.0157485
lbm H2O

lbm dry air
. (3.335)

The earlier derived result from the energy balance allows calculation then of ω1:

ω1(hv1 − hl) = cpa(T2 − T1) + ω2hfg2, (3.336)

ω1 =
cpa(T2 − T1) + ω2hfg2

hv1 − hl
, (3.337)

=
0.240 Btu

lbm F ((70 F)− (84 F)) + 0.0157485
(
1054.0 Btu

lbm

)
(
1098.1 Btu

lbm

)
−
(
38.1 Btu

lbm

) , (3.338)

= 0.012895
lbm H2O

lbm dry air
. (3.339)
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Here hv1 was estimated as the saturated vapor value at T = 84 F by interpolating the tables. In the
absence of more information regarding the initial vapor state, this estimate is good as any. The value
of hl is estimated as the saturated liquid value at T = 70 F. Now

ω1 = 0.622
Pv1

P1 − Pv1
, (3.340)

Pv1 =
P1ω1

0.622 + ω1
, (3.341)

=
(14.7 psia)(0.0124895)

0.622 + 0.0124895
, (3.342)

= 0.28936 psia. (3.343)

For the relative humidity

φ1 =
Pv1
Pg1

, (3.344)

=
0.28936 psia

0.584 psia
, (3.345)

= 0.495. (3.346)

3.4.3 Wet-bulb and dry-bulb temperatures

Humidity is often measured with a psychrometer, which has a wet bulb and dry bulb ther-
mometer.

• The dry bulb measures the air temperature.

• The wet bulb measures the temperature of a water soaked thermometer.

• If the two temperatures are equal, the air is saturated. If they are different, some of
the water on the web bulb evaporates, cooling the wet bulb thermometer.

• The evaporative cooling process is commonly modeled (with some error) as an adiabatic
saturation process.

• These temperatures are also influenced by non-thermodynamic issues such as heat and
mass transfer rates, which induce errors in the device.

• Capacitance-based electronic devices are often used as an alternative to the traditional
psychrometer.

3.4.4 Psychrometric chart

This well-known chart summarizes much of what is important for binary mixtures of air and
water, in which the properties depend on three variables, e.g. temperature, pressure, and
composition of the mixture. A psychrometric chart is shown in Fig. 3.1.
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Chapter 4

Mathematical foundations of
thermodynamics

Read BS, 12.2-12.4, 12.9, 14.1-14.4.
See Abbott and van Ness, Chapter 3.
See Powers, 2016, Chapter 3, for a similar treatment.
See Powers, 2024, Chapters 4, 5, 9, for more background.
See Vincenti and Kruger, Chapter 3, for more background.

4.1 Exact differentials and state functions

In thermodynamics, one is faced with many systems of the form of the well-known Gibbs
equation, Eq. (1.15):

du = T ds− P dv. (4.1)

This is known to be an exact differential with the consequence that internal energy u is a
function of the state of the system and not the details of any process which led to the state.
As a counter-example, the work, Eq. (1.13),

δw = P dv, (4.2)

can be shown to be an inexact differential so that the work is indeed a function of the process
involved. Here we use the notation δ to emphasize that this is an inexact differential.

Example 4.1
Show the work is not a state function.

Let us employ the mode of argumentation commonly known as reductio ad absurdum in which we
show the denial of the contention leads to an absurdity. If work were a state function, one might expect
it to have the form

w = w(P, v), provisional assumption, to be tested. (4.3)

113



114 CHAPTER 4. MATHEMATICAL FOUNDATIONS OF THERMODYNAMICS

In such a case, one would have the corresponding differential form

δw =
∂w

∂v

∣∣∣∣
P

dv +
∂w

∂P

∣∣∣∣
v

dP. (4.4)

Now because δw = P dv from Newtonian mechanics, one deduces that

∂w

∂v

∣∣∣∣
P

= P, (4.5)

∂w

∂P

∣∣∣∣
v

= 0. (4.6)

Integrating Eq. (4.5), one finds
w = Pv + f(P ), (4.7)

where f(P ) is some function of P to be determined. Differentiating Eq. (4.7) with respect to P , one
gets

∂w

∂P

∣∣∣∣
v

= v +
df(P )

dP
. (4.8)

Now use Eq. (4.6) to eliminate ∂w/∂P |v in Eq. (4.8) so as to obtain

0 = v +
df(P )

dP
, (4.9)

df(P )

dP
= −v. (4.10)

Equation (4.10) cannot be: a function of P only cannot be a function of v. So, w cannot be a state
property:

w 6= w(P, v). (4.11)

Consider now the more general form

ψ1 dx1 + ψ2 dx2 + · · ·+ ψN dxN =
N∑

i=1

ψi dxi. (4.12)

Here ψi and xi, i = 1, . . . , N , may be thermodynamic variables. This form is known in
mathematics as a Pfaffian differential system of degree one. As formulated, one takes at this
stage

• xi: independent thermodynamic variables, and

• ψi: thermodynamic variables which are functions of xi.

Now, if the differential in Eq. (4.12), when set to a differential dy, can be integrated to form
the function

y = y(x1, x2, . . . , xN ), (4.13)
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4.1. EXACT DIFFERENTIALS AND STATE FUNCTIONS 115

the differential is said to be exact. In such a case, one has

dy = ψ1 dx1 + ψ2 dx2 + · · ·+ ψN dxN =
N∑

i=1

ψi dxi. (4.14)

Now, if the algebraic definition of Eq. (4.13) holds, what amounts to the definition of the
partial derivative gives the parallel result that

dy =
∂y

∂x1

∣∣∣∣
xj ,j 6=1

dx1 +
∂y

∂x2

∣∣∣∣
xj ,j 6=2

dx2 + · · ·+ ∂y

∂xN

∣∣∣∣
xj ,j 6=N

dxN . (4.15)

Now, combining Eqs. (4.14) and (4.15) to eliminate dy, one gets

ψ1 dx1 + ψ2 dx2 + · · ·+ ψN dxN =
∂y

∂x1

∣∣∣∣
xj ,j 6=1

dx1 +
∂y

∂x2

∣∣∣∣
xj ,j 6=2

dx2 + · · ·+ ∂y

∂xN

∣∣∣∣
xj ,j 6=N

dxN .

(4.16)

Rearranging, one gets

0 =

(
∂y

∂x1

∣∣∣∣
xj ,j 6=1

− ψ1

)
dx1 +

(
∂y

∂x2

∣∣∣∣
xj ,j 6=2

− ψ2

)
dx2 + · · ·+

(
∂y

∂xN

∣∣∣∣
xj ,j 6=N

− ψN

)
dxN .

(4.17)
Because the variables xi, i = 1, . . . , N , are independent, dxi, i = 1, . . . , N , are all inde-

pendent in Eq. (4.17), and in general non-zero. For equality, one must require that each of
the coefficients be zero, so

ψ1 =
∂y

∂x1

∣∣∣∣
xj ,j 6=1

, ψ2 =
∂y

∂x2

∣∣∣∣
xj ,j 6=2

, . . . , ψN =
∂y

∂xN

∣∣∣∣
xj ,j 6=N

. (4.18)

So when dy is exact, one says that each of the ψi and xi are conjugate to each other.
From here on out, for notational ease, the j 6= 1, j 6= 2, . . . , j 6= N will be ignored in

the notation for the partial derivatives. It becomes especially confusing for higher order
derivatives, and is fairly obvious for all derivatives.

If y and all its derivatives are continuous and differentiable, then one has for all i =
1, . . . , N, and k = 1, . . . , N that

∂2y

∂xk∂xi
=

∂2y

∂xi∂xk
. (4.19)

Now from Eq. (4.18), one has

ψk =
∂y

∂xk

∣∣∣∣
xj

, ψl =
∂y

∂xl

∣∣∣∣
xj

. (4.20)
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Taking the partial of the first of Eq. (4.20) with respect to xl and the second with respect
to xk, one gets

∂ψk

∂xl

∣∣∣∣
xj

=
∂2y

∂xl∂xk
,

∂ψl

∂xk

∣∣∣∣
xj

=
∂2y

∂xk∂xl
. (4.21)

Because by Eq. (4.19) the order of the mixed second partials does not matter, one deduces
from Eq. (4.21) that

∂ψk

∂xl

∣∣∣∣
xj

=
∂ψl

∂xk

∣∣∣∣
xj

. (4.22)

This is a necessary and sufficient condition for the exact-ness of Eq. (4.12). It is a gen-
eralization of what can be found in most introductory calculus texts for functions of two
variables.

For the Gibbs equation, (4.1), du = −P dv + T ds, one has

y → u, x1 → v, x2 → s, ψ1 → −P ψ2 → T. (4.23)

and one expects the natural, or canonical form of

u = u(v, s). (4.24)

Here, −P is conjugate to v, and T is conjugate to s. Application of the general form of
Eq. (4.22) to the Gibbs equation (4.1) gives then

∂T

∂v

∣∣∣∣
s

= − ∂P

∂s

∣∣∣∣
v

. (4.25)

Equation (4.25) is known as a Maxwell relation. Moreover, specialization of Eq. (4.20) to
the Gibbs equation (4.1) gives

−P =
∂u

∂v

∣∣∣∣
s

, T =
∂u

∂s

∣∣∣∣
v

. (4.26)

If the general differential dy =
∑N

i=1 ψi dxi is exact, one also can show

• The path integral yB − yA =
∫ B

A

∑N
i=1 ψi dxi is independent of the path of the integral.

• The integral around a closed contour is zero:

∮
dy =

∮ N∑

i=1

ψi dxi = 0. (4.27)

• The function y can only be determined to within an additive constant. That is, there
is no absolute value of y; physical significance is only ascribed to differences in y. In
fact now, other means, extraneous to this analysis, can be used to provide absolute
values of key thermodynamic variables. This will be important especially for flows
with reaction.
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Example 4.2
Show the heat transfer q is not a state function. Assume all processes are fully reversible.

The first law gives

du = δq − δw, (4.28)

δq = du+ δw, (4.29)

= du+ P dv. (4.30)

Take now the non-canonical, although acceptable, form u = u(T, v). Then one gets

du =
∂u

∂v

∣∣∣∣
T

dv +
∂u

∂T

∣∣∣∣
v

dT. (4.31)

So

δq =
∂u

∂v

∣∣∣∣
T

dv +
∂u

∂T

∣∣∣∣
v

dT + P dv, (4.32)

=

(
∂u

∂v

∣∣∣∣
T

+ P

)

︸ ︷︷ ︸
≡M

dv +
∂u

∂T

∣∣∣∣
v︸ ︷︷ ︸

≡N

dT. (4.33)

= M dv +N dT. (4.34)

Now by Eq. (4.22), for δq to be exact, one must have

∂M

∂T

∣∣∣∣
v

=
∂N

∂v

∣∣∣∣
T

. (4.35)

This reduces to
∂2u

∂T∂v
+
∂P

∂T

∣∣∣∣
v

=
∂2u

∂v∂T
. (4.36)

This can only be true if ∂P/∂T |v = 0. But this is not the case; consider an ideal gas for which
∂P/∂T |v = R/v. So δq is not exact.

Example 4.3
Show conditions for ds to be exact in the Gibbs equation.

du = T ds− P dv, (4.37)

ds =
du

T
+
P

T
dv, (4.38)

=
1

T

(
∂u

∂v

∣∣∣∣
T

dv +
∂u

∂T

∣∣∣∣
v

dT

)
+
P

T
dv, (4.39)

=

(
1

T

∂u

∂v

∣∣∣∣
T

+
P

T

)

︸ ︷︷ ︸
≡M

dv +
1

T

∂u

∂T

∣∣∣∣
v︸ ︷︷ ︸

≡N

dT. (4.40)
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Again, invoking Eq. (4.22), one gets then

∂

∂T

(
1

T

∂u

∂v

∣∣∣∣
T

+
P

T

)

v

=
∂

∂v

(
1

T

∂u

∂T

∣∣∣∣
v

)

T

, (4.41)

1

T

∂2u

∂T∂v
− 1

T 2

∂u

∂v

∣∣∣∣
T

+
1

T

∂P

∂T

∣∣∣∣
v

− P

T 2
=

1

T

∂2u

∂v∂T
, (4.42)

− 1

T 2

∂u

∂v

∣∣∣∣
T

+
1

T

∂P

∂T

∣∣∣∣
v

− P

T 2
= 0. (4.43)

This is the condition for an exact ds. Experiment can show if it is true. For example, for an ideal gas,
one finds from experiment that u = u(T ) and Pv = RT , so one gets

0 +
1

T

R

v
− 1

T 2

RT

v
= 0, (4.44)

0 = 0. (4.45)

So ds is exact for an ideal gas. In fact, the relation is verified for so many gases, ideal and non-ideal,
that one simply asserts that ds is exact, rendering s to be path-independent and a state variable.

4.2 Two independent variables

Consider a general implicit function linking three variables, x, y, z:

f(x, y, z) = 0. (4.46)

In x − y − z space, this will represent a surface. If the function can be inverted, it will be
possible to write the explicit forms

x = x(y, z), y = y(x, z), z = z(x, y). (4.47)

Differentiating the first two of the Eqs. (4.47) gives

dx =
∂x

∂y

∣∣∣∣
z

dy +
∂x

∂z

∣∣∣∣
y

dz, (4.48)

dy =
∂y

∂x

∣∣∣∣
z

dx+
∂y

∂z

∣∣∣∣
x

dz. (4.49)

Now use Eq. (4.49) to eliminate dy in Eq. (4.48):

dx =
∂x

∂y

∣∣∣∣
z

(
∂y

∂x

∣∣∣∣
z

dx+
∂y

∂z

∣∣∣∣
x

dz

)

︸ ︷︷ ︸
=dy

+
∂x

∂z

∣∣∣∣
y

dz, (4.50)

(
1− ∂x

∂y

∣∣∣∣
z

∂y

∂x

∣∣∣∣
z

)
dx =

(
∂x

∂y

∣∣∣∣
z

∂y

∂z

∣∣∣∣
x

+
∂x

∂z

∣∣∣∣
y

)
dz, (4.51)

0 dx+ 0 dz =

(
∂x

∂y

∣∣∣∣
z

∂y

∂x

∣∣∣∣
z

− 1

)

︸ ︷︷ ︸
=0

dx+

(
∂x

∂y

∣∣∣∣
z

∂y

∂z

∣∣∣∣
x

+
∂x

∂z

∣∣∣∣
y

)

︸ ︷︷ ︸
=0

dz. (4.52)
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Because x and z are independent, so are dx and dz, and the coefficients on each in Eq. (4.52)
must be zero. Therefore from the coefficient on dx in Eq. (4.52)

∂x

∂y

∣∣∣∣
z

∂y

∂x

∣∣∣∣
z

− 1 = 0, (4.53)

∂x

∂y

∣∣∣∣
z

∂y

∂x

∣∣∣∣
z

= 1. (4.54)

So

∂x

∂y

∣∣∣∣
z

=
1

∂y
∂x

∣∣
z

, (4.55)

and also from the coefficient on dz in Eq. (4.52)

∂x

∂y

∣∣∣∣
z

∂y

∂z

∣∣∣∣
x

+
∂x

∂z

∣∣∣∣
y

= 0, (4.56)

∂x

∂z

∣∣∣∣
y

= − ∂x

∂y

∣∣∣∣
z

∂y

∂z

∣∣∣∣
x

, . (4.57)

So

∂x

∂z

∣∣∣∣
y

∂y

∂x

∣∣∣∣
z

∂z

∂y

∣∣∣∣
x

= −1. (4.58)

If one now divides Eq. (4.48) by a fourth differential, dw, one gets

dx

dw
=

∂x

∂y

∣∣∣∣
z

dy

dw
+
∂x

∂z

∣∣∣∣
y

dz

dw
. (4.59)

Demanding that z be held constant in Eq. (4.59) gives

∂x

∂w

∣∣∣∣
z

=
∂x

∂y

∣∣∣∣
z

∂y

∂w

∣∣∣∣
z

, (4.60)

∂x
∂w

∣∣
z

∂y
∂w

∣∣
z

=
∂x

∂y

∣∣∣∣
z

, (4.61)

∂x

∂w

∣∣∣∣
z

∂w

∂y

∣∣∣∣
z

=
∂x

∂y

∣∣∣∣
z

. (4.62)

If x = x(y, w), one then gets

dx =
∂x

∂y

∣∣∣∣
w

dy +
∂x

∂w

∣∣∣∣
y

dw. (4.63)
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Divide now by dy while holding z constant so

∂x

∂y

∣∣∣∣
z

=
∂x

∂y

∣∣∣∣
w

+
∂x

∂w

∣∣∣∣
y

∂w

∂y

∣∣∣∣
z

. (4.64)

These general operations can be applied to a wide variety of thermodynamic operations.

Example 4.4
Apply Eq. (4.64) to a standard P − v − T system and let

∂x

∂y

∣∣∣∣
z

=
∂T

∂v

∣∣∣∣
s

. (4.65)

So T = x, v = y, and s = z. Let now u = w. So Eq. (4.64) becomes

∂T

∂v

∣∣∣∣
s

=
∂T

∂v

∣∣∣∣
u

+
∂T

∂u

∣∣∣∣
v

∂u

∂v

∣∣∣∣
s

. (4.66)

Now by definition

cv =
∂u

∂T

∣∣∣∣
v

, (4.67)

so
∂T

∂u

∣∣∣∣
v

=
1

cv
. (4.68)

Now by Eq. (4.26), one has ∂u/∂v|s = −P , so one gets

∂T

∂v

∣∣∣∣
s

=
∂T

∂v

∣∣∣∣
u

− P

cv
. (4.69)

For an ideal gas, u = u(T ). Inverting, one gets T = T (u), and so ∂T/∂v|u = 0, thus

∂T

∂v

∣∣∣∣
s

= −P

cv
. (4.70)

For an isentropic process in an ideal gas, one gets

dT

dv
= −P

cv
= −RT

cvv
, (4.71)

dT

T
= −R

cv

dv

v
, (4.72)

= −(k − 1)
dv

v
, (4.73)

ln
T

To
= (k − 1) ln

vo
v
, (4.74)

T

To
=

(vo
v

)k−1

. (4.75)
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4.3 Legendre transformations

The Gibbs equation (4.1), du = −P dv + T ds, is the fundamental equation of classical
thermodynamics. It is a canonical form which suggests the most natural set of variables in
which to express internal energy u are s and v:

u = u(v, s). (4.76)

However, v and s may not be convenient for a particular problem. There may be other
combinations of variables whose canonical form gives a more convenient set of independent
variables for a particular problem. An example is the enthalpy from Eq. (1.20):

h ≡ u+ Pv. (4.77)

Differentiating the enthalpy gives

dh = du+ P dv + v dP. (4.78)

Use now Eq. (4.78) to eliminate du in the Gibbs equation to give

dh− P dv − v dP︸ ︷︷ ︸
=du

= −P dv + T ds. (4.79)

So

dh = T ds+ v dP. (4.80)

So the canonical variables for h are s and P . One then expects

h = h(s, P ). (4.81)

This exercise can be systematized with the Legendre transformation,1 which defines a set of
second order polynomial combinations of variables. Additional and more general develop-
ment of the Legendre transformation is given in the Appendix, p. 295.

Consider again the exact differential Eq. (4.14):

dy = ψ1 dx1 + ψ2 dx2 + · · ·+ ψN dxN . (4.82)

For N independent variables xi and N conjugate variables ψi, by definition there are 2N − 1

1Two differentiable functions f and g are said to be Legendre transformations of each other if their first
derivatives are inverse functions of each other: Df = (Dg)−1. With some effort, not shown here, one can
prove that the Legendre transformations of this section satisfy this general condition.
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Legendre transformed variables:

τ1 = τ1(ψ1, x2, x3, . . . , xN) = y − ψ1x1, (4.83)

τ2 = τ2(x1, ψ2, x3, . . . , xN) = y − ψ2x2, (4.84)
...

τN = τN (x1, x2, x3, . . . , ψN ) = y − ψNxN , (4.85)

τ1,2 = τ1,2(ψ1, ψ2, x3, . . . , xN ) = y − ψ1x1 − ψ2x2, (4.86)

τ1,3 = τ1,3(ψ1, x2, ψ3, . . . , xN ) = y − ψ1x1 − ψ3x3, (4.87)
...

τ1,...,N = τ1,...,N(ψ1, ψ2, ψ3, . . . , ψN) = y −
N∑

i=1

ψixi. (4.88)

Each τ is a new dependent variable. Each τ has the property that when it is known as a
function of its N canonical variables, the remaining N variables from the original expression
(the xi and the conjugate ψi) can be recovered by differentiation of τ . In general this is not
true for arbitrary transformations.

Example 4.5
Let y = y(x1, x2, x3). This has the associated differential form

dy = ψ1 dx1 + ψ2 dx2 + ψ3 dx3. (4.89)

Choose now a Legendre transformed variable τ1 ≡ z(ψ1, x2, x3):

z = y − ψ1x1. (4.90)

Find expressions for x1, ψ2, and ψ3 in terms of z, ψ1, x2, and x3.

From the definition of z, we have

dz =
∂z

∂ψ1

∣∣∣∣
x2,x3

dψ1 +
∂z

∂x2

∣∣∣∣
ψ1,x3

dx2 +
∂z

∂x3

∣∣∣∣
ψ1,x2

dx3. (4.91)

Now differentiating Eq. (4.90), one also gets

dz = dy − ψ1 dx1 − x1 dψ1. (4.92)

Elimination of dy in Eq. (4.92) by using Eq. (4.89) gives

dz = ψ1 dx1 + ψ2 dx2 + ψ3 dx3︸ ︷︷ ︸
=dy

−ψ1 dx1 − x1 dψ1, (4.93)

= −x1 dψ1 + ψ2 dx2 + ψ3 dx3. (4.94)

Thus from Eq. (4.91), one gets

x1 = − ∂z

∂ψ1

∣∣∣∣
x2,x3

, ψ2 =
∂z

∂x2

∣∣∣∣
ψ1,x3

, ψ3 =
∂z

∂x3

∣∣∣∣
ψ1,x2

. (4.95)
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So the original expression had three independent variables x1, x2, x3, and three conjugate variables
ψ1, ψ2, ψ3. Definition of the Legendre function z with canonical variables ψ1, x2, and x3 allowed
determination of the remaining variables x1, ψ2, and ψ3 in terms of the canonical variables.

For the Gibbs equation, (4.1), du = −P dv+T ds, one has y = u, two canonical variables,
x1 = v and x2 = s, and two conjugates, ψ1 = −P and ψ2 = T . Thus N = 2, and one can
expect 22 − 1 = 3 Legendre transformations. They are

τ1 = y − ψ1x1 = h = h(P, s) = u+ Pv, enthalpy, (4.96)

τ2 = y − ψ2x2 = a = a(v, T ) = u− Ts, Helmholtz free energy, (4.97)

τ1,2 = y − ψ1x1 − ψ2x2 = g = g(P, T ) = u+ Pv − Ts, Gibbs free energy. (4.98)

It has already been shown for the enthalpy that dh = T ds+ v dP , so that the canonical
variables are s and P . One then also has

dh =
∂h

∂s

∣∣∣∣
P

ds+
∂h

∂P

∣∣∣∣
s

dP, (4.99)

from which one deduces that

T =
∂h

∂s

∣∣∣∣
P

, v =
∂h

∂P

∣∣∣∣
s

. (4.100)

From Eq. (4.100), a second Maxwell relation can be deduced by differentiation of the first
with respect to P and the second with respect to s:

∂T

∂P

∣∣∣∣
s

=
∂v

∂s

∣∣∣∣
P

. (4.101)

The relations for Helmholtz and Gibbs free energies each supply additional useful relations
including two new Maxwell relations. First consider the Helmholtz free energy

a = u− Ts, (4.102)

da = du− T ds− s dT, (4.103)

= (−P dv + T ds)− T ds− s dT, (4.104)

= −P dv − s dT. (4.105)

So the canonical variables for a are v and T . The conjugate variables are −P and −s. Thus

da =
∂a

∂v

∣∣∣∣
T

dv +
∂a

∂T

∣∣∣∣
v

dT. (4.106)
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So one gets

−P =
∂a

∂v

∣∣∣∣
T

, −s = ∂a

∂T

∣∣∣∣
v

. (4.107)

and the consequent Maxwell relation

∂P

∂T

∣∣∣∣
v

=
∂s

∂v

∣∣∣∣
T

. (4.108)

For the Gibbs free energy

g = u+ Pv︸ ︷︷ ︸
=h

−Ts, (4.109)

= h− Ts, (4.110)

dg = dh− T ds− s dT, (4.111)

= (T ds+ v dP )︸ ︷︷ ︸
=dh

−T ds− s dT, (4.112)

= v dP − s dT. (4.113)

So for Gibbs free energy, the canonical variables are P and T while the conjugate variables
are v and −s. One then has g = g(P, T ), which gives

dg =
∂g

∂P

∣∣∣∣
T

dP +
∂g

∂T

∣∣∣∣
P

dT. (4.114)

So one finds

v =
∂g

∂P

∣∣∣∣
T

, −s = ∂g

∂T

∣∣∣∣
P

. (4.115)

The resulting Maxwell function is then

∂v

∂T

∣∣∣∣
P

= − ∂s

∂P

∣∣∣∣
T

. (4.116)

Example 4.6
If we have the canonical form for h(s, P ) of

h(s, P ) = cPTo

(
P

Po

)R/cP
exp

(
s

cP

)
+ (ho − cPTo) , (4.117)

and cP , To, R, Po, and ho are all constants, derive both thermal and caloric state equations P (v, T )
and u(v, T ).
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Now for this material

∂h

∂s

∣∣∣∣
P

= To

(
P

Po

)R/cP
exp

(
s

cP

)
, (4.118)

∂h

∂P

∣∣∣∣
s

=
RTo
Po

(
P

Po

)R/cP−1

exp

(
s

cP

)
. (4.119)

Now because

∂h

∂s

∣∣∣∣
P

= T, (4.120)

∂h

∂P

∣∣∣∣
s

= v, (4.121)

one has

T = To

(
P

Po

)R/cP
exp

(
s

cP

)
, (4.122)

v =
RTo
Po

(
P

Po

)R/cP−1

exp

(
s

cP

)
. (4.123)

Dividing Eq. (4.122) by Eq. (4.123) gives

T

v
=

P

R
, (4.124)

Pv = RT, (4.125)

which is the thermal equation of state. Substituting from Eq. (4.122) into the canonical equation for
h, Eq. (4.117), one also finds for the caloric equation of state

h = cPT + (ho − cPTo) = cP (T − To) + ho, (4.126)

which is useful in itself. Substituting for T and To, we get

h = cP

(
Pv

R
− Povo

R

)
+ ho. (4.127)

Using, Eq. (4.77), h ≡ u+ Pv, we get

u+ Pv = cP

(
Pv

R
− Povo

R

)
+ uo + Povo. (4.128)

So

u =
(cP
R

− 1
)
Pv −

(cP
R

− 1
)
Povo + uo, (4.129)

=
(cP
R

− 1
)
(Pv − Povo) + uo, (4.130)

=
(cP
R

− 1
)
(RT −RTo) + uo, (4.131)

= (cP −R) (T − To) + uo, (4.132)

= (cP − (cP − cv)) (T − To) + uo, (4.133)

= cv (T − To) + uo. (4.134)

So one canonical equation gives us all the information one needs. Often, it is difficult to do a single
experiment to get the canonical form.
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4.4 Heat capacity

Recall that

cv =
∂u

∂T

∣∣∣∣
v

, cP =
∂h

∂T

∣∣∣∣
P

. (4.135)

Then perform operations on the Gibbs equation

du = T ds− P dv, (4.136)

∂u

∂T

∣∣∣∣
v

= T
∂s

∂T

∣∣∣∣
v

, (4.137)

cv = T
∂s

∂T

∣∣∣∣
v

. (4.138)

Likewise,

dh = T ds+ v dP, (4.139)

∂h

∂T

∣∣∣∣
P

= T
∂s

∂T

∣∣∣∣
P

, (4.140)

cP = T
∂s

∂T

∣∣∣∣
P

. (4.141)

One finds further useful relations by operating on the Gibbs equation:

du = T ds− P dv, (4.142)

∂u

∂v

∣∣∣∣
T

= T
∂s

∂v

∣∣∣∣
T

− P, (4.143)

= T
∂P

∂T

∣∣∣∣
v

− P. (4.144)

So one can then say

u = u(T, v), (4.145)

du =
∂u

∂T

∣∣∣∣
v

dT +
∂u

∂v

∣∣∣∣
T

dv, (4.146)

= cv dT +

(
T
∂P

∂T

∣∣∣∣
v

− P

)
dv. (4.147)

For an ideal gas, one has

∂u

∂v

∣∣∣∣
T

= T
∂P

∂T

∣∣∣∣
v

− P = T

(
R

v

)
− RT

v
, (4.148)

= 0. (4.149)
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Consequently, u is not a function of v for an ideal gas, so u = u(T ) alone. Because Eq. (4.77),
h = u+ Pv, for an ideal gas reduces to h = u+RT

h = u(T ) +RT = h(T ). (4.150)

Now return to general equations of state. With s = s(T, v) or s = s(T, P ), one gets

ds =
∂s

∂T

∣∣∣∣
v

dT +
∂s

∂v

∣∣∣∣
T

dv, (4.151)

ds =
∂s

∂T

∣∣∣∣
P

dT +
∂s

∂P

∣∣∣∣
T

dP. (4.152)

Now using Eqs. (4.101, 4.116, 4.138, 4.141) one gets

ds =
cv
T
dT +

∂P

∂T

∣∣∣∣
v

dv, (4.153)

ds =
cP
T

dT − ∂v

∂T

∣∣∣∣
P

dP. (4.154)

Subtracting Eq. (4.154) from Eq. (4.153), one finds

0 =
cv − cP
T

dT +
∂P

∂T

∣∣∣∣
v

dv +
∂v

∂T

∣∣∣∣
P

dP, (4.155)

(cP − cv) dT = T
∂P

∂T

∣∣∣∣
v

dv + T
∂v

∂T

∣∣∣∣
P

dP. (4.156)

Now divide both sides by dT and hold either P or v constant. In either case, one gets

cP − cv = T
∂P

∂T

∣∣∣∣
v

∂v

∂T

∣∣∣∣
P

. (4.157)

Also, because ∂P/∂T |v = −(∂P/∂v|T )(∂v/∂T |P ), Eq. (4.157) can be rewritten as

cP − cv = −T
(
∂v

∂T

∣∣∣∣
P

)2
∂P

∂v

∣∣∣∣
T

. (4.158)

Now because T > 0, (∂v/∂T |P )2 > 0, and for all known materials ∂P/∂v|T < 0, we must
have

cP > cv. (4.159)

Example 4.7
For an ideal gas find cP − cv.
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For the ideal gas, Pv = RT , one has

∂P

∂T

∣∣∣∣
v

=
R

v
,

∂v

∂T

∣∣∣∣
P

=
R

P
. (4.160)

So, from Eq. (4.157), we have

cP − cv = T
R

v

R

P
, (4.161)

= T
R2

RT
, (4.162)

= R. (4.163)

This holds even if the ideal gas is calorically imperfect. That is

cP (T )− cv(T ) = R. (4.164)

For the ratio of specific heats for a general material, one can use Eqs. (4.138) and (4.141)
to get

k =
cP
cv

=
T ∂s

∂T

∣∣
P

T ∂s
∂T

∣∣
v

, then apply Eq. (4.55) to get (4.165)

=
∂s

∂T

∣∣∣∣
P

∂T

∂s

∣∣∣∣
v

, then apply Eq. (4.57) to get (4.166)

=

(
− ∂s

∂P

∣∣∣∣
T

∂P

∂T

∣∣∣∣
s

)(
− ∂T

∂v

∣∣∣∣
s

∂v

∂s

∣∣∣∣
T

)
, (4.167)

=

(
∂v

∂s

∣∣∣∣
T

∂s

∂P

∣∣∣∣
T

)(
∂P

∂T

∣∣∣∣
s

∂T

∂v

∣∣∣∣
s

)
. (4.168)

So for general materials

k =
∂v

∂P

∣∣∣∣
T

∂P

∂v

∣∣∣∣
s

. (4.169)

The first term can be obtained from P − v − T data. The second term is related to the
isentropic sound speed of the material, which is also a measurable quantity.

Example 4.8
For a calorically perfect ideal gas with gas constant R and specific heat at constant volume cv,

find expressions for the thermodynamic variable s and thermodynamic potentials u, h, a, and g, as
functions of T and P .
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First get the entropy:

du = T ds− P dv, (4.170)

T ds = du+ P dv, (4.171)

= cv dT + P dv, (4.172)

ds = cv
dT

T
+
P

T
dv, (4.173)

= cv
dT

T
+R

dv

v
, (4.174)

∫
ds =

∫
cv
dT

T
+

∫
R
dv

v
, (4.175)

s− s0 = cv ln
T

T0
+R ln

v

v0
, (4.176)

s− s0
cv

= ln
T

T0
+
R

cv
ln

RT/P

RT0/P0
, (4.177)

= ln

(
T

T0

)
+ ln

(
T

T0

P0

P

)R/cv
, (4.178)

= ln

(
T

T0

)1+R/cv

+ ln

(
P0

P

)R/cv
, (4.179)

= ln

(
T

T0

)1+(cP−cv)/cv

+ ln

(
P0

P

)(cP−cv)/cv

, (4.180)

= ln

(
T

T0

)k
+ ln

(
P0

P

)k−1

. (4.181)

So

s = s0 + cv ln

(
T

T0

)k
+ cv ln

(
P0

P

)k−1

. (4.182)

Now, for the calorically perfect ideal gas, one has

u = uo + cv(T − To). (4.183)

For the enthalpy, one gets

h = u+ Pv, (4.184)

= u+RT, (4.185)

= uo + cv(T − To) +RT, (4.186)

= uo + cv(T − To) +RT +RTo −RTo, (4.187)

= uo +RTo︸ ︷︷ ︸
=ho

+cv(T − To) +R(T − To), (4.188)

= ho + (cv +R)︸ ︷︷ ︸
=cP

(T − To). (4.189)

So

h = ho + cP (T − To). (4.190)
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For the Helmholtz free energy, one has a = u− Ts. Thus,

a = uo + cv(T − To)− T

(
s0 + cv ln

(
T

T0

)k
+ cv ln

(
P0

P

)k−1
)
. (4.191)

For the Gibbs free energy, one has g = h− Ts. Thus

g = ho + cP (T − To)− T

(
s0 + cv ln

(
T

T0

)k
+ cv ln

(
P0

P

)k−1
)
. (4.192)

4.5 Van der Waals gas

A van der Waals gas is a common model for a non-ideal gas. It can capture some of the
behavior of a gas as it approaches the vapor dome. Its form is

P (T, v) =
RT

v − b
− a

v2
, (4.193)

where b accounts for the finite volume of the molecules, and a accounts for intermolecular
forces.

Example 4.9
Find a general expression for u(T, v) if

P (T, v) =
RT

v − b
− a

v2
. (4.194)

Proceed as before: First we have

du =
∂u

∂T

∣∣∣∣
v

dT +
∂u

∂v

∣∣∣∣
T

dv, (4.195)

recalling that

∂u

∂T

∣∣∣∣
v

= cv,
∂u

∂v

∣∣∣∣
T

= T
∂P

∂T

∣∣∣∣
v

− P. (4.196)

Now for the van der Waals gas, we have

∂P

∂T

∣∣∣∣
v

=
R

v − b
, (4.197)

T
∂P

∂T

∣∣∣∣
v

− P =
RT

v − b
− P, (4.198)

=
RT

v − b
−
(
RT

v − b
− a

v2

)
=

a

v2
. (4.199)
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So we have

∂u

∂v

∣∣∣∣
T

=
a

v2
, (4.200)

u(T, v) = −a
v
+ f(T ). (4.201)

Here f(T ) is some as-of-yet arbitrary function of T . To evaluate f(T ), take the derivative with respect
to T holding v constant:

∂u

∂T

∣∣∣∣
v

=
df

dT
= cv. (4.202)

Because f is a function of T at most, here cv can be a function of T at most, so we allow cv = cv(T ).
Integrating, we find f(T ) as

f(T ) = C +

∫ T

To

cv(T̂ ) dT̂ , (4.203)

where C is an integration constant. Thus u is

u(T, v) = C +

∫ T

To

cv(T̂ ) dT̂ − a

v
. (4.204)

Taking C = uo + a/vo, we get

u(T, v) = uo +

∫ T

To

cv(T̂ ) dT̂ + a

(
1

vo
− 1

v

)
. (4.205)

We also find

h = u+ Pv = uo +

∫ T

To

cv(T̂ ) dT̂ + a

(
1

vo
− 1

v

)
+ Pv, (4.206)

h(T, v) = uo +

∫ T

To

cv(T̂ ) dT̂ + a

(
1

vo
− 1

v

)
+
RTv

v − b
− a

v
. (4.207)

Example 4.10
A van der Waals gas with

R = 200
J

kg K
, (4.208)

a = 150
Pa m6

kg2
, (4.209)

b = 0.001
m3

kg
, (4.210)

cv =

(
350

J

kg K

)
+

(
0.2

J

kg K2

)
(T − (300 K)), (4.211)
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begins at T1 = 300 K, P1 = 1× 105 Pa. It is isothermally compressed to state 2 where P2 = 1× 106 Pa.
It is then isochorically heated to state 3 where T3 = 1000 K. Find 1w3, 1q3, and s3 − s1. Assume the
surroundings are at 1000 K.

Recall

P =
RT

v − b
− a

v2
, (4.212)

so at state 1

(
105 Pa

)
=

(
200 J

kg K

)
(300 K)

v1 −
(
0.001 m3

kg

) −
150 Pa m6

kg2

v21
. (4.213)

Expanding, one gets

−0.15 +

(
150

kg

m3

)
v1 −

(
60100

kg2

m6

)
v21 +

(
100000

kg3

m9

)
v31 = 0. (4.214)

This is a cubic equation which has three solutions:

v1 = 0.598
m3

kg
, physical, (4.215)

v1 = 0.00125− 0.0097i
m3

kg
not physical, (4.216)

v1 = 0.00125+ 0.0097i
m3

kg
not physical. (4.217)

Now at state 2, P2 and T2 are known, so v2 can be determined:

(
106 Pa

)
=

(
200 J

kg K

)
(300 K)

v2 −
(
0.001 m3

kg

) −
150 Pa m6

kg2

v22
. (4.218)

The physical solution is v2 = 0.0585 m3/kg. Now at state 3 it is known that v3 = v2 and T3 = 1000 K.
Determine P3:

P3 =

(
200 J

kg K

)
(1000 K)

(
0.0585 m3

kg

)
−
(
0.001 m3

kg

) −
150 Pa m6

kg2

(
0.0585 m3

kg

)2 , (4.219)

= (3478261 Pa)− (43831 Pa), (4.220)

= 3434430 Pa. (4.221)
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Now 1w3 = 1w2 + 2w3 =
∫ 2

1
P dv +

∫ 3

2
P dv =

∫ 2

1
P dv because 2 → 3 is at constant volume. So

1w3 =

∫ v2

v1

(
RT

v − b
− a

v2

)
dv, (4.222)

= RT1

∫ v2

v1

dv

v − b
− a

∫ v2

v1

dv

v2
, (4.223)

= RT1 ln

(
v2 − b

v1 − b

)
+ a

(
1

v2
− 1

v1

)
, (4.224)

=

(
200

J

kg K

)
(300 K) ln




(
0.0585 m3

kg

)
−
(
0.001 m3

kg

)

(
0.598 m3

kg

)
−
(
0.001 m3

kg

)




+

(
150

Pa m6

kg2

)(
1

0.0585 m3

kg

− 1

0.598 m3

kg

)
, (4.225)

=

(
−140408

J

kg

)
+

(
2313

J

kg

)
, (4.226)

= −138095
J

kg
, (4.227)

= −138.095
kJ

kg
. (4.228)

The gas is compressed, so the work is negative. Because u is a state property:

u3 − u1 =

∫ T3

T1

cv(T ) dT + a

(
1

v1
− 1

v3

)
. (4.229)

Now

cv =

(
350

J

kg K

)
+

(
0.2

J

kg K2

)
(T − (300 K)), (4.230)

=

(
290

J

kg K

)
+

(
0.2

J

kg K2

)
T. (4.231)

so

u3 − u1 =

∫ T3

T1

((
290

J

kg K

)
+

(
0.2

J

kg K2

)
T

)
dT + a

(
1

v1
− 1

v3

)
, (4.232)

=

(
290

J

kg K

)
(T3 − T1) +

(
0.1

J

kg K2

)(
T 2
3 − T 2

1

)
+ a

(
1

v1
− 1

v3

)
, (4.233)

=

(
290

J

kg K

)
((1000 K)− (300 K)) +

(
0.1

J

kg K2

)(
(1000 K)2 − (300 K)2

)

+

(
150

Pa m6

kg2

)(
1

0.598 m3

kg

− 1

0.0585 m3

kg

)
, (4.234)

=

(
203000

J

kg

)
+

(
91000

J

kg

)
−
(
2313

J

kg

)
, (4.235)

= 291687
J

kg
, (4.236)

= 292
kJ

kg
. (4.237)
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Now from the first law

u3 − u1 = 1q3 − 1w3, (4.238)

1q3 = u3 − u1 + 1w3, (4.239)

1q3 =

(
292

kJ

kg

)
−
(
138

kJ

kg

)
, (4.240)

1q3 = 154
kJ

kg
. (4.241)

The heat transfer is positive as heat was added to the system.

Now find the entropy change. Manipulate the Gibbs equation:

T ds = du+ P dv, (4.242)

ds =
1

T
du+

P

T
dv, (4.243)

=
1

T

(
cv(T ) dT +

a

v2
dv
)
+
P

T
dv, (4.244)

=
1

T

(
cv(T ) dT +

a

v2
dv
)
+

1

T

(
RT

v − b
− a

v2

)
dv, (4.245)

=
cv(T )

T
dT +

R

v − b
dv, (4.246)

s3 − s1 =

∫ T3

T1

cv(T )

T
dT +R ln

v3 − b

v1 − b
, (4.247)

=

∫ 1000

300




(
290 J

kg K

)

T
+

(
0.2

J

kg K2

)
 dT +R ln

v3 − b

v1 − b
, (4.248)

=

(
290

J

kg K

)
ln

(
1000 K

300 K

)
+

(
0.2

J

kg K2

)
((1000 K)− (300 K))

+

(
200

J

kg K

)
ln

(
0.0585 m3

kg

)
−
(
0.001 m3

kg

)

(
0.598 m3

kg

)
−
(
0.001 m3

kg

) , (4.249)

=

(
349

J

kg K

)
+

(
140

J

kg K

)
−
(
468

J

kg K

)
, (4.250)

= 21
J

kg K
, (4.251)

= 0.021
kJ

kg K
. (4.252)

Is the second law satisfied for each portion of the process? First look at 1 → 2:

u2 − u1 = 1q2 − 1w2, (4.253)

1q2 = u2 − u1 + 1w2, (4.254)

=

(∫ T2

T1

cv(T ) dT + a

(
1

v1
− 1

v2

))
+

(
RT1 ln

(
v2 − b

v1 − b

)
+ a

(
1

v2
− 1

v1

))
. (4.255)
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Recalling that T1 = T2 and canceling the terms in a, one gets

1q2 = RT1 ln

(
v2 − b

v1 − b

)
, (4.256)

=

(
200

J

kg K

)
(300 K) ln




(
0.0585 m3

kg

)
−
(
0.001 m3

kg

)

(
0.598 m3

kg

)
−
(
0.001 m3

kg

)


 , (4.257)

= −140408
J

kg
. (4.258)

Because the process is isothermal,

s2 − s1 = R ln

(
v2 − b

v1 − b

)
, (4.259)

=

(
200

J

kg K

)
ln




(
0.0585 m3

kg

)
−
(
0.001 m3

kg

)

(
0.598 m3

kg

)
−
(
0.001 m3

kg

)


 , (4.260)

= −468.0
J

kg K
. (4.261)

Entropy drops because heat was transferred out of the system.

Check the second law. In this portion of the process in which the heat is transferred out of the
system, that the surroundings must have Tsurr ≤ 300 K. For this portion of the process let us take
Tsurr = 300 K.

s2 − s1 ≥ 1q2
T

? (4.262)

−468.0
J

kg K
≥

−140408 J
kg

300 K
, (4.263)

−468.0
J

kg K
≥ −468.0

J

kg K
ok. (4.264)

Next look at 2 → 3:

2q3 = u3 − u2 + 2w3, (4.265)

=



∫ T3

T2

cv(T ) dT + a

(
1

v2
− 1

v3

)

︸ ︷︷ ︸
=0


+




∫ v3

v2

P dv

︸ ︷︷ ︸
=0


 , (4.266)

=

∫ T3

T2

cv(T ) dT, (4.267)

=

∫ 1000 K

300 K

((
290

J

kg K

)
+

(
0.2

J

kg K2

)
T

)
dT, (4.268)

= 294000
J

kg
. (4.269)
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Now look at the entropy change for the isochoric process:

s3 − s2 =

∫ T3

T2

cv(T )

T
dT , (4.270)

=

∫ T3

T2




(
290 J

kg K

)

T
+

(
0.2

J

kg K2

)
 dT , (4.271)

=

(
290

J

kg K

)
ln

(
1000 K

300 K

)
+

(
0.2

J

kg K2

)
((1000 K)− (300 K)), (4.272)

= 489
J

kg K
. (4.273)

Entropy rises because heat transferred into system.
In order to transfer heat into the system we must have a different thermal reservoir. This one must

have Tsurr ≥ 1000 K. Assume here that the heat transfer was from a reservoir held at 1000 K to assess
the influence of the second law.

s3 − s2 ≥ 2q3
T

? (4.274)

489
J

kg K
≥

294000 J
kg

1000 K
, (4.275)

489
J

kg K
≥ 294

J

kg K
, ok. (4.276)

4.6 Redlich-Kwong gas

The Redlich-Kwong equation of state is

P =
RT

v − b
− a

v(v + b)T 1/2
. (4.277)

It is modestly more accurate than the van der Waals equation in predicting material behavior.

Example 4.11
For the case in which b = 0, find an expression for u(T, v) consistent with the Redlich-Kwong state

equation.

Here the equation of state is now

P =
RT

v
− a

v2T 1/2
. (4.278)
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Proceeding as before, we have

∂u

∂v

∣∣∣∣
T

= T
∂P

∂T

∣∣∣∣
v

− P, (4.279)

= T

(
R

v
+

a

2v2T 3/2

)
−
(
RT

v
− a

v2T 1/2

)
, (4.280)

=
3a

2v2T 1/2
. (4.281)

Integrating, we find

u(T, v) = − 3a

2vT 1/2
+ f(T ). (4.282)

Here f(T ) is a yet-to-be-specified function of temperature only. Now the specific heat is found by the
temperature derivative of u:

cv(T, v) =
∂u

∂T

∣∣∣∣
v

=
3a

4vT 3/2
+
df

dT
. (4.283)

Obviously, for this material, cv is a function of both T and v.
Let us define cvo(T ) via

df

dT
≡ cvo(T ). (4.284)

Integrating, then one gets

f(T ) = C +

∫ T

To

cvo(T̂ ) dT̂ . (4.285)

Let us take C = uo+3a/2/vo/T
1/2
o . Thus we arrive at the following expressions for cv(T, v) and u(T, v):

cv(T, v) = cvo(T ) +
3a

4vT 3/2
, (4.286)

u(T, v) = uo +

∫ T

To

cvo(T̂ ) dT̂ +
3a

2

(
1

voT
1/2
o

− 1

vT 1/2

)
. (4.287)

4.7 Compressibility and generalized charts

A simple way to quantify the deviation from ideal gas behavior is to determine the so-called
compressibility Z, where

Z ≡ Pv

RT
. (4.288)
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For an ideal gas, Z = 1. For substances with a simple molecular structure, Z can be
tabulated as functions of the so-called reduced pressure Pr and reduced temperature Tr. Tr
and Pr are dimensionless variables found by scaling their dimensional counterparts by the
specific material’s temperature and pressure at the critical point, Tc and Pc:

Tr ≡
T

Tc
, Pr ≡

P

Pc

. (4.289)

Often charts are available which give predictions of all reduced thermodynamic properties.
These are most useful to capture the non-ideal gas behavior of materials for which tables are
not available.

4.8 Mixtures with variable composition

Consider now mixtures of N species. The focus here will be on extensive properties and
molar properties. Assume that each species has ni moles, and the total number of moles is
n =

∑N
i=1 ni. Now one might expect the extensive energy to be a function of the entropy,

the volume and the number of moles of each species:

U = U(V, S, ni). (4.290)

The extensive version of the Gibbs law in which all of the ni are held constant is

dU = −P dV + T dS. (4.291)

Thus
∂U

∂V

∣∣∣∣
S,ni

= −P, ∂U

∂S

∣∣∣∣
V,ni

= T. (4.292)

In general, because U = U(S, V, ni), one should expect, for systems in which the ni are
allowed to change that

dU =
∂U

∂V

∣∣∣∣
S,ni

dV +
∂U

∂S

∣∣∣∣
V,ni

dS +

N∑

i=1

∂U

∂ni

∣∣∣∣
S,V,nj

dni. (4.293)

Defining the new thermodynamics property, the chemical potential µi, as

µi ≡
∂U

∂ni

∣∣∣∣
S,V,nj

, (4.294)

one has the important Gibbs equation for multicomponent systems:

dU = −P dV + T dS +

N∑

i=1

µi dni. (4.295)
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Obviously, by its definition, µi is on a per mole basis, so it is given the appropriate overline
notation. In Eq. (4.295), the independent variables and their conjugates are

x1 = V, ψ1 = −P, (4.296)

x2 = S, ψ2 = T, (4.297)

x3 = n1, ψ3 = µ1, (4.298)

x4 = n2, ψ4 = µ2, (4.299)
...

...

xN+2 = nN , ψN+2 = µN . (4.300)

Equation (4.295) has 2N+1−1 Legendre functions. Three are in wide usage: the extensive
analog to those earlier found. They are

H = U + PV, (4.301)

A = U − TS, (4.302)

G = U + PV − TS. (4.303)

A set of non-traditional, but perfectly acceptable additional Legendre functions would be
formed from U − µ1n1. Another set would be formed from U + PV − µ2n2. There are
many more, but one in particular is sometimes noted in the literature: the so-called grand
potential, Ω. The grand potential is defined as

Ω ≡ U − TS −
N∑

i=1

µini. (4.304)

Differentiating each defined Legendre function, Eqs. (4.301-4.304), and combining with
Eq. (4.295), one finds

dH = T dS + V dP +

N∑

i=1

µi dni, (4.305)

dA = −S dT − P dV +
N∑

i=1

µi dni, (4.306)

dG = −S dT + V dP +

N∑

i=1

µi dni, (4.307)

dΩ = −P dV − S dT −
N∑

i=1

ni dµi. (4.308)

Thus, canonical variables for H are H = H(S, P, ni). One finds a similar set of relations as
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before from each of the differential forms:

T =
∂U

∂S

∣∣∣∣
V,ni

=
∂H

∂S

∣∣∣∣
P,ni

, (4.309)

P = − ∂U

∂V

∣∣∣∣
S,ni

= − ∂A

∂V

∣∣∣∣
T,ni

= − ∂Ω

∂V

∣∣∣∣
T,µi

, (4.310)

V =
∂H

∂P

∣∣∣∣
S,ni

=
∂G

∂P

∣∣∣∣
T,ni

, (4.311)

S = − ∂A

∂T

∣∣∣∣
V,ni

= − ∂G

∂T

∣∣∣∣
P,ni

= − ∂Ω

∂T

∣∣∣∣
V,µi

, (4.312)

ni = − ∂Ω

∂µi

∣∣∣∣
V,T,µj

, (4.313)

µi =
∂U

∂ni

∣∣∣∣
S,V,nj

=
∂H

∂ni

∣∣∣∣
S,P,nj

=
∂A

∂ni

∣∣∣∣
T,V,nj

=
∂G

∂ni

∣∣∣∣
T,P,nj

. (4.314)

Each of these induces a corresponding Maxwell relation, obtained by cross differentiation.
These are

∂T

∂V

∣∣∣∣
S,ni

= − ∂P

∂S

∣∣∣∣
V,ni

, (4.315)

∂T

∂P

∣∣∣∣
S,ni

=
∂V

∂S

∣∣∣∣
P,ni

, (4.316)

∂P

∂T

∣∣∣∣
V,ni

=
∂S

∂V

∣∣∣∣
T,ni

, (4.317)

∂V

∂T

∣∣∣∣
P,ni

= − ∂S

∂P

∣∣∣∣
T,ni

, (4.318)

∂µi

∂T

∣∣∣∣
P,nj

= − ∂S

∂ni

∣∣∣∣
V,nj

, (4.319)

∂µi

∂P

∣∣∣∣
T,nj

=
∂V

∂ni

∣∣∣∣
V,nj

, (4.320)

∂µl

∂nk

∣∣∣∣
T,P,nj

=
∂µk

∂nl

∣∣∣∣
T,P,nj

, (4.321)

∂S

∂V

∣∣∣∣
T,µi

=
∂P

∂T

∣∣∣∣
V,µi

, (4.322)

∂ni

∂µk

∣∣∣∣
V,T,µj ,j 6=k

=
∂nk

∂µi

∣∣∣∣
V,T,µj ,j 6=i

(4.323)
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4.9 Partial molar properties

4.9.1 Homogeneous functions

In mathematics, a homogeneous function f(x1, . . . , xN) of order m is one such that

f(λx1, . . . , λxN) = λmf(x1, . . . , xN). (4.324)

If m = 1, one has

f(λx1, . . . , λxN) = λf(x1, . . . , xN). (4.325)

Thermodynamic variables are examples of homogeneous functions.

4.9.2 Gibbs free energy

Consider an extensive property, such as the Gibbs free energy G. One has the canonical
form

G = G(T, P, n1, n2, . . . , nN ). (4.326)

One would like to show that if each of the mole numbers ni is increased by a common factor,
say λ, with T and P constant, that G increases by the same factor λ:

λG(T, P, n1, n2, . . . , nN) = G(T, P, λn1, λn2, . . . , λnN). (4.327)

Differentiate both sides of Eq. (4.327) with respect to λ, while holding P , T , and nj constant,
to get

G(T, P, n1, n2, . . . , nN) =

∂G

∂(λn1)

∣∣∣∣
nj ,P,T

d(λn1)

dλ
+

∂G

∂(λn2)

∣∣∣∣
nj ,P,T

d(λn2)

dλ
+ · · ·+ ∂G

∂(λnN )

∣∣∣∣
nj ,P,T

d(λnN)

dλ
, (4.328)

=
∂G

∂(λn1)

∣∣∣∣
nj ,P,T

n1 +
∂G

∂(λn2)

∣∣∣∣
nj ,P,T

n2 + · · ·+ ∂G

∂(λnN )

∣∣∣∣
nj ,P,T

nN , (4.329)

This must hold for all λ, including λ = 1, so one requires

G(T, P, n1, n2, . . . , nN) =
∂G

∂n1

∣∣∣∣
nj ,P,T

n1 +
∂G

∂n2

∣∣∣∣
nj ,P,T

n2 + · · ·+ ∂G

∂nN

∣∣∣∣
nj ,P,T

nN ,

(4.330)

=
N∑

i=1

∂G

∂ni

∣∣∣∣
nj ,P,T

ni. (4.331)

Recall now the definition partial molar property, the derivative of an extensive variable with
respect to species ni holding nj , i 6= j, T , and P constant. Because the result has units per
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mole, an overline superscript is utilized. The partial molar Gibbs free energy of species i, gi
is then

gi ≡
∂G

∂ni

∣∣∣∣
nj ,P,T

, (4.332)

so that

G =

N∑

i=1

gini. (4.333)

Using the definition of chemical potential, Eq. (4.314), one also notes then that

G(T, P, n1, n2, . . . , nN) =
N∑

i=1

µini. (4.334)

The temperature and pressure dependence of G must lie entirely within µi(T, P, nj), which
one notes is also allowed to be a function of nj as well. Consequently, one also sees that the
Gibbs free energy per unit mole of species i is the chemical potential of that species:

gi = µi. (4.335)

Using Eq. (4.333) to eliminate G in Eq. (4.303), one recovers an equation for the energy:

U = −PV + TS +

N∑

i=1

µini. (4.336)

4.9.3 Other properties

A similar result also holds for any other extensive property such as V , U , H , A, or S. One
can also show that

V =

N∑

i=1

ni
∂V

∂ni

∣∣∣∣
nj ,A,T

, (4.337)

U =

N∑

i=1

ni
∂U

∂ni

∣∣∣∣
nj ,V,S

(4.338)

H =
N∑

i=1

ni
∂H

∂ni

∣∣∣∣
nj ,P,S

, (4.339)

A =

N∑

i=1

ni
∂A

∂ni

∣∣∣∣
nj ,T,V

, (4.340)

S =
N∑

i=1

ni
∂S

∂ni

∣∣∣∣
nj ,U,T

. (4.341)

CC BY-NC-ND. 28 March 2025, J. M. Powers.

https://creativecommons.org/licenses/by-nc-nd/3.0/


4.9. PARTIAL MOLAR PROPERTIES 143

These expressions do not formally involve partial molar properties because P and T are not
constant.

Take now the appropriate partial molar derivatives of G for an ideal mixture of ideal
gases to get some useful relations:

G = H − TS, (4.342)

∂G

∂ni

∣∣∣∣
T,P,nj

=
∂H

∂ni

∣∣∣∣
T,P,nj

− T
∂S

∂ni

∣∣∣∣
T,P,nj

. (4.343)

Now from the definition of an ideal mixture hi = hi(T, P ), so one has

H =
N∑

k=1

nkhk(T, P ), (4.344)

∂H

∂ni

∣∣∣∣
T,P,nj

=
∂

∂ni

(
N∑

k=1

nkhk(T, P )

)
, (4.345)

=
N∑

k=1

∂nk

∂ni︸︷︷︸
=δik

hk(T, P ), (4.346)

=

N∑

k=1

δikhk(T, P ), (4.347)

= hi(T, P ). (4.348)

Here, the Kronecker delta function δki has been again used. Now for an ideal gas one further
has hi = hi(T ). The analysis is more complicated for the entropy, in which

S =
N∑

k=1

nk

(
soT,k −R ln

(
Pk

Po

))
, (4.349)

=

N∑

k=1

nk

(
soT,k −R ln

(
ykP

Po

))
, (4.350)

=
N∑

k=1

nk

(
soT,k − R ln

(
P

Po

)
− R ln

(
nk∑N
q=1 nq

))
, (4.351)

=

N∑

k=1

nk

(
soT,k −R ln

(
P

Po

))
− R

N∑

k=1

nk ln

(
nk∑N
q=1 nq

)
, (4.352)
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∂S

∂ni

∣∣∣∣
T,P,nj

=
∂

∂ni

N∑

k=1

nk

(
soT,k −R ln

(
P

Po

))

−R ∂

∂ni

∣∣∣∣
T,P,nj

(
N∑

k=1

nk ln

(
nk∑N
q=1 nq

))
, (4.353)

=

N∑

k=1

∂nk

∂ni︸︷︷︸
=δik

(
soT,k − R ln

(
P

Po

))

−R ∂

∂ni

∣∣∣∣
T,P,nj

(
N∑

k=1

nk ln

(
nk∑N
q=1 nq

))
, (4.354)

=

(
soT,i − R ln

(
P

Po

))
−R

∂

∂ni

∣∣∣∣
T,P,nj

(
N∑

k=1

nk ln

(
nk∑N
q=1 nq

))
. (4.355)

Evaluation of the final term on the right side requires closer examination, and in fact, after
tedious but straightforward analysis, yields a simple result which can easily be verified by
direct calculation:

∂

∂ni

∣∣∣∣
T,P,nj

(
N∑

k=1

nk ln

(
nk∑N
q=1 nq

))
= ln

(
ni∑N
q=1 nq

)
. (4.356)

So the partial molar entropy is in fact

∂S

∂ni

∣∣∣∣
T,P,nj

= soT,i −R ln

(
P

Po

)
−R ln

(
ni∑N
q=1 nq

)
, (4.357)

= soT,i −R ln

(
P

Po

)
−R ln yi, (4.358)

= soT,i −R ln

(
Pi

Po

)
, (4.359)

= si (4.360)

Thus, one can in fact claim for the ideal mixture of ideal gases that

gi = hi − Tsi. (4.361)

4.9.4 Relation between mixture and partial molar properties

A simple analysis shows how the partial molar property for an individual species is related
to the partial molar property for the mixture. Consider, for example, the Gibbs free energy.
The mixture-averaged Gibbs free energy per unit mole is

g =
G

n
. (4.362)
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Now take a partial molar derivative and analyze to get

∂g

∂ni

∣∣∣∣
T,P,nj

=
1

n

∂G

∂ni

∣∣∣∣
T,P,nj

− G

n2

∂n

∂ni

∣∣∣∣
T,P,nj

, (4.363)

=
1

n

∂G

∂ni

∣∣∣∣
T,P,nj

− G

n2

∂

∂ni

∣∣∣∣
T,P,nj

(
N∑

k=1

nk

)
, (4.364)

=
1

n

∂G

∂ni

∣∣∣∣
T,P,nj

− G

n2

N∑

k=1

∂nk

∂ni

∣∣∣∣
T,P,nj

, (4.365)

=
1

n

∂G

∂ni

∣∣∣∣
T,P,nj

− G

n2

N∑

k=1

δik, (4.366)

=
1

n

∂G

∂ni

∣∣∣∣
T,P,nj

− G

n2
, (4.367)

=
1

n
gi −

g

n
. (4.368)

Multiplying by n and rearranging, one gets

gi = g + n
∂g

∂ni

∣∣∣∣
T,P,nj

. (4.369)

A similar result holds for other properties.

4.10 Irreversible entropy production in a closed system

Consider a multicomponent thermodynamic system closed to mass exchanges with its sur-
roundings coming into equilibrium. Allow the system to be exchanging work and heat with
its surroundings. Assume the temperature difference between the system and its surround-
ings is so small that both can be considered to be at temperature T . If δQ is introduced
into the system, then the surroundings suffer a loss of entropy:

dSsurr = −δQ
T
. (4.370)

The system’s entropy S can change via this heat transfer, as well as via other internal
irreversible processes, such as internal chemical reaction. The second law of thermodynamics
requires that the entropy change of the universe be positive semi-definite:

dS + dSsurr ≥ 0. (4.371)

Eliminating dSsurr, one requires for the system that

dS ≥ δQ

T
. (4.372)
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Consider temporarily the assumption that the work and heat transfer are both reversible.
Thus, the irreversible entropy production must be associated with internal chemical reaction.
Now the first law for the entire system gives

dU = δQ− δW, (4.373)

= δQ− P dV, (4.374)

δQ = dU + P dV. (4.375)

Because the system is closed, there can be no species entering or exiting, and so there is
no change dU attributable to dni. While within the system the dni may not be 0, the net
contribution to the change in total internal energy is zero. A non-zero dni within the system
simply re-partitions a fixed amount of total energy from one species to another. Substituting
Eq. (4.375) into Eq. (4.372) to eliminate δQ, one gets

dS ≥ 1

T
(dU + P dV )︸ ︷︷ ︸

=δQ

, (4.376)

T dS − dU − P dV ≥ 0, (4.377)

dU − T dS + P dV ≤ 0. (4.378)

Eq. (4.378) involves properties only and need not require assumptions of reversibility for
processes in its derivation. In special cases, it reduces to simpler forms.

For processes which are isentropic and isochoric, the second law expression, Eq. (4.378),
reduces to

dU |S,V ≤ 0. (4.379)

For processes which are isoenergetic and isochoric, the second law expression, Eq. (4.378),
reduces to

dS|U,V ≥ 0. (4.380)

Now using Eq. (4.295) to eliminate dS in Eq. (4.380), one can express the second law as

(
1

T
dU +

P

T
dV − 1

T

N∑

i=1

µi dni

)

︸ ︷︷ ︸
=dS

∣∣∣∣∣∣∣∣∣
U,V

≥ 0, (4.381)

− 1

T

N∑

i=1

µi dni

︸ ︷︷ ︸
irreversible entropy production

≥ 0. (4.382)

The irreversible entropy production associated with the internal chemical reaction must be
the left side of Eq. (4.382). Often the irreversible entropy production is defined as σ, with
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the second law requiring dσ ≥ 0. Equation (4.382) in terms of dσ is

dσ = − 1

T

N∑

i=1

µi dni ≥ 0. (4.383)

Now, while most standard texts focusing on equilibrium thermodynamics go to great lengths
to avoid the introduction of time, it really belongs in a discussion describing the approach
to equilibrium. One can divide Eq. (4.382) by a positive time increment dt to get

− 1

T

N∑

i=1

µi

dni

dt
≥ 0. (4.384)

Because T ≥ 0, one can multiply Eq. (4.384) by −T to get

N∑

i=1

µi

dni

dt
≤ 0. (4.385)

This will hold if a model for dni/dt is employed which guarantees that the left side of
Eq. (4.385) is negative semi-definite. One will expect then for dni/dt to be related to the
chemical potentials µi.

Elimination of dU in Eq. (4.378) in favor of dH from dH = dU + P dV + V dP gives

dH − P dV − V dP︸ ︷︷ ︸
=dU

−T dS + P dV ≤ 0, (4.386)

dH − V dP − T dS ≤ 0. (4.387)

Thus, one finds for isobaric, isentropic equilibration that

dH|P,S ≤ 0. (4.388)

For the Helmholtz and Gibbs free energies, one analogously finds

dA|T,V ≤ 0, (4.389)

dG|T,P ≤ 0. (4.390)

The expression of the second law in terms of dG is especially useful as it may be easy in an
experiment to control so that P and T are constant. This is especially true in an isobaric
phase change, in which the temperature is guaranteed to be constant as well.

Now one has

G =

N∑

i=1

nigi, (4.391)

=
N∑

i=1

niµi. (4.392)
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One also has from Eq. (4.307): dG = −S dT+V dP+
∑N

i=1 µi dni, holding T and P constant
that

dG|T,P =

N∑

i=1

µi dni. (4.393)

Here the dni are associated entirely with internal chemical reactions. Substituting Eq. (4.393)
into Eq. (4.390), one gets the important version of the second law which holds that

dG|T,P =

N∑

i=1

µi dni ≤ 0. (4.394)

In terms of time rates of change, one can divide Eq. (4.394) by a positive time increment
dt > 0 to get

∂G

∂t

∣∣∣∣
T,P

=

N∑

i=1

µi

dni

dt
≤ 0. (4.395)

4.11 Equilibrium in a two-component system

A major task of non-equilibrium thermodynamics is to find a functional form for dni/dt
which guarantees satisfaction of the second law, Eq. (4.395) and gives predictions which
agree with experiment. This will be discussed in more detail in the following chapter on
thermochemistry. At this point, some simple examples will be given in which a näıve but
useful functional form for dni/dt is posed which leads at least to predictions of the correct
equilibrium values. A much better model which gives the correct dynamics in the time
domain of the system as it approaches equilibrium will be presented in the chapter on
thermochemistry.

4.11.1 Phase equilibrium

Here, consider two examples describing systems in phase equilibrium.

Example 4.12
Consider an equilibrium two-phase mixture of liquid and vapor H2O at T = 100 ◦C, x = 0.5. Use

the steam tables to check if equilibrium properties are satisfied.

In a two-phase gas liquid mixture one can expect the following reaction:

H2O(l) ⇌ H2O(g). (4.396)

That is one mole of liquid, in the forward phase change, evaporates to form one mole of gas. In the
reverse phase change, one mole of gas condenses to form one mole of liquid.
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Because T is fixed at 100 ◦C and the material is a two phase mixture, the pressure is also fixed at a
constant. Here there are two phases at saturation; g for gas and l for liquid. Equation (4.394) reduces
to

µl dnl + µg dng ≤ 0. (4.397)

Now for the pure H2O if a loss of moles from one phase must be compensated by the addition to
another. So one must have

dnl + dng = 0. (4.398)

Hence
dng = −dnl. (4.399)

So Eq. (4.397), using Eq. (4.399) becomes

µl dnl − µg dnl ≤ 0, (4.400)

dnl(µl − µg) ≤ 0. (4.401)

At this stage of the analysis, most texts, grounded in equilibrium thermodynamics, assert that µl = µg,
ignoring the fact that they could be different but dnl could be zero. That approach will not be taken
here. Instead divide Eq. (4.401) by a positive time increment, dt ≥ 0 to write the second law as

dnl
dt

(µl − µg) ≤ 0. (4.402)

One convenient, albeit näıve, way to guarantee second law satisfaction is to let

dnl
dt

= −κ(µl − µg), κ ≥ 0, convenient, but näıve model (4.403)

Here κ is some positive semi-definite scalar rate constant which dictates the time scale of approach to
equilibrium. Note that Eq. (4.403) is just a hypothesized model. It has no experimental verification; in
fact, other more complex models exist which both agree with experiment and satisfy the second law.
For the purposes of the present argument, however, Eq. (4.403) will suffice. With this assumption, the
second law reduces to

−κ(µl − µg)
2 ≤ 0, κ ≥ 0, (4.404)

which is always true.
Eq. (4.403) has three important consequences:

• Differences in chemical potential drive changes in the number of moles.

• The number of moles of liquid, nl, increases when the chemical potential of the liquid is less than that
of the gas, µl < µg. That is to say, when the liquid has a lower chemical potential than the gas, the
gas is driven towards the phase with the lower potential. Because such a phase change is isobaric and
isothermal, the Gibbs free energy is the appropriate variable to consider, and one takes µ = g. When
this is so, the Gibbs free energy of the mixture, G = nlµl + ngµg is being driven to a lower value. So
when dG = 0, the system has a minimum G.

• The system is in equilibrium when the chemical potentials of liquid and gas are equal: µl = µg.

The chemical potentials, and hence the molar specific Gibbs free energies must be the same for
each constituent of the binary mixture at the phase equilibrium. That is

gl = gg. (4.405)

Now because both the liquid and gas have the same molecular mass, one also has the mass specific
Gibbs free energies equal at phase equilibrium:

gl = gg. (4.406)
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This can be verified from the steam tables, using the definition g = h− Ts. From the tables

gl = hl − Tsl = 419.02
kJ

kg
− ((100 + 273.15) K)

(
1.3068

kJ

kg K

)
= −68.6

kJ

kg
, (4.407)

gg = hg − Tsg = 2676.05
kJ

kg
− ((100 + 273.15) K)

(
7.3548

kJ

kg K

)
= −68.4

kJ

kg
. (4.408)

The two values are essentially the same; the difference is likely due to table inaccuracies.

Let us look at this in another way that does not require a näıve model for dnl/dt. Say at t = 0,
we have no moles of vapor and zero moles of liquid. Then, as a phase transition occurs, we might
instantaneously have nl moles of liquid and no− nl moles of vapor. Then the total G of the mixture is

G = nlgl + nggg = nlgl + (no − nl)gg. (4.409)

To extremize G, we must have

dG

dnl
= gl − gg = 0, (4.410)

gl = gg, (4.411)

gl = gg. (4.412)

Example 4.13
This example is adopted from BS. A container has liquid water at 20 ◦C, 100 kPa, in equilibrium

with a mixture of water vapor and dry air, also at 20 ◦C, 100 kPa. Find the water vapor pressure and
the saturated water vapor pressure.

Now at this temperature, the tables easily show that the pressure of a saturated vapor is Psat =

2.339 kPa . From the previous example, it is known that for the water liquid and vapor in equilibrium,
one has

gliq = gvap. (4.413)

Now if both the liquid and the vapor were at the saturated state, they would be in phase equilibrium
and that would be the end of the problem. But they have slight deviations from the saturated state.
One can estimate these deviations with the standard formula

dg = −s dT + v dP. (4.414)

The tables will be used to get values at 20 ◦C, for which one can take dT = 0. This allows the
approximation of dg ∼ v dP . So for the liquid,

gliq − gf =

∫
v dP ∼ vf (P − Psat), (4.415)

gliq = gf + vf (P − Psat). (4.416)
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For the vapor, approximated here as an ideal gas, one has

gvap − gg =

∫
v dP, (4.417)

= RT

∫
dP

P
, (4.418)

= RT ln
Pvap
Psat

, (4.419)

gvap = gg +RT ln
Pvap
Psat

. (4.420)

Here, once again, one allows for deviations of the pressure of the vapor from the saturation pressure.
Now at equilibrium, one enforces gliq = gvap, so one has

gf + vf (P − Psat)︸ ︷︷ ︸
=gliq

= gg +RT ln
Pvap
Psat︸ ︷︷ ︸

=gvap

. (4.421)

Now gf = gg, so one gets

vf (P − Psat) = RT ln
Pvap
Psat

. (4.422)

Solving for Pvap, one gets

Pvap = Psat exp

(
vf (P − Psat)

RT

)
, (4.423)

= (2.339 kPa) exp




(
0.001002 m3

kg

)
(100 kPa− 2.339 kPa)

(
0.4615 kJ

kg K

)
(293.15 K)


 , (4.424)

= 2.3407 kPa. (4.425)

The pressure is very near the saturation pressure. This justifies assumptions that for such mixtures, one
can take the pressure of the water vapor to be that at saturation if the mixture is in equilibrium. If the
pressure is higher, the pressure of the vapor becomes higher as well. Figure 4.1 shows how the pressure
of the equilibrium vapor pressure varies with total pressure. Clearly, a very high total pressure, on the
order of 1 GPa is needed to induce the vapor pressure to deviate significantly from the saturation value.

4.11.2 Chemical equilibrium: introduction

Here consider two examples which identify the equilibrium state of a chemically reactive
system.

4.11.2.1 Isothermal, isochoric system

The simplest system to consider is isothermal and isochoric. The isochoric assumption
implies there is no work in coming to equilibrium.
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Figure 4.1: Pressure of water vapor as a function of total pressure for example problem.

Example 4.14
At high temperatures, collisions between diatomic nitrogen molecules induce the production of

monatomic nitrogen molecules. The chemical reaction can be described by the model

N2 +N2 ⇌ 2N + N2. (4.426)

Here one of the N2 molecules behaves as an inert third body. An N2 molecule has to collide with
something, to induce the reaction. Some authors leave out the third body and write instead N2 ⇌ 2N,
but this does not reflect the true physics as well. The inert third body is especially important when
the time scales of reaction are considered. It plays no role in equilibrium chemistry.

Consider 1 kmole of N2 and 0 kmole of N at a pressure of 100 kPa and a temperature of 6000 K.
Using the ideal gas tables, find the equilibrium concentrations of N and N2 if the equilibration process
is isothermal and isochoric.

The ideal gas law can give the volume.

P1 =
nN2

RT

V
, (4.427)

V =
nN2

RT

P1
, (4.428)

=
(1 kmole)

(
8.314 kJ

kmole K

)
(6000 K)

100 kPa
, (4.429)

= 498.84 m3. (4.430)

Initially, the mixture is all N2, so its partial pressure is the total pressure, and the initial partial pressure
of N is 0.
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Now every time an N2 molecule reacts and thus undergo a negative change, 2 N molecules are
created and thus undergo a positive change, so

−dnN2
=

1

2
dnN. (4.431)

This can be parameterized by a reaction progress variable ζ, also called the degree of reaction, defined
such that

dζ = −dnN2
, (4.432)

=
1

2
dnN. (4.433)

As an aside, one can integrate this, taking ζ = 0 at the initial state to get

ζ = nN2
|t=0 − nN2

, (4.434)

=
1

2
nN. (4.435)

Thus

nN2
= nN2

|t=0 − ζ, (4.436)

nN = 2ζ. (4.437)

One can also eliminate ζ to get nN in terms of nN2
:

nN = 2 (nN2
|t=0 − nN2

) . (4.438)

Now for the reaction, one must have, for second law satisfaction, that

µN2
dnN2

+ µN dnN ≤ 0, (4.439)

µN2
(−dζ) + µN (2 dζ) ≤ 0, (4.440)(
−µN2

+ 2µN

)
dζ ≤ 0 (4.441)

(
−µN2

+ 2µN

) dζ
dt

≤ 0. (4.442)

In order to satisfy the second law, one can usefully, but näıvely, hypothesize that the non-equilibrium
reaction kinetics are given by

dζ

dt
= −k(−µN2

+ 2µN), k ≥ 0, convenient, but näıve model (4.443)

There are other ways to guarantee second law satisfaction. In fact, a more complicated model is well
known to fit data well, and will be studied later. For the present purposes, this näıve model will suffice.
With this assumption, the second law reduces to

−k(−µN2
+ 2µN)

2 ≤ 0, k ≥ 0, (4.444)

which is always true. Obviously, the reaction ceases when dζ/dt = 0, which holds only when

2µN = µN2
. (4.445)

Away from equilibrium, for the reaction to go forward, one must expect dζ/dt > 0, and then one
must have

−µN2
+ 2µN ≤ 0, (4.446)

2µN ≤ µN2
. (4.447)
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The chemical potentials are the molar specific Gibbs free energies; thus, for the reaction to go forward,
one must have

2gN ≤ gN2
. (4.448)

Substituting using the definitions of Gibbs free energy, one gets

2
(
hN − T sN

)
≤ hN2

− T sN2
, (4.449)

2

(
hN − T

(
soT,N −R ln

(
yNP

Po

)))
≤ hN2

− T

(
soT,N2

−R ln

(
yN2

P

Po

))
, (4.450)

2
(
hN − T soT,N

)
−
(
hN2

− T soT,N2

)
≤ −2RT ln

(
yNP

Po

)
+RT ln

(
yN2

P

Po

)
, (4.451)

−2
(
hN − T soT,N

)
+
(
hN2

− T soT,N2

)
≥ 2RT ln

(
yNP

Po

)
−RT ln

(
yN2

P

Po

)
, (4.452)

≥ RT ln

(
y2NP

2

P 2
o

Po
PyN2

)
, (4.453)

≥ RT ln

(
y2N
yN2

P

Po

)
. (4.454)

At the initial state, one has yN = 0, so the right hand side approaches −∞, and the inequality holds.
At equilibrium, one has equality.

−2
(
hN − T soT,N

)
+
(
hN2

− T soT,N2

)
= RT ln

(
y2N
yN2

P

Po

)
. (4.455)

Taking numerical values from Table A.9:

−2

(
5.9727× 105

kJ

kmole
− (6000 K)

(
216.926

kJ

kmole K

))
+

(
2.05848× 105

kJ

kmole
− (6000 K)

(
292.984

kJ

kmole K

))

=

(
8.314

kJ

kmole K

)
(6000 K) ln

(
y2N
yN2

P

Po

)
,

(4.456)

−2.87635︸ ︷︷ ︸
≡lnKP

= ln

(
y2N
yN2

P

Po

)
, (4.457)

0.0563399︸ ︷︷ ︸
≡KP

=
y2N
yN2

P

Po
, (4.458)

=

(
nN

nN+nN2

)2
(

nN2

nN+nN2

) (nN + nN2
)
RT

PoV
, (4.459)

=
n2
N

nN2

RT

PoV
, (4.460)

=
(2 (nN2

|t=0 − nN2
))

2

nN2

RT

PoV
, (4.461)

=
(2 (1 kmole− nN2

))2

nN2

(8.314)(6000)

(100)(498.84)
.(4.462)
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This is a quadratic equation for nN2
. It has two roots

nN2
= 0.888154 kmole physical; nN2

= 1.12593 kmole, non-physical. (4.463)

The second root generates more N2 than at the start, and also yields non-physically negative nN =
−0.25186 kmole. So at equilibrium, the physical root is

nN = 2(1− nN2
) = 2(1− 0.888154) = 0.223693 kmole. (4.464)

The diatomic species is preferred.
In the preceding analysis, the termKP was introduced. This is the so-called equilibrium “constant”

which is really a function of temperature. It will be described in more detail later, but one notes that it
is commonly tabulated for some reactions. Its tabular value can be derived from the more fundamental
quantities shown in this example. BS’s Table A.11 gives for this reaction at 6000 K the value of
lnKP = −2.876. Note that KP is fundamentally defined in terms of thermodynamic properties for a
system which may or may not be at chemical equilibrium. Only at chemical equilibrium, can it can
further be related to mole fraction and pressure ratios.

The pressure at equilibrium is

P2 =
(nN2

+ nN)RT

V
, (4.465)

=
(0.888154 kmole + 0.223693 kmole)

(
8.314 kJ

kmole K

)
(6000 K)

498.84
, (4.466)

= 111.185 kPa. (4.467)

The pressure has increased because there are more molecules with the volume and temperature being
equal.

The molar concentrations ρi at equilibrium, are

ρN =
0.223693 kmole

498.84 m3
= 4.484× 10−4 kmole

m3
= 4.484× 10−7 mole

cm3
, (4.468)

ρN2
=

0.888154 kmole

498.84 m3
= 1.78044× 10−3 kmole

m3
= 1.78044× 10−6 mole

cm3
. (4.469)

Now consider the heat transfer. One knows for the isochoric process that 1Q2 = U2 − U1. The
initial energy is given by

U1 = nN2
uN2

, (4.470)

= nN2
(hN2

−RT ), (4.471)

= (1 kmole)

(
2.05848× 105

kJ

kmole
−
(
8.314

kJ

kmole K

)
(6000 K)

)
, (4.472)

= 1.555964× 105 kJ. (4.473)

The energy at the final state is

U2 = nN2
uN2

+ nNuN, (4.474)

= nN2
(hN2

−RT ) + nN(hN −RT ), (4.475)

= (0.888154 kmole)

(
2.05848× 105

kJ

kmole
−
(
8.314

kJ

kmole K

)
(6000 K)

)

+(0.223693 kmole)

(
5.9727× 105

kJ

kmole
−
(
8.314

kJ

kmole K

)
(6000 K)

)
, (4.476)

= 2.60966× 105 kJ. (4.477)
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So

1Q2 = U2 − U1, (4.478)

= 2.60966× 105 kJ− 1.555964× 105 kJ, (4.479)

= 1.05002× 105 kJ. (4.480)

Heat needed to be added to keep the system at the constant temperature. This is because the nitrogen
dissociation process is endothermic.

One can check for second law satisfaction in two ways. Fundamentally, one can demand that
Eq. (4.372), dS ≥ δQ/T , be satisfied for the process, giving

S2 − S1 ≥
∫ 2

1

δQ

T
. (4.481)

For this isothermal process, this reduces to

S2 − S1 ≥ 1Q2

T
, (4.482)

(nN2
sN2

+ nNsN)|2
− (nN2

sN2
+ nNsN)|1 ≥ 1Q2

T
, (4.483)

(
nN2

(
soT,N2

−R ln

(
yN2

P

Po

))
+ nN

(
soT,N −R ln

(
yNP

Po

)))∣∣∣∣
2

−
(
nN2

(
soT,N2

−R ln

(
yN2

P

Po

))
+ nN

(
soT,N −R ln

(
yNP

Po

)))∣∣∣∣
1

≥ 1Q2

T
, (4.484)

(
nN2

(
soT,N2

−R ln

(
PN2

Po

))
+ nN

(
soT,N −R ln

(
PN

Po

)))∣∣∣∣
2

−
(
nN2

(
soT,N2

−R ln

(
PN2

Po

))
+ nN

(
soT,N −R ln

(
PN

Po

)))∣∣∣∣
1

≥ 1Q2

T
, (4.485)

(
nN2

(
soT,N2

−R ln

(
nN2

RT

PoV

))
+ nN

(
soT,N −R ln

(
nNRT

PoV

)))∣∣∣∣
2

−


nN2

(
soT,N2

−R ln

(
nN2

RT

PoV

))
+ nN︸︷︷︸

=0

(
soT,N −R ln

(
nNRT

PoV

))

∣∣∣∣∣∣
1

≥ 1Q2

T
. (4.486)

Now at the initial state nN = 0 kmole, and RT/Po/V has a constant value of

RT

PoV
=

(
8.314 kJ

kmole K

)
(6000 K)

(100 kPa)(498.84 m3)
= 1

1

kmole
, (4.487)

so Eq. (4.486) reduces to
(
nN2

(
soT,N2

−R ln
( nN2

1 kmole

))
+ nN

(
soT,N −R ln

( nN

1 kmole

)))∣∣∣
2

−
(
nN2

(
soT,N2

−R ln
( nN2

1 kmole

)))∣∣∣
1

≥ 1Q2

T
,

(4.488)

((0.888143) (292.984− 8.314 ln (0.88143)) + (0.223714) (216.926− 8.314 ln (0.223714)))|2
− ((1) (292.984− 8.314 ln (1)))|1 ≥ 105002

6000
,

(4.489)

19.4181
kJ

K
≥ 17.5004

kJ

K
. (4.490)
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Indeed, the second law is satisfied. Moreover the irreversible entropy production of the chemical reaction
is 19.4181− 17.5004 = +1.91772 kJ/K.

For the isochoric, isothermal process, it is also appropriate to use Eq. (4.389), dA|T,V ≤ 0, to
check for second law satisfaction. This turns out to give an identical result. Because by Eq. (4.302),
A = U − TS, A2 − A1 = (U2 − T2S2) − (U1 − T1S1). Because the process is isothermal, A2 − A1 =
U2−U1−T (S2−S1). ForA2−A1 ≤ 0, one must demand U2−U1−T (S2−S1) ≤ 0, or U2−U1 ≤ T (S2−S1),
or S2 − S1 ≥ (U2 − U1)/T . Because 1Q2 = U2 − U1 for this isochoric process, one then recovers
S2 − S1 ≥ 1Q2/T.

4.11.2.2 Isothermal, isobaric system

Allowing for isobaric rather than isochoric equilibration introduces small variation in the
analysis.

Example 4.15
Consider the same reaction

N2 +N2 ⇌ 2N + N2. (4.491)

for an isobaric and isothermal process. That is, consider 1 kmole of N2 and 0 kmole of N at a pressure
of 100 kPa and a temperature of 6000 K. Using the ideal gas tables, find the equilibrium concentrations
of N and N2 if the equilibration process is isothermal and isobaric.

The initial volume is the same as from the previous example:

V1 = 498.84 m3. (4.492)

The volume will change in this isobaric process. Initially, the mixture is all N2, so its partial pressure
is the total pressure, and the initial partial pressure of N is 0.

A few other key results are identical to the previous example:

nN = 2 (nN2
|t=0 − nN2

) , (4.493)

and
2gN ≤ gN2

. (4.494)

Substituting using the definitions of Gibbs free energy, one gets

2
(
hN − T sN

)
≤ hN2

− T sN2
, (4.495)

2

(
hN − T

(
soT,N −R ln

(
yNP

Po

)))
≤ hN2

− T

(
soT,N2

−R ln

(
yN2

P

Po

))
, (4.496)

2
(
hN − T soT,N

)
−
(
hN2

− T soT,N2

)
≤ −2RT ln

(
yNP

Po

)
+RT ln

(
yN2

P

Po

)
, (4.497)

−2
(
hN − T soT,N

)
+
(
hN2

− T soT,N2

)
≥ 2RT ln

(
yNP

Po

)
−RT ln

(
yN2

P

Po

)
, (4.498)

≥ RT ln

(
y2NP

2

P 2
o

Po
PyN2

)
. (4.499)
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In this case Po = P , so one gets

−2
(
hN − T soT,N

)
+
(
hN2

− T soT,N2

)
≥ RT ln

(
y2N
yN2

)
. (4.500)

At the initial state, one has yN = 0, so the right hand side approaches −∞, and the inequality holds.
At equilibrium, one has equality.

−2
(
hN − T soT,N

)
+
(
hN2

− T soT,N2

)
= RT ln

(
y2N
yN2

)
. (4.501)

Taking numerical values from Table A.9:

−2

(
5.9727× 105

kJ

kmole
− (6000 K)

(
216.926

kJ

kg K

))
+

(
2.05848× 105

kJ

kmole
− (6000 K)

(
292.984

kJ

kg K

))

=

(
8.314

kJ

kmole K

)
(6000 K) ln

(
y2N
yN2

)
,

(4.502)

−2.87635︸ ︷︷ ︸
≡lnKP

= ln

(
y2N
yN2

)
, (4.503)

0.0563399︸ ︷︷ ︸
≡KP

=
y2N
yN2

, (4.504)

=

(
nN

nN+nN2

)2
(

nN2

nN+nN2

) , (4.505)

=
n2
N

nN2
(nN + nN2

)
, (4.506)

=
(2 (nN2

|t=0 − nN2
))

2

nN2
(2 (nN2

|t=0 − nN2
) + nN2

)
, (4.507)

=
(2 (1 kmole− nN2

))
2

nN2
(2 (1 kmole− nN2

) + nN2
)
. (4.508)

This is a quadratic equation for nN2
. It has two roots

nN2
= 0.882147 kmole physical; nN2

= 1.11785 kmole, non-physical. (4.509)

The second root generates more N2 than at the start, and also yields non-physically negative nN =
−0.235706 kmole. So at equilibrium, the physical root is

nN = 2(1− nN2
) = 2(1− 0.882147) = 0.235706 kmole. (4.510)

Again, the diatomic species is preferred. As the temperature is raised, one could show that the
monatomic species would come to dominate.

The volume at equilibrium is

V2 =
(nN2

+ nN)RT

P
, (4.511)

=
(0.882147 kmole + 0.235706 kmole)

(
8.314 kJ

kmole K

)
(6000 K)

100 kPa
, (4.512)

= 557.630 m3. (4.513)
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The volume has increased because there are more molecules with the pressure and temperature being
equal.

The molar concentrations ρi at equilibrium, are

ρN =
0.235706 kmole

557.636 m3
= 4.227× 10−4 kmole

m3
= 4.227× 10−7 mole

cm3
, (4.514)

ρN2
=

0.882147 kmole

557.636 m3
= 1.58196× 10−3 kmole

m3
= 1.58196× 10−6 mole

cm3
. (4.515)

The molar concentrations are a little smaller than for the isochoric case, mainly because the volume is
larger at equilibrium.

Now consider the heat transfer. One knows for the isobaric process that 1Q2 = H2 − H1. The
initial enthalpy is given by

H1 = nN2
hN2

= (1 kmole)

(
2.05848× 105

kJ

kmole

)
= 2.05848× 105 kJ. (4.516)

The enthalpy at the final state is

H2 = nN2
hN2

+ nNhN, (4.517)

= (0.882147 kmole)

(
2.05848× 105

kJ

kmole

)
+ (0.235706 kmole)

(
5.9727× 105

kJ

kmole

)
,(4.518)

= 3.22368× 105 kJ. (4.519)

So

1Q2 = H2 −H1 = 3.22389× 105 kJ− 2.05848× 105 kJ = 1.16520× 105 kJ. (4.520)

Heat needed to be added to keep the system at the constant temperature. This is because the nitrogen
dissociation process is endothermic. Relative to the isochoric process, more heat had to be added to
maintain the temperature. This to counter the cooling effect of the expansion.

Lastly, it is a straightforward exercise to show that the second law is satisfied for this process.

4.11.3 Equilibrium condition

The results of both of the previous examples, in which a functional form of a progress
variable’s time variation, dζ/dt, was postulated in order to satisfy the second law gave a
condition for equilibrium. This can be generalized so as to require at equilibrium that

N∑

i=1

µiνi

︸ ︷︷ ︸
≡−α

= 0. (4.521)

Here νi represents the net number of moles of species i generated in the forward reaction.
This negation of the term on the left side of Eq (4.521) is sometimes defined as the chemical
affinity, α:

α ≡ −
N∑

i=1

µiνi. (4.522)
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So in the phase equilibrium example, Eq. (4.521) becomes

µl(−1) + µg(1) = 0. (4.523)

In the nitrogen chemistry example, Eq. (4.521) becomes

µN2
(−1) + µN(2) = 0. (4.524)

This will be discussed in detail in the following chapter.
Determining the equilibrium concentrations of chemically reacting mixtures is of founda-

tional importance in combustion, high speed aerodynamics, physical chemistry, and atmo-
spheric science. At high temperatures, such as might exist in a internal combustion engine,
a turbojet engine, or in the air surrounding an atmospheric re-entry vehicle, the chemical
composition of air is a strong function of the local temperature. This has profound effects
on engineering design. The chemical equilibrium behavior of the components of air is clearly
displayed in Fig. 4.2. Here we see at low temperatures, T < 1000 K, diatomic N2 and O2 are

Figure 4.2: Equilibrium composition of air at low density and various temperatures. Figure
from W. E. Moeckel and K. C. Weston, 1958, Composition and thermodynamic properties
of air in chemical equilibrium, NACA Technical Note 4265.

dominant in air. Both of these major components begin to dissociate at higher temperatures.
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For T > 6000 K, we no longer find diatomic N2 and O2, but instead find their monatomic
components N and O. At higher temperatures still, the molecule loses electrons, and positive
ions remain.
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Chapter 5

Thermochemistry of a single reaction

Read BS, Chapters 13, 14.
See Powers, 2016, Chapter 4.
See Abbott and Van Ness, Chapter 7.
See Kondepudi and Prigogine, Chapters 4, 5, 7, 9.
See Turns and Hawarth, Chapter 2.
See Kuo, Chapters 1, 2.

This chapter will further develop notions associated with the thermodynamics of chemical
reactions. The focus will be on single chemical reactions.

5.1 Molecular mass

The molecular mass of a molecule is a straightforward notion from chemistry. One simply
sums the product of the number of atoms and each atom’s atomic mass to form the molecular
mass. If one defines L as the number of elements present in species i, φli as the number of
moles of atomic element l in species i, and Ml as the atomic mass of element l, the molecular
mass Mi of species i

Mi =
L∑

l=1

Mlφli, i = 1, . . . , N. (5.1)

In vector form, one would say

MT = MT · φ, or M = φT · M. (5.2)

Here M is the vector of length N containing the molecular masses, M is the vector of length
L containing the elemental masses, and φ is the matrix of dimension L×N containing the
number of moles of each element in each species. We can call it the species-element matrix.
Generally, φ is full rank. If N > L, φ has rank L. If N < L, φ has rank N . In any problem
involving an actual chemical reaction, one will find N ≥ L, and in most cases N > L. In
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isolated problems not involving a reaction, one may have N < L. In any case, M lies in the
column space of φT , which is the row space of φ.

Example 5.1
Find the molecular mass of H2O.

Here, one has two elements H and O, so L = 2, and one species, so N = 1; thus, in this isolated
problem, N < L. Take i = 1 for species H2O. Take l = 1 for element H. Take l = 2 for element O.
From the periodic table, one gets M1 = 1 kg/kmole for H, M2 = 16 kg/kmole for O. For element 1,
there are 2 atoms, so φ11 = 2. For element 2, there is 1 atom so φ21 = 1. So the molecular mass of
species 1, H2O is

M1 =
(
M1 M2

)(φ11
φ21

)
, (5.3)

= M1φ11 +M2φ21, (5.4)

=

(
1

kg

kmole

)
(2) +

(
16

kg

kmole

)
(1), (5.5)

= 18
kg

kmole
. (5.6)

Example 5.2
Find the molecular masses of the two species C8H18 and CO2.

Here, for practice, the vector matrix notation is exercised. In a certain sense this is overkill, but
it is useful to be able to understand a general notation. One has N = 2 species, and takes i = 1 for
C8H18 and i = 2 for CO2. One also has L = 3 elements and takes l = 1 for C, l = 2 for H, and l = 3
for O. Now for each element, one has M1 = 12 kg/kmole, M2 = 1 kg/kmole, M3 = 16 kg/kmole. The
molecular masses are then given by

(
M1 M2

)
=

(
M1 M2 M3

)


φ11 φ12
φ21 φ22
φ31 φ32


 , (5.7)

=
(
12 1 16

)



8 1
18 0
0 2


 , (5.8)

=
(
114 44

)
. (5.9)

That is for C8H18, one has molecular mass M1 = 114 kg/kmole. For CO2, one has molecular mass
M2 = 44 kg/kmole.
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5.2 Stoichiometry

5.2.1 General development

Stoichiometry represents a mass balance on each element in a chemical reaction. For example,
in the simple global reaction

2H2 +O2 ⇌ 2H2O, (5.10)

one has 4 H atoms in both the reactant and product sides and 2 O atoms in both the reactant
and product sides. In this section stoichiometry will be systematized.

Consider now a general reaction with N species. This reaction can be represented by

N∑

i=1

ν ′iχi ⇌

N∑

i=1

ν ′′i χi. (5.11)

Here χi is the ith chemical species, ν ′i is the forward stoichiometric coefficient of the ith

reaction, and ν ′′i is the reverse stoichiometric coefficient of the ith reaction. Both ν ′i and ν
′′
i

are to be interpreted as pure dimensionless numbers.
In Equation (5.10), one has N = 3 species. One might take χ1 = H2, χ2 = O2, and

χ3 = H2O. The reaction is written in more general form as

(2)χ1 + (1)χ2 + (0)χ3 ⇌ (0)χ1 + (0)χ2 + (2)χ3, (5.12)

(2)H2 + (1)O2 + (0)H2O ⇌ (0)H2 + (0)O2 + (2)H2O. (5.13)

Here, one has

ν ′1 = 2, ν ′′1 = 0, (5.14)

ν ′2 = 1, ν ′′2 = 0, (5.15)

ν ′3 = 0, ν ′′3 = 2. (5.16)

It is common and useful to define another pure dimensionless number, the net stoichio-
metric coefficients for species i, νi. Here νi represents the net production of number if the
reaction goes forward. It is given by

νi = ν ′′i − ν ′i. (5.17)

For the reaction 2H2 +O2 ⇌ 2H2O, one has

ν1 = ν ′′1 − ν ′1 = 0− 2 = −2, (5.18)

ν2 = ν ′′2 − ν ′2 = 0− 1 = −1, (5.19)

ν3 = ν ′′3 − ν ′3 = 2− 0 = 2. (5.20)

With these definitions, it is possible to summarize a chemical reaction as

N∑

i=1

νiχi = 0. (5.21)
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In vector notation, one would say

νT ·χ = 0. (5.22)

For the reaction of this section, one might write the non-traditional form

−2H2 −O2 + 2H2O = 0. (5.23)

It remains to enforce a stoichiometric balance. This is achieved if, for each element, l =
1, . . . , L, one has the following equality:

N∑

i=1

φliνi = 0, l = 1, . . . , L. (5.24)

That is to say, for each element, the sum of the product of the net species production and
the number of elements in the species must be zero. In vector notation, this becomes

φ · ν = 0. (5.25)

One may recall from linear algebra that this demands that ν lie in the right null space of φ.

Example 5.3
Show stoichiometric balance is achieved for −2H2 −O2 + 2H2O = 0.

Here again, the number of elements L = 2, and one can take l = 1 for H and l = 2 for O. Also
the number of species N = 3, and one takes i = 1 for H2, i = 2 for O2, and i = 3 for H2O. Then for
element 1, H, in species 1, H2, one has

φ11 = 2,H in H2. (5.26)

Similarly, one gets

φ12 = 0, H in O2, (5.27)

φ13 = 2, H in H2O, (5.28)

φ21 = 0, O in H2, (5.29)

φ22 = 2, O in O2, (5.30)

φ23 = 1, O in H2O. (5.31)

In matrix form then,
∑N

i=1 φliνi = 0 gives

(
2 0 2
0 2 1

)

ν1
ν2
ν3


 =

(
0
0

)
. (5.32)

This is two equations in three unknowns. Thus, it is formally under-constrained. Certainly the trivial
solution ν1 = ν2 = ν3 = 0 will satisfy, but one seeks non-trivial solutions. Assume ν3 has a known value
ν3 = ξ. Then, the system reduces to

(
2 0
0 2

)(
ν1
ν2

)
=

(
−2ξ
−ξ

)
. (5.33)
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The inversion here is easy, and one finds ν1 = −ξ, ν2 = −ξ/2. Or in vector form,



ν1
ν2
ν3


 =




−ξ
− 1

2ξ
ξ


 = ξ



−1
− 1

2
1


 , ξ ∈ R

1. (5.34)

Again, this amounts to saying the solution vector (ν1, ν2, ν3)
T lies in the right null space of the coefficient

matrix φli. Here ξ is any real scalar. If one takes ξ = 2, one gets



ν1
ν2
ν3


 =



−2
−1
2


 , (5.35)

This simply corresponds to
−2H2 −O2 + 2H2O = 0. (5.36)

If one takes ξ = −4, one still achieves stoichiometric balance, with



ν1
ν2
ν3


 =




4
2
−4


 , (5.37)

which corresponds to the equally valid

4H2 + 2O2 − 4H2O = 0. (5.38)

In summary, the stoichiometric coefficients are non-unique but partially constrained by mass conserva-

tion for each element. Which set is chosen is to some extent arbitrary, and often based on traditional
conventions from chemistry. But others are equally valid.

There is a small issue with units here, which will be seen to be difficult to reconcile.
In practice, it will have little to no importance. In the previous example, one might be
tempted to ascribe units of kmoles to νi. Later, it will be seen that in classical reaction
kinetics, νi is best interpreted as a pure dimensionless number, consistent with the definition
of this section. So in the context of the previous example, one would then take ξ to be
dimensionless as well, which is perfectly acceptable for the example. In later problems, it
will be more useful to give ξ the units of kmoles. Multiplication of ξ by any scalar, e.g.
kmole/(6.02× 1026), still yields an acceptable result.

Example 5.4
Balance an equation for hypothesized ethane combustion

ν′1C2H6 + ν′2O2 ⇌ ν′′3CO2 + ν′′4H2O. (5.39)

One could also say in terms of the net stoichiometric coefficients

ν1C2H6 + ν2O2 + ν3CO2 + ν4H2O = 0. (5.40)
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Here one takes χ1 = C2H6, χ2 = O2, χ3 = CO2, and χ4 = H2O. So there are N = 4 species. There
are also L = 3 elements: l = 1 : C, l = 2 : H, l = 3 : O. One then has

φ11 = 2, C in C2H6, (5.41)

φ12 = 0, C in O2, (5.42)

φ13 = 1, C in CO2, (5.43)

φ14 = 0, C in H2O, (5.44)

φ21 = 6, H in C2H6, (5.45)

φ22 = 0, H in O2, (5.46)

φ23 = 0, H in CO2, (5.47)

φ24 = 2, H in H2O, (5.48)

φ31 = 0, O in C2H6, (5.49)

φ32 = 2, O in O2, (5.50)

φ33 = 2, O in CO2, (5.51)

φ34 = 1, O in H2O. (5.52)

So the stoichiometry equation,
∑N
i=1 φliνi = 0, is given by



2 0 1 0
6 0 0 2
0 2 2 1







ν1
ν2
ν3
ν4


 =



0
0
0


 . (5.53)

Here, there are three equations in four unknowns, so the system is under-constrained. There are many
ways to address this problem. Here, choose the robust way of casting the system into row echelon form.
This is easily achieved by Gaussian elimination. Row echelon form seeks to have lots of zeros in the
lower left part of the matrix. The lower left corner has a zero already, so that is useful. Now, multiply
the top equation by 3 and subtract the result from the second to get



2 0 1 0
0 0 −3 2
0 2 2 1







ν1
ν2
ν3
ν4


 =



0
0
0


 . (5.54)

Next switch the last two equations to get



2 0 1 0
0 2 2 1
0 0 −3 2







ν1
ν2
ν3
ν4


 =



0
0
0


 . (5.55)

Now divide the first by 2, the second by 2 and the third by −3 to get unity in the diagonal:



1 0 1

2 0
0 1 1 1

2
0 0 1 − 2

3







ν1
ν2
ν3
ν4


 =



0
0
0


 . (5.56)

So-called bound variables have non-zero coefficients on the diagonal, so one can take the bound variables
to be ν1, ν2, and ν3. The remaining variables are free variables. Here one takes the free variable to be
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ν4. So, set ν4 = ξ, and rewrite the system as



1 0 1

2
0 1 1
0 0 1





ν1
ν2
ν3


 =




0
− 1

2ξ
2
3ξ


 . (5.57)

Solving, one finds




ν1
ν2
ν3
ν4


 =




− 1
3ξ

− 7
6ξ

2
3ξ
ξ


 = ξ




− 1
3

− 7
6

2
3
1


 , ξ ∈ R

1. (5.58)

Again, one finds a non-unique solution in the right null space of φ. If one chooses ξ = 6, then one gets




ν1
ν2
ν3
ν4


 =




−2
−7
4
6


 , (5.59)

which corresponds to the stoichiometrically balanced reaction

2C2H6 + 7O2 ⇌ 4CO2 + 6H2O. (5.60)

In this example, ξ is dimensionless.

Example 5.5

Consider stoichiometric balance for a propane oxidation reaction which may produce carbon monox-
ide and hydroxyl in addition to carbon dioxide and water.

The hypothesized reaction takes the form

ν′1C3H8 + ν′2O2 ⇌ ν′′3CO2 + ν′′4CO+ ν′′5H2O+ ν′′6OH. (5.61)

In terms of net stoichiometric coefficients, this becomes

ν1C3H8 + ν2O2 + ν3CO2 + ν4CO+ ν5H2O+ ν6OH = 0. (5.62)
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There are N = 6 species and L = 3 elements. One then has

φ11 = 3, C in C3H8, (5.63)

φ12 = 0, C in O2, (5.64)

φ13 = 1, C in CO2, (5.65)

φ14 = 1, C in CO, (5.66)

φ15 = 0, C in H2O, (5.67)

φ16 = 0, C in OH, (5.68)

φ21 = 8, H in C3H8, (5.69)

φ22 = 0, H in O2, (5.70)

φ23 = 0, H in CO2, (5.71)

φ24 = 0, H in CO, (5.72)

φ25 = 2, H in H2O, (5.73)

φ26 = 1, H in OH, (5.74)

φ31 = 0, O in C3H8, (5.75)

φ32 = 2, O in O2, (5.76)

φ33 = 2, O in CO2, (5.77)

φ34 = 1, O in CO, (5.78)

φ35 = 1, O in H2O, (5.79)

φ36 = 1, O in OH. (5.80)

The equation φ · ν = 0 then becomes



3 0 1 1 0 0
8 0 0 0 2 1
0 2 2 1 1 1







ν1
ν2
ν3
ν4
ν5
ν6




=



0
0
0


 . (5.81)

Multiplying the first equation by −8/3 and adding it to the second gives



3 0 1 1 0 0
0 0 − 8

3 − 8
3 2 1

0 2 2 1 1 1







ν1
ν2
ν3
ν4
ν5
ν6




=



0
0
0


 . (5.82)

Trading the second and third rows gives



3 0 1 1 0 0
0 2 2 1 1 1
0 0 − 8

3 − 8
3 2 1







ν1
ν2
ν3
ν4
ν5
ν6




=



0
0
0


 . (5.83)
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Dividing the first row by 3, the second by 2 and the third by −8/3 gives



1 0 1

3
1
3 0 0

0 1 1 1
2

1
2

1
2

0 0 1 1 − 3
4 − 3

8







ν1
ν2
ν3
ν4
ν5
ν6




=



0
0
0


 . (5.84)

Take bound variables to be ν1, ν2, and ν3 and free variables to be ν4, ν5, and ν6. So set ν4 = ξ1,
ν5 = ξ2, and ν6 = ξ3, and get



1 0 1

3
0 1 1
0 0 1





ν1
ν2
ν3


 =




− ξ1
3

− ξ1
2 − ξ2

2 − ξ3
2

−ξ1 + 3
4ξ2 +

3
8ξ3


 . (5.85)

Solving, one finds



ν1
ν2
ν3


 =




1
8 (−2ξ2 − ξ3)

1
8 (4ξ1 − 10ξ2 − 7ξ3)
1
8 (−8ξ1 + 6ξ2 + 3ξ3)


 . (5.86)

For all the coefficients, one then has




ν1
ν2
ν3
ν4
ν5
ν6




=




1
8 (−2ξ2 − ξ3)

1
8 (4ξ1 − 10ξ2 − 7ξ3)
1
8 (−8ξ1 + 6ξ2 + 3ξ3)

ξ1
ξ2
ξ3




=
ξ1
8




0
4
−8
8
0
0




+
ξ2
8




−2
−10
6
0
8
0




+
ξ3
8




−1
−7
3
0
0
8



. (5.87)

Here, one finds three linearly independent vectors in the right null space. The dot product of any vector
in the right null space with any vector in the row space should be zero. For example, take the dot
product of the third row space vector with the first right null space vector and find

(
0 2 2 1 1 1

)




0
4
−8
8
0
0




= 0 + 8− 16 + 8 + 0 + 0 = 0. (5.88)

To simplify the notation, take ξ̂1 = ξ1/8, ξ̂2 = ξ2/8, and ξ̂3 = ξ3/8. Then,




ν1
ν2
ν3
ν4
ν5
ν6




= ξ̂1




0
4
−8
8
0
0




+ ξ̂2




−2
−10
6
0
8
0




+ ξ̂3




−1
−7
3
0
0
8



. (5.89)

The most general reaction that can achieve a stoichiometric balance is given by

(−2ξ̂2− ξ̂3)C3H8+(4ξ̂1− 10ξ̂2− 7ξ̂3)O2+(−8ξ̂1+6ξ̂2+3ξ̂3)CO2+8ξ̂1 CO+8ξ̂2 H2O+8ξ̂3 OH = 0. (5.90)
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Rearranging, one gets

(2ξ̂2 + ξ̂3)C3H8 + (−4ξ̂1 + 10ξ̂2 + 7ξ̂3)O2 ⇌ (−8ξ̂1 + 6ξ̂2 + 3ξ̂3)CO2 + 8ξ̂1 CO+ 8ξ̂2 H2O+ 8ξ̂3 OH. (5.91)

This will be balanced for all ξ̂1, ξ̂2, and ξ̂3. The values that are actually achieved in practice depend
on the thermodynamics of the problem. Stoichiometry only provides some limitations.

A slightly more familiar form is found by taking ξ̂2 = 1/2 and rearranging, giving

(1 + ξ̂3) C3H8 + (5 − 4ξ̂1 + 7ξ̂3) O2 ⇌ (3− 8ξ̂1 + 3ξ̂3) CO2 + 4 H2O+ 8ξ̂1 CO+ 8ξ̂3 OH. (5.92)

One notes that often the production of CO and OH will be small. If there is no production of CO or
OH, ξ̂1 = ξ̂3 = 0 and one recovers the familiar balance of

C3H8 + 5O2 ⇌ 3CO2 + 4H2O. (5.93)

One also notes that stoichiometry alone admits unusual solutions. For instance, if ξ̂1 = 100, ξ̂2 = 1/2,

and ξ̂3 = 1, one has

2C3H8 + 794CO2 ⇌ 388O2 + 4H2O+ 800CO+ 8OH. (5.94)

This reaction is certainly admitted by stoichiometry but is not observed in nature. To determine
precisely which of the infinitely many possible final states are realized requires a consideration of the
equilibrium condition

∑N
i=1 νiµi = 0.

Looked at in another way, we can think of three independent classes of reactions admitted by the
stoichiometry, one for each of the linearly independent null space vectors. Taking first ξ̂1 = 1/4, ξ̂2 = 0,

ξ̂3 = 0, one gets, after rearrangement

2CO+O2 ⇌ 2CO2, (5.95)

as one class of reaction admitted by stoichiometry. Taking next ξ̂1 = 0, ξ̂2 = 1/2, ξ̂3 = 0, one gets

C3H8 + 5O2 ⇌ 3CO2 + 4H2O, (5.96)

as the second class admitted by stoichiometry. The third class is given by taking ξ̂1 = 0, ξ̂2 = 0, ξ̂3 = 1,
and is

C3H8 + 7O2 ⇌ 3CO2 + 8OH. (5.97)

In this example, both ξ and ξ̂ are dimensionless.

In general, one can expect to find the stoichiometric coefficients for N species composed
of L elements to be of the following form:

νi =
N−L∑

k=1

Dikξk, i = 1, . . . , N. (5.98)

Here Dik is a dimensionless component of a full rank matrix of dimension N × (N − L)
and rank N − L, and ξk is a dimensionless component of a vector of parameters of length
N − L. The matrix whose components are Dik are constructed by populating its columns
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with vectors which lie in the right null space of φli. Multiplication of ξk by any constant
gives another set of νi, and mass conservation for each element is still satisfied.

For later use, we associate νi with the number of moles ni, and consider a differential
change in the number of moles dni from Eq. (5.98) and arrive at

dni =

N−L∑

k=1

Dik dξk, i = 1, . . . , N. (5.99)

5.2.2 Fuel-air mixtures

In combustion with air, one often models air as a simple mixture of diatomic oxygen and
inert diatomic nitrogen:

(O2 + 3.76N2). (5.100)

The air-fuel ratio, A and its reciprocal, the fuel-air ratio, F , can be defined on a mass
and mole basis.

Amass =
mair

mfuel
, Amole =

nair

nfuel
. (5.101)

Via the molecular masses, one has

Amass =
mair

mfuel
=

nairMair

nfuelMfuel
= Amole

Mair

Mfuel
. (5.102)

If there is not enough air to burn all the fuel, the mixture is said to be rich. If there is
excess air, the mixture is said to be lean. If there is just enough, the mixture is said to be
stoichiometric. The equivalence ratio, Φ, is defined as the actual fuel-air ratio scaled by the
stoichiometric fuel-air ratio:

Φ ≡ Factual

Fstoichiometric

=
Astoichiometric

Aactual

. (5.103)

The ratio Φ is the same whether F ’s are taken on a mass or mole basis, because the ratio of
molecular masses cancel.

Example 5.6
Calculate the stoichiometry of the combustion of methane with air with an equivalence ratio of

Φ = 0.5. If the pressure is 0.1 MPa, find the dew point of the products.

First calculate the coefficients for stoichiometric combustion:

ν′1CH4 + ν′2(O2 + 3.76N2) ⇌ ν′′3CO2 + ν′′4H2O+ ν′′5N2, (5.104)

or
ν1CH4 + ν2O2 + ν3CO2 + ν4H2O+ (ν5 + 3.76ν2)N2 = 0. (5.105)
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Here one has N = 5 species and L = 4 elements. Adopting a slightly more intuitive procedure for
variety, one writes a conservation equation for each element to get

ν1 + ν3 = 0, C, (5.106)

4ν1 + 2ν4 = 0, H, (5.107)

2ν2 + 2ν3 + ν4 = 0, O, (5.108)

3.76ν2 + ν5 = 0, N. (5.109)

In matrix form this becomes




1 0 1 0 0
4 0 0 2 0
0 2 2 1 0
0 3.76 0 0 1







ν1
ν2
ν3
ν4
ν5




=




0
0
0
0


 . (5.110)

Now, one might expect to have one free variable, because one has five unknowns in four equations.
While casting the equation in row echelon form is guaranteed to yield a proper solution, one can often
use intuition to get a solution more rapidly. One certainly expects that CH4 will need to be present
for the reaction to take place. One might also expect to find an answer if there is one mole of CH4. So
take ν1 = −1. Realize that one could also get a physically valid answer by assuming ν1 to be equal to
any scalar. With ν1 = −1, one gets




0 1 0 0
0 0 2 0
2 2 1 0

3.76 0 0 1







ν2
ν3
ν4
ν5


 =




1
4
0
0


 . (5.111)

One easily finds the unique inverse does exist, and that the solution is




ν2
ν3
ν4
ν5


 =




−2
1
2

7.52


 . (5.112)

If there had been more than one free variable, the four by four matrix would have been singular, and
no unique inverse would have existed.

In any case, the reaction under stoichiometric conditions is

−CH4 − 2O2 +CO2 + 2H2O+ (7.52 + (3.76)(−2))N2 = 0, (5.113)

CH4 + 2(O2 + 3.76N2) ⇌ CO2 + 2H2O+ 7.52N2. (5.114)

For the stoichiometric reaction, the fuel-air ratio on a mole basis is

Fstoichiometric =
1

2 + 2(3.76)
= 0.1050. (5.115)

Now Φ = 0.5, so

Factual = ΦFstoichiometric, (5.116)

= (0.5)(0.1050), (5.117)

= 0.0525. (5.118)
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By inspection, one can write the actual reaction equation as

CH4 + 4(O2 + 3.76N2) ⇌ CO2 + 2H2O+ 2O2 + 15.04N2. (5.119)

Check:

Factual =
1

4 + 4(3.76)
= 0.0525. (5.120)

For the dew point of the products, one needs the partial pressure of H2O. The mole fraction of
H2O is

yH2O =
2

1 + 2 + 2 + 15.04
= 0.0499. (5.121)

So the partial pressure of H2O is

PH2O = yH2OP = 0.0499(100 kPa) = 4.99 kPa. (5.122)

From the steam tables, the saturation temperature at this pressure is Tsat = Tdew point = 32.88 ◦C . If
the products cool to this temperature in an exhaust device, the water could condense in the apparatus.

5.3 First law analysis of reacting systems

One can use the first law to learn much about chemically reacting systems.

5.3.1 Enthalpy of formation

The enthalpy of formation is the enthalpy that is required to form a molecule from combining
its constituents at P = 0.1 MPa and T = 298 K. Consider the reaction (taken here to be
irreversible)

C + O2 → CO2. (5.123)

In order to maintain the process at constant temperature, it is found that heat transfer to
the volume is necessary. For the steady constant pressure process, one has

U2 − U1 = 1Q2 − 1W2, (5.124)

= 1Q2 −
∫ 2

1

P dV, (5.125)

= 1Q2 − P (V2 − V1), (5.126)

1Q2 = U2 − U1 + P (V2 − V1), (5.127)

= H2 −H1, (5.128)

= Hproducts −Hreactants. (5.129)
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So

1Q2 =
∑

products

nihi −
∑

reactants

nihi. (5.130)

In this reaction, one measures that 1Q2 = −393522 kJ for the reaction of 1 kmole of C
and O2. That is the reaction liberates such energy to the environment. So measuring the
heat transfer can give a measure of the enthalpy difference between reactants and products.
Assign a value of enthalpy zero to elements in their standard state at the reference state.
Thus, C and O2 both have enthalpies of 0 kJ/kmole at T = 298 K, P = 0.1 MPa. This
enthalpy is designated, for species i,

h
o

f,i = h
o

298,i, (5.131)

and is called the enthalpy of formation. So the energy balance for the products and reactants,
here both at the standard state, becomes

1Q2 = nCO2h
o

f,CO2
− nCh

o

f,C − nO2h
o

f,O2
, (5.132)

−393522 kJ = (1 kmole)h
o

f,CO2
− (1 kmole)

(
0

kJ

kmole

)
− (1 kmole)

(
0

kJ

kmole

)
.

(5.133)

Thus, the enthalpy of formation of CO2 is h
o

f,CO2
= −393522 kJ/kmole, because the reaction

involved creation of 1 kmole of CO2.
Often values of enthalpy are tabulated in the forms of enthalpy differences ∆hi. These

are defined such that

hi = h
o

f,i + (hi − h
o

f,i)︸ ︷︷ ︸
=∆hi

, (5.134)

= h
o

f,i +∆hi. (5.135)

Lastly, one notes for an ideal gas that the enthalpy is a function of temperature only,
and so does not depend on the reference pressure; hence

hi = h
o

i , ∆hi = ∆h
o

i , if ideal gas. (5.136)

Example 5.7
(adopted from BS). Determine the heat of reaction of the following irreversible reaction in a steady

state, steady flow process confined to the standard state of P = 0.1 MPa, T = 298 K:

CH4 + 2O2 → CO2 + 2H2O(ℓ). (5.137)
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The first law holds that

Qcv =
∑

products

nihi −
∑

reactants

nihi. (5.138)

All components are at their reference states. Table A.10 gives properties, and one finds

Qcv = nCO2
hCO2

+ nH2OhH2O − nCH4
hCH4

− nO2
hO2

, (5.139)

= (1 kmole)

(
−393522

kJ

kmole

)
+ (2 kmole)

(
−285830

kJ

kmole

)

−(1 kmole)

(
−74873

kJ

kmole

)
− (2 kmole)

(
0

kJ

kmole

)
, (5.140)

= −890309 kJ. (5.141)

A more detailed analysis is required in the likely case in which the system is not at the
reference state.

Example 5.8
(adopted from Moran and Shapiro) A mixture of 1 kmole of gaseous methane and 2 kmole of oxygen

initially at 298 K and 101.325 kPa burns completely in a closed, rigid, container. Heat transfer occurs
until the final temperature is 900 K. Find the heat transfer and the final pressure.

The combustion is stoichiometric. Assume that no small concentration species are generated. The
global reaction is given by

CH4 + 2O2 → CO2 + 2H2O. (5.142)

The first law analysis for the closed system is slightly different:

U2 − U1 = 1Q2 − 1W2. (5.143)

Because the process is isochoric, 1W2 = 0. So

1Q2 = U2 − U1, (5.144)

= nCO2
uCO2

+ nH2OuH2O − nCH4
uCH4

− nO2
uO2

, (5.145)

= nCO2
(hCO2

−RT2) + nH2O(hH2O −RT2)− nCH4
(hCH4

−RT1)− nO2
(hO2

−RT1), (5.146)

= hCO2
+ 2hH2O − hCH4

− 2hO2
− 3R(T2 − T1), (5.147)

= (h
o

CO2,f +∆hCO2
) + 2(h

o

H2O,f +∆hH2O)− (h
o

CH4,f +∆hCH4
)− 2(h

o

O2,f +∆hO2
)

−3R(T2 − T1), (5.148)

= (−393522 + 28030) + 2(−241826+ 21937)− (−74873 + 0)− 2(0 + 0)

−3(8.314)(900− 298), (5.149)

= −745412 kJ. (5.150)
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For the pressures, one has

P1V1 = (nCH4
+ nO2

)RT1, (5.151)

V1 =
(nCH4

+ nO2
)RT1

P1
, (5.152)

=
(1 kmole + 2 kmole)

(
8.314 kJ

kg K

)
(298 K)

101.325 kPa
, (5.153)

= 73.36 m3. (5.154)

Now V2 = V1, so

P2 =
(nCO2

+ nH2O)RT2
V2

, (5.155)

=
(1 kmole + 2 kmole)

(
8.314 kJ

kg K

)
(900 K)

73.36 m3
, (5.156)

= 306.0 kPa. (5.157)

The pressure increased in the reaction. This is entirely attributable to the temperature rise, as the
number of moles remained constant here.

5.3.2 Enthalpy and internal energy of combustion

The enthalpy of combustion is the difference between the enthalpy of products and reactants
when complete combustion occurs at a given pressure and temperature. It is also known
as the heating value or the heat of reaction. The internal energy of combustion is related
and is the difference between the internal energy of products and reactants when complete
combustion occurs at a given volume and temperature.

The term higher heating value refers to the energy of combustion when liquid water is in
the products. Lower heating value refers to the energy of combustion when water vapor is
in the product.

5.3.3 Adiabatic flame temperature in isochoric stoichiometric sys-

tems

The adiabatic flame temperature refers to the temperature which is achieved when a fuel and
oxidizer are combined with no loss of work or heat energy. Thus, it must occur in a closed,
insulated, fixed volume. It is generally the highest temperature that one can expect to
achieve in a combustion process. It generally requires an iterative solution. Of all mixtures,
stoichiometric mixtures will yield the highest adiabatic flame temperatures because there is
no need to heat the excess fuel or oxidizer.

Here four examples will be presented to illustrate the following points:
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• The adiabatic flame temperature can be well over 5000 K for seemingly ordinary mix-
tures.

• Dilution of the mixture with an inert diluent lowers the adiabatic flame temperature.
The same effect would happen in rich and lean mixtures.

• Preheating the mixture, such as one might find in the compression stroke of an engine,
increases the adiabatic flame temperature.

• Consideration of the presence of minor species lowers the adiabatic flame temperature.

5.3.3.1 Undiluted, cold mixture

Example 5.9
A closed, fixed, adiabatic volume contains a stoichiometric mixture of 2 kmole of H2 and 1 kmole

of O2 at 100 kPa and 298 K. Find the adiabatic flame temperature and final pressure assuming the
irreversible reaction

2H2 +O2 → 2H2O. (5.158)

The volume is given by

V =
(nH2

+ nO2
)RT1

P1
, (5.159)

=
(2 kmole + 1 kmole)

(
8.314 kJ

kmole K

)
(298 K)

100 kPa
, (5.160)

= 74.33 m3. (5.161)

The first law gives

U2 − U1 = 1Q2︸︷︷︸
=0

− 1W2︸︷︷︸
=0

, (5.162)

= 0, (5.163)

nH2OuH2O − nH2
uH2

− nO2
uO2

= 0, (5.164)

nH2O(hH2O −RT2)− nH2
(hH2

−RT1)− nO2
(hO2

−RT1) = 0, (5.165)

2hH2O − 2 hH2︸︷︷︸
=0

− hO2︸︷︷︸
=0

+R(−2T2 + 3T1) = 0, (5.166)

2hH2O + (8.314) ((−2)T2 + (3) (298)) = 0, (5.167)

hH2O − 8.314T2 + 3716.4 = 0, (5.168)

h
o

f,H2O +∆hH2O − 8.314T2 + 3716.4 = 0, (5.169)

−241826+ ∆hH2O − 8.314T2 + 3716.4 = 0, (5.170)

−238110 + ∆hH2O − 8.314T2 = 0. (5.171)

At this point, one begins an iteration process, guessing a value of T2 and an associated ∆hH2O. When
T2 is guessed at 5600 K, the left side becomes −6507.04. When T2 is guessed at 6000 K, the left side
becomes 14301.4. Interpolate then to arrive at

T2 = 5725 K. (5.172)
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This is an extremely high temperature. At such temperatures, in fact, one can expect other species to
co-exist in the equilibrium state in large quantities. These will include H, H2, O2, OH, O, HO2, and
H2O2. Detailed calculation reveals the energetics of the chemical reactions are such that the presence
of minor species induces the achieved temperature to be considerably lower than 5725 K, in fact near
3200 K.

The final pressure is given by

P2 =
nH2ORT2

V
, (5.173)

=
(2 kmole)

(
8.314 kJ

kmole K

)
(5725 K)

74.33 m3
, (5.174)

= 1280.71 kPa. (5.175)

The final concentration of H2O is

ρH2O =
2 kmole

74.33 m3
= 2.69× 10−2 kmole

m3
. (5.176)

5.3.3.2 Dilute, cold mixture

Example 5.10
Consider a variant on the previous example in which the mixture is diluted with an inert, taken

here to be N2. A closed, fixed, adiabatic volume contains a stoichiometric mixture of 2 kmole of H2,
1 kmole of O2, and 8 kmole of N2 at 100 kPa and 298 K. Find the adiabatic flame temperature and
the final pressure, assuming the irreversible reaction

2H2 +O2 + 8N2 → 2H2O+ 8N2. (5.177)

The volume is given by

V =
(nH2

+ nO2
+ nN2

)RT1
P1

, (5.178)

=
(2 kmole + 1 kmole + 8 kmole)

(
8.314 kJ

kmole K

)
(298 K)

100 kPa
, (5.179)

= 272.533 m3. (5.180)
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The first law gives

U2 − U1 = 1Q2 − 1W2,

= 0,

nH2OuH2O − nH2
uH2

− nO2
uO2

+ nN2
(uN22 − uN21) = 0,

nH2O(hH2O −RT2)− nH2
(hH2

−RT1)− nO2
(hO2

−RT1) + nN2
((hN22

−RT2)− (hN21
−RT1)) = 0,

2hH2O − 2 hH2︸︷︷︸
=0

− hO2︸︷︷︸
=0

+R(−10T2 + 11T1) + 8( hN22︸︷︷︸
=∆hN2

− hN21︸︷︷︸
=0

) = 0,

2hH2O + (8.314) (−10T2 + (11)(298)) + 8∆hN22
= 0,

2hH2O − 83.14T2 + 27253.3 + 8∆hN22
= 0,

2h
o

f,H2O + 2∆hH2O − 83.14T2 + 27253.3 + 8∆hN22
= 0,

2(−241826)+ 2∆hH2O − 83.14T2 + 27253.3 + 8∆hN22
= 0,

−456399+ 2∆hH2O − 83.14T2 + 8∆hN22
= 0.

At this point, one begins an iteration process, guessing a value of T2 and an associated ∆hH2O. When
T2 is guessed at 2000 K, the left side becomes −28006.7. When T2 is guessed at 2200 K, the left side
becomes 33895.3. Interpolate then to arrive at

T2 = 2090.5 K. (5.181)

The inert diluent significantly lowers the adiabatic flame temperature. This is because the N2 serves as
a heat sink for the energy of reaction. If the mixture were at non-stoichiometric conditions, the excess
species would also serve as a heat sink, and the adiabatic flame temperature would be lower than that
of the stoichiometric mixture.

The final pressure is given by

P2 =
(nH2O + nN2

)RT2
V

, (5.182)

=
(2 kmole + 8 kmole)

(
8.314 kJ

kmole K

)
(2090.5 K)

272.533 m3
, (5.183)

= 637.74 kPa. (5.184)

The final concentrations of H2O and N2 are

ρH2O =
2 kmole

272.533 m3
= 7.34× 10−3 kmole

m3
, (5.185)

ρN2
=

8 kmole

272.533 m3
= 2.94× 10−2 kmole

m3
. (5.186)

5.3.3.3 Dilute, preheated mixture

Example 5.11
Consider a variant on the previous example in which the diluted mixture is preheated to 1000 K.

One can achieve this via an isentropic compression of the cold mixture, such as might occur in an engine.
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To simplify the analysis here, the temperature of the mixture will be increased, while the pressure will
be maintained. A closed, fixed, adiabatic volume contains a stoichiometric mixture of 2 kmole of H2,
1 kmole of O2, and 8 kmole of N2 at 100 kPa and 1000 K. Find the adiabatic flame temperature and
the final pressure, assuming the irreversible reaction

2H2 +O2 + 8N2 → 2H2O+ 8N2. (5.187)

The volume is given by

V =
(nH2

+ nO2
+ nN2

)RT1
P1

, (5.188)

=
(2 kmole + 1 kmole + 8 kmole)

(
8.314 kJ

kmole K

)
(1000 K)

100 kPa
, (5.189)

= 914.54 m3. (5.190)

The first law gives

U2 − U1 = 1Q2︸︷︷︸
=0

− 1W2︸︷︷︸
=0

,

= 0,

nH2OuH2O − nH2
uH2

− nO2
uO2

+ nN2
(uN22 − uN21) = 0,

nH2O(hH2O −RT2)− nH2
(hH2

−RT1)− nO2
(hO2

−RT1) + nN2
((hN22

−RT2)− (hN21
−RT1)) = 0,

2hH2O − 2hH2
− hO2

+R(−10T2 + 11T1) + 8(hN22
− hN21

) = 0,

2(−241826+ ∆hH2O)− 2(20663)− 22703 + (8.314) (−10T2 + (11)(1000)) + 8∆hN22
− 8(21463) = 0,

2∆hH2O − 83.14T2 − 627931+ 8∆hN22
= 0.

At this point, one begins an iteration process, guessing a value of T2 and an associated ∆hH2O. When
T2 is guessed at 2600 K, the left side becomes −11351. When T2 is guessed at 2800 K, the left side
becomes 52787. Interpolate then to arrive at

T2 = 2635.4 K. (5.191)

The preheating raised the adiabatic flame temperature. The preheating was by (1000 K)− (298 K) =
702 K. The new adiabatic flame temperature is only (2635.4 K)− (2090.5 K) = 544.9 K greater.

The final pressure is given by

P2 =
(nH2O + nN2

)RT2
V

, (5.192)

=
(2 kmole + 8 kmole)

(
8.314 kJ

kmole K

)
(2635.4 K)

914.54 m3
, (5.193)

= 239.58 kPa. (5.194)

The final concentrations of H2O and N2 are

ρH2O =
2 kmole

914.54 m3
= 2.19× 10−3 kmole

m3
, (5.195)

ρN2
=

8 kmole

914.54 m3
= 8.75× 10−3 kmole

m3
. (5.196)
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5.3.3.4 Dilute, preheated mixture with minor species

Example 5.12

Consider a variant on the previous example. Here allow for minor species to be present at equilib-
rium. A closed, fixed, adiabatic volume contains a stoichiometric mixture of 2 kmole of H2, 1 kmole
of O2, and 8 kmole of N2 at 100 kPa and 1000 K. Find the adiabatic flame temperature and the final
pressure, assuming reversible reactions.

Here, the details of the analysis are postponed, but the result is given which is the consequence of a
calculation involving detailed reactions rates. One can also solve an optimization problem to minimize
the Gibbs free energy of a wide variety of products to get the same answer. In this case, the equilibrium
temperature and pressure are found to be

T = 2484.8 K, P = 227.89 kPa. (5.197)

Equilibrium species concentrations are found to be

minor product ρH2
= 1.3× 10−4 kmole

m3
, (5.198)

minor product ρH = 1.9× 10−5 kmole

m3
, (5.199)

minor product ρO = 5.7× 10−6 kmole

m3
, (5.200)

minor product ρO2
= 3.6× 10−5 kmole

m3
, (5.201)

minor product ρOH = 5.9× 10−5 kmole

m3
, (5.202)

major product ρH2O = 2.0× 10−3 kmole

m3
, (5.203)

trace product ρHO2
= 1.1× 10−8 kmole

m3
, (5.204)

trace product ρH2O2
= 1.2× 10−9 kmole

m3
, (5.205)

trace product ρN = 1.7× 10−9 kmole

m3
, (5.206)

trace product ρNH = 3.7× 10−10 kmole

m3
, (5.207)

trace product ρNH2
= 1.5× 10−10 kmole

m3
, (5.208)

trace product ρNH3
= 3.1× 10−10 kmole

m3
, (5.209)

trace product ρNNH = 1.0× 10−10 kmole

m3
, (5.210)

minor product ρNO = 3.1× 10−6 kmole

m3
, (5.211)
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trace product ρNO2
= 5.3× 10−9 kmole

m3
, (5.212)

trace product ρN2O = 2.6× 10−9 kmole

m3
, (5.213)

trace product ρHNO = 1.7× 10−9 kmole

m3
, (5.214)

major product ρN2
= 8.7× 10−3 kmole

m3
. (5.215)

The concentrations of the major products went down when the minor species were considered. The
adiabatic flame temperature also went down by a significant amount: 2635− 2484.8 = 150.2 K. Some
thermal energy was necessary to break the bonds which induce the presence of minor species.

5.4 Chemical equilibrium

Often reactions are not simply unidirectional, as alluded to in the previous example. The
reverse reaction, especially at high temperature, can be important.

Consider the four species reaction

ν ′1χ1 + ν ′2χ2 ⇌ ν ′′3χ3 + ν ′′4χ4. (5.216)

In terms of the net stoichiometric coefficients, this becomes

ν1χ1 + ν2χ2 + ν3χ3 + ν4χ4 = 0. (5.217)

One can define a variable ζ , the reaction progress. Take the dimension of ζ to be kmoles.
When t = 0, one takes ζ = 0. Now as the reaction goes forward, one takes dζ > 0. And a
forward reaction will decrease the number of moles of χ1 and χ2 while increasing the number
of moles of χ3 and χ4. This will occur in ratios dictated by the stoichiometric coefficients of
the problem:

dn1 = −ν ′1 dζ, (5.218)

dn2 = −ν ′2 dζ, (5.219)

dn3 = +ν ′′3 dζ, (5.220)

dn4 = +ν ′′4 dζ. (5.221)

If ni is taken to have units of kmoles, ν ′i, and ν ′′i are taken as dimensionless, then ζ must
have units of kmoles. In terms of the net stoichiometric coefficients, one has

dn1 = ν1 dζ, (5.222)

dn2 = ν2 dζ, (5.223)

dn3 = ν3 dζ, (5.224)

dn4 = ν4 dζ. (5.225)
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Again, for argument’s sake, assume that at t = 0, one has

n1|t=0 = n1o, (5.226)

n2|t=0 = n2o, (5.227)

n3|t=0 = n3o, (5.228)

n4|t=0 = n4o. (5.229)

Then after integrating, one finds

n1 = ν1ζ + n1o, (5.230)

n2 = ν2ζ + n2o, (5.231)

n3 = ν3ζ + n3o, (5.232)

n4 = ν4ζ + n4o. (5.233)

One can also eliminate the parameter ζ in a variety of fashions and parameterize the
reaction one of the species mole numbers. Choosing, for example, n1 as a parameter, one
gets

ζ =
n1 − n1o

ν1
. (5.234)

Eliminating ζ then one finds all other mole numbers in terms of n1:

n2 = ν2
n1 − n1o

ν1
+ n2o, (5.235)

n3 = ν3
n1 − n1o

ν1
+ n3o, (5.236)

n4 = ν4
n1 − n1o

ν1
+ n4o. (5.237)

Written another way, one has

n1 − n1o

ν1
=
n2 − n2o

ν2
=
n3 − n3o

ν3
=
n4 − n4o

ν4
= ζ. (5.238)

For an N -species reaction,
∑N

i=1 νiχi = 0, one can generalize to say

dni = = νi dζ, (5.239)

ni = νiζ + nio, (5.240)
ni − nio

νi
= ζ. (5.241)

Note that
dni

dζ
= νi. (5.242)
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Now, from the previous chapter, one manifestation of the second law is Eq. (4.394):

dG|T,P =
N∑

i=1

µi dni ≤ 0. (5.243)

Now, one can eliminate dni in Eq. (5.243) by use of Eq. (5.239) to get

dG|T,P =

N∑

i=1

µiνi dζ ≤ 0, (5.244)

∂G

∂ζ

∣∣∣∣
T,P

=
N∑

i=1

µiνi ≤ 0, (5.245)

= −α ≤ 0. (5.246)

Then for the reaction to go forward, one must require that the affinity be positive:

α ≥ 0. (5.247)

One also knows from the previous chapter that the irreversible entropy production takes the
form of Eq. (4.382):

− 1

T

N∑

i=1

µi dni ≥ 0, (5.248)

− 1

T
dζ

N∑

i=1

µiνi ≥ 0, (5.249)

− 1

T

dζ

dt

N∑

i=1

µiνi ≥ 0. (5.250)

In terms of the chemical affinity, α = −∑N
i=1 µiνi, Eq. (5.250) can be written as

1

T

dζ

dt
α ≥ 0. (5.251)

Now one straightforward, albeit näıve, way to guarantee positive semi-definiteness of the
irreversible entropy production and thus satisfaction of the second law is to construct the
chemical kinetic rate equation so that

dζ

dt
= −k

N∑

i=1

µiνi = kα, k ≥ 0, provisional, näıve assumption (5.252)

This provisional assumption of convenience will be supplanted later by a form which agrees
well with experiment. Here k is a positive semi-definite scalar. In general, it is a function of

CC BY-NC-ND. 28 March 2025, J. M. Powers.

https://creativecommons.org/licenses/by-nc-nd/3.0/


5.4. CHEMICAL EQUILIBRIUM 187

temperature, k = k(T ), so that reactions proceed rapidly at high temperature and slowly at
low temperature. Then certainly the reaction progress variable ζ will cease to change when
the equilibrium condition

N∑

i=1

µiνi = 0, (5.253)

is met. This is equivalent to requiring

α = 0. (5.254)

Now, while Eq. (5.253) is the most compact form of the equilibrium condition, it is not
the most commonly used form. One can perform the following analysis to obtain the form
in most common usage. Start by equating the chemical potential with the Gibbs free energy
per unit mole for each species i: µi = gi. Then employ the definition of Gibbs free energy
for an ideal gas, and carry out a set of operations:

N∑

i=1

giνi = 0, at equilibrium, (5.255)

N∑

i=1

(hi − Tsi)νi = 0, at equilibrium. (5.256)

For the ideal gas, one can substitute for hi(T ) and si(T, P ) and write the equilibrium con-
dition as

N∑

i=1




h
o

298,i +

∫ T

298

cPi(T̂ ) dT̂

︸ ︷︷ ︸
=∆h

o
T,i︸ ︷︷ ︸

=h
o
T,i=hT,i

−T




so298,i +

∫ T

298

cPi(T̂ )

T̂
dT̂

︸ ︷︷ ︸
=soT,i

−R ln

(
yiP

Po

)

︸ ︷︷ ︸
=sT,i







νi = 0.

(5.257)

Now writing the equilibrium condition in terms of the enthalpies and entropies referred to
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the standard pressure, one gets

N∑

i=1

(
h
o

T,i − T

(
soT,i − R ln

(
yiP

Po

)))
νi = 0, (5.258)

N∑

i=1

(
h
o

T,i − TsoT,i

)

︸ ︷︷ ︸
=goT,i=µo

T,i

νi = −
N∑

i=1

RTνi ln

(
yiP

Po

)
, (5.259)

−
N∑

i=1

goT,iνi

︸ ︷︷ ︸
≡∆Go

= RT
N∑

i=1

ln

(
yiP

Po

)νi

, (5.260)

−∆Go

RT
=

N∑

i=1

ln

(
yiP

Po

)νi

, (5.261)

= ln

(
N∏

i=1

(
yiP

Po

)νi
)
, (5.262)

exp

(
−∆Go

RT

)

︸ ︷︷ ︸
≡KP

=

N∏

i=1

(
yiP

Po

)νi

, (5.263)

KP =

N∏

i=1

(
yiP

Po

)νi

, (5.264)

=

(
P

Po

)∑N
i=1 νi n∏

i=1

yνii . (5.265)

So

KP =
N∏

i=1

(
Pi

Po

)νi

, at equilibrium. (5.266)

Here KP is what is known as the pressure-based equilibrium constant. It is dimensionless.
Despite its name, it is not a constant. It is defined in terms of thermodynamic properties,
and for the ideal gas is a function of T only:

KP ≡ exp

(
−∆Go

RT

)
, generally valid. (5.267)

Only at equilibrium does the property KP also equal the product of the partial pressures
as in Eq. (5.266). The subscript P for pressure comes about because it is also related to
the product of the ratio of the partial pressure to the reference pressure raised to the net
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stoichiometric coefficients. Also, the net change in Gibbs free energy of the reaction at the
reference pressure, ∆Go, which is a function of T only, has been defined as

∆Go ≡
N∑

i=1

goT,iνi. (5.268)

The term ∆Go has units of kJ/kmole; it traditionally does not get an overbar. If ∆Go > 0,
one has 0 < KP < 1, and reactants are favored over products. If ∆Go < 0, one gets KP > 1,
and products are favored over reactants. One can also deduce that higher pressures P push
the equilibrium in such a fashion that fewer moles are present, all else being equal. One can
also define ∆Go in terms of the chemical affinity, referred to the reference pressure, as

∆Go = −αo. (5.269)

One can also define another convenient thermodynamic property, which for an ideal gas
is a function of T alone, the equilibrium constant Kc:

Kc ≡
(
Po

RT

)∑N
i=1 νi

exp

(
−∆Go

RT

)
, generally valid. (5.270)

This property is dimensional, and the units depend on the stoichiometry of the reaction.

The units of Kc will be (kmole/m3)
∑N

i=1 νi.
The equilibrium condition, Eq. (5.266), is often written in terms of molar concentrations

and Kc. This can be achieved by the operations, valid only at an equilibrium state:

KP =

N∏

i=1

(
ρiRT

Po

)νi

, (5.271)

exp

(−∆Go

RT

)
=

(
RT

Po

)∑N
i=1 νi N∏

i=1

ρ νi
i , (5.272)

(
Po

RT

)∑N
i=1 νi

exp

(−∆Go

RT

)

︸ ︷︷ ︸
≡Kc

=
N∏

i=1

ρ νi
i . (5.273)

So

Kc =
N∏

i=1

ρ νi
i , at equilibrium. (5.274)

One must be careful to distinguish between the general definition ofKc as given in Eq. (5.270),
and the fact that at equilibrium it is driven to also have the value of product of molar species
concentrations, raised to the appropriate stoichiometric power, as given in Eq. (5.274).
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5.5 Chemical kinetics of a single isothermal reaction

In the same fashion in ordinary mechanics that an understanding of statics enables an under-
standing of dynamics, an understanding of chemical equilibrium is necessary to understand
to more challenging topic of chemical kinetics. Chemical kinetics describes the time-evolution
of systems which may have an initial state far from equilibrium; it typically describes the
path of such systems to an equilibrium state. Here gas phase kinetics of ideal gas mixtures
that obey Dalton’s law will be studied. Important topics such as catalysis and solid or liquid
reactions will not be considered.

Further, this section will be restricted to strictly isothermal systems. This simplifies the
analysis greatly. It is straightforward to extend the analysis of this system to non-isothermal
systems. One must then make further appeal to the energy equation to get an equation for
temperature evolution.

The general form for evolution of species is taken to be

d

dt

(
ρi
ρ

)
=
ω̇i

ρ
. (5.275)

Multiplying both sides of Eq. (5.275) by molecular mass Mi and using the definition of mass
fraction ci then gives the alternate form

dci
dt

=
ω̇iMi

ρ
. (5.276)

5.5.1 Isochoric systems

Consider the evolution of species concentration in a system which is isothermal, isochoric
and spatially homogeneous. The system is undergoing a single chemical reaction involving
N species of the familiar form

N∑

i=1

νiχi = 0. (5.277)

Because the density is constant for the isochoric system, Eq. (5.275) reduces to

dρi
dt

= ω̇i, isochoric. (5.278)
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Then, experiment, as well as a more fundamental molecular collision theory, shows that the
evolution of species concentration i is given by

dρi
dt

=

≡ω̇i︷ ︸︸ ︷

νi aT
β exp

(−E
RT

)

︸ ︷︷ ︸
≡k(T )

(
N∏

k=1

ρ
ν′k
k

)

︸ ︷︷ ︸
forward reaction


1− 1

Kc

N∏

k=1

ρ νk
k

︸ ︷︷ ︸
reverse reaction




︸ ︷︷ ︸
≡r

, isochoric system. (5.279)

This relation actually holds for isochoric, non-isothermal systems as well, which will not be
considered in any detail here. Here some new variables are defined as follows:

• a: a kinetic rate constant called the collision frequency factor. Its units will depend
on the actual reaction and could involve various combinations of length, time, and
temperature. It is constructed so that dρi/dt has units of kmole/m3/s; this requires it

to have units of (kmole/m3)(1−
∑N

k=1 ν
′

k)/s/Kβ.

• β: a dimensionless parameter whose value is set by experiments, sometimes combined
with guiding theory, to account for weak temperature dependency of reaction rates.

• E: the activation energy. It has units of kJ/kmole, though others are often used, and is
fit by both experiment and fundamental theory to account for the strong temperature
dependency of reaction.

In Eq. (5.279) that molar concentrations are raised to the ν ′k and νk powers. As it does not
make sense to raise a physical quantity to a power with units, one traditionally interprets the
values of νk, ν

′
k, as well as ν

′′
k to be dimensionless pure numbers. They are also interpreted

in a standard fashion: the smallest integer values that actually correspond to the underlying
molecular collision which has been modeled. While stoichiometric balance can be achieved
by a variety of νk values, the kinetic rates are linked to one particular set which is defined
by the community.

Equation (5.279) is written in such a way that the species concentration production rate
increases when

• The net number of moles generated in the reaction, measured by νi increases,

• The temperature increases; here, the sensitivity may be very high, as one observes in
nature,

• The species concentrations of species involved in the forward reaction increase; this
embodies the principle that the collision-based reaction rates are enhanced when there
are more molecules to collide,
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• The species concentrations of species involved in the reverse reaction decrease.

Here, three intermediate variables which are in common usage have been defined. First one
takes the reaction rate to be

r ≡ aT β exp

(−E
RT

)

︸ ︷︷ ︸
≡k(T )

(
N∏

k=1

ρ
ν′k
k

)

︸ ︷︷ ︸
forward reaction


1− 1

Kc

N∏

k=1

ρ νk
k

︸ ︷︷ ︸
reverse reaction


 , (5.280)

or

r = aT β exp

(−E
RT

)

︸ ︷︷ ︸
≡k(T ), Arrhenius rate




N∏

k=1

ρ
ν′k
k

︸ ︷︷ ︸
forward reaction

− 1

Kc

N∏

k=1

ρ
ν′′k
k

︸ ︷︷ ︸
reverse reaction




︸ ︷︷ ︸
law of mass action

. (5.281)

The reaction rate r has units of kmole/m3/s.
The temperature-dependency of the reaction rate is embodied in k(T ) is defined by what

is known as an Arrhenius rate law:

k(T ) ≡ aT β exp

(−E
RT

)
. (5.282)

This equation was advocated by van’t Hoff in 1884; in 1889 Arrhenius gave a physical justifi-
cation. The units of k(T ) actually depend on the reaction. This is a weakness of the theory,

and precludes a clean non-dimensionalization. The units must be (kmole/m3)(1−
∑N

k=1 ν
′

k)/s.
In terms of reaction progress, one can also take

r =
1

V

dζ

dt
. (5.283)

The factor of 1/V is necessary because r has units of molar concentration per time and ζ
has units of kmoles. The over-riding importance of the temperature sensitivity is illustrated
as part of the next example. The remainder of the expression involving the products of the
species concentrations is the defining characteristic of systems which obey the law of mass
action. Though the history is complex, most attribute the law of mass action to Waage and
Guldberg in 1864.1

Last, the overall molar production rate of species i, is often written as ω̇i, defined as

ω̇i ≡ νir. (5.284)

1P. Waage and C. M. Guldberg, 1864, “Studies Concerning Affinity, Forhandlinger: Videnskabs-Selskabet
i Christiania, 35. English translation: Journal of Chemical Education, 63(12): 1044-1047.
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As νi is considered to be dimensionless, the units of ω̇i must be kmole/m3/s. So we can say
for isochoric systems combining Eqs. (5.284) and (5.278) that

dρi
dt

= νir, isochoric. (5.285)

Example 5.13
Study the nitrogen dissociation problem considered in an earlier example, see p. 152, in which at

t = 0 s, 1 kmole of N2 exists at P = 100 kPa and T = 6000 K. Take as before the reaction to be
isothermal and isochoric. Consider again the elementary nitrogen dissociation reaction

N2 +N2 ⇌ 2N + N2, (5.286)

which has kinetic rate parameters of

a = 7.0× 1021
cm3 K1.6

mole s
, (5.287)

β = −1.6, (5.288)

E = 224928.4
cal

mole
. (5.289)

In SI units, this becomes

a =

(
7.0× 1021

cm3 K1.6

mole s

)(
1 m

100 cm

)3(
1000 mole

kmole

)
= 7.0× 1018

m3 K1.6

kmole s
, (5.290)

E =

(
224928.4

cal

mole

)(
4.186

J

cal

)(
kJ

1000 J

)(
1000 mole

kmole

)
= 941550

kJ

kmole
. (5.291)

At the initial state, the material is all N2, so PN2
= P = 100 kPa. The ideal gas law then gives at t = 0

P |t=0 = PN2
|t=0 = ρN2

∣∣
t=0

RT, (5.292)

ρN2

∣∣
t=0

=
P |t=0

RT
, (5.293)

=
100 kPa(

8.314 kJ
kmole K

)
(6000 K)

, (5.294)

= 2.00465× 10−3 kmole

m3
. (5.295)

Thus, the volume, constant for all time in the isochoric process, is

V =
nN2

|t=0

ρN2

∣∣
t=0

=
1 kmole

2.00465× 10−3 kmole
m3

= 4.9884× 102 m3. (5.296)
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Now the stoichiometry of the reaction is such that

−dnN2
=

1

2
dnN, (5.297)

−(nN2
− nN2

|t=0︸ ︷︷ ︸
=1 kmole

) =
1

2
(nN − nN|t=0︸ ︷︷ ︸

=0

), (5.298)

nN = 2(1 kmole− nN2
), (5.299)

nN

V
= 2

(
1 kmole

V
− nN2

V

)
, (5.300)

ρN = 2

(
1 kmole

4.9884× 102 m3
− ρN2

)
, (5.301)

= 2

(
2.00465× 10−3 kmole

m3
− ρN2

)
. (5.302)

Now the general equation for kinetics of a single reaction, Eq. (5.279), reduces for N2 molar con-
centration to

dρN2

dt
= νN2

aT β exp

(−E
RT

)
(ρN2

)ν
′

N2 (ρN)
ν′

N

(
1− 1

Kc
(ρN2

)νN2 (ρN)
νN

)
. (5.303)

Realizing that ν′N2
= 2, ν′N = 0, νN2

= −1, and νN = 2, one gets

dρN2

dt
= − aT β exp

(−E
RT

)

︸ ︷︷ ︸
=k(T )

ρ2N2

(
1− 1

Kc

ρ2N
ρN2

)
. (5.304)

Examine the primary temperature dependency of the reaction

k(T ) = aT β exp

(−E
RT

)
, (5.305)

=

(
7.0× 1018

m3K1.6

kmole s

)
T−1.6 exp

(
−941550 kJ

kmole

8.314 kJ
kmole KT

)
, (5.306)

=
7.0× 1018

T 1.6
exp

(−1.1325× 105

T

)
. (5.307)

Figure 5.1 gives a plot of k(T ) which shows its very strong dependency on temperature. For this
problem, T = 6000 K, so

k(6000) =
7.0× 1018

60001.6
exp

(−1.1325× 105

6000

)
, (5.308)

= 40071.6
m3

kmole s
. (5.309)

Now, the equilibrium constant Kc is needed. Recall

Kc =

(
Po

RT

)∑N
i=1 νi

exp

(−∆Go

RT

)
. (5.310)
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Figure 5.1: k(T ) for nitrogen dissociation example.

For this system, because
∑N

i=1 νi = 1, this reduces to

Kc =

(
Po

RT

)
exp

(−(2goN − goN2
)

RT

)
, (5.311)

=

(
Po

RT

)
exp

(
−(2(h

o

N − TsoT,N)− (h
o

N2
− TsoT,N2

))

RT

)
, (5.312)

=

(
100

(8.314)(6000)

)
exp

(−(2(597270− (6000)216.926)− (205848− (6000)292.984))

(8.314)(6000)

)
,(5.313)

= 0.000112112
kmole

m3
. (5.314)

The differential equation for N2 evolution is then given by

dρN2

dt
= −

(
40071.6

m3

kmole

)
ρ2N2

(
1− 1

0.000112112 kmole
m3

(
2
(
2.00465× 10−3 kmole

m3 − ρN2

))2

ρN2

)

︸ ︷︷ ︸
≡f(ρN2

)

,

(5.315)

= f(ρN2
). (5.316)

The system is at equilibrium when f(ρN2
) = 0. This is an algebraic function of ρN2

only, and can be
plotted. Figure 5.2 gives a plot of f(ρN2

) and shows that it has three potential equilibrium points. It
is seen there are three roots. Solving for the equilibria requires solving

0 = −
(
40071.6

m3

kmole

)
ρ2N2

(
1− 1

0.000112112 kmole
m3

(
2
(
2.00465× 10−3 kmole

m3

)
− ρN2

)2

ρN2

)
. (5.317)

CC BY-NC-ND. 28 March 2025, J. M. Powers.

https://creativecommons.org/licenses/by-nc-nd/3.0/


196 CHAPTER 5. THERMOCHEMISTRY OF A SINGLE REACTION
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Figure 5.2: Forcing function, f(ρN2
), which drives changes of ρN2

as a function of ρN2
in

isothermal, isochoric problem.

The three roots are

ρN2
= 0

kmole

m3︸ ︷︷ ︸
unstable

, 0.00178121
kmole

m3︸ ︷︷ ︸
stable

, 0.00225611
kmole

m3︸ ︷︷ ︸
unstable

. (5.318)

By inspection of the topology of Fig. 5.2, the only stable root is 0.00178121 kmole/m3. This root
agrees with the equilibrium value found in an earlier example for the same problem conditions. Small
perturbations from this equilibrium induce the forcing function to supply dynamics which restore the
system to its original equilibrium state. Small perturbations from the unstable equilibria induce non-
restoring dynamics. For this root, one can then determine that the stable equilibrium value of ρN =
0.000446882 kmole/m3.

One can examine this stability more formally. Define an equilibrium concentration ρeqN2
such that

f(ρeqN2
) = 0. (5.319)

Now perform a Taylor series of f(ρN2
) about ρN2

= ρeqN2
:

f(ρN2
) ∼ f(ρeqN2

)
︸ ︷︷ ︸

=0

+
df

dρN2

∣∣∣∣
ρN2

=ρeq
N2

(ρN2
− ρeqN2

) +
1

2

d2f

dρ2N2

(ρN2
− ρeqN2

)2 + . . . (5.320)

Now the first term of the Taylor series is zero by construction. Next neglect all higher order terms as
small so that the approximation becomes

f(ρN2
) ∼ df

dρN2

∣∣∣∣
ρN2

=ρeq
N2

(ρN2
− ρeqN2

). (5.321)

Thus, near equilibrium, one can write

dρN2

dt
∼ df

dρN2

∣∣∣∣
ρN2

=ρeq
N2

(ρN2
− ρeqN2

). (5.322)
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Figure 5.3: ρN2
(t) and ρN(t) in isothermal, isochoric nitrogen dissociation problem.

Because the derivative of a constant is zero, one can also write the equation as

d

dt
(ρN2

− ρeqN2
) ∼ df

dρN2

∣∣∣∣
ρN2

=ρeq
N2

(ρN2
− ρeqN2

). (5.323)

This has a solution, valid near the equilibrium point, of

(ρN2
− ρeqN2

) = C exp


 df

dρN2

∣∣∣∣
ρN2

=ρeq
N2

t


 , (5.324)

ρN2
= ρeqN2

+ C exp


 df

dρN2

∣∣∣∣
ρN2

=ρeq
N2

t


 . (5.325)

Here C is some constant whose value is not important for this discussion. If the slope of f is positive,
that is,

df

dρN2

∣∣∣∣
ρN2

=ρeq
N2

> 0, unstable, (5.326)

the equilibrium will be unstable. That is a perturbation will grow without bound as t → ∞. If the
slope is zero,

df

dρN2

∣∣∣∣
ρN2

=ρeq
N2

= 0, neutrally stable, (5.327)

the solution is stable in that there is no unbounded growth, and moreover is known as neutrally stable.
If the slope is negative,

df

dρN2

∣∣∣∣
ρN2

=ρeq
N2

< 0, asymptotically stable, (5.328)

the solution is stable in that there is no unbounded growth, and moreover is known as asymptotically

stable.

A numerical solution via an explicit technique such as a Runge-Kutta integration is found for
Eq. (5.315). The solution for ρN2

, along with ρN is plotted in Fig. 5.3.
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Linearization of Eq. (5.315) about the equilibrium state gives rise to the locally linearly valid

d

dt

(
ρN2

− 0.00178121
)
= −1209.39(ρN2

− 0.00178121)+ . . . (5.329)

This has local asymptotically stable solution

ρN2
= 0.00178121+ C exp (−1209.39t) . (5.330)

Here C is some integration constant whose value is irrelevant for this analysis. The time scale of
relaxation τ is the time when the argument of the exponential is −1, which is

τ =
1

1209.39 s−1
= 8.27× 10−4 s. (5.331)

One usually finds this time scale to have high sensitivity to temperature, with high temperatures giving
fast time constants and thus fast reactions.

The equilibrium values agree exactly with those found in the earlier example; see Eq. (4.469). Here
the kinetics provide the details of how much time it takes to achieve equilibrium. This is one of the key
questions of non-equilibrium thermodynamics.

5.5.2 Isobaric systems

The form of the previous section is the most important as it is easily extended to a Cartesian
grid with fixed volume elements in fluid flow problems. However, there is another important
spatially homogeneous problem in which the formulation needs slight modification: isobaric
reaction, with P equal to a constant. Again, in this section only isothermal conditions will
be considered.

In an isobaric problem, there can be volume change. Consider first the problem of isobaric
expansion of an inert mixture. In such a mixture, the total number of moles of each species
must be constant, so one gets

dni

dt
= 0, inert, isobaric mixture. (5.332)

Now carry out the sequence of operations, realizing the total mass m is also constant:

1

m

d

dt
(ni) = 0, (5.333)

d

dt

(ni

m

)
= 0, (5.334)

d

dt

(
ni

V

V

m

)
= 0, (5.335)

d

dt

(
ρi
ρ

)
= 0, (5.336)

1

ρ

dρi
dt

− ρi
ρ2
dρ

dt
= 0, (5.337)

dρi
dt

=
ρi
ρ

dρ

dt
, inert, isobaric mixture. (5.338)
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So a global density decrease of the inert material due to volume increase of a fixed mass
system induces a concentration decrease of each species. As an aside, we could also analyze
inert isobaric mixtures as follows, first dividing both sides of Eq. (5.338) by ρi:

1

ρi

dρi
dt

=
1

ρ

dρ

dt
, (5.339)

d

dt
(ln ρi) =

d

dt
(ln ρ) , (5.340)

ln
ρi
ρio

= ln
ρ

ρo
, (5.341)

ρi
ρio

=
ρ

ρo
, inert, isobaric mixture. (5.342)

The ratio of instantaneous species molar concentration to its initial value is the same as the
ratio of the instantaneous mass density to its initial value.

Extending to a material with a single reaction rate r, one can näıvely, but correctly, add
the just-described inert expansion effect, Eq. (5.338), to the isochoric Eq. (5.285) to get

dρi
dt

= νir +
ρi
ρ

dρ

dt
. (5.343)

We can rearrange Eq. (5.343) as follows

dρi
dt

− ρi
ρ

dρ

dt
= νir, (5.344)

1

ρ

dρi
dt

− ρi
ρ2
dρ

dt
=

νir

ρ
, (5.345)

d

dt

(
ρi
ρ

)
=

νir

ρ
=
ω̇i

ρ
, generally valid. (5.346)

Equation (5.346) is identical to Eq. (5.275) which was postulated as the most generally valid
form for a spatially homogeneous chemical reaction. It is actually valid for general systems
with variable density, temperature, and pressure.

However, in this section, it is required that pressure and temperature be constant. Now
differentiate the isobaric, isothermal, ideal gas law to get the density derivative.

P =
N∑

i=1

ρiRT. (5.347)
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We can take the time derivative of both sides and get

dP

dt︸︷︷︸
=0

=
N∑

i=1

RT
dρi
dt
, (5.348)

0 =
N∑

i=1

dρi
dt
, (5.349)

=

N∑

i=1

(
νir +

ρi
ρ

dρ

dt

)
, (5.350)

= r
N∑

i=1

νi +
1

ρ

dρ

dt

N∑

i=1

ρi. (5.351)

Solving for dρ/dt, we get

dρ

dt
=

−r∑N
i=1 νi∑N

i=1
ρi
ρ

. (5.352)

= −ρr
∑N

i=1 νi∑N
i=1 ρi

. (5.353)

Now invoke the ideal gas law to get

dρ

dt
= −ρr

∑N
i=1 νi
P
RT

, (5.354)

= −ρRTr
∑N

i=1 νi
P

, (5.355)

= −ρRTr
∑N

k=1 νk
P

. (5.356)

If there is no net number change in the reaction,
∑N

k=1 νk = 0, the isobaric, isothermal
reaction also guarantees there would be no density or volume change. It is convenient to
define the net number change in the elementary reaction as ∆n:

∆n ≡
N∑

k=1

νk. (5.357)

Here ∆n is taken to be a dimensionless pure number. It is associated with the number
change in the elementary reaction and not the actual mole change in a physical system; it
is, however, proportional to the actual mole change.
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Now use Eq. (5.356) to eliminate the density derivative in Eq. (5.343) to get

dρi
dt

= νir +
ρi
ρ

(
−ρRTr

∑N
k=1 νk

P

)

︸ ︷︷ ︸
dρ/dt

, (5.358)

= r




νi︸︷︷︸
reaction effect

−

yi︷ ︸︸ ︷
ρiRT

P

N∑

k=1

νk

︸ ︷︷ ︸
expansion effect



, (5.359)

or

dρi
dt

= r


 νi︸︷︷︸

reaction effect

− yi∆n︸ ︷︷ ︸
expansion effect


 . (5.360)

There are two terms dictating the rate change of species molar concentration. The first, a
reaction effect, is precisely the same term that drove the isochoric reaction. The second is
due to the fact that the volume can change if the number of moles change, and this induces
an intrinsic change in concentration. The term ρiRT/P = yi, the mole fraction.

Example 5.14
Study a variant of the nitrogen dissociation problem considered in an earlier example, see p. 157, in

which at t = 0 s, 1 kmole of N2 exists at P = 100 kPa and T = 6000 K. In this case, take the reaction
to be isothermal and isobaric. Consider again the elementary nitrogen dissociation reaction

N2 +N2 ⇌ 2N + N2, (5.361)

which has kinetic rate parameters of

a = 7.0× 1021
cm3 K1.6

mole s
, (5.362)

β = −1.6, (5.363)

E = 224928.4
cal

mole
. (5.364)

In SI units, this becomes

a =

(
7.0× 1021

cm3 K1.6

mole s

)(
1 m

100 cm

)3(
1000 mole

kmole

)
= 7.0× 1018

m3 K1.6

kmole s
, (5.365)

E =

(
224928.4

cal

mole

)(
4.186

J

cal

)(
kJ

1000 J

)(
1000 mole

kmole

)
= 941550

kJ

kmole
. (5.366)
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At the initial state, the material is all N2, so PN2
= P = 100 kPa. The ideal gas law then gives at t = 0

P = PN2
= ρN2

RT, (5.367)

ρN2

∣∣
t=0

=
P

RT
, (5.368)

=
100 kPa(

8.314 kJ
kmole K

)
(6000 K)

, (5.369)

= 2.00465× 10−3 kmole

m3
. (5.370)

Thus, the initial volume is

V |t=0 =
nN2

|t=0

ρN2

∣∣
t=0

=
1 kmole

2.00465× 10−3 kmole
m3

= 4.9884× 102 m3. (5.371)

In this isobaric process, one always has P = 100 kPa. Now, in general

P = RT (ρN2
+ ρN); (5.372)

therefore, one can write ρN in terms of ρN2
:

ρN =
P

RT
− ρN2

, (5.373)

=
100 kPa(

8.314 kJ
kmole K

)
(6000 K)

− ρN2
, (5.374)

=

(
2.00465× 10−3 kmole

m3

)
− ρN2

. (5.375)

Then the equations for kinetics of a single isobaric isothermal reaction, Eq. (5.359) in conjunction
with Eq. (5.280), reduce for N2 molar concentration to

dρN2

dt
=

(
aT β exp

(−E
RT

)
(ρN2

)ν
′

N2 (ρN)
ν′

N

(
1− 1

Kc
(ρN2

)νN2 (ρN)
νN

))

︸ ︷︷ ︸
=r

(
νN2

− ρN2
RT

P
(νN2

+ νN)

)
.

(5.376)

Realizing that ν′N2
= 2, ν′N = 0, νN2

= −1, and νN = 2, one gets

dρN2

dt
= aT β exp

(−E
RT

)

︸ ︷︷ ︸
=k(T )

ρ2N2

(
1− 1

Kc

ρ2N
ρN2

)(
−1− ρN2

RT

P

)
. (5.377)

The temperature dependency of the reaction is unchanged from the previous reaction:

k(T ) = aT β exp

(−E
RT

)
, (5.378)

=

(
7.0× 1018

m3K1.6

kmole s

)
T−1.6 exp

(
−941550 kJ

kmole

8.314 kJ
kmole KT

)
, (5.379)

=
7.0× 1018

T 1.6
exp

(−1.1325× 105

T

)
. (5.380)
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For this problem, T = 6000 K, so

k(6000) =
7.0× 1018

60001.6
exp

(−1.1325× 105

6000

)
, (5.381)

= 40130.2
m3

kmole s
. (5.382)

The equilibrium constant Kc is also unchanged from the previous example. Recall

Kc =

(
Po

RT

)∑N
i=1

νi

exp

(−∆Go

RT

)
. (5.383)

For this system, because
∑N

i=1 νi = ∆n = 1, this reduces to

Kc =

(
Po

RT

)
exp

(−(2goN − goN2
)

RT

)
, (5.384)

=

(
Po

RT

)
exp

(−(2goN − goN2
)

RT

)
, (5.385)

=

(
Po

RT

)
exp

(
−(2(h

o

N − TsoT,N)− (h
o

N2
− TsoT,N2

))

RT

)
, (5.386)

=

(
100

(8.314)(6000)

)
exp

(−(2(597270− (6000)216.926)− (205848− (6000)292.984))

(8.314)(6000)

)
,(5.387)

= 0.000112112
kmole

m3
. (5.388)

The differential equation for N2 evolution is then given by

dρN2

dt
=

(
40130.2

m3

kmole

)
ρ2N2

(
1− 1

0.000112112 kmole
m3

((
2.00465× 10−3 kmole

m3

)
− ρN2

)2

ρN2

)

×
(
−1− ρN2

(
8.314 kJ

kmole K

)
(6000 K)

100 kPa

)
, (5.389)

≡ f(ρN2
). (5.390)

The system is at equilibrium when f(ρN2
) = 0. This is an algebraic function of ρN2

only, and can be
plotted. Figure 5.4 gives a plot of f(ρN2

) and shows that it has four potential equilibrium points. It is
seen there are four roots. Solving for the equilibria requires solving

0 =

(
40130.2

m3

kmole

)
ρ2N2

(
1− 1

0.000112112 kmole
m3

((
2.00465× 10−3 kmole

m3

)
− ρN2

)2

ρN2

)

×
(
−1− ρN2

(
8.314 kJ

kmole K

)
(6000 K)

100 kPa

)
. (5.391)

The four roots are

ρN2
= −0.002005

kmole

m3︸ ︷︷ ︸
stable,non−physical

, 0
kmole

m3︸ ︷︷ ︸
unstable

, 0.001583
kmole

m3︸ ︷︷ ︸
stable,physical

, 0.00254
kmole

m3︸ ︷︷ ︸
unstable

. (5.392)

By inspection of the topology of Fig. 5.2, the only stable, physical root is 0.001583 kmole/m3. Small
perturbations from this equilibrium induce the forcing function to supply dynamics which restore the
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Figure 5.4: Forcing function, f(ρN2
), which drives changes of ρN2

as a function of ρN2
in

isothermal, isobaric problem.

system to its original equilibrium state. Small perturbations from the unstable equilibria induce non-
restoring dynamics. For this root, one can then determine that the stable equilibrium value of ρN =
0.000421 kmole/m3. A numerical solution via an explicit technique such as a Runge-Kutta integration
is found for Eq. (5.391). The solution for ρN2

, along with ρN is plotted in Fig. 5.5.

Linearization of Eq. (5.391) about the equilibrium state gives rise to the locally linearly valid

d

dt

(
ρN2

− 0.001583
)
= −967.073(ρN2

− 0.001583)+ . . . (5.393)

This has local solution

ρN2
= 0.001583+ C exp (−967.073t) . (5.394)

Again, C is an irrelevant integration constant. The time scale of relaxation τ is the time when the
argument of the exponential is −1, which is

τ =
1

967.073 s−1
= 1.03× 10−3 s. (5.395)

The time constant for the isobaric combustion is about a factor 1.25 greater than for isochoric combus-
tion under the otherwise identical conditions.

The equilibrium values agree exactly with those found in the earlier example; see Eq. (4.515).
Again, the kinetics provide the details of how much time it takes to achieve equilibrium.
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Figure 5.5: ρN2
(t) and ρN(t) in isobaric, isothermal nitrogen dissociation problem.

5.6 Some conservation and evolution equations

Here a few useful global conservation and evolution equations are presented for some key
properties. Only some cases are considered, and one could develop more relations for other
scenarios.

5.6.1 Total mass conservation: isochoric reaction

One can easily show that the isochoric reaction rate model, Eq. (5.279), satisfies the principle
of mixture mass conservation. Begin with Eq. (5.279) in a compact form, using the definition
of the reaction rate r, Eq. (5.281) and perform the following operations:

dρi
dt

= νir, (5.396)

d

dt

(
ρci
Mi

)
= νir, (5.397)

d

dt
(ρci) = νiMir, (5.398)

= νi

L∑

l=1

Mlφli

︸ ︷︷ ︸
=Mi

r, (5.399)

=

L∑

l=1

Mlφliνir, (5.400)
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N∑

i=1

d

dt
(ρci) =

N∑

i=1

L∑

l=1

Mlφliνir, (5.401)

d

dt


ρ

N∑

i=1

ci

︸ ︷︷ ︸
=1


 =

L∑

l=1

N∑

i=1

Mlφliνir, (5.402)

dρ

dt
= r

L∑

l=1

Ml

N∑

i=1

φliνi

︸ ︷︷ ︸
=0

. (5.403)

Therefore, we get

dρ

dt
= 0. (5.404)

The term
∑N

i=1 φliνi = 0 because of stoichiometry, Eq. (5.24).

5.6.2 Element mass conservation: isochoric reaction

Through a similar series of operations, one can show that the mass of each element, l =
1, . . . , L, in conserved in this reaction, which is chemical, not nuclear. Once again, begin
with Eq. (5.281) and perform a set of operations,

dρi
dt

= νir, (5.405)

φli
dρi
dt

= φliνir, l = 1, . . . , L, (5.406)

d

dt
(φliρi) = rφliνi, l = 1, . . . , L, (5.407)

N∑

i=1

d

dt
(φliρi) =

N∑

i=1

rφliνi, l = 1, . . . , L, (5.408)

d

dt

(
N∑

i=1

φliρi

)
= r

N∑

i=1

φliνi

︸ ︷︷ ︸
=0

, l = 1, . . . , L, (5.409)

= 0, l = 1, . . . , L. (5.410)

The term
∑N

i=1 φliρi represents the number of moles of element l per unit volume, by the
following analysis

N∑

i=1

φliρi =
N∑

i=1

moles element l

moles species i

moles species i

volume
=

moles element l

volume
≡ ρ e

l . (5.411)
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Here the elemental mole density, ρ e
l , for element l has been defined. So the element concen-

tration for each element remains constant in a constant volume reaction process:

dρ e
l

dt
= 0, l = 1, . . . , L. (5.412)

One can also multiply by the elemental mass, Ml to get the elemental mass density, ρel :

ρel ≡ Mlρ
e
l , l = 1, . . . , L. (5.413)

Because Ml is a constant, one can incorporate this definition into Eq. (5.412) to get

dρel
dt

= 0, l = 1, . . . , L. (5.414)

The element mass density remains constant in the constant volume reaction. One could also
simply say because the elements’ density is constant, and the mixture is simply a sum of the
elements, that the mixture density is conserved as well.

5.6.3 Energy conservation: adiabatic, isochoric reaction

Consider a simple application of the first law of thermodynamics to reaction kinetics: that
of a closed, adiabatic, isochoric combustion process in a mixture of ideal gases. One may
be interested in the rate of temperature change. First, because the system is closed, there
can be no mass change, and because the system is isochoric, the total volume is a non-zero
constant; hence,

dm

dt
= 0, (5.415)

d

dt
(ρV ) = 0, (5.416)

V
dρ

dt
= 0, (5.417)

dρ

dt
= 0. (5.418)

For such a process, the first law of thermodynamics is

dU

dt
= Q̇− Ẇ . (5.419)
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But there is no heat transfer or work in the adiabatic isochoric process, so one gets

dU

dt
= 0, (5.420)

d

dt
(mu) = 0, (5.421)

m
du

dt
+ u

dm

dt︸︷︷︸
=0

= 0, (5.422)

du

dt
= 0. (5.423)

Thus for the mixture of ideal gases, u(T, ρ1, . . . , ρN) = uo. One can see how reaction rates
affect temperature changes by expanding the derivative in Eq. (5.423)

d

dt

(
N∑

i=1

ciui

)
= 0, (5.424)

N∑

i=1

d

dt
(ciui) = 0, (5.425)

N∑

i=1

(
ci
dui
dt

+ ui
dci
dt

)
= 0, (5.426)

N∑

i=1

(
ci
dui
dT

dT

dt
+ ui

dci
dt

)
= 0, (5.427)

N∑

i=1

(
cicvi

dT

dt
+ ui

dci
dt

)
= 0, (5.428)

dT

dt

N∑

i=1

cicvi

︸ ︷︷ ︸
=cv

= −
N∑

i=1

ui
dci
dt
, (5.429)

cv
dT

dt
= −

N∑

i=1

ui
d

dt

(
Miρi
ρ

)
, (5.430)

ρcv
dT

dt
= −

N∑

i=1

uiMi
dρi
dt
, (5.431)

= −
N∑

i=1

uiMiνir, (5.432)

dT

dt
= −r

∑N
i=1 νiui
ρcv

= −
∑N

i=1 uiω̇i

ρcv
. (5.433)

CC BY-NC-ND. 28 March 2025, J. M. Powers.

https://creativecommons.org/licenses/by-nc-nd/3.0/


5.6. SOME CONSERVATION AND EVOLUTION EQUATIONS 209

If one defines the net energy change of the reaction as

∆U ≡
N∑

i=1

νiui, (5.434)

one then gets

dT

dt
= −r∆U

ρcv
. (5.435)

The rate of temperature change is dependent on the absolute energies, not the energy dif-
ferences. If the reaction is going forward, so r > 0, and that is a direction in which the net
molar energy change is negative, then the temperature will rise.

5.6.4 Energy conservation: adiabatic, isobaric reaction

Solving for the reaction dynamics in an adiabatic isobaric system requires some non-obvious
manipulations. First, the first law of thermodynamics says dU = dQ − dW . Because the
process is adiabatic, one has dQ = 0, so dU + P dV = 0. Because it is isobaric, one gets
d(U + PV ) = 0, or dH = 0. So the total enthalpy is constant. Then

d

dt
H = 0, (5.436)

d

dt
(mh) = 0, (5.437)

dh

dt
= 0, (5.438)

d

dt

(
N∑

i=1

cihi

)
= 0, (5.439)

N∑

i=1

d

dt
(cihi) = 0, (5.440)

N∑

i=1

ci
dhi
dt

+ hi
dci
dt

= 0, (5.441)

N∑

i=1

ci
dhi
dT

dT

dt
+ hi

dci
dt

= 0, (5.442)
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N∑

i=1

cicPi
dT

dt
+

N∑

i=1

hi
dci
dt

= 0, (5.443)

dT

dt

N∑

i=1

cicPi

︸ ︷︷ ︸
=cP

+

N∑

i=1

hi
dci
dt

= 0, (5.444)

cP
dT

dt
+

N∑

i=1

hi
d

dt

(
ρiMi

ρ

)
= 0, (5.445)

cP
dT

dt
+

N∑

i=1

hiMi
d

dt

(
ρi
ρ

)
= 0. (5.446)

Now use Eq (5.346) to eliminate the term in Eq. (5.446) involving molar concentration
derivatives to get

cP
dT

dt
+

N∑

i=1

hi
νir

ρ
= 0, (5.447)

dT

dt
= −r

∑N
i=1 hiνi
ρcP

= −
∑N

i=1 hiω̇i

ρcP
. (5.448)

So the temperature derivative is known as an algebraic function. If one defines the net
enthalpy change as

∆H ≡
N∑

i=1

hiνi, (5.449)

one gets

dT

dt
= −r∆H

ρcP
. (5.450)

Now differentiate the isobaric ideal gas law to get the density derivative.

P =
N∑

i=1

ρiRT, (5.451)

dP

dt︸︷︷︸
=0

=

N∑

i=1

ρiR
dT

dt
+

N∑

i=1

RT
dρi
dt
, (5.452)

0 =
dT

dt

N∑

i=1

ρi +

N∑

i=1

T

(
νir +

ρi
ρ

dρ

dt

)
, (5.453)

=
1

T

dT

dt

N∑

i=1

ρi + r
N∑

i=1

νi +
1

ρ

dρ

dt

N∑

i=1

ρi. (5.454)

CC BY-NC-ND. 28 March 2025, J. M. Powers.

https://creativecommons.org/licenses/by-nc-nd/3.0/


5.6. SOME CONSERVATION AND EVOLUTION EQUATIONS 211

Solving, we get

dρ

dt
=

− 1
T

dT
dt

∑N
i=1 ρi − r

∑N
i=1 νi∑N

i=1
ρi
ρ

. (5.455)

One takes dT/dt from Eq. (5.448) to get

dρ

dt
=

1
T

r
∑N

i=1 hiνi
ρcP

∑N
i=1 ρi − r

∑N
i=1 νi∑N

i=1
ρi
ρ

. (5.456)

Now recall that ρ = ρ/M and cP = cPM , so ρ cP = ρcP . Then Eq. (5.456) can be reduced
slightly:

dρ

dt
= rρ

∑N
i=1 hiνi
cPT

=1︷ ︸︸ ︷
N∑

i=1

ρi
ρ
−∑N

i=1 νi

∑N
i=1 ρi

, (5.457)

= rρ

∑N
i=1

hiνi
cPT

−∑N
i=1 νi∑N

i=1 ρi
, (5.458)

= rρ

∑N
i=1 νi

(
hi

cPT
− 1
)

P
RT

, (5.459)

= r
ρRT

P

N∑

i=1

νi

(
hi
cPT

− 1

)
= rM

N∑

i=1

νi

(
hi
cPT

− 1

)
, (5.460)

where M is the mean molecular mass. For exothermic reaction
∑N

i=1 νihi < 0, so exothermic
reaction induces a density decrease as the increased temperature at constant pressure causes
the volume to increase.

Then using Eq. (5.460) to eliminate the density derivative in Eq. (5.343), and changing
the dummy index from i to k, one gets an explicit expression for concentration evolution:

dρi
dt

= νir +
ρi
ρ
rM

N∑

k=1

νk

(
hk
cPT

− 1

)
, (5.461)

= r


νi +

ρi
ρ
M

︸︷︷︸
=yi

N∑

k=1

νk

(
hk
cPT

− 1

)

 , (5.462)

= r

(
νi + yi

N∑

k=1

νk

(
hk
cPT

− 1

))
. (5.463)
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Defining the change of enthalpy of the reaction as ∆H ≡ ∑N
k=1 νkhk, and the change of

number of the reaction as ∆n ≡∑N
k=1 νk, one can also say

dρi
dt

= r

(
νi + yi

(
∆H

cPT
−∆n

))
. (5.464)

Exothermic reaction, ∆H < 0, and net number increases, ∆n > 0, both tend to decrease the
molar concentrations of the species in the isobaric reaction.

Lastly, the evolution of the adiabatic, isobaric system, can be described by the simul-
taneous, coupled ordinary differential equations: Eqs. (5.448, 5.456, 5.463). These require
numerical solution in general. One could also employ a more fundamental treatment as a
differential algebraic system involving H = H1, P = P1 = RT

∑N
i=1 ρi and Eq. (5.343).

5.6.5 Entropy evolution: Clausius-Duhem relation

Now consider whether the kinetics law that has been posed actually satisfies the second law
of thermodynamics. Consider again Eq. (4.382). There is an algebraic relation on the right
side. If it can be shown that this algebraic relation is positive semi-definite, then the second
law is satisfied, and the algebraic relation is known as a Clausius-Duhem relation.

Now take Eq. (4.382) and perform some straightforward operations on it:

dS|U,V = − 1

T

N∑

i=1

µi dni

︸ ︷︷ ︸
irreversible entropy production

≥ 0, (5.465)

dS

dt

∣∣∣∣
U,V

= −V
T

N∑

i=1

µi

dni

dt

1

V
≥ 0, (5.466)

= −V
T

N∑

i=1

µi

dρi
dt

≥ 0, (5.467)

= −V
T

N∑

i=1

µiνi aT
β exp

(−E
RT

)

︸ ︷︷ ︸
≡k(T )

(
N∏

k=1

ρ
ν′k
k

)

︸ ︷︷ ︸
forward reaction


1− 1

Kc

N∏

k=1

ρ νk
k

︸ ︷︷ ︸
reverse reaction




︸ ︷︷ ︸
≡r

≥ 0,(5.468)

= −V
T

N∑

i=1

µiνik(T )

(
N∏

k=1

ρ
ν′k
k

)(
1− 1

Kc

N∏

k=1

ρ νk
k

)
≥ 0, (5.469)

= −V
T
k(T )

(
N∏

k=1

ρ
ν′k
k

)(
1− 1

Kc

N∏

k=1

ρ νk
k

)(
N∑

i=1

µiνi

)

︸ ︷︷ ︸
=−α

≥ 0, (5.470)
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Change the dummy index from k back to i:

dS

dt

∣∣∣∣
U,V

=
V

T
k(T )

(
N∏

i=1

ρ
ν′i
i

)(
1− 1

Kc

N∏

i=1

ρ νi
i

)
α ≥ 0, (5.471)

=
V

T
rα, (5.472)

=
α

T

dζ

dt
. (5.473)

Consider now the affinity α term in Eq. (5.470) and expand it so that it has a more useful
form:

α = −
N∑

i=1

µiνi = −
N∑

i=1

giνi, (5.474)

= −
N∑

i=1

(
goT,i +RT ln

(
Pi

Po

))
νi, (5.475)

= −
N∑

i=1

goT,iνi

︸ ︷︷ ︸
=∆Go

−RT
N∑

i=1

ln

(
Pi

Po

)νi

, (5.476)

= RT



−∆Go

RT︸ ︷︷ ︸
=lnKP

−
N∑

i=1

ln

(
Pi

Po

)νi


 , (5.477)

= RT

(
lnKP − ln

N∏

i=1

(
Pi

Po

)νi
)
, (5.478)

= −RT
(
ln

1

KP
+ ln

N∏

i=1

(
Pi

Po

)νi
)
, (5.479)

= −RT ln

(
1

KP

N∏

i=1

(
Pi

Po

)νi
)
, (5.480)

= −RT ln



(

Po

RT

)∑N
i=1 νi

Kc

N∏

i=1

(
ρiRT

Po

)νi

 , (5.481)

= −RT ln

(
1

Kc

N∏

i=1

ρ νi
i

)
. (5.482)

Equation (5.482) is the common definition of affinity. Another form can be found by em-
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ploying the definition of Kc from Eq. (5.270) to get

α = −RT ln

((
Po

RT

)−
∑N

i=1 νi

exp

(
∆Go

RT

) N∏

i=1

ρ νi
i

)
, (5.483)

= −RT
(
∆Go

RT
+ ln

((
Po

RT

)−
∑N

i=1 νi N∏

i=1

ρ νi
i

))
, (5.484)

= −∆Go −RT ln

((
Po

RT

)−
∑N

i=1 νi N∏

i=1

ρ νi
i

)
. (5.485)

To see clearly that the entropy production rate is positive semi-definite, substitute
Eq. (5.482) into Eq. (5.470) to get

dS

dt

∣∣∣∣
U,V

=
V

T
k(T )

(
N∏

i=1

ρ
ν′i
i

)(
1− 1

Kc

N∏

i=1

ρ νi
i

)(
−RT ln

(
1

Kc

N∏

i=1

ρ νi
i

))
≥ 0,

(5.486)

= −RV k(T )
(

N∏

i=1

ρ
ν′i
i

)(
1− 1

Kc

N∏

i=1

ρ νi
i

)
ln

(
1

Kc

N∏

i=1

ρ νi
i

)
≥ 0. (5.487)

Define forward and reverse reaction coefficients, R′, and R′′, respectively, as

R′ ≡ k(T )

N∏

i=1

ρ νi′

i , (5.488)

R′′ ≡ k(T )

Kc

N∏

i=1

ρ νi
′′

i . (5.489)

Both R′ and R′′ have units of kmole/m3/s. It is easy to see that

r = R′ −R′′. (5.490)

Because k(T ) > 0, Kc > 0, and ρi ≥ 0, that both R′ ≥ 0 and R′′ ≥ 0. Because νi = ν ′′i − ν ′i,
one finds that

1

Kc

N∏

i=1

ρ νi
i =

1

Kc

k(T )

k(T )

N∏

i=1

ρ
ν′′i −ν′i
i =

R′′

R′
. (5.491)

Then Eq. (5.487) reduces to

dS

dt

∣∣∣∣
U,V

= −RVR′

(
1− R′′

R′

)
ln

(R′′

R′

)
≥ 0. (5.492)

Finally, we get

dS

dt

∣∣∣∣
U,V

= RV (R′ −R′′) ln

(R′

R′′

)
≥ 0. (5.493)
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Obviously, if the forward rate is greater than the reverse rate R′ −R′′ > 0, ln(R′/R′′) > 0,
and the entropy production is positive. If the forward rate is less than the reverse rate,
R′ − R′′ < 0, ln(R′/R′′) < 0, and the entropy production is still positive. The production
rate is zero when R′ = R′′.

The affinity α can be written as

α = RT ln

(R′

R′′

)
. (5.494)

And so when the forward reaction rate exceeds the reverse, the affinity is positive. It is zero
at equilibrium, when the forward reaction rate equals the reverse.

5.7 Simple one-step kinetics

A common model in theoretical combustion is that of so-called simple one-step kinetics. Such
a model, in which the molecular mass does not change, is quantitatively appropriate only
for isomerization reactions. However, as a pedagogical tool as well as a qualitative model for
real chemistry, it can be valuable.

Consider the reversible reaction
A ⇌ B. (5.495)

where chemical species A and B have identical molecular masses MA = MB = M . Consider
further the case in which at the initial state, no moles of A only are present. Also take the
reaction to be isochoric and isothermal. These assumptions can easily be relaxed for more
general cases. Specializing then Eq. (5.240) for this case, one has

nA = νA︸︷︷︸
=−1

ζ + nAo︸︷︷︸
=no

, (5.496)

nB = νB︸︷︷︸
=1

ζ + nBo︸︷︷︸
=0

. (5.497)

Thus

nA = −ζ + no, (5.498)

nB = ζ. (5.499)

Now no is constant throughout the reaction. Scale by this and define the dimensionless
reaction progress as ζ̂ ≡ ζ/no to get

nA

no︸︷︷︸
=yA

= −ζ̂ + 1, (5.500)

nB

no︸︷︷︸
=yB

= ζ̂ . (5.501)
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In terms of the mole fractions then, one has

yA = 1− ζ̂ , (5.502)

yB = ζ̂ . (5.503)

The reaction kinetics for each species reduce to

dρA
dt

= −r, ρ
A
(0) =

no

V
≡ ρo, (5.504)

dρB
dt

= r, ρ
B
(0) = 0. (5.505)

Addition of Eqs. (5.504) and (5.505) gives

d

dt
(ρA + ρB) = 0, (5.506)

ρ
A
+ ρ

B
= ρo, (5.507)

ρ
A

ρo︸︷︷︸
=yA

+
ρ
B

ρo︸︷︷︸
=yB

= 1. (5.508)

In terms of the mole fractions yi, one then has

yA + yB = 1. (5.509)

The reaction rate r is then

r = kρA

(
1− 1

Kc

ρ
B

ρ
A

)
, (5.510)

= kρo
ρA
ρo

(
1− 1

Kc

ρB/ρo
ρ
A
/ρo

)
, (5.511)

= kρoyA

(
1− 1

Kc

yB
yA

)
, (5.512)

= kρo(1− ζ̂)

(
1− 1

Kc

ζ̂

1− ζ̂

)
. (5.513)

Now r = (1/V )dζ/dt = (1/V )d(noζ̂)/dt = (no/V )d(ζ̂)/dt = ρodζ̂/dt. So the reaction
dynamics can be described by a single ordinary differential equation in a single unknown:

ρo
dζ̂

dt
= kρo(1− ζ̂)

(
1− 1

Kc

ζ̂

1− ζ̂

)
, (5.514)

dζ̂

dt
= k(1− ζ̂)

(
1− 1

Kc

ζ̂

1− ζ̂

)
. (5.515)
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Equation (5.515) is in equilibrium when

ζ̂ =
1

1 + 1
Kc

∼ 1− 1

Kc

+ . . . (5.516)

As Kc → ∞, the equilibrium value of ζ̂ → 1. In this limit, the reaction is irreversible. That
is, the species B is preferred over A. Equation (5.515) has exact solution

ζ̂ =
1− exp

(
−k
(
1 + 1

Kc

)
t
)

1 + 1
Kc

. (5.517)

For k > 0, Kc > 0, the equilibrium is stable. The time constant of relaxation τ is

τ =
1

k
(
1 + 1

Kc

) . (5.518)

For the isothermal, isochoric system, one should consider the second law in terms of the
Helmholtz free energy. Combine then Eq. (4.389), dA|T,V ≤ 0, with Eq. (4.306), dA =

−SdT − P dV +
∑N

i=1 µi dni and taking time derivatives, one finds

dA|T,V =

(
−SdT − P dV +

N∑

i=1

µi dni

)∣∣∣∣∣
T,V

≤ 0, (5.519)

dA

dt

∣∣∣∣
T,V

=
N∑

i=1

µi

dni

dt
≤ 0, (5.520)

− 1

T

dA

dt
= −V

T

N∑

i=1

µi

dρi
dt

≥ 0. (5.521)

This is exactly the same form as Eq. (5.487), which can be directly substituted into Eq. (5.521)
to give

− 1

T

dA

dt

∣∣∣∣
T,V

= −RV k(T )
(

N∏

i=1

ρ
ν′i
i

)(
1− 1

Kc

N∏

i=1

ρ νi
i

)
ln

(
1

Kc

N∏

i=1

ρ νi
i

)
≥ 0,

(5.522)

dA

dt

∣∣∣∣
T,V

= RV Tk(T )

(
N∏

i=1

ρ
ν′i
i

)(
1− 1

Kc

N∏

i=1

ρ νi
i

)
ln

(
1

Kc

N∏

i=1

ρ νi
i

)
≤ 0.

(5.523)

For the assumptions of this section, Eq. (5.523) reduces to

dA

dt

∣∣∣∣
T,V

= RTkρoV (1− ζ̂)

(
1− 1

Kc

ζ̂

1− ζ̂

)
ln

(
1

Kc

ζ̂

1− ζ̂

)
≤ 0, (5.524)

= knoRT (1− ζ̂)

(
1− 1

Kc

ζ̂

1− ζ̂

)
ln

(
1

Kc

ζ̂

1− ζ̂

)
≤ 0. (5.525)
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Because the present analysis is nothing more than a special case of the previous section,
Eq. (5.525) certainly holds. One questions however the behavior in the irreversible limit,
1/Kc → 0. Evaluating this limit, one finds

lim
1/Kc→0

dA

dt

∣∣∣∣
T,V

= knoRT


(1− ζ̂)︸ ︷︷ ︸

>0

ln

(
1

Kc

)

︸ ︷︷ ︸
→−∞

+(1− ζ̂) ln ζ̂ − (1− ζ̂) ln(1− ζ̂) + . . .


 ≤ 0.

(5.526)
Now, performing the distinguished limit as ζ̂ → 1; that is the reaction goes to completion,
one notes that all terms are driven to zero for small 1/Kc. Recall that 1− ζ̂ goes to zero faster
than ln(1 − ζ̂) goes to −∞. The entropy inequality is ill-defined for a formally irreversible
reaction with 1/Kc = 0.
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Chapter 6

Thermochemistry of multiple
reactions

See Powers, 2016, Chapter 5.
See Turns and Hawarth, Chapters 4, 5, 6.
See Kuo, Chapters 1, 2.
See Kondepudi and Prigogine, Chapter 16, 19.

This chapter will extend notions associated with the thermodynamics of a single chemical
reactions to systems in which many reactions occur simultaneously.

6.1 Summary of multiple reaction extensions

Consider now the reaction of N species, composed of L elements, in J reactions. This section
will focus on the most common case in which J ≥ (N −L), which is usually the case in large
chemical kinetic systems in use in engineering models. While much of the analysis will only
require J > 0, certain results will depend on J ≥ (N − L). It is not difficult to study the
complementary case where 0 < J < (N − L).

The molecular mass of species i is still given by Eq. (5.1):

Mi =
L∑

l=1

Mlφli, i = 1, . . . , N. (6.1)

However, each reaction has a stoichiometric coefficient. The jth reaction can be summarized
in the following ways:

N∑

i=1

χiν
′
ij ⇌

N∑

i=1

χiν
′′
ij , j = 1, . . . , J, (6.2)

N∑

i=1

χiνij = 0, j = 1, . . . , J. (6.3)
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Stoichiometry for the jth reaction and lth element is given by the extension of Eq. (5.24):

N∑

i=1

φliνij = 0, l = 1, . . . , L, j = 1, . . . , J. (6.4)

The net change in Gibbs free energy and equilibrium constants of the jth reaction are defined
by the extensions of Eqs. (5.268, 5.267, 5.270):

∆Go
j ≡

N∑

i=1

goT,iνij , j = 1, . . . , J, (6.5)

KP,j ≡ exp

(−∆Go
j

RT

)
, j = 1, . . . , J, (6.6)

Kc,j ≡
(
Po

RT

)∑N
i=1 νij

exp

(−∆Go
j

RT

)
, j = 1, . . . , J. (6.7)

The equilibrium of the jth reaction is given by the extension of Eq. (5.253):

N∑

i=1

µiνij = 0, j = 1, . . . , J, (6.8)

or the extension of Eq. (5.255):

N∑

i=1

giνij = 0, j = 1, . . . , J. (6.9)

The multi-reaction extension of Eq. (4.522) for affinity is

αj = −
N∑

i=1

µiνij , j = 1, . . . , J. (6.10)

In terms of the chemical affinity of each reaction, the equilibrium condition is simply the
extension of Eq. (5.254):

αj = 0, j = 1, . . . , J. (6.11)

At equilibrium, then the equilibrium constraints can be shown to reduce to the extension
of Eq. (5.266):

KP,j =

N∏

i=1

(
Pi

Po

)νij

, j = 1, . . . , J, (6.12)
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or the extension of Eq. (5.274):

Kc,j =

N∏

i=1

ρ
νij
i , j = 1, . . . , J. (6.13)

For isochoric reaction, the evolution of species concentration i due to the combined effect
of J reactions is given by the extension of Eq. (5.279):

dρi
dt

=

≡ω̇i︷ ︸︸ ︷

J∑

j=1

νij ajT
βj exp

(−Ej

RT

)

︸ ︷︷ ︸
≡kj(T )

(
N∏

k=1

ρ
ν′kj
k

)

︸ ︷︷ ︸
forward reaction


1− 1

Kc,j

N∏

k=1

ρ
νkj
k

︸ ︷︷ ︸
reverse reaction




︸ ︷︷ ︸
≡rj=(1/V )dζj/dt

, i = 1, . . . , N.

(6.14)
The extension to isobaric reactions is straightforward, and follows the same analysis as for
a single reaction. Again, three intermediate variables which are in common usage have been
defined. First one takes the reaction rate of the jth reaction to be the extension of Eq. (5.280)

rj ≡ ajT
βj exp

(−Ej

RT

)

︸ ︷︷ ︸
≡kj(T )

(
N∏

k=1

ρ
ν′kj
k

)

︸ ︷︷ ︸
forward reaction


1− 1

Kc,j

N∏

k=1

ρ
νkj
k

︸ ︷︷ ︸
reverse reaction


 , j = 1, . . . , J, (6.15)

or the extension of Eq. (5.281)

rj = ajT
βj exp

(−Ej

RT

)

︸ ︷︷ ︸
≡kj(T ), Arrhenius rate




N∏

k=1

ρ
ν′kj
k

︸ ︷︷ ︸
forward reaction

− 1

Kc,j

N∏

k=1

ρ
ν′′kj
k

︸ ︷︷ ︸
reverse reaction




︸ ︷︷ ︸
law of mass action

, j = 1, . . . , J, (6.16)

rj =
1

V

dζj
dt
. (6.17)

Here ζj is the reaction progress variable for the jth reaction.
Each reaction has a temperature-dependent rate function kj(T ), which is an extension of

Eq. (5.282):

kj(T ) ≡ ajT
βj exp

(−Ej

RT

)
, j = 1, . . . , J. (6.18)

CC BY-NC-ND. 28 March 2025, J. M. Powers.

https://creativecommons.org/licenses/by-nc-nd/3.0/


222 CHAPTER 6. THERMOCHEMISTRY OF MULTIPLE REACTIONS

The evolution rate of each species is given by ω̇i, defined now as an extension of Eq. (5.284):

ω̇i ≡
J∑

j=1

νijrj , i = 1, . . . , N, ω̇ = ν · r. (6.19)

Here ω̇ has dimension N × 1, ν has dimension N × J , and r has dimension J × 1.
The multi-reaction extension of Eq. (5.239) for mole change in terms of progress variables

is

dni =

J∑

j=1

νij dζj, i = 1, . . . , N. (6.20)

One also has Eq. (5.243):

dG|T,P =
N∑

i=1

µi dni =
N∑

i=1

µi

J∑

k=1

νik dζk, (6.21)

∂G

∂ζj

∣∣∣∣
ζp

=

N∑

i=1

µi

J∑

k=1

νik
∂ζk
∂ζj

=

N∑

i=1

µi

J∑

j=1

νikδkj =

N∑

i=1

µiνij , (6.22)

= −αj, j = 1, . . . , J. (6.23)

For a set of adiabatic, isochoric reactions, one can show the extension of Eq. (5.435) is

dT

dt
= −

∑J
j=1 rj∆Uj

ρcv
= −

∑N
i=1 uiω̇i

ρcv
= −rT ·∆U

ρcv
= −uT · ω̇

ρcv
, (6.24)

where the energy change for a reaction ∆Uj is defined as the extension of Eq. (5.434):

∆Uj =

N∑

i=1

uiνij , j = 1, . . . , J, ∆U = (uT · ν)T = νT · u. (6.25)

Note that ∆U has dimension J × 1, νT has dimension J ×N , and u has dimension N × 1.
So we then easily see

rT ·∆U = rT · νT · u = (ν · r)T · u = ω̇T · u = uT · ω̇. (6.26)

Similarly for a set of adiabatic, isobaric reactions, one can show the extension of Eq. (5.450):

dT

dt
= −

∑J
j=1 rj∆Hj

ρcP
= −

∑N
i=1 hiω̇i

ρcP
, (6.27)
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where the enthalpy change for a reaction ∆Hj is defined as the extension of Eq. (5.449):

∆Hj =
N∑

i=1

hiνij , j = 1, . . . , J, ∆H = (h
T · ν)T = νT · h. (6.28)

In vector form, it is easy to show that

rT ·∆H = rT · νT · h = (ν · r)T · h = ω̇T · h = h
T · ω̇. (6.29)

Moreover, the density and species concentration derivatives for an adiabatic, isobaric set can
be shown to be extensions of Eqs. (5.460, 5.464):

dρ

dt
= M

J∑

j=1

rj

N∑

i=1

νij

(
hi
cPT

− 1

)
, (6.30)

dρi
dt

=

J∑

j=1

rj

(
νij + yi

(
∆Hj

cPT
−∆nj

))
, (6.31)

where

∆nj =
N∑

k=1

νkj. (6.32)

In a similar fashion to that shown for a single reaction, one can further sum over all
reactions and prove that mixture mass is conserved, element mass and number are conserved.

Example 6.1

Show that element mass and number are conserved for the multi-reaction formulation.
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Start with Eq. (6.14) and expand as follows:

dρi
dt

=

J∑

j=1

νijrj , (6.33)

φli
dρi
dt

= φli

J∑

j=1

νijrj , (6.34)

d

dt
(φliρi) =

J∑

j=1

φliνijrj , (6.35)

N∑

i=1

d

dt
(φliρi) =

N∑

i=1

J∑

j=1

φliνijrj , (6.36)

d

dt

(
N∑

i=1

φliρi

)

︸ ︷︷ ︸
=ρ e

l

=

J∑

j=1

N∑

i=1

φliνijrj , (6.37)

dρ e
l

dt
=

J∑

j=1

rj

N∑

i=1

φliνij

︸ ︷︷ ︸
=0

, (6.38)

dρ e
l

dt
= 0, l = 1, . . . , L, (6.39)

d

dt
(Mlρ

e
l ) = 0, l = 1, . . . , L, (6.40)

dρ e
l

dt
= 0, l = 1, . . . , L. (6.41)

It is also straightforward to show that the mixture density is conserved for the multi-reaction, multi-
component mixture:

dρ

dt
= 0. (6.42)

The proof of the Clausius-Duhem relationship for the second law is an extension of the
single reaction result. Start with Eq. (5.465) and operate much as for a single reaction model.

dS|U,V = − 1

T

N∑

i=1

µi dni

︸ ︷︷ ︸
irreversible entropy production

≥ 0, (6.43)

dS

dt

∣∣∣∣
U,V

= −V
T

N∑

i=1

µi

dni

dt

1

V
≥ 0, (6.44)

= −V
T

N∑

i=1

µi

dρi
dt

≥ 0, (6.45)
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= −V
T

N∑

i=1

µi

J∑

j=1

νijrj ≥ 0, (6.46)

= −V
T

N∑

i=1

J∑

j=1

µiνijrj ≥ 0, (6.47)

= −V
T

J∑

j=1

rj

N∑

i=1

µiνij ≥ 0, (6.48)

= −V
T

J∑

j=1

kj

N∏

i=1

ρ
ν′ij
i

(
1− 1

Kc,j

N∏

i=1

ρ
νij
i

)
N∑

i=1

µiνij ≥ 0, (6.49)

= −V
T

J∑

j=1

kj

N∏

i=1

ρ
ν′ij
i

(
1− 1

Kc,j

N∏

i=1

ρ
νij
i

)(
RT ln

(
1

Kc,j

N∏

i=1

ρ
νij
i

))
≥ 0,

(6.50)

= −RV
J∑

j=1

kj

N∏

i=1

ρ
ν′ij
i

(
1− 1

Kc,j

N∏

i=1

ρ
νij
i

)
ln

(
1

Kc,j

N∏

i=1

ρ
νij
i

)
≥ 0. (6.51)

Note that Eq. (6.48) can also be written in terms of the affinities (see Eq. (6.10)) and reaction
progress variables (see Eq. (6.17) as

dS

dt

∣∣∣∣
U,V

=
1

T

J∑

j=1

αj
dζj
dt

≥ 0. (6.52)

Similar to the argument for a single reaction, if one defines extensions of Eqs. (5.488,
5.489) as

R′
j = kj

N∏

i=1

ρ
ν′ij
i , (6.53)

R′′
j =

kj
Kc,j

N∏

i=1

ρ
ν′′ij
i , (6.54)

then it is easy to show that
rj = R′

j −R′′
j , (6.55)

and we get the equivalent of Eq. (5.493):

dS

dt

∣∣∣∣
U,V

= RV
J∑

j=1

(
R′

j −R′′
j

)
ln

(R′
j

R′′
j

)
≥ 0. (6.56)

Because kj(T ) > 0, R > 0, and V ≥ 0, and each term in the summation combines to
be positive semi-definite, one sees that the Clausius-Duhem inequality is guaranteed to be
satisfied for multi-component reactions.
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6.2 Equilibrium conditions

For multicomponent mixtures undergoing multiple reactions, determining the equilibrium
condition is more difficult. There are two primary approaches, both of which are essentially
equivalent. The most straightforward method requires formal minimization of the Gibbs free
energy of the mixture. It can be shown that this actually finds the equilibrium associated
with all possible reactions.

6.2.1 Minimization of G via Lagrange multipliers

Recall Eq. (4.390), dG|T,P ≤ 0. Recall also Eq. (4.392), G =
∑N

i=1 gini. Because µi = gi =

∂G/∂ni|P,T,nj
, one also has G =

∑N
i=1 µini. From Eq. (4.393), dG|T,P =

∑N
i=1 µi dni. Now

one must also demand for a system coming to equilibrium that the element numbers are
conserved. This can be achieved by requiring

N∑

i=1

φli(nio − ni) = 0, l = 1, . . . , L. (6.57)

Here recall nio is the initial number of moles of species i in the mixture, and φli is the number
of moles of element l in species i. If one interprets nio − ni as −νij , the negative of the net

mole change, Eq. (6.57) becomes −∑N
i=1 φliνij = 0, equivalent to Eq. (6.4).

One can now use the method of constrained optimization given by the method of Lagrange
multipliers to extremize G subject to the constraints of element conservation. The extremum
will be a minimum; this will not be proved, but it will be demonstrated. Define a set of L
Lagrange multipliers λl. Next define an augmented Gibbs free energy function G∗, which is
simply G plus the product of the Lagrange multipliers and the constraints:

G∗ = G+

L∑

l=1

λl

N∑

k=1

φlk(nko − nk). (6.58)

Now when the constraints are satisfied, one has G∗ = G, so assuming the constraints can be
satisfied, extremizing G is equivalent to extremizing G∗. To extremize G∗, take its differential
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with respect to ni, with P , T and nj constant and set it to zero for each species:

∂G∗

∂ni

∣∣∣∣
T,P,nj

=
∂G

∂ni

∣∣∣∣
T,P,nj︸ ︷︷ ︸

=µi

+
∂

∂ni

∣∣∣∣
T,P,nj

(
L∑

l=1

λl

N∑

k=1

φlk(nko − nk)

)
= 0, i = 1, . . . , N,

(6.59)

= µi −
L∑

l=1

λl

N∑

k=1

φlk
∂nk

∂ni

∣∣∣∣
T,P,nj︸ ︷︷ ︸

δki

= 0, i = 1, . . . , N, (6.60)

= µi −
L∑

l=1

λl

N∑

k=1

φlkδki = 0, i = 1, . . . , N, (6.61)

= µi −
L∑

l=1

λlφli = 0, i = 1, . . . , N. (6.62)

Next, for an ideal gas, one can expand the chemical potential so as to get

µo
T,i +RT ln

(
Pi

Po

)

︸ ︷︷ ︸
=µi

−
L∑

l=1

λlφli = 0, i = 1, . . . , N, (6.63)

µo
T,i +RT ln




(
niP∑N
k=1 nk

)

︸ ︷︷ ︸
=Pi

1

Po




−
L∑

l=1

λlφli = 0, i = 1, . . . , N. (6.64)

Recalling that
∑N

k=1 nk = n, in summary then, one has N + L equations

µo
T,i +RT ln

(
ni

n

P

Po

)
−

L∑

l=1

λlφli = 0, i = 1, . . . , N, (6.65)

N∑

i=1

φli(nio − ni) = 0, l = 1, . . . , L. (6.66)

in N + L unknowns: ni, i = 1, . . . , N, λl, l = 1, . . . , L.

Example 6.2
Consider a previous example problem, see p. 157, in which

N2 +N2 ⇌ 2N + N2. (6.67)
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Take the reaction to be isothermal and isobaric with T = 6000 K and P = 100 kPa. Initially one has
1 kmole of N2 and 0 kmole of N. Use the extremization of Gibbs free energy to find the equilibrium
composition.

First find the chemical potentials at the reference pressure of each of the possible constituents.

µoT,i = goi = h
o

i − Tsoi = h
o

298,i +∆h
o

i − Tsoi . (6.68)

For each species, one then finds

µoN2
= 0 + 205848− (6000)(292.984) = −1552056

kJ

kmole
, (6.69)

µoN = 472680 + 124590− (6000)(216.926) = −704286
kJ

kmole
. (6.70)

To each of these one must add

RT ln

(
niP

nPo

)
,

to get the full chemical potential. Now P = Po = 100 kPa for this problem, so one only must consider
RT = 8.314(6000) = 49884 kJ/kmole. So, the chemical potentials are

µN2
= −1552056+ 49884 ln

(
nN2

nN + nN2

)
, (6.71)

µN = −704286+ 49884 ln

(
nN

nN + nN2

)
. (6.72)

Then one adds on the Lagrange multiplier and then considers element conservation to get the
following coupled set of nonlinear algebraic equations:

−1552056+ 49884 ln

(
nN2

nN + nN2

)
− 2λN = 0, (6.73)

−704286+ 49884 ln

(
nN

nN + nN2

)
− λN = 0, (6.74)

nN + 2nN2
= 2. (6.75)

These non-linear equations are solved numerically to get

nN2
= 0.88214 kmole, (6.76)

nN = 0.2357 kmole, (6.77)

λN = −781934
kJ

kmole
. (6.78)

These agree with results found in the earlier example problem, see p. 157.

Example 6.3
Consider a mixture of 2 kmole of H2 and 1 kmole of O2 at T = 3000 K and P = 100 kPa. Assuming

an isobaric and isothermal equilibration process with the products consisting of H2, O2, H2O, OH, H,
and O, find the equilibrium concentrations. Consider the same mixture at T = 298 K and T = 1000 K.
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The first task is to find the chemical potentials of each species at the reference pressure and
T = 3000 K. Here one can use the standard tables along with the general equation

µoT,i = goi = h
o

i − Tsoi = h
o

298,i +∆h
o

i − Tsoi . (6.79)

For each species, one then finds

µoH2
= 0 + 88724− 3000(202.989) = −520242

kJ

kmole
, (6.80)

µoO2
= 0 + 98013− 3000(284.466) = −755385

kJ

kmole
, (6.81)

µoH2O = −241826+ 126548− 3000(286.504) = −974790
kJ

kmole
, (6.82)

µoOH = 38987 + 89585− 3000(256.825) = −641903
kJ

kmole
, (6.83)

µoH = 217999+ 56161− 3000(162.707) = −213961
kJ

kmole
, (6.84)

µoO = 249170+ 56574− 3000(209.705) = −323371
kJ

kmole
. (6.85)

To each of these one must add

RT ln

(
niP

nPo

)
,

to get the full chemical potential. Now P = Po = 100 kPa for this problem, so one must only consider
RT = 8.314(3000) = 24942 kJ/kmole. So, the chemical potentials are

µH2
= −520243+ 24942 ln

(
nH2

nH2
+ nO2

+ nH2O + nOH + nH + nO

)
, (6.86)

µO2
= −755385+ 24942 ln

(
nO2

nH2
+ nO2

+ nH2O + nOH + nH + nO

)
, (6.87)

µH2O = −974790+ 24942 ln

(
nH2O

nH2
+ nO2

+ nH2O + nOH + nH + nO

)
, (6.88)

µOH = −641903+ 24942 ln

(
nOH

nH2
+ nO2

+ nH2O + nOH + nH + nO

)
, (6.89)

µH = −213961+ 24942 ln

(
nH

nH2
+ nO2

+ nH2O + nOH + nH + nO

)
, (6.90)

µO = −323371+ 24942 ln

(
nO

nH2
+ nO2

+ nH2O + nOH + nH + nO

)
. (6.91)

Then one adds on the Lagrange multipliers and then considers element conservation to get the following
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coupled set of nonlinear equations:

−520243+ 24942 ln

(
nH2

nH2
+ nO2

+ nH2O + nOH + nH + nO

)
− 2λH = 0, (6.92)

−755385+ 24942 ln

(
nO2

nH2
+ nO2

+ nH2O + nOH + nH + nO

)
− 2λO = 0, (6.93)

−974790+ 24942 ln

(
nH2O

nH2
+ nO2

+ nH2O + nOH + nH + nO

)
− 2λH − λO = 0, (6.94)

−641903+ 24942 ln

(
nOH

nH2
+ nO2

+ nH2O + nOH + nH + nO

)
− λH − λO = 0, (6.95)

−213961+ 24942 ln

(
nH

nH2
+ nO2

+ nH2O + nOH + nH + nO

)
− λH = 0, (6.96)

−323371+ 24942 ln

(
nO

nH2
+ nO2

+ nH2O + nOH + nH + nO

)
− λO = 0, (6.97)

2nH2
+ 2nH2O + nOH + nH = 4, (6.98)

2nO2
+ nH2O + nOH + nO = 2. (6.99)

These non-linear algebraic equations can be solved numerically via a Newton-Raphson technique.
The equations are sensitive to the initial guess, and one can use ones intuition to help guide the
selection. For example, one might expect to have nH2O somewhere near 2 kmole. Application of the
Newton-Raphson iteration yields

nH2
= 3.19× 10−1 kmole, (6.100)

nO2
= 1.10× 10−1 kmole, (6.101)

nH2O = 1.50× 100 kmole, (6.102)

nOH = 2.20× 10−1 kmole, (6.103)

nH = 1.36× 10−1 kmole, (6.104)

nO = 5.74× 10−2 kmole, (6.105)

λH = −2.85× 105
kJ

kmole
, (6.106)

λO = −4.16× 105
kJ

kmole
. (6.107)

At this relatively high value of temperature, all species considered have a relatively major presence.
That is, there are no truly minor species.

Unless a very good guess is provided, it may be difficult to find a solution for this set of non-
linear equations. Straightforward algebra allows the equations to be recast in a form which sometimes
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converges more rapidly:

nH2

nH2
+ nO2

+ nH2O + nOH + nH + nO
= exp

(
520243

24942

)(
exp

(
λH

24942

))2

, (6.108)

nO2

nH2
+ nO2

+ nH2O + nOH + nH + nO
= exp

(
755385

24942

)(
exp

(
λO

24942

))2

, (6.109)

nH2O

nH2
+ nO2

+ nH2O + nOH + nH + nO
= exp

(
974790

24942

)
exp

(
λO

24942

)(
exp

(
λH

24942

))2

, (6.110)

nOH

nH2
+ nO2

+ nH2O + nOH + nH + nO
= exp

(
641903

24942

)
exp

(
λO

24942

)
exp

(
λH

24942

)
, (6.111)

nH

nH2
+ nO2

+ nH2O + nOH + nH + nO
= exp

(
213961

24942

)
exp

(
λH

24942

)
, (6.112)

nO

nH2
+ nO2

+ nH2O + nOH + nH + nO
= exp

(
323371

24942

)
exp

(
λO

24942

)
, (6.113)

2nH2
+ 2nH2O + nOH + nH = 4, (6.114)

2nO2
+ nH2O + nOH + nO = 2. (6.115)

Then solve these considering ni, exp (λO/24942), and exp (λH/24942) as unknowns. The same result is
recovered, but a broader range of initial guesses converge to the correct solution.

One can verify that this choice extremizes G by direct computation; moreover, this will show
that the extremum is actually a minimum. In so doing, one must exercise care to see that element
conservation is retained. As an example, perturb the equilibrium solution above for nH2

and nH such
that

nH2
= 3.19× 10−1 + ξ, (6.116)

nH = 1.36× 10−1 − 2ξ. (6.117)

Leave all other species mole numbers the same. In this way, when ξ = 0, one has the original equilibrium
solution. For ξ 6= 0, the solution moves off the equilibrium value in such a way that elements are
conserved. Then one has G =

∑N
i=1 µini = G(ξ).

The difference G(ξ)−G(0) is plotted in Fig. 6.1. When ξ = 0, there is no deviation from the value
predicted by the Newton-Raphson iteration. Clearly when ξ = 0, G(ξ) − G(0), takes on a minimum
value, and so then does G(ξ). So the procedure works.

At the lower temperature, T = 298 K, application of the same procedure yields very different
results:

nH2
= 4.88× 10−27 kmole, (6.118)

nO2
= 2.44× 10−27 kmole, (6.119)

nH2O = 2.00× 100 kmole, (6.120)

nOH = 2.22× 10−29 kmole, (6.121)

nH = 2.29× 10−49 kmole, (6.122)

nO = 1.67× 10−54 kmole, (6.123)

λH = −9.54× 104
kJ

kmole
, (6.124)

λO = −1.07× 105
kJ

kmole
. (6.125)

At the intermediate temperature, T = 1000 K, application of the same procedure shows the minor
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-0.01 -0.005 0.005 0.01

10

20

30

40

ξ (kmole)

G(ξ) - G(0) (kJ)

Figure 6.1: Gibbs free energy variation as mixture composition is varied maintaining element
conservation for mixture of H2, O2, H2O, OH, H, and O at T = 3000 K, P = 100 kPa.

species become slightly more prominent:

nH2
= 4.99× 10−7 kmole, (6.126)

nO2
= 2.44× 10−7 kmole, (6.127)

nH2O = 2.00× 100 kmole, (6.128)

nOH = 2.09× 10−8 kmole, (6.129)

nH = 2.26× 10−12 kmole, (6.130)

nO = 1.10× 10−13 kmole, (6.131)

λH = −1.36× 105
kJ

kmole
, (6.132)

λO = −1.77× 105
kJ

kmole
. (6.133)

6.2.2 Equilibration of all reactions

In another equivalent method, if one commences with a multi-reaction model, one can require
each reaction to be in equilibrium. This leads to a set of algebraic equations for rj = 0, which
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from Eq. (6.16) leads to

Kc,j =

(
Po

RT

)∑N
i=1 νij

exp

(−∆Go
j

RT

)
=

N∏

k=1

ρ
νkj
k , j = 1, . . . , J. (6.134)

With some effort it can be shown that not all of the J equations are linearly independent.
Moreover, they do not possess a unique solution. However, for closed systems, only one of
the solutions is physical, as will be shown in the following section. The others typically
involve non-physical, negative concentrations.

Nevertheless, Eqs. (6.134) are entirely consistent with the predictions of the N +L equa-
tions which arise from extremization of Gibbs free energy while enforcing element number
constraints. This can be shown by beginning with Eq. (6.64), rewritten in terms of molar
concentrations, and performing the following sequence of operations:

µo
T,i +RT ln

(
ni/V∑N
k=1 nk/V

P

Po

)
−

L∑

l=1

λlφli = 0, i = 1, . . . , N, (6.135)

µo
T,i +RT ln

(
ρi∑N
k=1 ρk

P

Po

)
−

L∑

l=1

λlφli = 0, i = 1, . . . , N, (6.136)

µo
T,i +RT ln

(
ρi
ρ

P

Po

)
−

L∑

l=1

λlφli = 0, i = 1, . . . , N, (6.137)

µo
T,i +RT ln

(
ρi
RT

Po

)
−

L∑

l=1

λlφli = 0, i = 1, . . . , N, (6.138)

νijµ
o
T,i + νijRT ln

(
ρi
RT

Po

)
− νij

L∑

l=1

λlφli = 0, i = 1, . . . , N,

j = 1, . . . , J, (6.139)
N∑

i=1

νijµ
o
T,i

︸ ︷︷ ︸
=∆Go

j

+

N∑

i=1

νijRT ln

(
ρi
RT

Po

)
−

N∑

i=1

νij

L∑

l=1

λlφli = 0, j = 1, . . . , J, (6.140)

∆Go
j +RT

N∑

i=1

νij ln

(
ρi
RT

Po

)
−

L∑

l=1

λl

N∑

i=1

φliνij

︸ ︷︷ ︸
=0

= 0, j = 1, . . . , J, (6.141)

∆Go
j +RT

N∑

i=1

νij ln

(
ρi
RT

Po

)
= 0, j = 1, . . . , J. (6.142)

Here, the stoichiometry for each reaction has been employed to remove the Lagrange multi-
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pliers. Continue to find

N∑

i=1

ln

(
ρi
RT

Po

)νij

= −∆Go
j

RT
, j = 1, . . . , J, (6.143)

exp

(
N∑

i=1

ln

(
ρi
RT

Po

)νij
)

= exp

(
−∆Go

j

RT

)
, j = 1, . . . , J, (6.144)

N∏

i=1

(
ρi
RT

Po

)νij

= exp

(
−∆Go

j

RT

)
, j = 1, . . . , J, (6.145)

(
RT

Po

)∑N
i=1 νij N∏

i=1

ρi
νij = exp

(
−∆Go

j

RT

)
, j = 1, . . . , J, (6.146)

N∏

i=1

ρi
νij =

(
Po

RT

)∑N
i=1 νij

exp

(
−∆Go

j

RT

)

︸ ︷︷ ︸
=Kc,j

, j = 1, . . . , J,(6.147)

In summary,

N∏

i=1

ρi
νij = Kc,j, j = 1, . . . , J, (6.148)

which is identical to Eq. (6.134), obtained by equilibrating each of the J reactions. Thus,
extremization of Gibbs free energy is consistent with equilibrating each of the J reactions.

6.3 Concise reaction rate law formulations

One can additional analysis to obtain a more efficient representation of the reaction rate law
for multiple reactions. There are two important cases: 1) J ≥ (N −L); this is most common
for large chemical kinetic systems, and 2) J < (N −L); this is common for simple chemistry
models.

The species production rate is given by Eq. (6.14), which reduces to

dρi
dt

=
1

V

J∑

j=1

νij
dζj
dt
, i = 1, . . . , N. (6.149)

Now recalling Eq. (5.99), one has

dni =

N−L∑

k=1

Dik dξk, i = 1, . . . , N. (6.150)
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Comparing then Eq. (6.150) to Eq. (6.20), one sees that

J∑

j=1

νij dζj =
N−L∑

k=1

Dik dξk, i = 1, . . . , N, (6.151)

1

V

J∑

j=1

νij dζj =
1

V

N−L∑

k=1

Dik dξk, i = 1, . . . , N. (6.152)

6.3.1 Reaction dominant: J ≥ (N − L)

Consider first the most common case in which J ≥ (N − L). One can say the species
production rate is given

dρi
dt

=
1

V

N−L∑

k=1

Dik
dξk
dt

=
J∑

j=1

νijrj , i = 1, . . . , N. (6.153)

One would like to invert and solve directly for dξk/dt. However, Dik is non-square and has no
inverse. But because

∑N
i=1 φliDip = 0, and

∑N
i=1 φliνij = 0, L of the equations N equations

in Eq. (6.153) are redundant.
At this point, it is more convenient to go to a Gibbs vector notation, where there is an

obvious correspondence between the bold vectors and the indicial counterparts:

dρ

dt
=

1

V
D · dξ

dt
= ν · r, (6.154)

DT ·D · dξ
dt

= VDT · ν · r, (6.155)

dξ

dt
= V (DT ·D)−1 ·DT · ν · r. (6.156)

Because of the L linear dependencies, there is no loss of information in this matrix projection.
This system of N −L equations is the smallest number of differential equations that can be
solved for a general system in which J > (N − L).

Lastly, one recovers the original system when forming

D · dξ
dt

= V D · (DT ·D)−1 ·DT

︸ ︷︷ ︸
=P

·ν · r. (6.157)

Here, the N × N projection matrix P is symmetric, has norm of unity, has rank of N − L,
has N−L eigenvalues of value unity, and L eigenvalues of value zero. And, while application
of a general projection matrix to ν · r filters some of the information in ν · r, because the
N × (N −L) matrix D spans the same column space as the N ×J matrix ν, no information
is lost in Eq. (6.157) relative to the original Eq. (6.154). Mathematically, one can say

P · ν = ν. (6.158)
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6.3.2 Species dominant: J < (N − L)

Next consider the case in which J < (N−L). This often arises in models of simple chemistry,
for example one- or two-step kinetics.

The fundamental reaction dynamics are most concisely governed by the J equations
which form

1

V

dζ

dt
= r. (6.159)

However, r is a function of the concentrations; one must therefore recover ρ as a function
of reaction progress ζ. In vector form, Eq. (6.149) is written as

dρ

dt
=

1

V
ν · dζ

dt
. (6.160)

Take as an initial condition that the reaction progress is zero at t = 0 and that there are an
appropriate set of initial conditions on the species concentrations ρ:

ζ = 0, t = 0, (6.161)

ρ = ρo, t = 0. (6.162)

Then, because ν is a constant, Eq. (6.160) is easily integrated. After applying the initial
conditions, Eq. (6.162), one gets

ρ = ρo +
1

V
ν · ζ. (6.163)

Last, if J = (N−L), either approach yields the same number of equations, and is equally
concise.

6.4 Adiabatic, isochoric kinetics

Here an example which uses multiple reactions for an adiabatic isochoric system is given.

Example 6.4
Consider the full time-dependency of a problem considered in a previous example in which the

equilibrium state was found; see Sec. 5.3.3.4. A closed, fixed, adiabatic volume contains at t = 0 s a
stoichiometric mixture of 2 kmole of H2, 1 kmole of O2, and 8 kmole of N2 at 100 kPa and 1000 K.
Find the reaction dynamics as the system proceeds from its initial state to its final state.

This problem requires a detailed numerical solution. Such a solution was performed by solving
Eq. (6.14) along with the associated calorically imperfect species state equations for a mixture of
eighteen interacting species: H2, H, O, O2, OH, H2O, HO2, H2O2, N, NH2, NH3, N2H, NO, NO2, N2O,
HNO, and N2. The equilibrium values were reported in a previous example.
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Figure 6.2: Plot of a) ρH2
(t), ρH(t), ρO(t), ρO2

(t), ρOH(t), ρH2O(t), ρHO2
(t), ρH2O2

(t), b) ρN(t),
ρNO(t), ρNO2

(t), ρN2O(t), ρN2
(t), c) T (t), and d) P (t) for adiabatic, isochoric combustion of

a mixture of 2H2 +O2 + 8N2 initially at T = 1000 K, P = 100 kPa.
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The dynamics of the reaction process are reflected in Fig. 6.2. At early time, t < 4 × 10−4 s, the
pressure, temperature, and major reactant species concentrations (H2, O2, N2) are nearly constant.
However, the minor species, e.g. OH, NO, HO2 and the major product, H2O, are undergoing very
rapid growth, albeit concentrations whose value remains small. In this period, the material is in what
is known as the induction period.

After a certain critical mass of minor species has accumulated, exothermic recombination of these
minor species to form the major product H2O induces the temperature to rise, which accelerates further
the reaction rates. This is manifested in a thermal explosion. A common definition of the end of the
induction period is the induction time, t = ti, the time when dT/dt goes through a maximum. Here
one finds

ti = 4.53× 10−4 s. (6.164)

At the end of the induction zone, there is a final relaxation to equilibrium. Often the induction time is
called the ignition delay time.
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Chapter 7

Kinetics in some more detail

See Powers, 2016, Chapter 1.

Here we give further details of kinetics. These notes are also used to introduce a separate
combustion course and have some overlap with previous chapters.

Let us consider the reaction of N molecular chemical species composed of L elements via
J chemical reactions. Let us assume the gas is an ideal mixture of ideal gases that satisfies
Dalton’s law of partial pressures. The reaction will be considered to be driven by molecular
collisions. We will not model individual collisions, but instead attempt to capture their
collective effect.

An example of a model of such a reaction is listed in Table 7.1. There we find a N = 9
species, J = 37 step irreversible reaction mechanism for an L = 3 hydrogen-oxygen-argon
mixture from Maas and Warnatz,1 with corrected fH2 from Maas and Pope.2 The model has
also been utilized by Fedkiw, et al.3 We need not worry yet about fH2 , which is known as
a collision efficiency factor. The one-sided arrows indicate that each individual reaction is
considered to be irreversible. For nearly each reaction, a separate reverse reaction is listed;
thus, pairs of irreversible reactions can be considered to model reversible reactions.

In this model a set of elementary reactions are hypothesized. For the jth reaction we have
the collision frequency factor aj , the temperature-dependency exponent βj and the activation
energy Ej . These will be explained in short order. Other common forms exist. Often
reactions systems are described as being composed of reversible reactions. Such reactions are
usually notated by two sided arrows. One such system is reported by Powers and Paolucci4

reported here in Table 7.2. Both overall models are complicated.

1Maas, U., and Warnatz, J., 1988, “Ignition Processes in Hydrogen-Oxygen Mixtures,” Combustion and

Flame, 74(1): 53-69.
2Maas, U., and Pope, S. B., 1992, “Simplifying Chemical Kinetics: Intrinsic Low-Dimensional Manifolds

in Composition Space,” Combustion and Flame, 88(3-4): 239-264.
3Fedkiw, R. P., Merriman, B., and Osher, S., 1997, “High Accuracy Numerical Methods for Thermally

Perfect Gas Flows with Chemistry,” Journal of Computational Physics, 132(2): 175-190.
4Powers, J. M., and Paolucci, S., 2005, “Accurate Spatial Resolution Estimates for Reactive Supersonic

Flow with Detailed Chemistry,” AIAA Journal, 43(5): 1088-1099.
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j Reaction aj

(
(mol/cm3)(1−ν′M,j−

∑N
i=1 ν′ij)

s Kβj

)
βj Ej

(
kJ

mole

)

1 O2 +H → OH+O 2.00× 1014 0.00 70.30
2 OH + O → O2 +H 1.46× 1013 0.00 2.08
3 H2 +O → OH+H 5.06× 104 2.67 26.30
4 OH + H → H2 +O 2.24× 104 2.67 18.40
5 H2 +OH → H2O+H 1.00× 108 1.60 13.80
6 H2O+H → H2 +OH 4.45× 108 1.60 77.13
7 OH + OH → H2O+O 1.50× 109 1.14 0.42
8 H2O+O → OH+OH 1.51× 1010 1.14 71.64
9 H + H+M → H2 +M 1.80× 1018 −1.00 0.00
10 H2 +M → H + H+M 6.99× 1018 −1.00 436.08
11 H + OH+M → H2O+M 2.20× 1022 −2.00 0.00
12 H2O+M → H +OH+M 3.80× 1023 −2.00 499.41
13 O + O+M → O2 +M 2.90× 1017 −1.00 0.00
14 O2 +M → O+O+M 6.81× 1018 −1.00 496.41
15 H + O2 +M → HO2 +M 2.30× 1018 −0.80 0.00
16 HO2 +M → H +O2 +M 3.26× 1018 −0.80 195.88
17 HO2 +H → OH+OH 1.50× 1014 0.00 4.20
18 OH + OH → HO2 +H 1.33× 1013 0.00 168.30
19 HO2 +H → H2 +O2 2.50× 1013 0.00 2.90
20 H2 +O2 → HO2 +H 6.84× 1013 0.00 243.10
21 HO2 +H → H2O+O 3.00× 1013 0.00 7.20
22 H2O+O → HO2 +H 2.67× 1013 0.00 242.52
23 HO2 +O → OH+O2 1.80× 1013 0.00 −1.70
24 OH + O2 → HO2 +O 2.18× 1013 0.00 230.61
25 HO2 +OH → H2O+O2 6.00× 1013 0.00 0.00
26 H2O+O2 → HO2 +OH 7.31× 1014 0.00 303.53
27 HO2 +HO2 → H2O2 +O2 2.50× 1011 0.00 −5.20
28 OH + OH +M → H2O2 +M 3.25× 1022 −2.00 0.00
29 H2O2 +M → OH+OH+M 2.10× 1024 −2.00 206.80
30 H2O2 +H → H2 +HO2 1.70× 1012 0.00 15.70
31 H2 +HO2 → H2O2 +H 1.15× 1012 0.00 80.88
32 H2O2 +H → H2O+OH 1.00× 1013 0.00 15.00
33 H2O+OH → H2O2 +H 2.67× 1012 0.00 307.51
34 H2O2 +O → OH+HO2 2.80× 1013 0.00 26.80
35 OH + HO2 → H2O2 +O 8.40× 1012 0.00 84.09
36 H2O2 +OH → H2O+HO2 5.40× 1012 0.00 4.20
37 H2O+HO2 → H2O2 +OH 1.63× 1013 0.00 132.71

Table 7.1: Third body collision efficiencies with M are fH2 = 1.00, fO2 = 0.35, and
fH2O = 6.5.
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j Reaction aj

(
(mol/cm3)(1−ν′M,j−

∑N
i=1 ν′ij)

s Kβj

)
βj Ej

(
cal
mole

)

1 H2 +O2 ⇋ OH+OH 1.70× 1013 0.00 47780
2 OH + H2 ⇋ H2O+H 1.17× 109 1.30 3626
3 H + O2 ⇋ OH+O 5.13× 1016 −0.82 16507
4 O + H2 ⇋ OH+H 1.80× 1010 1.00 8826
5 H + O2 +M ⇋ HO2 +M 2.10× 1018 −1.00 0
6 H + O2 +O2 ⇋ HO2 +O2 6.70× 1019 −1.42 0
7 H + O2 +N2 ⇋ HO2 +N2 6.70× 1019 −1.42 0
8 OH + HO2 ⇋ H2O+O2 5.00× 1013 0.00 1000
9 H + HO2 ⇋ OH+OH 2.50× 1014 0.00 1900
10 O + HO2 ⇋ O2 +OH 4.80× 1013 0.00 1000
11 OH + OH ⇋ O+H2O 6.00× 108 1.30 0
12 H2 +M ⇋ H + H+M 2.23× 1012 0.50 92600
13 O2 +M ⇋ O+O+M 1.85× 1011 0.50 95560
14 H + OH+M ⇋ H2O+M 7.50× 1023 −2.60 0
15 H + HO2 ⇋ H2 +O2 2.50× 1013 0.00 700
16 HO2 +HO2 ⇋ H2O2 +O2 2.00× 1012 0.00 0
17 H2O2 +M ⇋ OH+OH+M 1.30× 1017 0.00 45500
18 H2O2 +H ⇋ HO2 +H2 1.60× 1012 0.00 3800
19 H2O2 +OH ⇋ H2O+HO2 1.00× 1013 0.00 1800

Table 7.2: Nine species, nineteen step reversible reaction mechanism for an H2/O2/N2 mix-
ture. Third body collision efficiencies with M are f5(H2O) = 21, f5(H2) = 3.3, f12(H2O) = 6,
f12(H) = 2, f12(H2) = 3, f14(H2O) = 20.
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7.1 Isothermal, isochoric kinetics

For simplicity, we will first focus attention on cases in which the temperature T and vol-
ume V are both constant. Such assumptions are known as “isothermal” and “isochoric,”
respectively. A nice fundamental treatment of elementary reactions of this type is given by
Vincenti and Kruger in their detailed monograph.5

7.1.1 O−O2 dissociation

One of the simplest physical examples is provided by the dissociation of O2 into its atomic
component O.

7.1.1.1 Pair of irreversible reactions

To get started, let us focus for now only on reactions 13 and 14 from Table 7.1 in the limiting
case in which temperature T and volume V are constant.

7.1.1.1.1 Mathematical model The reactions describe oxygen dissociation and recom-
bination in a pair of irreversible reactions:

13 : O + O +M → O2 +M, (7.1)

14 : O2 +M → O+O+M, (7.2)

with

a13 = 2.90× 1017
(
mole

cm3

)−2
K

s
, β13 = −1.00, E13 = 0

kJ

mole
(7.3)

a14 = 6.81× 1018
(
mole

cm3

)−1
K

s
, β14 = −1.00, E14 = 496.41

kJ

mole
. (7.4)

The irreversibility is indicated by the one-sided arrow. Though they participate in the overall
hydrogen oxidation problem, these two reactions are in fact self-contained as well. So let us
just consider that we have only oxygen in our box with N = 2 species, O2 and O, J = 2
reactions (those being 13 and 14), and L = 1 element, that being O.

Recall that in the cgs system, common in thermochemistry, that 1 erg = 1 dyne cm =
10−7 J = 10−10 kJ. Recall also that the cgs unit of force is the dyne and that 1 dyne =
1 g cm/s2 = 10−5 N. So for cgs we have

E13 = 0
erg

mole
, E14 = 496.41

kJ

mole

(
1010 erg

kJ

)
= 4.96× 1012

erg

mole
. (7.5)

5W. G. Vincenti and C. H. Kruger, 1965, Introduction to Physical Gas Dynamics, Wiley, New York.
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The standard model for chemical reaction induces the following two ordinary differential
equations for the evolution of O and O2 molar concentrations:

dρO
dt

= −2 a13T
β13 exp

(−E13

RT

)

︸ ︷︷ ︸
=k13(T )

ρOρOρM

︸ ︷︷ ︸
=r13

+2 a14T
β14 exp

(−E14

RT

)

︸ ︷︷ ︸
=k14(T )

ρO2
ρM

︸ ︷︷ ︸
=r14

, (7.6)

dρO2

dt
= a13T

β13 exp

(−E13

RT

)

︸ ︷︷ ︸
=k13(T )

ρOρOρM

︸ ︷︷ ︸
=r13

− a14T
β14 exp

(−E14

RT

)

︸ ︷︷ ︸
=k14(T )

ρO2
ρM

︸ ︷︷ ︸
=r14

. (7.7)

Here we use the notation ρi as the molar concentration of species i. Also a common usage for
molar concentration is given by square brackets, e.g. ρO2

= [O2]. The symbol M represents
an arbitrary third body and is an inert participant in the reaction. We also use the common
notation of a temperature-dependent portion of the reaction rate for reaction j, kj(T ), where

kj(T ) = ajT
βj exp

(
Ej

RT

)
. (7.8)

The reaction rates for reactions 13 and 14 are defined as

r13 = k13ρOρOρM, (7.9)

r14 = k14ρO2
ρM. (7.10)

We will give details of how to generalize this form later. The system Eq. (7.6-7.7) can be
written simply as

dρO
dt

= −2r13 + 2r14, (7.11)

dρO2

dt
= r13 − r14. (7.12)

Even more simply, in vector form, Eqs. (7.11-7.12) can be written as

dρ

dt
= ν · r. (7.13)

Here we have taken

ρ =

(
ρO
ρO2

)
, (7.14)

ν =

(
−2 2
1 −1

)
, (7.15)

r =

(
r13
r14

)
. (7.16)
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In general, we will have ρ be a column vector of dimension N × 1, ν will be a rectangular
matrix of dimension N × J of rank R, and r will be a column vector of length J × 1. So
Eqs. (7.11-7.12) take the form

d

dt

(
ρO
ρO2

)
=

(
−2 2
1 −1

)(
r13
r14

)
. (7.17)

Here that the rank R of ν is R = L = 1. Let us also define a species-element matrix φ of
dimension L × N . The component of φ, φli represents the number of element l in species
i. Generally φ will be full rank, which will vary because we can have L < N , L = N , or
L > N . Here we have L < N and φ is of dimension 1× 2:

φ =
(
1 2

)
. (7.18)

Element conservation is guaranteed by insisting that ν be constructed such that

φ · ν = 0. (7.19)

So we can say that each of the column vectors of ν lies in the right null space of φ.
For our example, we see that Eq. (7.19) holds:

φ · ν =
(
1 2

)(−2 2
1 −1

)
=
(
0 0

)
. (7.20)

The symbol R is the universal gas constant, where

R = 8.31441
J

mole K

(
107 erg

J

)
= 8.31441× 107

erg

mole K
. (7.21)

Let us take as initial conditions

ρO(t = 0) = ρ̂O, ρO2
(t = 0) = ρ̂O2

. (7.22)

Now M represents an arbitrary third body, so here

ρM = ρO2
+ ρO. (7.23)

Thus, the ordinary differential equations of the reaction dynamics reduce to

dρO
dt

= −2a13T
β13 exp

(−E13

RT

)
ρOρO

(
ρO2

+ ρO
)

+2a14T
β14 exp

(−E14

RT

)
ρO2

(
ρO2

+ ρO
)
, (7.24)

dρO2

dt
= a13T

β13 exp

(−E13

RT

)
ρOρO

(
ρO2

+ ρO
)

−a14T β14 exp

(−E14

RT

)
ρO2

(
ρO2

+ ρO
)
. (7.25)
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Equations (7.24-7.25) with Eqs. (7.22) represent two non-linear ordinary differential equa-
tions with initial conditions in two unknowns ρO and ρO2

. We seek the behavior of these two
species concentrations as a function of time.

Systems of non-linear equations are generally difficult to integrate analytically and gen-
erally require numerical solution. Before embarking on a numerical solution, we simplify as
much as we can. Note that

dρO
dt

+ 2
dρO2

dt
= 0, (7.26)

d

dt

(
ρO + 2ρO2

)
= 0. (7.27)

We can integrate and apply the initial conditions (7.22) to get

ρO + 2ρO2
= ρ̂O + 2ρ̂O2

= constant. (7.28)

The fact that this algebraic constraint exists for all time is a consequence of the conservation
of mass of each O element. It can also be thought of as the conservation of number of
O atoms. Such notions always hold for chemical reactions. They do not hold for nuclear
reactions.

Standard linear algebra provides a robust way to find the constraint of Eq. (7.28). We
can use elementary row operations to cast Eq. (7.16) into a row-echelon form. Here our goal
is to get a linear combination which on the right side has an upper triangular form. To
achieve this add twice the second equation with the first to form a new equation to replace
the second equation. This gives

d

dt

(
ρO

ρO + 2ρO2

)
=

(
−2 2
0 0

)(
r13
r14

)
. (7.29)

Obviously the second equation is one we obtained earlier, d/dt(ρO + 2ρO2
) = 0, and this

induces our algebraic constraint. We also note the system can be recast as
(
1 0
1 2

)
d

dt

(
ρO
ρO2

)
=

(
−2 2
0 0

)(
r13
r14

)
. (7.30)

This is of the matrix form

L−1 ·P · dρ
dt

= U · r. (7.31)

Here L and L−1 are N × N lower triangular matrices of full rank N , and thus invertible.
The matrix U is upper triangular of dimension N × J and with the same rank as ν, R ≥ L.
The matrix P is a permutation matrix of dimension N × N . It is never singular and thus
always invertable. It is used to effect possible row exchanges to achieve the desired form;
often row exchanges are not necessary, in which case P = I, the N × N identity matrix.
Equation (7.31) can be manipulated to form the original equation via

dρ

dt
= P−1 · L ·U︸ ︷︷ ︸

=ν

·r. (7.32)
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What we have done is the standard linear algebra decomposition of ν = P−1 · L ·U.
We can also decompose the algebraic constraint, Eq. (7.28), in a non-obvious way that

is more readily useful for larger systems. We can write

ρO2
= ρ̂O2

− 1

2

(
ρO − ρ̂O

)
. (7.33)

Defining now ξO = ρO − ρ̂O, we can say

(
ρO
ρO2

)

︸ ︷︷ ︸
=ρ

=

(
ρ̂O
ρ̂O2

)

︸ ︷︷ ︸
=ρ̂

+

(
1
−1

2

)

︸ ︷︷ ︸
=D

(
ξO
)

︸︷︷︸
=ξ

. (7.34)

This gives the dependent variables in terms of a smaller number of transformed dependent
variables in a way which satisfies the linear constraints. In vector form, the equation becomes

ρ = ρ̂+D · ξ. (7.35)

Here D is a full rank matrix which spans the same column space as does ν. Note that ν

may or may not be full rank. Because D spans the same column space as does ν, we must
also have in general

φ ·D = 0. (7.36)

We see here this is true:

(
1 2

)( 1
−1

2

)
= (0). (7.37)

We also note that the term exp(−Ej/RT ) is a modulating factor to the dynamics. Let
us see how this behaves for high and low temperatures. First for low temperature, we have

lim
T→0

exp

(−Ej

RT

)
= 0. (7.38)

At high temperature, we have

lim
T→∞

exp

(−Ej

RT

)
= 1. (7.39)

And lastly, at intermediate temperature, we have

exp

(−Ej

RT

)
∼ O(1) when T = O

(
Ej

R

)
. (7.40)

A sketch of this modulating factor is given in Figure 7.1. Note
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1

T

Figure 7.1: Plot of exp(−Ej/R/T ) versus T ; transition occurs at T ∼ Ej/R.

• for small T , the modulation is extreme, and the reaction rate is very small,

• for T ∼ Ej/R, the reaction rate is extremely sensitive to temperature, and

• for T → ∞, the modulation is unity, and the reaction rate is limited only by molecular
collision frequency.

Now ρO and ρO2
represent molar concentrations which have standard units of mole/cm3.

So the reaction rates
dρO
dt

and
dρO2

dt

have units of mole/cm3/s.
After conversion of Ej from kJ/mole to erg/mole we find the units of the argument of

the exponential to be dimensionless. That is
[
Ej

RT

]
=

erg

mole

mole K

erg

1

K
⇒ dimensionless. (7.41)

Here the brackets denote the units of a quantity, and not molar concentration. Let us get
units for the collision frequency factor of reaction 13, a13. We know the units of the rate
(mole/cm3/s). Reaction 13 involves three molar species. Because β13 = −1, it also has an
extra temperature dependency. The exponential of a unitless number is unitless, so we need
not worry about that. For units to match, we must have

(
mole

cm3
s

)
= [a13]

(
mole

cm3

)(
mole

cm3

)(
mole

cm3

)
K−1. (7.42)
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So the units of a13 are

[a13] =

(
mole

cm3

)−2
K

s
. (7.43)

For a14 we find a different set of units! Following the same procedure, we get(
mole

cm3
s

)
= [a14]

(
mole

cm3

)(
mole

cm3

)
K−1. (7.44)

So the units of a14 are

[a14] =

(
mole

cm3

)−1
K

s
. (7.45)

This discrepancy in the units of aj the molecular collision frequency factor is a burden of tra-
ditional chemical kinetics, and causes many difficulties when classical non-dimensionalization
is performed. With much effort, a cleaner theory could be formulated; however, this would
require significant work to re-cast the now-standard aj values for literally thousands of re-
actions which are well established in the literature.

7.1.1.1.2 Example calculation Let us consider an example problem. Let us take T =
5000 K, and initial conditions ρ̂O = 0.001 mole/cm3 and ρ̂O2

= 0.001 mole/cm3. The
initial temperature is very hot, and is near the temperature of the surface of the sun. This
is also realizable in laboratory conditions, but uncommon in most combustion engineering
environments.

We can solve these in a variety of ways. I chose here to solve both Eqs. (7.24-7.25) without
the reduction provided by Eq. (7.28). However, we can check after numerical solution to see
if Eq. (7.28) is actually satisfied. Substituting numerical values for all the constants to get

−2a13T
β13 exp

(−E13

RT

)
= −2

(
2.9× 107

(
mole

cm3

)−2
K

s

)
(5000 K)−1 exp(0),

= −1.16× 1014
(
mole

cm3

)−2
1

s
, (7.46)

2a14T
β14 exp

(−E14

RT

)
= 2

(
6.81× 1018

(
mole

cm3

)−1
K

s

)
(5000 K)−1

× exp

( −4.96× 1012 erg
mole

8.31441× 107 erg
mole K

(5000 K)

)
,

= 1.77548× 1010
(
mole

cm3

)−1
1

s
, (7.47)

a13T
β13 exp

(−E13

RT

)
= 5.80× 1013

(
mole

cm3

)−2
1

s
, (7.48)

−a14T β14 exp

(−E14

RT

)
= −8.8774× 109

(
mole

cm3

)−1
1

s
. (7.49)
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Figure 7.2: Molar concentrations versus time for oxygen dissociation problem.

Then the differential equation system becomes

dρO
dt

= −(1.16× 1014)ρ2O(ρO + ρO2
) + (1.77548× 1010)ρO2

(ρO + ρO2
), (7.50)

dρO2

dt
= (5.80× 1013)ρ2O(ρO + ρO2

)− (8.8774× 109)ρO2
(ρO + ρO2

), (7.51)

ρO(0) = 0.001
mole

cm3
, (7.52)

ρO2
(0) = 0.001

mole

cm3
. (7.53)

These non-linear ordinary differential equations are in a standard form for a wide variety
of numerical software tools. Solution of such equations are not the topic of these notes.

7.1.1.1.2.1 Species concentration versus time A solution was obtained numer-
ically, and a plot of ρO(t) and ρO2

(t) is given in Figure 7.2. Significant reaction does not
commence until t ∼ 10−10 s. This can be shown to be very close to the time between molec-
ular collisions. For 10−9 s < t < 10−8 s, there is a vigorous reaction. For t > 10−7 s, the
reaction appears to be equilibrated. The calculation gives the equilibrium values ρeO and ρeO2

,
as

lim
t→∞

ρO = ρeO = 0.0004424
mole

cm3
, (7.54)

lim
t→∞

ρO2
= ρeO2

= 0.00127
mole

cm3
, (7.55)

At this high temperature, O2 is preferred over O, but there are definitely O molecules present
at equilibrium.
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Figure 7.3: Dimensionless residual numerical error r in satisfying the element conservation
constraint in the oxygen dissociation example.

We can check how well the numerical solution satisfied the algebraic constraint of element
conservation by plotting the dimensionless residual error r

r =

∣∣∣∣∣
ρO + 2ρO2

− ρ̂O − 2ρ̂O2

ρ̂O + 2ρ̂O2

∣∣∣∣∣ , (7.56)

as a function of time. If the constraint is exactly satisfied, we will have r = 0. Any non-zero
r will be related to the numerical method we have chosen. It may contain roundoff error
and have a sporadic nature. A plot of r(t) is given in Figure 7.3. Clearly the error is small,
and has the character of a roundoff error. In fact it is possible to drive r to be smaller by
controlling the error tolerance in the numerical method.

7.1.1.1.2.2 Pressure versus time We can use the ideal gas law to calculate the
pressure. Recall that the ideal gas law for molecular species i is

PiV = niRT. (7.57)

Here Pi is the partial pressure of molecular species i, and ni is the number of moles of
molecular species i. We also have

Pi =
ni

V
RT. (7.58)

By our definition of molecular species concentration that

ρi =
ni

V
. (7.59)

So we also have the ideal gas law as

Pi = ρiRT. (7.60)
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Now in the Dalton mixture model, all species share the same T and V . So the mixture
temperature and volume are the same for each species Vi = V , Ti = T . But the mixture
pressure is taken to be the sum of the partial pressures:

P =
N∑

i=1

Pi. (7.61)

Substituting from Eq. (7.60) into Eq. (7.61), we get

P =

N∑

i=1

ρiRT = RT

N∑

i=1

ρi. (7.62)

For our example, we only have two species, so

P = RT (ρO + ρO2
). (7.63)

The pressure at the initial state t = 0 is

P (t = 0) = RT (ρ̂O + ρ̂O2
), (7.64)

=
(
8.31441× 107

erg

mole K

)
(5000 K)

(
0.001

mole

cm3
+ 0.001

mole

cm3

)
, (7.65)

= 8.31441× 108
dyne

cm2
, (7.66)

= 8.31441× 102 bar. (7.67)

This pressure is over 800 atmospheres. It is actually a little too high for good experimental
correlation with the underlying data, but we will neglect that for this exercise.

At the equilibrium state we have more O2 and less O. And we have a different number
of molecules, so we expect the pressure to be different. At equilibrium, the pressure is

P (t→ ∞) = lim
t→∞

RT (ρO + ρO2
), (7.68)

=
(
8.31441× 107

erg

mole K

)
(5000 K)

(
0.0004424

mole

cm3
+ 0.00127

mole

cm3

)
,

(7.69)

= 7.15× 108
dyne

cm2
, (7.70)

= 7.15× 102 bar. (7.71)

The pressure has dropped because much of the O has recombined to form O2. Thus there
are fewer molecules at equilibrium. The temperature and volume have remained the same.
A plot of P (t) is given in Figure 7.4.
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t (s)10-11             10-10             10-9              10-8              10-7               10-6
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Figure 7.4: Pressure versus time for oxygen dissociation example.

7.1.1.1.2.3 Dynamical system form Now Eqs. (7.50-7.51) are of the standard form
for an autonomous dynamical system:

dy

dt
= f(y). (7.72)

Here y is the vector of state variables (ρO, ρO2
)T . And f is an algebraic function of the state

variables. For the isothermal system, the algebraic function is in fact a polynomial.

Equilibrium

The dynamical system is in equilibrium when

f(y) = 0. (7.73)

This non-linear set of algebraic equations can be difficult to solve for large systems. For
common chemical kinetics systems, such as the one we are dealing with, there is a guarantee
of a unique equilibrium for which all state variables are physical. There are certainly other
equilibria for which at least one of the state variables is non-physical. Such equilibria can
be quite mathematically complicated.

Solving Eq. (7.73) for our oxygen dissociation problem gives us symbolically from Eq. (7.6-
7.7)

−2a13 exp

(−E13

RT

)
ρeOρ

e
Oρ

e
MT

β13 + 2a14 exp

(−E14

RT

)
ρeO2

ρeMT
β14 = 0, (7.74)

a13T
β13 exp

(−E13

RT

)
ρeOρ

e
Oρ

e
M − a14T

β14 exp

(−E14

RT

)
ρeO2

ρeM = 0. (7.75)
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We notice that ρeM cancels. This so-called third body will in fact never affect the equilib-
rium state. It will however influence the dynamics. Removing ρeM and slightly rearranging
Eqs. (7.74-7.75) gives

a13T
β13 exp

(−E13

RT

)
ρeOρ

e
O = a14T

β14 exp

(−E14

RT

)
ρeO2

, (7.76)

a13T
β13 exp

(−E13

RT

)
ρeOρ

e
O = a14T

β14 exp

(−E14

RT

)
ρeO2

. (7.77)

These are the same equations! So we really have two unknowns for the equilibrium state ρeO
and ρeO2

but seemingly only one equation. Rearranging either Eq. (7.76) or (7.77) gives the
result

ρeOρ
e
O

ρeO2

=
a14T

β14 exp
(

−E14

RT

)

a13T β13 exp
(

−E13

RT

) = K(T ). (7.78)

That is, for the net reaction (excluding the inert third body), O2 → O+O, at equilibrium the
product of the concentrations of the products divided by the product of the concentrations
of the reactants is a function of temperature T . And for constant T , this is the so-called
equilibrium constant. This is a famous result from basic chemistry. It is actually not complete
yet, as we have not taken advantage of a connection with thermodynamics. But for now, it
will suffice.

We still have a problem: Eq. (7.78) is still one equation for two unknowns. We solve
this be recalling we have not yet taken advantage of our algebraic constraint of element
conservation, Eq. (7.28). Let us use the equation to eliminate ρeO2

in favor of ρeO:

ρeO2
=

1

2

(
ρ̂O − ρeO

)
+ ρ̂O2

. (7.79)

So Eq. (7.76) reduces to

a13T
β13 exp

(−E13

RT

)
ρeOρ

e
O = a14T

β14 exp

(−E14

RT

)(
1

2

(
ρ̂O − ρeO

)
+ ρ̂O2

)

︸ ︷︷ ︸
=ρeO2

. (7.80)

Equation (7.80) is one algebraic equation in one unknown. Its solution gives the equilibrium
value ρeO. It is a quadratic equation for ρeO. Of its two roots, one will be physical. We note
that the equilibrium state will be a function of the initial conditions. Mathematically this
is because our system is really best posed as a system of differential-algebraic equations.
Systems which are purely differential equations will have equilibria which are independent
of their initial conditions. Most of the literature of mathematical physics focuses on such
systems of those. One of the foundational complications of chemical dynamics is that the
equilibria is a function of the initial conditions, and this renders many common mathematical

CC BY-NC-ND. 28 March 2025, J. M. Powers.

https://creativecommons.org/licenses/by-nc-nd/3.0/


254 CHAPTER 7. KINETICS IN SOME MORE DETAIL

-0.004 -0.003 -0.002 -0.001 0.001

-200000

-100000

100000

200000

300000

Figure 7.5: Equilibria for oxygen dissociation example.

notions from traditional dynamic system theory to be invalid Fortunately, after one accounts
for the linear constraints of element conservation, one can return to classical notions from
traditional dynamic systems theory.

Consider the dynamics of Eq. (7.24) for the evolution of ρO. Equilibrating the right
hand side of this equation, gives Eq. (7.74). Eliminating ρM and then ρO2

in Eq. (7.74) then
substituting in numerical parameters gives the cubic algebraic equation

33948.3− (1.78439× 1011)(ρO)
2 − (5.8× 1013)(ρO)

3 = f(ρO) = 0. (7.81)

This equation is cubic because we did not remove the effect of ρM. This will not affect
the equilibrium, but will affect the dynamics. We can get an idea of where the roots are by
plotting f(ρO) as seen in Figure 7.5. Zero crossings of f(ρO) in Figure 7.5 represent equilibria
of the system, ρeO, f(ρ

e
O) = 0. The cubic equation has three roots

ρeO = −0.003
mole

cm3
, non-physical, (7.82)

ρeO = −0.000518944
mole

cm3
, non-physical, (7.83)

ρeO = 0.000442414
mole

cm3
, physical. (7.84)

The physical root found by our algebraic analysis is identical to that which was identified
by our numerical integration of the ordinary differential equations of reaction kinetics.

Stability of equilibria

We can get a simple estimate of the stability of the equilibria by considering the slope of
f near f = 0. Our dynamic system is of the form

dρO
dt

= f(ρO). (7.85)
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• Near the first non-physical root at ρeO = −0.003, a positive perturbation from equi-
librium induces f < 0, which induces dρO/dt < 0, so ρO returns to its equilibrium.
Similarly, a negative perturbation from equilibrium induces dρO/dt > 0, so the system
returns to equilibrium. This non-physical equilibrium point is stable. Stability does
not imply physicality!

• Perform the same exercise for the non-physical root at ρeO = −0.000518944. We find
this root is unstable.

• Perform the same exercise for the physical root at ρeO = 0.000442414. We find this
root is stable.

In general if f crosses zero with a positive slope, the equilibrium is unstable. Otherwise, it
is stable.

Consider a formal Taylor series expansion of Eq. (7.85) in the neighborhood of an equi-
librium point ρ3O:

d

dt
(ρO − ρeO) = f(ρeO)︸ ︷︷ ︸

=0

+
df

dρO

∣∣∣∣
ρO=ρeO

(ρO − ρeO) + . . . (7.86)

We find df/dρO by differentiating Eq. (7.81) to get

df

dρO
= −(3.56877× 1011)ρO − (1.74× 1014)ρ2O. (7.87)

We evaluate df/dρO near the physical equilibrium point at ρO = 0.0004442414 to get

df

dρO
= −(3.56877× 1011)(0.0004442414)− (1.74× 1014)(0.0004442414)2,

= −1.91945× 108
1

s
. (7.88)

Thus the Taylor series expansion of Eq. (7.24) in the neighborhood of the physical equi-
librium gives the local kinetics to be driven by

d

dt
(ρO − 0.000442414) = −(1.91945× 108) (ρO − 0.0004442414) + . . . . (7.89)

So in the neighborhood of the physical equilibrium we have

ρO = 0.0004442414 + A exp
(
−1.91945× 108t

)
. (7.90)

Here A is an arbitrary constant of integration. The local time constant which governs the
times scales of local evolution is τ where

τ =
1

1.91945× 108
= 5.20983× 10−9 s. (7.91)

This nano-second time scale is very fast. It can be shown to be correlated with the mean
time between collisions of molecules.
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7.1.1.1.3 Effect of temperature Let us perform four case studies to see the effect of
T on the system’s equilibria and it dynamics near equilibrium.

• T = 3000 K. Here we have significantly reduced the temperature, but it is still higher
than typically found in ordinary combustion engineering environments. Here we find

ρeO = 8.9371× 10−6 mole

cm3
, (7.92)

τ = 1.92059× 10−7 s. (7.93)

The equilibrium concentration of O dropped by two orders of magnitude relative to
T = 5000 K, and the time scale of the dynamics near equilibrium slowed by two orders
of magnitude.

• T = 1000 K. Here we reduce the temperature more. This temperature is common in
combustion engineering environments. We find

ρeO = 2.0356× 10−14 mole

cm3
, (7.94)

τ = 2.82331× 101 s. (7.95)

The O concentration at equilibrium is greatly diminished to the point of being difficult
to detect by standard measurement techniques. And the time scale of combustion has
significantly slowed.

• T = 300 K. This is obviously near room temperature. We find

ρeO = 1.14199× 10−44 mole

cm3
, (7.96)

τ = 1.50977× 1031 s. (7.97)

The O concentration is effectively zero at room temperature, and the relaxation time
is effectively infinite. As the oldest star in our galaxy has an age of 4.4× 1017 s, we see
that at this temperature, our mathematical model cannot be experimentally validated,
so it loses its meaning. At such a low temperature, the theory becomes qualitatively
correct, but not quantitatively predictive.

• T = 10000 K. Such high temperature could be achieved in an atmospheric re-entry
environment.

ρeO = 2.74807× 10−3 mole

cm3
, (7.98)

τ = 1.69119× 10−10 s. (7.99)

At this high temperature, O become preferred over O2, and the time scales of reaction
become extremely small, under a nanosecond.
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7.1.1.2 Single reversible reaction

The two irreversible reactions studied in the previous section are of a class that is common
in combustion modeling. However, the model suffers a defect in that its link to classical
equilibrium thermodynamics is missing. A better way to model essentially the same physics
and guarantee consistency with classical equilibrium thermodynamics is to model the process
as a single reversible reaction, with a suitably modified reaction rate term.

7.1.1.2.1 Mathematical model

7.1.1.2.1.1 Kinetics For the reversible O−O2 reaction, let us only consider reaction
13 from Table 7.2 for which

13 : O2 +M ⇌ O+O+M. (7.100)

For this system, we have N = 2 molecular species in L = 1 elements reacting in J = 1
reaction. Here

a13 = 1.85× 1011
(
mole

cm3

)−1

(K)−0.5, β13 = 0.5, E13 = 95560
cal

mole
. (7.101)

Units of cal are common in chemistry, but we need to convert to erg, which is achieved via

E13 =

(
95560

cal

mole

)(
4.186

J

cal

)(
107 erg

J

)
= 4.00014× 1012

erg

mole
. (7.102)

For this reversible reaction, we slightly modify the kinetics equations to

dρO
dt

= 2 a13T
β13 exp

(−E13

RT

)

︸ ︷︷ ︸
=k13(T )

(
ρO2

ρM − 1

Kc,13
ρOρOρM

)

︸ ︷︷ ︸
=r13

, (7.103)

dρO2

dt
= − a13T

β13 exp

(−E13

RT

)

︸ ︷︷ ︸
=k13(T )

(
ρO2

ρM − 1

Kc,13

ρOρOρM

)

︸ ︷︷ ︸
=r13

. (7.104)

Here we have used equivalent definitions for k13(T ) and r13, so that Eqs. (7.103-7.104) can
be written compactly as

dρO
dt

= 2r13, (7.105)

dρO2

dt
= −r13. (7.106)
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In matrix form, we can simplify to

d

dt

(
ρO
ρO2

)
=

(
2
−1

)

︸ ︷︷ ︸
=ν

(r13). (7.107)

Here the N × J or 2× 1 matrix ν is

ν =

(
2
−1

)
. (7.108)

Performing row operations, the matrix form reduces to

d

dt

(
ρO

ρO + 2ρO2

)
=

(
2
0

)
(r13), (7.109)

or
(
1 0
1 2

)
d

dt

(
ρO
ρO2

)
=

(
2
0

)
(r13). (7.110)

So here the N ×N or 2× 2 matrix L−1 is

L−1 =

(
1 0
1 2

)
. (7.111)

The N ×N or 2× 2 permutation matrix P is the identity matrix. And the N × J or 2× 1
upper triangular matrix U is

U =

(
2
0

)
. (7.112)

Note that ν = L ·U or equivalently L−1 · ν = U:
(
1 0
1 2

)

︸ ︷︷ ︸
=L−1

(
2
−1

)

︸ ︷︷ ︸
=ν

=

(
2
0

)

︸︷︷︸
=U

. (7.113)

Once again the species-element matrix φ is

φ =
(
1 2

)
. (7.114)

And we see that φ · ν = 0 is satisfied:

(
1 2

)( 2
−1

)
=
(
0
)
. (7.115)

As for the irreversible reactions, the reversible reaction rates are constructed to conserve
O atoms. We have

d

dt

(
ρO + 2ρO2

)
= 0. (7.116)
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Thus, we once again find

ρO + 2ρO2
= ρ̂O + 2ρ̂O2

= constant. (7.117)

As before, we can say

(
ρO
ρO2

)

︸ ︷︷ ︸
=ρ

=

(
ρ̂O
ρ̂O2

)

︸ ︷︷ ︸
=ρ̂

+

(
1
−1

2

)

︸ ︷︷ ︸
=D

(
ξO
)

︸︷︷︸
=ξ

. (7.118)

This gives the dependent variables in terms of a smaller number of transformed dependent
variables in a way which satisfies the linear constraints. In vector form, the equation becomes

ρ = ρ̂+D · ξ. (7.119)

Once again φ ·D = 0.

7.1.1.2.1.2 Thermodynamics Equations (7.103-7.104) are supplemented by an ex-
pression for the thermodynamics-based equilibrium constant Kc,13 which is:

Kc,13 =
Po

RT
exp

(−∆Go
13

RT

)
. (7.120)

Here Po = 1.01326 × 106 dyne/cm2 = 1 atm is the reference pressure. The net change of
Gibbs free energy at the reference pressure for reaction 13, ∆Go

13 is defined as

∆Go
13 = 2goO − goO2

. (7.121)

We further recall that the Gibbs free energy for species i at the reference pressure is defined
in terms of the enthalpy and entropy as

goi = h
o

i − Tsoi . (7.122)

It is common to find h
o

i and soi in thermodynamic tables tabulated as functions of T .
We further note that both Eqs. (7.103) and (7.104) are in equilibrium when

ρeO2
ρeM =

1

Kc,13

ρeOρ
e
Oρ

e
M. (7.123)

We rearrange Eq. (7.123) to find the familiar

Kc,13 =
ρeOρ

e
O

ρeO2

=

∏
[products]∏
[reactants]

. (7.124)

If Kc,13 > 1, the products are preferred. If Kc,13 < 1, the reactants are preferred.
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Now, Kc,13 is a function of T only, so it is known. But Eq. (7.124) once again is one
equation in two unknowns. We can use the element conservation constraint, Eq. (7.117) to
reduce to one equation and one unknown, valid at equilibrium:

Kc,13 =
ρeOρ

e
O

ρ̂O2
+ 1

2
(ρ̂O − ρeO)

(7.125)

Using the element constraint, Eq. (7.117), we can recast the dynamics of our system by
modifying Eq. (7.103) into one equation in one unknown:

dρO
dt

= 2a13T
β13 exp

(−E13

RT

)

×


(ρ̂O2

+
1

2
(ρ̂O − ρO))

︸ ︷︷ ︸
=ρO2

(ρ̂O2
+

1

2
(ρ̂O − ρO) + ρO)

︸ ︷︷ ︸
=ρM

− 1

Kc,13
ρOρO (ρ̂O2

+
1

2
(ρ̂O − ρO) + ρO)

︸ ︷︷ ︸
=ρM


 ,

(7.126)

7.1.1.2.2 Example calculation Let us consider the same example as the previous sec-
tion with T = 5000 K. We need numbers for all of the parameters of Eq. (7.126). For O, we
find at T = 5000 K that

h
o

O = 3.48382× 1012
erg

mole
, (7.127)

soO = 2.20458× 109
erg

mole K
. (7.128)

So

goO =
(
3.48382× 1012

erg

mole

)
− (5000 K)

(
2.20458× 109

erg

mole K

)
,

= −7.53908× 1012
erg

mole
. (7.129)

For O2, we find at T = 5000 K that

h
o

O2
= 1.80749× 1012

erg

mole
, (7.130)

soO2
= 3.05406× 109

erg

mole K
. (7.131)

So

goO2
=

(
1.80749× 1012

erg

mole

)
− (5000 K)

(
3.05406× 109

erg

mole K

)

= −1.34628× 1013
erg

mole
. (7.132)
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Figure 7.6: Plot of ρO(t) and ρO2
(t) for oxygen dissociation with reversible reaction.

Thus, by Eq. (7.121), we have

∆Go
13 = 2(−7.53908× 1012)− (−1.34628× 1013) = −1.61536× 1012

erg

mole
. (7.133)

Thus, by Eq. (7.120) we get for our system

Kc,13 =
1.01326× 106 dyne

cm2(
8.31441× 107 erg

mole K

)
(5000 K)

× exp

(
−
(

−1.61536× 1012 erg
mole(

8.31441× 107 erg
mole K

)
(5000 K)

))
, (7.134)

= 1.187× 10−4 mole

cm3
. (7.135)

Substitution of all numerical parameters into Eq. (7.126) and expansion yields the fol-
lowing

dρO
dt

= 3899.47− (2.23342× 1010)ρ2O − (7.3003× 1012)ρ3O = f(ρO), ρO(0) = 0.001.(7.136)

A plot of the time-dependent behavior of ρO and ρO2
from solution of Eq. (7.136) is given

in Figure 7.6. The behavior is similar to the predictions given by the pair of irreversible
reactions in Fig. 7.1. Here direct calculation of the equilibrium from time integration reveals

ρeO = 0.000393328
mole

cm3
. (7.137)
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Figure 7.7: Plot of f(ρO) versus ρO for oxygen dissociation with reversible reaction.

Using Eq. (7.117) we find this corresponds to

ρeO2
= 0.00130334

mole

cm3
. (7.138)

We note the system begins significant reaction for t ∼ 10−9 s and is equilibrated for t ∼ 10−7 s.
The equilibrium is verified by solving the algebraic equation

f(ρO) = 3899.47− (2.23342× 1010)ρ2O − (7.3003× 1012)ρ3O = 0. (7.139)

This yields three roots:

ρeO = −0.003
mole

cm3
, non-physical, (7.140)

ρeO = −0.000452678
mole

cm3
, non-physical, (7.141)

ρeO = 0.000393328
mole

cm3
, physical, (7.142)

(7.143)

is given in Figure 7.6.
Linearizing Eq. (7.136) in the neighborhood of the physical equilibrium yields the equa-

tion

d

dt
(ρO − 0.000393328) = −(2.09575× 107) (ρO − 0.000393328) + . . . (7.144)

This has solution

ρO = 0.000393328 + A exp
(
−2.09575× 107t

)
. (7.145)
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Again, A is an arbitrary constant. Obviously the equilibrium is stable. Moreover the time
constant of relaxation to equilibrium is

τ =
1

2.09575× 107
= 4.77156× 10−8 s. (7.146)

This is consistent with the time scale to equilibrium which comes from integrating the full
equation.

7.1.2 Zel’dovich mechanism of NO production

Let us consider next a more complicated reaction system: that of NO production known
as the Zel’dovich6 mechanism. This is an important model for the production of a major
pollutant from combustion processes. It is most important for high temperature applications.

7.1.2.1 Mathematical model

The model has several versions. One is

1 : N + NO ⇌ N2 +O, (7.147)

2 : N + O2 ⇌ NO+O. (7.148)

similar to our results for O2 dissociation, N2 and O2 are preferred at low temperature. As
the temperature rises N and O begin to appear, and it is possible when they are mixed for
NO to appear as a product.

7.1.2.1.1 Standard model form Here we have the reaction of N = 5 molecular species
with

ρ =




ρNO

ρN
ρN2

ρO
ρO2



. (7.149)

We have L = 2 with N and O as the 2 elements. The species-element matrix φ of dimension
L×N = 2× 5 is

φ =

(
1 1 2 0 0
1 0 0 1 2

)
. (7.150)

The first row of φ is for the N atom; the second row is for the O atom.

6Yakov Borisovich Zel’dovich, 1915-1987, prolific Soviet physicist and father of thermonuclear weapons.

CC BY-NC-ND. 28 March 2025, J. M. Powers.

https://en.wikipedia.org/wiki/Yakov_Borisovich_Zel'dovich
https://creativecommons.org/licenses/by-nc-nd/3.0/


264 CHAPTER 7. KINETICS IN SOME MORE DETAIL

And we have J = 2 reactions. The reaction vector of length J = 2 is

r =

(
r1
r2

)
=


a1T

β1 exp
(
−Ta,1

T

)(
ρNρNO − 1

Kc,1
ρN2

ρO

)

a2T
β2 exp

(
−Ta,2

T

)(
ρNρO2

− 1
Kc,2

ρNOρO

)

 , (7.151)

=


k1

(
ρNρNO − 1

Kc,1
ρN2

ρO

)

k2

(
ρNρO2

− 1
Kc,2

ρNOρO

)

 . (7.152)

Here, we have

k1 = a1T
β1 exp

(
−Ta,1

T

)
, (7.153)

k2 = a2T
β2 exp

(
−Ta,2

T

)
. (7.154)

In matrix form, the model can be written as

d

dt




ρNO

ρN
ρN2

ρO
ρO2




=




−1 1
−1 −1
1 0
1 1
0 −1




︸ ︷︷ ︸
=ν

(
r1
r2

)
. (7.155)

Here the matrix ν has dimension N × J which is 5× 2. The model is of our general form

dρ

dt
= ν · r. (7.156)

Our stoichiometric constraint on element conservation for each reaction φ · ν = 0 holds
here:

φ · ν =

(
1 1 2 0 0
1 0 0 1 2

)



−1 1
−1 −1
1 0
1 1
0 −1




=

(
0 0
0 0

)
. (7.157)

We get 4 zeros because there are 2 reactions each with 2 element constraints.

7.1.2.1.2 Reduced form Here we describe non-traditional, but useful reductions, using
standard techniques from linear algebra to bring the model equations into a reduced form in
which all of the linear constraints have been explicitly removed.
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Let us perform a series of row operations to find all of the linear dependencies. Our aim
is to convert the ν matrix into an upper triangular form. The lower left corner of ν already
has a zero, so there is no need to worry about it. Let us add the first and fourth equations
to eliminate the 1 in the 4, 1 slot. This gives

d

dt




ρNO

ρN
ρN2

ρNO + ρO
ρO2




=




−1 1
−1 −1
1 0
0 2
0 −1




(
r1
r2

)
. (7.158)

Next, add the first and third equations to get

d

dt




ρNO

ρN
ρNO + ρN2

ρNO + ρO
ρO2




=




−1 1
−1 −1
0 1
0 2
0 −1




(
r1
r2

)
. (7.159)

Now multiply the first equation by −1 and add it to the second to get

d

dt




ρNO

−ρNO + ρN
ρNO + ρN2

ρNO + ρO
ρO2




=




−1 1
0 −2
0 1
0 2
0 −1




(
r1
r2

)
. (7.160)

Next multiply the fifth equation by −2 and add it to the second to get

d

dt




ρNO

−ρNO + ρN
ρNO + ρN2

ρNO + ρO
−ρNO + ρN − 2ρO2




=




−1 1
0 −2
0 1
0 2
0 0




(
r1
r2

)
. (7.161)

Next add the second and fourth equations to get

d

dt




ρNO

−ρNO + ρN
ρNO + ρN2

ρN + ρO
−ρNO + ρN − 2ρO2




=




−1 1
0 −2
0 1
0 0
0 0




(
r1
r2

)
. (7.162)

Next multiply the third equation by 2 and add it to the second to get

d

dt




ρNO

−ρNO + ρN
ρNO + ρN + 2ρN2

ρN + ρO
−ρNO + ρN − 2ρO2




=




−1 1
0 −2
0 0
0 0
0 0




(
r1
r2

)
. (7.163)
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Rewritten, this becomes



1 0 0 0 0
−1 1 0 0 0
1 1 2 0 0
0 1 0 1 0
−1 1 0 0 −2




︸ ︷︷ ︸
=L−1

d

dt




ρNO

ρN
ρN2

ρO
ρO2




=




−1 1
0 −2
0 0
0 0
0 0




︸ ︷︷ ︸
=U

(
r1
r2

)
. (7.164)

A way to think of this type of row echelon form is that it defines two free variables, those
associated with the non-zero pivots of U: ρNO and ρN. The remain three variables ρN2

, ρO
and ρO2

are bound variables which can be expressed in terms of the free variables.
The last three of the ordinary differential equations are homogeneous and can be inte-

grated to form

ρNO + ρN + 2ρN2
= C1, (7.165)

ρN + ρO = C2, (7.166)

−ρNO + ρN − 2ρO2
= C3. (7.167)

The constants C1, C2 and C3 are determined from the initial conditions on all five state
variables. In matrix form, we can say




1 1 2 0 0
0 1 0 1 0
−1 1 0 0 −2







ρNO

ρN
ρN2

ρO
ρO2




=



C1

C2

C3


 . (7.168)

Considering the free variables, ρNO and ρN, to be known, we move them to the right side
to get



2 0 0
0 1 0
0 0 −2





ρN2

ρO
ρO2


 =



C1 − ρNO − ρN

C2 − ρN
C3 + ρNO − ρN


 . (7.169)

Solving, for the bound variables, we find


ρN2

ρO
ρO2


 =




1
2
C1 − 1

2
ρNO − 1

2
ρN

C2 − ρN
−1

2
C3 − 1

2
ρNO + 1

2
ρN


 . (7.170)

We can rewrite this as


ρN2

ρO
ρO2


 =




1
2
C1

C2

−1
2
C3


+



−1

2
−1

2

0 −1
−1

2
1
2



(
ρNO

ρN

)
. (7.171)
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We can get a more elegant form by defining ξNO = ρNO and ξN = ρN. Thus we can say our
state variables have the form




ρNO

ρN
ρN2

ρO
ρO2




=




0
0

1
2
C1

C2

−1
2
C3




+




1 0
0 1
−1

2
−1

2

0 −1
−1

2
1
2




(
ξNO

ξN

)
. (7.172)

By translating via ξNO = ξNO + ρ̂NO and ξN = ξN + ρ̂N and choosing the constants C1, C2

and C3 appropriately, we can arrive at




ρNO

ρN
ρN2

ρO
ρO2




︸ ︷︷ ︸
=ρ

=




ρ̂NO

ρ̂N
ρ̂N2

ρ̂O
ρ̂O2




︸ ︷︷ ︸
=ρ̂

+




1 0
0 1
−1

2
−1

2

0 −1
−1

2
1
2




︸ ︷︷ ︸
=D

(
ξNO

ξN

)

︸ ︷︷ ︸
=ξ

. (7.173)

This takes the form of

ρ = ρ̂+D · ξ. (7.174)

Here the matrix D is of dimension N × R, which here is 5 × 2. It spans the same column
space as does the N × J matrix ν which is of rank R. Here in fact R = J = 2, so D has the
same dimension as ν. In general it will not. If c1 and c2 are the column vectors of D, we
see that −c1 − c2 forms the first column vector of ν and c1 − c2 forms the second column
vector of ν. Note that φ ·D = 0:

φ ·D =

(
1 1 2 0 0
1 0 0 1 2

)



1 0
0 1
−1

2
−1

2

0 −1
−1

2
1
2




=

(
0 0
0 0

)
. (7.175)

Equations (7.165-7.167) can also be linearly combined in a way which has strong phys-
ical relevance. We rewrite the system as three equations in which the first is identical to
Eq. (7.165); the second is the difference of Eqs. (7.166) and (7.167); and the third is half of
Eq. (7.165) minus half of Eq. (7.167) plus Eq. (7.166):

ρNO + ρN + 2ρN2
= C1, (7.176)

ρO + ρNO + 2ρO2
= C2 − C3, (7.177)

ρNO + ρN + ρN2
+ ρO + ρO2

=
1

2
(C1 − C3) + C2. (7.178)
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Equation (7.176) insists that the number of nitrogen elements be constant; Eq. (7.177)
demands the number of oxygen elements be constant; and Eq. (7.178) requires the number
of moles of molecular species be constant. For general reactions, including the earlier studied
oxygen dissociation problem, the number of moles of molecular species will not be constant.
Here because each reaction considered has two molecules reacting to form two molecules, we
are guaranteed the number of moles will be constant. Hence, we get an additional linear
constraint beyond the two for element conservation. Because our reaction is isothermal,
isochoric and mole-preserving, it will also be isobaric.

7.1.2.1.3 Example calculation Let us consider an isothermal reaction at

T = 6000 K. (7.179)

The high temperature is useful in generating results which are easily visualized. It insures
that there will be significant concentrations of all molecular species. Let us also take as an
initial condition

ρ̂NO = ρ̂N = ρ̂N2
= ρ̂O = ρ̂O2

= 1× 10−6 mole

cm3
. (7.180)

For this temperature and concentrations, the pressure, which will remain constant through
the reaction, is P = 2.4942× 106 dyne/cm2. This is a little greater than atmospheric.

Kinetic data for this reaction is adopted from Baulch, et al.7 The data for reaction 1 is

a1 = 2.107× 1013
(
mole

cm3

)−1
1

s
, β1 = 0, Ta1 = 0 K. (7.181)

For reaction 2, we have

a2 = 5.8394× 109
(
mole

cm3

)−1
1

K1.01 s
, β2 = 1.01, Ta2 = 3120 K. (7.182)

Here the so-called activation temperature Ta,j for reaction j is really the activation energy
scaled by the universal gas constant:

Ta,j =
Ej

R
. (7.183)

Substituting numbers we obtain for the reaction rates

k1 = (2.107× 1013)(6000)0 exp

( −0

6000

)
= 2.107× 1013

(
mole

cm3

)−1
1

s
, (7.184)

k2 = (5.8394× 109)(6000)1.01 exp

(−3120

6000

)
= 2.27231× 1013

(
mole

cm3

)−1
1

s
.

(7.185)

7Baulch, et al., 2005, “Evaluated Kinetic Data for Combustion Modeling: Supplement II,” Journal of

Physical and Chemical Reference Data, 34(3): 757-1397.
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We will also need thermodynamic data. The data here will be taken from the Chemkin
database.8 Thermodynamic data for common materials is also found in most thermodynamic
texts. For our system at 6000 K, we find

goNO = −1.58757× 1013
erg

mole
, (7.186)

goN = −7.04286× 1012
erg

mole
, (7.187)

goN2
= −1.55206× 1013

erg

mole
, (7.188)

goO = −9.77148× 1012
erg

mole
, (7.189)

goO2
= −1.65653× 1013

erg

mole
. (7.190)

Thus for each reaction, we find ∆Go
j :

∆Go
1 = goN2

+ goO − goN − goNO, (7.191)

= −1.55206× 1013 − 9.77148× 1012 + 7.04286× 1012 + 1.58757× 1013,(7.192)

= −2.37351× 1012
erg

mole
, (7.193)

∆Go
2 = goNO + goO − goN − goO2

, (7.194)

= −1.58757× 1013 − 9.77148× 1012 + 7.04286× 1012 + 1.65653× 1013,(7.195)

= −2.03897× 1012
erg

mole
. (7.196)

At 6000 K, we find the equilibrium constants for the J = 2 reactions are

Kc,1 = exp

(−∆Go
1

RT

)
, (7.197)

= exp

(
2.37351× 1012

(8.314× 107)(6000)

)
, (7.198)

= 116.52, (7.199)

Kc,2 = exp

(−∆Go
2

RT

)
, (7.200)

= exp

(
2.03897× 1012

(8.314× 107)(6000)

)
, (7.201)

= 59.5861. (7.202)

Again, omitting details, we find the two differential equations governing the evolution of

8R. J. Kee, et al., 2000, “The Chemkin Thermodynamic Data Base,” part of the Chemkin Collection
Release 3.6, Reaction Design, San Diego, CA.
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Figure 7.8: NO and N concentrations versus time for T = 6000 K, P = 2.4942 ×
106 dyne/cm2 Zel’dovich mechanism.

the free variables are

dρNO

dt
= 0.723 + 2.22× 107ρN + 1.15× 1013ρ2N − 9.44× 105ρNO − 3.20× 1013ρNρNO,

(7.203)

dρN
dt

= 0.723− 2.33× 107ρN − 1.13× 1013ρ2N + 5.82× 105ρNO − 1.00× 1013ρNρNO.

(7.204)

Solving numerically, we obtain a solution shown in Fig. 7.8. The numerics show a relaxation
to final concentrations of

lim
t→∞

ρNO = 7.336× 10−7 mole

cm3
, (7.205)

lim
t→∞

ρN = 3.708× 10−8 mole

cm3
. (7.206)

Equations (7.203-7.204) are of the form

dρNO

dt
= fNO(ρNO, ρN), (7.207)

dρN
dt

= fN(ρNO, ρN). (7.208)

At equilibrium, we must have

fNO(ρNO, ρN) = 0, (7.209)

fN(ρNO, ρN) = 0. (7.210)
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We find three finite roots to this problem:

1 : (ρNO, ρN) = (−1.605× 10−6,−3.060× 10−8)
mole

cm3
, non-physical, (7.211)

2 : (ρNO, ρN) = (−5.173× 10−8,−2.048× 10−6)
mole

cm3
, non-physical, (7.212)

3 : (ρNO, ρN) = (7.336× 10−7, 3.708× 10−8)
mole

cm3
, physical. (7.213)

Obviously, because of negative concentrations, roots 1 and 2 are non-physical. Root 3
however is physical; moreover, it agrees with the equilibrium we found by direct numerical
integration of the full non-linear equations.

We can use local linear analysis in the neighborhood of each equilibria to rigorously
ascertain the stability of each root. Taylor series expansion of Eqs. (7.207-7.208) in the
neighborhood of an equilibrium point yields

d

dt
(ρNO − ρeNO) = fNO|e︸ ︷︷ ︸

=0

+
∂fNO

∂ρNO

∣∣∣∣
e

(ρNO − ρeNO) +
∂fNO

∂ρN

∣∣∣∣
e

(ρN − ρeN) + . . . ,

(7.214)

d

dt
(ρN − ρeN) = fN|e︸︷︷︸

=0

+
∂fN
∂ρNO

∣∣∣∣
e

(ρNO − ρeNO) +
∂fN
∂ρN

∣∣∣∣
e

(ρN − ρeN) + . . . . (7.215)

Evaluation of Eqs. (7.214-7.215) near the physical root, root 3, yields the system

d

dt

(
ρNO − 7.336× 10−7

ρN − 3.708× 10−8

)
=

(
−2.129× 106 −4.155× 105

2.111× 105 −3.144× 107

)

︸ ︷︷ ︸
=J= ∂f

∂ρ |e

(
ρNO − 7.336× 10−7

ρN − 3.708× 10−8

)
.

(7.216)

This is of the form

d

dt
(ρ− ρe) =

∂f

∂ρ

∣∣∣∣
e

· (ρ− ρe) = J · (ρ− ρe) . (7.217)

It is the eigenvalues of the Jacobian9 matrix J that give the time scales of evolution of the
concentrations as well as determine the stability of the local equilibrium point. Recall that
we can usually decompose square matrices via the diagonalization

J = S ·Λ · S−1. (7.218)

Here, S is the matrix whose columns are composed of the right eigenvectors of J, and Λ is
the diagonal matrix whose diagonal is populated by the eigenvalues of J. For some matrices

9after Carl Gustav Jacob Jacobi, 1804-1851, German mathematician.
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(typically not those encountered after our removal of linear dependencies), diagonalization
is not possible, and one must resort to the so-called near-diagonal Jordan form. This will
not be relevant to our discussion, but could be easily handled if necessary. We also recall the
eigenvector matrix and eigenvalue matrix are defined by the standard eigenvalue problem

J · S = S ·Λ. (7.219)

We also recall that the components λ of Λ are found by solving the characteristic polynomial
which arises from the equation

det (J− λI) = 0, (7.220)

where I is the identity matrix. Defining z such that

S · z ≡ ρ− ρe, (7.221)

and using the decomposition Eq. (7.218), Eq. (7.217) can be rewritten to form

d

dt
(S · z) = S ·Λ · S−1

︸ ︷︷ ︸
J

· (S · z)︸ ︷︷ ︸
ρ−ρe

, (7.222)

S · dz
dt

= S ·Λ · z, (7.223)

S−1 · S · dz
dt

= S−1 · S ·Λ · z, (7.224)

dz

dt
= Λ · z. (7.225)

Eq. (7.225) reduces to the diagonal form

dz

dt
= Λ · z. (7.226)

This has solution for each component of z of

z1 = C1 exp(λ1t), (7.227)

z2 = C2 exp(λ2t), (7.228)
... (7.229)

Here, our matrix J, see Eq. (7.216), has two real, negative eigenvalues in the neighborhood
of the physical root 3:

λ1 = −3.143× 107
1

s
, (7.230)

λ2 = −2.132× 106
1

s
. (7.231)

CC BY-NC-ND. 28 March 2025, J. M. Powers.

https://creativecommons.org/licenses/by-nc-nd/3.0/


7.1. ISOTHERMAL, ISOCHORIC KINETICS 273

Thus we can conclude that the physical equilibrium is linearly stable. The local time con-
stants near equilibrium are given by the reciprocal of the magnitude of the eigenvalues.
These are

τ1 = 1/|λ1| = 3.181× 10−8 s, (7.232)

τ2 = 1/|λ2| = 4.691× 10−7 s. (7.233)

Evolution on these two time scales is predicted in Fig. 7.8. This in fact a multiscale problem.
One of the major difficulties in the numerical simulation of combustion problems comes in
the effort to capture the effects at all relevant scales. The problem is made more difficult as
the breadth of the scales expands. In this problem, the breadth of scales is not particularly
challenging. Near equilibrium the ratio of the slowest to the fastest time scale, the stiffness
ratio κ, is

κ =
τ2
τ1

=
4.691× 10−7 s

3.181× 10−8 s
= 14.75. (7.234)

Many combustion problems can have stiffness ratios over 106. This is more prevalent at
lower temperatures.

We can do a similar linearization near the initial state, find the local eigenvalues, and
the local time scales. At the initial state here, we find those local time scales are

τ1 = 2.403× 10−8 s, (7.235)

τ2 = 2.123× 10−8 s. (7.236)

So initially the stiffness, κ = (2.403× 10−8 s)/(2.123× 10−8 s) = 1.13 is much less, but the
time scale itself is small. It is seen from Fig. 7.8 that this initial time scale of 10−8 s well
predicts where significant evolution of species concentrations commences. For t < 10−8 s, the
model predicts essentially no activity. This can be correlated with the mean time between
molecular collisions–the theory on which estimates of the collision frequency factors aj are
obtained.

We briefly consider the non-physical roots, 1 and 2. A similar eigenvalue analysis of root
1 reveals that the eigenvalues of its local Jacobian matrix are

λ1 = −1.193× 107
1

s
, (7.237)

λ2 = 5.434× 106
1

s
. (7.238)

Thus root 1 is a saddle and is unstable.
For root 2, we find

λ1 = 4.397× 107 + i7.997× 106
1

s
, (7.239)

λ2 = 4.397× 107 − i7.997× 106
1

s
. (7.240)
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Figure 7.9: NO and N phase portraits for T = 6000 K, P = 2.4942 × 106 dyne/cm2

Zel’dovich mechanism.

The eigenvalues are complex with a positive real part. This indicates the root is an unstable
spiral source.

A detailed phase portrait is shown in Fig. 7.9. Here we see all three roots. Their local
character of sink, saddle, or spiral source is clearly displayed. We see that trajectories are
attracted to a curve labeled SIM for “Slow Invariant Manifold.” A part of the SIM is
constructed by the trajectory which originates at root 1 and travels to root 3. The other
part is constructed by connecting an equilibrium point at infinity into root 3. Details are
omitted here.

7.1.2.2 Stiffness, time scales, and numerics

One of the key challenges in computational chemistry is accurately predicting species concen-
tration evolution with time. The problem is made difficult because of the common presence
of physical phenomena which evolve on a widely disparate set of time scales. Systems which
evolve on a wide range of scales are known as stiff, recognizing a motivating example in
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Figure 7.10: ρNO and ρN versus time for Zel’dovich mechanism at T = 1500 K, P =
6.23550× 105 dyne/cm2.

mass-spring-damper systems with stiff springs. Here we will examine the effect of tempera-
ture and pressure on time scales and stiffness. We shall also look simplistically how different
numerical approximation methods respond to stiffness.

7.1.2.2.1 Effect of temperature Let us see how the same Zel’dovich mechanism be-
haves at lower temperature, T = 1500 K; all other parameters, including the initial species
concentrations are the same as the previous high temperature example. The pressure how-
ever, lowers, and here is P = 6.23550×105 dyne/cm2, which is close to atmospheric pressure.
For this case, a plot of species concentrations versus time is given in Figure 7.10.

At T = 1500 K, we notice some dramatic differences relative to the earlier studied
T = 6000 K. First, we see the reaction commences in around the same time, t ∼ 10−8 s. For
t ∼ 10−6 s, there is a temporary cessation of significant reaction. We notice a long plateau
in which species concentrations do not change over several decades of time. This is actually
a pseudo-equilibrium. Significant reaction recommences for t ∼ 0.1 s. Only around t ∼ 1 s
does the system approach final equilibrium. We can perform an eigenvalue analysis both
at the initial state and at the equilibrium state to estimate the time scales of reaction. For
this dynamical system which is two ordinary differential equations in two unknowns, we will
always find two eigenvalues, and thus two time scales. Let us call them τ1 and τ2. Both
these scales will evolve with t.

At the initial state, we find

τ1 = 2.37× 10−8 s, (7.241)

τ2 = 4.25× 10−7 s. (7.242)
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The onset of significant reaction is consistent with the prediction given by τ1 at the initial
state. Moreover, initially, the reaction is not very stiff; the stiffness ratio is κ = 17.9.

At equilibrium, we find

lim
t→∞

ρNO = 4.6× 10−9 mole

cm3
, (7.243)

lim
t→∞

ρN = 4.2× 10−14 mole

cm3
, (7.244)

and

τ1 = 7.86× 10−7 s, (7.245)

τ2 = 3.02× 10−1 s. (7.246)

The slowest time scale near equilibrium is an excellent indicator of how long the system takes
to relax to its final state. Near equilibrium, the stiffness ratio is large, κ = τ2/τ1 ∼ 3.8×105.
This is known as the stiffness ratio. When it is large, the scales in the problem are widely
disparate and accurate numerical solution becomes challenging.

In summary, we find the effect of lowering temperature while leaving initial concentrations
constant

• lowers the pressure somewhat, slightly slowing down the collision time, and slightly
slowing the fastest time scales, and

• slows the slowest time scales many orders of magnitude, stiffening the system signifi-
cantly, because collisions may not induce reaction with their lower collision speed.

7.1.2.2.2 Effect of initial pressure Let us maintain the initial temperature at T =
1500 K, but drop the initial concentration of each species to

ρ̂NO = ρ̂N = ρ̂N2
= ρ̂O2

= ρ̂O = 10−8 mole

cm3
. (7.247)

With this decrease in number of moles, the pressure now is

P = 6.23550× 103
dyne

cm2
. (7.248)

This pressure is two orders of magnitude lower than atmospheric. We solve for the species
concentration profiles and show the results of numerical prediction in Figure 7.11 Relative to
the high pressure P = 6.2355× 105 dyne/cm2, T = 1500 K case, we notice some similarities
and dramatic differences. The overall shape of the time-profiles of concentration variation
is similar. But, we see the reaction commences at a much later time, t ∼ 10−6 s. For
t ∼ 10−4 s, there is a temporary cessation of significant reaction. We notice a long plateau
in which species concentrations do not change over several decades of time. This is again
actually a pseudo-equilibrium. Significant reaction recommences for t ∼ 10 s. Only around
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Figure 7.11: ρNO and ρN versus time for Zel’dovich mechanism at T = 1500 K, P =
6.2355× 103 dyne/cm2.

t ∼ 100 s does the system approach final equilibrium. We can perform an eigenvalue analysis
both at the initial state and at the equilibrium state to estimate the time scales of reaction.

At the initial state, we find

τ1 = 2.37× 10−6 s, (7.249)

τ2 = 4.25× 10−5 s. (7.250)

The onset of significant reaction is consistent with the prediction given by τ1 at the initial
state. Moreover, initially, the reaction is not very stiff; the stiffness ratio is κ = 17.9.
Interestingly, by decreasing the initial pressure by a factor of 102, we increased the initial
time scales by a complementary factor of 102; moreover, we did not alter the stiffness.

At equilibrium, we find

lim
t→∞

ρNO = 4.6× 10−11 mole

cm3
, (7.251)

lim
t→∞

ρN = 4.2× 10−16 mole

cm3
, (7.252)

(7.253)

and

τ1 = 7.86× 10−5 s, (7.254)

τ2 = 3.02× 101 s. (7.255)
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By decreasing the initial pressure by a factor of 102, we decreased the equilibrium concentra-
tions by a factor of 102 and increased the time scales by a factor of 102, leaving the stiffness
ratio unchanged.

In summary, we find the effect of lowering the initial concentrations significantly while
leaving temperature constant

• lowers the pressure significantly, proportionally slowing down the collision time, as well
as the fastest and slowest time scales, and

• does not affect the stiffness of the system.

7.1.2.2.3 Stiffness and numerics The issue of how to simulate stiff systems of ordinary
differential equations, such as presented by our Zel’dovich mechanism, is challenging. Here a
brief summary of some of the issues will be presented. The interested reader should consult
the numerical literature for a full discussion. See for example the excellent text of Iserles.10

We have seen throughout this section that there are two time scales at work, and they are
often disparate. The species evolution is generally characterized by an initial fast transient,
followed by a long plateau, then a final relaxation to equilibrium. We noted from the phase
plane of Fig. 7.9 that the final relaxation to equilibrium (shown along the green line labeled
“SIM”) is an attracting manifold for a wide variety of initial conditions. The relaxation onto
the SIM is fast, and the motion on the SIM to equilibrium is relatively slow.

Use of common numerical techniques can often mask or obscure the actual dynamics.
Numerical methods to solve systems of ordinary differential equations can be broadly cat-
egorized as explicit or implicit. We give a brief synopsis of each class of method. We cast
each as a method to solve a system of the form

dρ

dt
= f(ρ). (7.256)

• Explicit: The simplest of these, the forward Euler method, discretizes Eq. (7.256) as
follows:

ρn+1 − ρn

∆t
= f(ρn), (7.257)

so that

ρn+1 = ρn +∆t f(ρn). (7.258)

Explicit methods are summarized as

– easy to program, because Eq. (7.258) can be solved explicitly to predict the new
value ρn+1 in terms of the old values at step n.

10A. Iserles, 2008, A First Course in the Numerical Analysis of Differential Equations, Cambridge Uni-
versity Press, Cambridge, UK.
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– need to have ∆t < τfastest in order to remain numerically stable,

– able to capture all physics and all time scales at great computational expense for
stiff problems,

– requiring much computational effort for little payoff in the SIM region of the phase
plane, and thus

– inefficient for some portions of stiff calculations.

• Implicit: The simplest of these methods, the backward Euler method, discretizes
Eq. (7.256) as follows:

ρn+1 − ρn

∆t
= f(ρn+1), (7.259)

so that

ρn+1 = ρn +∆t f(ρn+1). (7.260)

Implicit methods are summarized as

– more difficult to program because a non-linear set of algebraic equations, Eq. (7.260),
must be solved at every time step with no guarantee of solution,

– requiring potentially significant computational time to advance each time step,

– capable of using very large time steps and remaining numerically stable,

– suspect to missing physics that occur on small time scales τ < ∆t,

– in general better performers than explicit methods.

A wide variety of software tools exist to solve systems of ordinary differential equations.
Most of them use more sophisticated techniques than simple forward and backward Euler
methods. One of the most powerful techniques is the use of error control. Here the user
specifies how far in time to advance and the error that is able to be tolerated. The algorithm,
which is complicated, selects then internal time steps, for either explicit or implicit methods,
to achieve a solution within the error tolerance at the specified output time. A well known
public domain algorithm with error control is provided by lsode.f, which can be found in
the netlib repository.11

Let us exercise the Zel’dovich mechanism under the conditions simulated in Fig. 7.11,
T = 1500 K, P = 6.2355 × 103 dyne/cm2. Recall in this case the fastest time scale near
equilibrium is τ1 = 7.86 × 10−5 s ∼ 10−4 s at the initial state, and the slowest time scale is
τ = 3.02 × 101 s at the final state. Let us solve for these conditions using dlsode.f, which
uses internal time stepping for error control, in both an explicit and implicit mode. We
specify a variety of values of ∆t and report typical values of number of internal time steps
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Explicit Explicit Implicit Implicit
∆t (s) Ninternal ∆teff (s) Ninternal ∆teff (s)
102 106 10−4 100 102

101 105 10−4 100 101

100 104 10−4 100 100

10−1 103 10−4 100 10−1

10−2 102 10−4 100 10−2

10−3 101 10−4 100 10−3

10−4 100 10−4 100 10−4

10−5 100 10−5 100 10−5

10−6 100 10−6 100 10−6

Table 7.3: Results from computing Zel’dovich NO production using implicit and explicit
methods with error control in dlsode.f.

selected by dlsode.f, and the corresponding effective time step ∆teff used for the problem,
for both explicit and implicit methods, as reported in Table 7.3.

Obviously if output is requested using ∆t > 10−4 s, the early time dynamics near t ∼
10−4 s will be missed. For physically stable systems, codes such as dlsode.f will still provide
a correct solution at the later times. For physically unstable systems, such as might occur in
turbulent flames, it is not clear that one can use large time steps and expect to have fidelity
to the underlying equations. The reason is the physical instabilities may evolve on the same
time scale as the fine scales which are overlooked by large ∆t.

7.2 Adiabatic, isochoric kinetics

It is more practical to allow for temperature variation within a combustor. The best model
for this is adiabatic kinetics. Here we will restrict our attention to isochoric problems.

7.2.1 Thermal explosion theory

There is a simple description known as thermal explosion theory which provides a good
explanation for how initially slow exothermic reaction induces a sudden temperature rise
accompanied by a final relaxation to equilibrium. For simple systems, this theory can provide
a good estimate of the ignition delay time.

Let us consider a simple isomerization reaction in a closed volume

A⇌ B. (7.261)

11Hindmarsh, A. C., 1983,“ODEPACK, a Systematized Collection of ODE Solvers,” Scientific Com-

puting, edited by R. S. Stepleman, et al., North-Holland, Amsterdam, pp. 55-64. Source code at
https://www.netlib.org/alliant/ode/prog/lsode.f
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Let us take A and B to both be calorically perfect ideal gases with identical molecular masses
MA = MB = M and identical specific heats, cvA = cvB = cv; cPA = cPB = cP . We can
consider A and B to be isomers of an identical molecular species. So we have N = 2 species
reacting in J = 1 reactions. The number of elements L here is irrelevant.

7.2.1.1 One-step reversible kinetics

Let us insist our reaction process be isochoric and adiabatic, and commence with only A
present. The reaction kinetics with β = 0 are

dρA
dt

= − a exp

(−E
RT

)

︸ ︷︷ ︸
=k

(
ρA − 1

Kc

ρB

)

︸ ︷︷ ︸
=r

, (7.262)

dρB
dt

= a exp

(−E
RT

)

︸ ︷︷ ︸
=k

(
ρA − 1

Kc
ρB

)

︸ ︷︷ ︸
=r

, (7.263)

ρA(0) = ρ̂A, (7.264)

ρB(0) = 0. (7.265)

For our alternate compact linear algebra based form, we note that

r = a exp

(−E
RT

)(
ρA − 1

Kc
ρB

)
, (7.266)

and that

d

dt

(
ρA
ρB

)
=

(
−1
1

)
(r). (7.267)

Performing the decomposition yields

d

dt

(
ρA

ρA + ρB

)
=

(
−1
0

)
(r). (7.268)

Expanded, this is
(
1 0
1 1

)
d

dt

(
ρA
ρB

)
=

(
−1
0

)
(r). (7.269)

Combining Eqs. (7.262-7.263) and integrating yields

d

dt
(ρA + ρB) = 0, (7.270)

ρA + ρB = ρ̂A, (7.271)

ρB = ρ̂A − ρA. (7.272)
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Thus, Eq. (7.262) reduces to

dρA
dt

= −a exp
(−E
RT

)(
ρA − 1

Kc

(
ρ̂A − ρA

))
. (7.273)

Scaling, Eq. (7.273) can be rewritten as

d

d(at)

(
ρA

ρ̂A

)
= − exp

(
− E

RTo

1

T/To

)(
ρA

ρ̂A
− 1

Kc

(
1− ρA

ρ̂A

))
. (7.274)

7.2.1.2 First law of thermodynamics

Recall the first law of thermodynamics and neglecting potential and kinetic energy changes:

dU

dt
= Q̇− Ẇ . (7.275)

Here U is the total internal energy. Because we insist the problem is adiabatic Q̇ = 0.
Because we insist the problem is isochoric, there is no work done, so Ẇ = 0. Thus we have

dU

dt
= 0. (7.276)

Thus, we find

U = Uo. (7.277)

Recall the total internal energy for a mixture of two calorically perfect ideal gases is

U = nAuA + nBuB, (7.278)

= V
(nA

V
uA +

nB

V
uB

)
, (7.279)

= V (ρAuA + ρBuB) , (7.280)

= V

(
ρA

(
hA − PA

ρA

)
+ ρB

(
hB − PB

ρB

))
, (7.281)

= V
(
ρA
(
hA − RT

)
+ ρB

(
hB −RT

))
, (7.282)

= V
(
ρA

(
cP (T − To) + h

o

To,A − RT
)
+ ρB

(
cP (T − To) + h

o

To,B − RT
))

,(7.283)

= V
(
(ρA + ρB)(cP (T − To)− RT ) + ρAh

o

To,A + ρBh
o

To,B

)
, (7.284)

= V
(
(ρA + ρB)((cP − R)T − cPTo) + ρAh

o

To,A + ρBh
o

To,B

)
, (7.285)

= V
(
(ρA + ρB)((cP − R)T − (cP − R +R)To) + ρAh

o

To,A + ρBh
o

To,B

)
, (7.286)

= V
(
(ρA + ρB)(cvT − (cv +R)To) + ρAh

o

To,A + ρBh
o

To,B

)
, (7.287)

= V
(
(ρA + ρB)cv(T − To) + ρA(h

o

To,A − RTo) + ρB(h
o

To,B −RTo)
)
, (7.288)

= V
(
(ρA + ρB)cv(T − To) + ρAu

o
To,A + ρBu

o
To,B

)
. (7.289)
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Now at the initial state, we have T = To, so

Uo = V
(
ρ̂Au

o
To,A + ρ̂Bu

o
To,B

)
. (7.290)

So, we can say our caloric equation of state is

U − Uo = V
(
(ρA + ρB)cv(T − To) + (ρA − ρ̂A)u

o
To,A + (ρB − ρ̂B)u

o
To,B

)
, (7.291)

= V
(
(ρ̂A + ρ̂B)cv(T − To) + (ρA − ρ̂A)u

o
To,A + (ρB − ρ̂B)u

o
To,B

)
. (7.292)

As an aside, on a molar basis, we scale Eq. (7.292) to get

u− uo = cv(T − To) + (yA − yAo)u
o
To,A + (yB − yBo)u

o
To,B. (7.293)

And because we have assumed the molecular masses are the same, MA = MB, the mole
fractions are the mass fractions, and we can write on a mass basis

u− uo = cv(T − To) + (cA − cAo)u
o
To,A + (cB − cBo)u

o
To,B. (7.294)

Returning to Eq. (7.292), our energy conservation relation, Eq. (7.277), becomes

0 = V
(
(ρ̂A + ρ̂B)cv(T − To) + (ρA − ρ̂A)u

o
To,A + (ρB − ρ̂B)u

o
To,B

)
. (7.295)

Now we solve for T

0 = (ρ̂A + ρ̂B)cv(T − To) + (ρA − ρ̂A)u
o
To,A + (ρB − ρ̂B)u

o
To,B, (7.296)

0 = cv(T − To) +
ρA − ρ̂A
ρ̂A + ρ̂B

uoTo,A +
ρB − ρ̂B
ρ̂A + ρ̂B

uoTo,B, (7.297)

T = To +
ρ̂A − ρA

ρ̂A + ρ̂B

uoTo,A

cv
+
ρ̂B − ρB

ρ̂A + ρ̂B

uoTo,B

cv
. (7.298)

Now we impose our assumption that ρ̂B = 0, giving also ρB = ρ̂A − ρA,

T = To +
ρ̂A − ρA

ρ̂A

uoTo,A

cv
− ρB

ρ̂A

uoTo,B

cv
, (7.299)

= To +
ρ̂A − ρA

ρ̂A

uoTo,A − uoTo,B

cv
. (7.300)

In summary, realizing that h
o

To,A − h
o

To,B = uoTo,A − uoTo,B we can write T as a function of
ρA:

T = To +
(ρ̂A − ρA)

ρ̂Acv
(h

o

To,A − h
o

To,B). (7.301)
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We see then that if h
o

To,A > h
o

To,B, that as ρA decreases from its initial value of ρ̂A that T
will increase. We can scale Eq. (7.301) to form

(
T

To

)
= 1 +

(
1− ρA

ρ̂A

)(
h
o

To,A − h
o

To,B

cvTo

)
. (7.302)

We also note that our caloric state equation, Eq. (7.293) can, for yAo = 1, yBo = 0 as

u− uo = cv(T − To) + (yA − 1)uoTo,A + yBu
o
To,B, (7.303)

= cv(T − To) + ((1− yB)− 1)uoTo,A + yBu
o
To,B, (7.304)

= cv(T − To)− yB(u
o
To,A − uoTo,B). (7.305)

Similarly, on a mass basis, we can say,

u− uo = cv(T − To)− cB(u
o
To,A − uoTo,B). (7.306)

For this problem, we also have

Kc = exp

(−∆Go

RT

)
, (7.307)

with

∆Go = goB − goA, (7.308)

= h
o

B − TsoB − (h
o

A − TsoA), (7.309)

= (h
o

B − h
o

A)− T (soB − soA), (7.310)

= (h
o

To,B − h
o

To,A)− T (soTo,B − soTo,A). (7.311)

So

Kc = exp

(
h
o

To,A − h
o

To,B − T (soTo,A − soTo,B)

RT

)
, (7.312)

= exp

(
cvTo

RT

(
h
o

To,A − h
o

To,B − T (soTo,A − soTo,B)

cvTo

))
, (7.313)

= exp

(
1

k − 1

1
T
To

(
h
o

To,A − h
o

To,B

cvTo
− T

To

(soTo,A − soTo,B)

cv

))
. (7.314)

Here we have used the definition of the ratio of specific heats, k = cP/cv along with R =
cP − cv. So we can solve Eq. (7.273) by first using Eq. (7.314) to eliminate Kc and then
Eq. (7.301) to eliminate T .
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7.2.1.3 Dimensionless form

Let us try writing dimensionless variables so that our system can be written in a compact
dimensionless form. First lets take dimensionless time τ to be

τ = at. (7.315)

Let us take dimensionless species concentration to be z with

z =
ρA

ρ̂A
. (7.316)

Let us take dimensionless temperature to be θ with

θ =
T

To
. (7.317)

Let us take dimensionless heat release to be q with

q =
h
o

To,A − h
o

To,B

cvTo
. (7.318)

Let us take dimensionless activation energy to be Θ with

Θ =
E

RTo
. (7.319)

And let us take the dimensionless entropy change to be σ with

σ =
(soTo,A − soTo,B)

cv
. (7.320)

So our equations become

dz

dτ
= − exp

(
−Θ

θ

)(
z − 1

Kc
(1− z)

)
, (7.321)

θ = 1 + (1− z)q, (7.322)

Kc = exp

(
1

k − 1

1

θ
(q − θσ)

)
. (7.323)

It is more common to consider the products. Let us define for general problems

λ =
ρB

ρA + ρB
=

ρB

ρ̂A + ρ̂B
. (7.324)

Thus λ is the mass fraction of product. For our problem, ρ̂B = 0 so

λ =
ρB

ρ̂A
=
ρ̂A − ρA

ρ̂A
. (7.325)
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Thus,

λ = 1− z. (7.326)

We can think of λ as a reaction progress variable as well. When λ = 0, we have τ = 0, and
the reaction has not begun. Thus, we get

dλ

dτ
= exp

(
−Θ

θ

)(
(1− λ)− 1

Kc
λ

)
, (7.327)

θ = 1 + qλ, (7.328)

Kc = exp

(
1

k − 1

1

θ
(q − θσ)

)
. (7.329)

7.2.1.4 Example calculation

Let us choose some values for the dimensionless parameters:

Θ = 20, σ = 0, q = 10, k =
7

5
. (7.330)

With these choices, our kinetics equations reduce to

dλ

dτ
= exp

( −20

1 + 10λ

)(
(1− λ)− λ exp

( −25

1 + 10λ

))
, λ(0) = 0. (7.331)

The right side of Eq. (7.331) is at equilibrium for values of λ which drive it to zero.
Numerical root finding methods show this to occur at λ ∼ 0.920539. Near this root, Taylor
series expansion shows the dynamics are approximated by

d

dτ
(λ− 0.920539) = −0.17993(λ− 0.920539) + . . . (7.332)

Thus the local behavior near equilibrium is given by

λ = 0.920539 + C exp (−0.17993 τ) . (7.333)

Here C is some arbitrary constant. Clearly the equilibrium is stable, with a time constant
of 1/0.17993 = 5.55773.

Numerical solution shows the full behavior of the dimensionless species concentration
λ(τ); see Figure 7.12. Clearly the product concentration λ is small for some long period of
time. At a critical time near τ = 2.7×106, there is a so-called thermal explosion with a rapid
increase in λ. The estimate of the time constant near equilibrium is orders of magnitude less
than the explosion time, 5.55773 ≪ 2.7 × 106. Thus, linear analysis here is a poor tool to
estimate an important physical quantity, the ignition delay time. Once the ignition period
is over, there is a rapid equilibration to the final state. The dimensionless temperature
plot is shown in Figure 7.13. The temperature plot is similar in behavior to the species
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Figure 7.12: Dimensionless plot of reaction product concentration λ versus time τ for adia-
batic isochoric combustion with simple reversible kinetics.
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Figure 7.13: Dimensionless plot of temperature θ versus time τ for adiabatic, isochoric
combustion with simple reversible kinetics.
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concentration plot. At early time, the temperature is cool. At a critical time, the thermal
explosion or ignition delay time, the temperature rapidly rises. This rapid rise, coupled
with the exponential sensitivity of reaction rate to temperature, accelerates the formation
of product. This process continues until the reverse reaction is activated to the extent it
prevents further creation of product.

7.2.1.5 High activation energy asymptotics

Let us see if we can get an analytic prediction of the ignition delay time, τ ∼ 2.7×106. Such
a prediction would be valuable to see how long a slowing reacting material might take to
ignite. Our analysis is similar to that given by Buckmaster and Ludford in their Chapter
1.12

For convenience let us restrict ourselves to σ = 0. In this limit, Eqs. (7.327-7.329) reduce
to

dλ

dτ
= exp

(
− Θ

1 + qλ

)(
(1− λ)− λ exp

( −q
(k − 1)(1 + qλ)

))
, (7.334)

with λ(0) = 0. The key trouble in getting an analytic solution to Eq. (7.334) is the presence
of λ in the denominator of an exponential term. We need to find a way to move it to the
numerator. Asymptotic methods provide one such way.

Now we recall for early time λ≪ 1. Let us assume λ takes the form

λ = ǫλ1 + ǫ2λ2 + ǫ3λ3 + . . . (7.335)

Here we will assume 0 < ǫ≪ 1 and that λ1(τ) ∼ O(1), λ2(τ) ∼ O(1), . . . , and will define ǫ
in terms of physical parameters shortly. Now with this assumption, we have

1

1 + qλ
=

1

1 + ǫqλ1 + ǫ2qλ2 + ǫ3qλ3 + . . .
. (7.336)

Long division of the term on the right side yields the approximation

1

1 + qλ
= 1− ǫqλ1 + ǫ2(q2λ21 − qλ2) + . . . , (7.337)

= 1− ǫqλ1 +O(ǫ2). (7.338)

So

exp

(
− Θ

1 + qλ

)
∼ exp

(
−Θ(1− ǫqλ1 +O(ǫ2))

)
, (7.339)

∼ e−Θ exp
(
ǫqΘλ1 +O(ǫ2)

)
. (7.340)

We have moved λ from the denominator to the numerator of the most important exponential
term.

12J. D. Buckmaster and G. S. S. Ludford, 1983, Lectures on Mathematical Combustion, SIAM, Philadelphia.
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Now, let us take the limit of high activation energy by defining ǫ to be

ǫ ≡ 1

Θ
. (7.341)

Let us let the assume the remaining parameters, q and k are both O(1) constants. When Θ
is large, ǫ will be small. With this definition, Eq. (7.340) becomes

exp

(
− Θ

1 + qλ

)
∼ e−1/ǫ exp

(
qλ1 +O(ǫ2)

)
. (7.342)

With these assumptions and approximations, Eq. (7.334) can be written as

d

dτ
(ǫλ1 + . . . ) = e−1/ǫ exp

(
qλ1 +O(ǫ2)

)

×
(
(1− ǫλ1 − . . . )− (ǫλ1 + . . . ) exp

( −q
(k − 1)(1 + qǫλ1 + . . . )

))
.

(7.343)

Now let us rescale time via

τ∗ =
1

ǫ
e−1/ǫτ. (7.344)

With this transformation, the chain rule shows how derivatives transform:

d

dτ
=
dτ∗
dτ

d

dτ∗
=

1

ǫe1/ǫ
d

dτ∗
. (7.345)

With this transformation, Eq. (7.343) becomes

1

ǫe1/ǫ
d

dτ∗
(ǫλ1 + . . . ) =

1

e1/ǫ
exp

(
qλ1 +O(ǫ2)

)

×
(
(1− ǫλ1 − . . . )− (ǫλ1 + . . . ) exp

( −q
(k − 1)(1 + qǫλ1 + . . . )

))
.

(7.346)

This simplifies to

d

dτ∗
(λ1 + . . . ) = exp

(
qλ1 +O(ǫ2)

)

×
(
(1− ǫλ1 − . . . )− (ǫλ1 + . . . ) exp

( −q
(k − 1)(1 + qǫλ1 + . . . )

))
.

(7.347)

Retaining only O(1) terms in Eq. (7.347), we get

dλ1
dτ∗

= exp (qλ1) . (7.348)
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This is supplemented by the initial condition λ1(0) = 0. Separating variables and solving,
we get

exp(−qλ1) dλ1 = dτ∗, (7.349)

−1

q
exp(−qλ1) = τ∗ + C. (7.350)

Applying the initial condition gives

−1

q
exp(−q(0)) = C, (7.351)

−1

q
= C. (7.352)

So

−1

q
exp(−qλ1) = τ∗ −

1

q
, (7.353)

exp(−qλ1) = −qτ∗ + 1, (7.354)

exp(−qλ1) = −q
(
τ∗ −

1

q

)
, (7.355)

−qλ1 = ln

(
−q
(
τ∗ −

1

q

))
, (7.356)

λ1 = −1

q
ln

(
−q
(
τ∗ −

1

q

))
. (7.357)

For q = 10, a plot of λ1(τ∗) is shown in Fig. 7.14. We note at a finite τ∗ that λ1 begins to
exhibit unbounded growth. In fact, it is obvious from Eq. (7.348) that as

τ∗ →
1

q
,

that
λ1 → ∞.

That is there exists a finite time for which λ1 violates the assumptions of our asymptotic
theory which assumes λ1 = O(1). We associate this time with the ignition delay time, τ∗i:

τ∗i =
1

q
. (7.358)

Let us return this to more primitive variables:

1

ǫ
exp

(−1

ǫ

)
τi =

1

q
, (7.359)

τi =
ǫ exp

(
1
ǫ

)

q
, (7.360)

=
expΘ

Θq
. (7.361)

CC BY-NC-ND. 28 March 2025, J. M. Powers.

https://creativecommons.org/licenses/by-nc-nd/3.0/


7.2. ADIABATIC, ISOCHORIC KINETICS 291

0.00 0.02 0.04 0.06 0.08 0.10 0.12

0.4

0.8

1.2

Figure 7.14: λ1 versus τ∗ for ignition problem.

For our system with Θ = 20 and q = 10, we estimate the dimensionless ignition delay time
as

τi =
exp 20

(20)(10)
= 2.42583× 106. (7.362)

This is a surprisingly good estimate, given the complexity of the problem. Recall the nu-
merical solution showed ignition for τ ∼ 2.7× 106.

In terms of dimensional time, the ignition delay time prediction becomes

ti =
expΘ

aΘq
, (7.363)

=
1

a

(
RTo

E

)(
cvTo

h
o

To,A − h
o

To,B

)
exp

(
E

RTo

)
. (7.364)

Ignition is suppressed if the ignition delay time is lengthened, which happens when

• the activation energy E is increased, because the exponential sensitivity is stronger
than the algebraic sensitivity,

• the energy of combustion (h
o

To,A − h
o

To,B) is decreased because it takes longer to react
to drive the temperature to a critical value to induce ignition, and

• the collision frequency factor a is decreased, which suppresses reaction.

7.2.2 Detailed H2 −O2 −N2 kinetics

Here is an example which uses multiple reactions for an adiabatic isothermal system is given.
Consider the full time-dependency of a problem similar to the thermal explosion problem
just considered.
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A closed, fixed, adiabatic volume, V = 0.3061251 cm3, contains at t = 0 s a stoichiometric
hydrogen-air mixture of 2× 10−5 mole of H2, 1× 10−5 mole of O2, and 3.76× 10−5 mole of
N2 at Po = 2.83230× 106 Pa and To = 1542.7 K.13 Thus the initial molar concentrations are

ρH2
= 6.533× 10−5 mole/cm3, (7.365)

ρO2
= 3.267× 10−5 mole/cm3, (7.366)

ρH2
= 1.228× 10−4 mole/cm3. (7.367)

The initial mass fractions are calculated via ci =Miρi/ρ. They are

cH2 = 0.0285, (7.368)

cO2 = 0.226, (7.369)

cN2 = 0.745. (7.370)

To avoid issues associated with numerical roundoff errors at very early time for species
with very small compositions, the minor species were initialized at a small non-zero value
near machine precision; each was assigned a value of 10−15 mole. The minor species all have
ρi = (10−15 mole)/(0.3061251 cm3) = 3.26664×10−15 mole/cm3. They have correspondingly
small initial mass fractions.

We seek the reaction dynamics as the system proceeds from its initial state to its final
state. We use the reversible detailed kinetics mechanism of Table 7.2. This problem requires
a detailed numerical solution. Such a solution was performed by solving the appropriate
equations for a mixture of nine interacting species: H2, H, O, O2, OH, H2O, HO2, H2O2,
and N2. The dynamics of the reaction process are reflected in Figs. 7.15-7.16.

At early time, t < 10−7 s, the pressure, temperature, and major reactant species con-
centrations (H2, O2, N2) are nearly constant. However, the minor species, e.g. OH, HO2,
and the major product, H2O, are undergoing very rapid growth, albeit with math fractions
whose value remains small. In this period, the material is in what is known as the induction
period.

After a certain critical mass of minor species has accumulated, exothermic recombination
of these minor species to form the major product H2O induces the temperature to rise, which
accelerates further the reaction rates. This is manifested in a thermal explosion. A common
definition of the end of the induction period is the ignition delay, t = ti, the time when dT/dt
goes through a maximum. Here one finds

ti = 6.6× 10−7 s. (7.371)

A close-up view of the species concentration profiles is given in Fig. 7.17.

13This temperature and pressure correspond to that of the same ambient mixture of H2, O2 and N2 which
was shocked from 1.01325× 105 Pa, 298 K, to a value associated with a freely propagating detonation.
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Figure 7.17: Plot near thermal explosion time of mass fractions cH2(t), cH(t), cO(t), cO2(t),
cOH(t), cH2O(t), cHO2(t), cH2O2(t), cN2(t), for adiabatic, isochoric combustion of a mixture of
2H2 +O2 + 3.76N2 initially at at To = 1542.7 K, Po = 2.8323× 106 Pa.

At the end of the induction zone, there is a final relaxation to equilibrium. The equilib-
rium mass fractions of each species are

cO2 = 1.85× 10−2, (7.372)

cH = 5.41× 10−4, (7.373)

cOH = 2.45× 10−2, (7.374)

cO = 3.88× 10−3, (7.375)

cH2 = 3.75× 10−3, (7.376)

cH2O = 2.04× 10−1, (7.377)

cHO2 = 6.84× 10−5, (7.378)

cH2O2 = 1.04× 10−5, (7.379)

cN2 = 7.45× 10−1. (7.380)

We note that because our model takes N2 to be inert that its value remains unchanged.
Other than N2, the final products are dominated by H2O. The equilibrium temperature is
3382.3 K and 5.53× 106 Pa.
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Appendix

This appendix will consider two peripheral topics: Legendre transformations, first introduced
in Sec. 4.3, and the method of least squares.

Legendre transformations

Here we will draw upon the work of Zia, et al.14 to better understand Legendre transforma-
tions in general and how they relate to thermodynamics. The method is general and is often
applied to other problems in physics, especially in dynamics.

Consider a function F (x). Let us insist that F be such that

d2F

dx2
≥ 0.

That is to say, its slope increases or does not change as x increases. Such a function may
possess a minimum value, and can be considered to be convex. Formally, one can say that
F is convex when the region above it, known as the epigraph, forms a so-called convex set.
A set is convex if special linear combinations of any of its elements also reside within the
set. Examples of convex and non-convex functions are shown in Fig. 7.18. For the convex
function F (x) = x2, shown in Fig. 7.18a, we have d2F/dx2 = 2 > 0. We also see that
special linear combinations of any points within the epigraph will lie within the epigraph.
Mathematically, this is expressed as follows: for s ∈ [0, 1] we must have F (sx1+(1−s)x2) ≤
sF (x1)+(1−s)F (x2). This is illustrated by a sample line whose interior points all lie within
the epigraph. For the non-convex function F (x) = x3−x2−x, shown in Fig. 7.18b, we have
d2F/dx2 = 6x−2. Obviously, this is not positive for all x, and so the function is non-convex.
And we see that lines exist connecting points within the epigraph that contain points outside
of the epigraph. Hence it is non-convex.

Let us define the slope of F as w. Mathematically, we can say

dF

dx
= w(x).

Because F is a function of x, its derivative also is a function of x. Now because we have
insisted that w is increasing as x increases, we can always find a unique inverse such that

14R. K. P. Zia, E. F. Redish, and S. R. McKay, 2009, “Making sense of the Legendre transform,” Ameri-

can Journal of Physics, 77(7): 614-622.
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Figure 7.18: Plots illustrating a) the convex function F (x) = x2 and b) the non-convex
function F (x) = x3 − x2 − x.

x(w) exists. That is to say, just as the slope is a function of x, x can be identified as a
function of slope. Now let us define the Legendre transformation G as

G(w) = wx(w)− F (x(w)).

Given F (x), and convexity, it is always possible to compute G. We can write this in a form
that will be more useful for thermodynamics:

G(w) + F (x) = wx.

Here we see a symmetry in the relationship. Now differentiate G with respect to w. We get

dG

dw
= w

dx

dw
+ x(w)− dF

dx

dx

dw
.

Rearrange to get
dG

dw
=
dx

dw

(
w − dF

dx

)

︸ ︷︷ ︸
0

+x(w)

Now because dF/dx = w, we get dG/dw = x. Thus we get a set of symmetric relations

dF

dx
= w,

dG

dw
= x.

We could also say then that

G(w) + F (x) =
dG

dw

dF

dx
.

It can remarkably be shown that the Legendre transformation of G returns us to the original
function F .
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We also have
d2F

dx2
=
dw

dx
,

d2G

dx2
=
dx

dw
.

So
d2F

dx2
d2G

dw2
=
dw

dx

dx

dw
= 1.

Example 7.1
Find the Legendre transformation of F (x) = ex.

First, we find that

w =
dF

dx
=

d

dx
(ex) = ex.

We also see that
d2F

dx2
= ex > 0,

so F is convex. We also see that w(x) exists, as does its inverse x(w):

w(x) = ex, x(w) = lnw.

For the inverse to be real valued, we must require that w > 0, which is the case for w = ex. So

G(w) = wx(w) − F (x(w)),

= w lnw − exp(lnw),

= w lnw − w,

= w(lnw − 1).

Example 7.2
Find the Legendre transformation of F (x) = x(ln x− 1). The function F has the same form as the

Legendre transformation of ex studied in the previous example.

We easily see that
dF

dx
= lnx,

so
w(x) = lnx.

We also see that
d2F

dx2
=

1

x
,

so F is convex as long as x > 0. We then get that

x(w) = ew.
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The Legendre transformation is

G(w) = wx(w) − F (x(w)),

= wew − ew(ln ew − 1),

= wew − ew(w − 1),

= ew.

The Legendre transformation of the Legendre transformation returns us to the original function. Thus,
the transform is its own inverse.

Example 7.3
Find the Legendre transformation of F (x) = αx2/2, where α is a positive scalar constant α > 0.

First, we find that

w =
dF

dx
=

d

dx

(
αx2

2

)
= αx.

We also see that
d2F

dx2
= α.

Because α > 0, F is convex. We also see that w(x) exists, as does its inverse x(w):

w(x) = αx, x(w) =
w

α
.

So

G(w) = wx(w) − F (x(w)),

= w
w

α
− α

2

(w
α

)2
,

=
w2

2α
.

Example 7.4
Find the Legendre transformation of F (x) = x2/(2α), with α > 0. The function F has the same

form as the Legendre transformation of αx2/2 studied in the previous example.

We easily see that
dF

dx
=
x

α
,

so
w(x) =

x

α
.
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We also see that
d2F

dx2
=

1

α
,

so F is convex. We then get that

x(w) = αw.

The Legendre transformation is

G(w) = wx(w) − F (x(w)),

= w(αw) − 1

2α
(αw)2 ,

= αw2 − α

2
w2,

=
α

2
w2.

The Legendre transformation of the Legendre transformation returns us to the original function. Thus,
the transform is its own inverse.

Example 7.5
Apply the formalism of Legendre transformations to a linear mass spring system.

We know the potential energy of such a system is

U(x) =
1

2
kx2,

where k is the spring constant, and x is the displacement of the mass from its equilibrium position of
x = 0. We think of U(x) as standing in for F (x). Let us let then let f stand in for w and take

f =
dU

dx
= kx.

Thus, we associate f with the traditional spring force kx. We see

d2U

dx2
= k,

and because k > 0, U(x) is convex.
Now we also see

x(f) =
f

k
.

Let us let V stand in for G and define the Legendre transformation

V (f) = xf − U(x).

So

V (f) =
f2

k
− 1

2
k

(
f

k

)2

.

299



Thus,

V (f) =
1

2

f2

k
.

Note that
dV

df
=
f

k
= x(f).

Our Legendre transformation then gives

U(x) + V (f) = fx,

1

2
kx2 +

1

2

f2

k
= fx,

(kx)2 + f2 − 2kfx = 0,

(f − kx)2 = 0.

This yields

f = kx,

as it must. We can think of U(x) as a potential associated with the position. We can think of V (f) as
a potential associated with the control parameter f , the spring force.

Example 7.6
Consider the Legendre transformation in terms of traditional Lagrangian and Hamiltonian dynamics

for a particle of massm with position q, velocity v = q̇, momentum p = mv = mq̇, Lagrangian L(q̇, q, t),
and Hamiltonian H(p, q, t). The particle moves in a potential field with the potential a known function
of position, V (q). We consider the so-called “coordinates” to be p and q̇

We typically think of Hamiltonian systems as non-dissipative; for particle dynamics, this implies
that the sum of the kinetic energy T = mv2/2 and potential energy V = mgz is a constant independent
of time:

H = T + V = constant.

The kinetic and potential energy can change with time, but their sum does not for the non-dissipative
system. Here z is a traditional position coordinate that we take to be z = q. And we simply require the
potential V to be a general function of position only: V (q). The kinetic energy in terms of momentum
p is

T =
1

2
mv2 =

m2v2

2m
=

p2

2m
.

So

H(p, q, t) =
p2

2m
+ V (q).

For the Legendre transformation formalism, we wish to consider the variables p and q̇. Let us then
define the “slope”

∂H
∂p

∣∣∣∣
q,t

=
p

m
= q̇.
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With the definition of momentum p = mv, we see that

q̇ = v.

We see that H is convex by computing

∂2H
∂p2

∣∣∣∣
q,t

=
1

m
> 0,

because m > 0.
The Legendre transformation allows us to define the Lagrangian L in terms of the Hamiltonian H:

L(q̇, q, t) = pq̇ −H(p(q̇), q, t).

So

L(q̇, q, t) = pq̇ −
(
(mq̇)2

2m
+ V (q)

)
.

Simplifying, we get

L(q̇, q, t) = mq̇2 −
(
mq̇2

2
+ V (q)

)
,

or

L(q̇, q, t) = m
q̇2

2
− V (q) =

mv2

2
− V (q) = T − V.

So we have
H = T + V, L = T − V.

We could then say
L(q̇, q, t) +H(p, q, t) = pq̇.

Note that
∂L
∂q̇

∣∣∣∣
q,t

= mq̇ = mv = p,
∂H
∂p

∣∣∣∣
q,t

=
p

m
= v = q̇.

Now with L = L(q, q̇, t), we have the total derivative

dL =
∂L
∂q

dq +
∂L
∂q̇

dq̇ +
∂L
∂t

dt.

Now p = ∂L/∂q̇, so
dL =

∂L
∂q

dq + p dq̇ +
∂L
∂t

dt.

With the product rule, we say

dL =
∂L
∂q

dq + d(pq̇)− q̇ dp+
∂L
∂t

dt.

Rearranging gives

d (L− pq̇) =
∂L
∂q

dq − q̇ dp+
∂L
∂t

dt.

d (pq̇ − L) = −∂L
∂q

dq + q̇ dp− ∂L
∂t

dt.

Recalling pq̇ − L = H, we get

dH = −∂L
∂q

dq + q̇ dp− ∂L
∂t

dt.
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Scale by dt to get
dH
dt

= −∂L
∂q

q̇ + q̇
dp

dt
− ∂L
∂t
.

dH
dt

= −∂L
∂q

q̇ + q̇
d

dt

∂L
∂q̇

− ∂L
∂t
.

Now because H = pq̇ − L, we have

∂H
∂t

∣∣∣∣
p,q̇

= − ∂L
∂t

∣∣∣∣
p,q̇

.

And because for non-dissipative systems H is constant, it does not vary with time, so we also have
∂L/∂t = 0, along with dH/dt = 0. Thus, after scaling by q̇, we get the well-known Euler-Lagrange
equation:

∂L
∂q

− d

dt

∂L
∂q̇

= 0.

We can get the so-called Hamilton’s equations for a Hamiltonian system by the following. For a
constant Hamiltonian, we have H = H(p, q). So

dH =
∂H
∂p

∣∣∣∣
q

dp+
∂H
∂q

∣∣∣∣
p

dq = 0.

Scale by dt to get
dH
dt

=
∂H
∂p

∣∣∣∣
q

ṗ+
∂H
∂q

∣∣∣∣
p

q̇ = 0.

Because we already have q̇ = ∂H/∂p, we get

∂H
∂p

∣∣∣∣
q

ṗ+
∂H
∂q

∣∣∣∣
p

∂H
∂p

∣∣∣∣
q̇

= 0.

For this to hold, we must require ṗ = −∂H/∂q. Thus, we have the well-known Hamilton’s equations:

∂H
∂p

∣∣∣∣
q

= q̇,
∂H
∂q

∣∣∣∣
p

= −ṗ.

Let us see how this fits with thermodynamics. We will need some unusual notation to
identify the similarities. Let us take

P̃ ≡ −P, h̃ ≡ −h, ã ≡ −a, g̃ ≡ −g.

Our definition of enthalpy, h = u+ Pv, can be rewritten as

u− h = −Pv.

Now recall from Eq. (4.76) that the canonical form for u is u(v, s), and that from Eq. (4.81),
the canonical form for h is h(P, s). Also invoking Eq. (4.26) to eliminate P and Eq. (4.100)
to eliminate v, we get

u(v, s)− h(P, s) =
∂u

∂v

∣∣∣∣
s

∂h

∂P

∣∣∣∣
s

.
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In terms of P̃ and h̃, we could say

u(v, s) + h̃(P̃ , s) =
∂u

∂v

∣∣∣∣
s

∂h̃

∂P̃

∣∣∣∣∣
s

.

Recognizing that s is a frozen variable here, we see that this is precisely the form of the
Legendre transformation G(w) + F (x) = wx, with dF/dx = w, dG/dw = x. We could also
say

u(v, s) = vP̃ (v, s)− h̃(P̃ (v, s), s),

to be consistent with the original form G(w) = wx(w)− F (x(w)). So u is playing the role
of G, v is playing the role of w, P̃ is playing the role of x, and h̃ is playing the role of F .
Rearranging gives

(−h̃(P̃ (v, s), s)) = u(v, s) + (−P̃ (v, s))v,
h(P (v, s), s)) = u(v, s) + P (v, s)v.

For convexity, we need d2F/dx2 ≥ 0. This extends to

∂2h̃

∂P̃ 2

∣∣∣∣∣
s

≥ 0.

In terms of h and P , this becomes
∂2h

∂P 2

∣∣∣∣
s

≤ 0.

This is a requirement for convexity for a general equation of state. For example, we can
consider a CPIG, which has by Eq. (4.117), h = cPTo(P/Po)

(k−1)/k exp(s/cP ) + (ho − cPTo).
For this special case, we easily compute

∂2h

∂P 2

∣∣∣∣
s

= −
(k − 1)cPToe

s
cP

(
P
Po

)− k+1
k

k2P 2
o

≤ 0.

As P > 0, Po > 0, To > 0, k > 1, cP > 0, the convexity condition is guaranteed. It is also
easy to show that

∂2h

∂P 2

∣∣∣∣
s

∂2u

∂v2

∣∣∣∣
s

= −1.

Bethe15, Zel’dovich16, Thompson17, and many others have explored consequences of non-
convexity of equations of state in what are now known as BZT fluids. As they explain,

15Bethe, H. A., 1942, “The theory of shock waves for an arbitrary equation of state,” Technical Report
No. 545, Office of Scientific Research and Development.

16Zel’dovich, Y. B., 1946, “On the possibility of rarefaction shock waves,” Zhurnal Eksperimental’noi i

Teoreticheskoi Fiziki, 16(4): 363-364, (English translation: Joint Publications Research Service 7320, Ar-
lington, VA., 1960).

17Thompson, P. A., 1971, “A fundamental derivative in gasdynamics,” Physics of Fluids, 14(9): 1843-1849.
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non-convexity can be introduced by non-ideal effects such as reflected in a van der Waals
equation of state.

Let us repeat this for a and g. First for Helmholtz free energy from Eq. (4.102) we get

u− a = Ts.

Invoking Eqs. (4.26) and (4.107), we get

u− a =
∂u

∂s

∣∣∣∣
v

(
− ∂a

∂T

∣∣∣∣
v

)
.

In terms of ã, we get

u(s, v) + ã(T, v) =
∂u

∂s

∣∣∣∣
v

∂ã

∂T

∣∣∣∣
v

.

Recognizing that v is a frozen variable here, we once again see that this is precisely the form
of the Legendre transformation G(w) + F (x) = wx, with dF/dx = w, dG/dw = x.

For Gibbs free energy, from Eq. (4.110), we can say

h− g = Ts.

Invoking Eqs. (4.100) and (4.115), we can say

h− g =
∂h

∂s

∣∣∣∣
P

(
− ∂g

∂T

∣∣∣∣
P

)
.

Invoking g̃, we can say

h(s, P ) + g̃(T, P ) =
∂h

∂s

∣∣∣∣
P

∂g̃

∂T

∣∣∣∣
P

.

Recognizing that P is a frozen variable here, we once again see that this is precisely the form
of the Legendre transformation G(w) + F (x) = wx, with dF/dx = w, dG/dw = x.

Method of least squares

One important application of data analysis is the method of least squares. This method is
often used to fit data to a given functional form. The form is most often in terms of polyno-
mials, but there is absolutely no restriction; trigonometric functions, logarithmic functions,
Bessel functions can all serve as well. Here, we will restrict ourselves to strictly scalar
functions of the form

x = f(t; aj), j = 1, . . . ,M,

where x is a dependent variable, t is an independent variable, f is an assumed functional
form, and aj is a set of M constant parameters in the functional form. The analysis can
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easily be extended for functions of many variables. General mathematical background is
given by Strang.18

Mathematically, the fundamental problem is, given

• a set of N discrete data points, xi, ti, i = 1, . . . , N , and

• an assumed functional form for the curve fit f(t; aj) that has M parameters aj , j =
1, . . . ,M ,

find the best set of parameter values aj so as to minimize the least squares error between the
curve fit and the actual data points. That is, the problem is to find aj , j = 1, . . . ,M , such
that

ℓ2 = ||xi − f(ti; aj)||2 ≡

√√√√
N∑

i=1

(xi − f(ti; aj))
2,

is minimized. Here, ℓ2 represents a total error of the approximation. It is sometimes called a
“norm” of the approximation or an “L-two norm.” The notation || · ||2 represents the L-two
norm of a vector represented by “·.” In that it is a square root of the sum of squares, it can
be thought of as an unusual distance, as motivated by Pythagoras’19 theorem.

In the least squares method, one

• examines the data,

• makes a non-unique judgment of what the functional form might be,

• substitutes each data point into the assumed form so as to form an over-constrained
system of equations,

• uses straightforward techniques from linear algebra to solve for the coefficients that
best represent the given data if the problem is linear in the coefficients aj,

• uses techniques from optimization theory to solve for the coefficients that best represent
the given data if the problem is non-linear in aj .

The most general problem, in which the dependency aj is non-linear, is difficult, and
sometimes impossible. For cases in which the functional form is linear in the coefficients aj or
can be rendered linear via simple transformation, it is possible to get a unique representation
of the best set of parameters aj . This is often the case for common curve fits such as straight
line, polynomial, or logarithmic fits.

Let us first consider polynomial curve fits. Now, if one has say, ten data points, one can
in principle, find a ninth order polynomial that will pass through all the data points. Often
times, especially when there is much experimental error in the data, such a function may
be subject to wild oscillations, that are unwarranted by the underlying physics, and thus is

18G. Strang, 1988, Linear Algebra and its Application, Harcourt Brace Jovanovich, Orlando, Florida.
19Pythagoras of Samos, c. 570 B.C.-495 B.C., Ionian Greek philosopher and mathematician.

305



not useful as a predictive tool. In such cases, it may be more useful to choose a lower order
curve that does not exactly pass through all experimental points, but that does minimize
the error.

Unweighted least squares

This is the most common method used when one has equal confidence in all the data.

Example 7.7
Find the best straight line to approximate the measured data relating x to t.

t x
0 5
1 7
2 10
3 12
6 15

A straight line fit will have the form

x = a1 + a2t,

where a1 and a2 are the terms to be determined. Substituting each data point to the assumed form,
we get five equations in two unknowns:

5 = a1 + 0a2,

7 = a1 + 1a2,

10 = a1 + 2a2,

12 = a1 + 3a2,

15 = a1 + 6a2.

This is an over-constrained problem, and there is no unique solution that satisfies all of the equations!
If a unique solution existed, then the curve fit would be perfect. However, there does exist a solution
that minimizes the error, as is often proved in linear algebra textbooks (and will not be proved here).
The procedure is straightforward. Rearranging, we get




1 0
1 1
1 2
1 3
1 6




(
a1
a2

)
=




5
7
10
12
15



.

This is of the form A · a = b. We then find

AT ·A · a = AT · b,
a =

(
AT ·A

)−1 ·AT · b.
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Substituting, we find that

(
a1
a2

)
=




(
1 1 1 1 1
0 1 2 3 6

)



1 0
1 1
1 2
1 3
1 6







−1

(
1 1 1 1 1
0 1 2 3 6

)



5
7
10
12
15




=

(
5.7925
1.6698

)
.

So the best fit estimate is
x = 5.7925 + 1.6698 t.

The least squares error is ||A · a − b||2 = 1.9206. This represents what is known as the ℓ2 error norm
of the prediction. In MATLAB, this is found by the command norm(A ∗ a − b) where A, a, and b are the
coefficient matrix A, the solution a and the input vector b, respectively. If the curve fit were perfect,
the error norm would be zero. A plot of the raw data and the best fit straight line is shown in Fig. 7.19.
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Figure 7.19: Plot of x− t data and best least squares straight line fit.

Weighted least squares

If one has more confidence in some data points than others, one can define a weighting
function to give more priority to those particular data points.
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Example 7.8
Find the best straight line fit for the data in the previous example. Now however, assume that we

have five times the confidence in the accuracy of the final two data points, relative to the other points.
Define a square weighting matrix W:

W =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 5 0
0 0 0 0 5



.

Now, we perform the following operations:

A · a = b,

W ·A · a = W · b,
(W ·A)T ·W ·A · a = (W ·A)T ·W · b,

a =
(
(W ·A)

T ·W ·A
)−1

(W ·A)
T ·W · b.

With the above values of W, direct substitution leads to

a =

(
a1
a2

)
=

(
8.0008
1.1972

)
.

So the best weighted least squares fit is

x = 8.0008 + 1.1972 t.

A plot of the raw data and the best fit straight line is shown in Fig. 7.20.

When the measurements are independent and equally reliable, W is the identity matrix.
If the measurements are independent but not equally reliable, W is at most diagonal. If the
measurements are not independent, then non-zero terms can appear off the diagonal in W.
It is often advantageous, for instance in problems in which one wants to control a process in
real time, to give priority to recent data estimates over old data estimates and to continually
employ a least squares technique to estimate future system behavior. The previous example
does just that. A famous fast algorithm for such problems is known as a Kalman20 Filter.

Power law/logarithmic curve fits

It is common and useful at times to fit data to a power law form, especially when the
data range over wide orders of magnitude. For clean units, it is advisable to scale both x

20Rudolf Emil Kálmán, 1930-2016, Hungarian-American electrical engineer.
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Figure 7.20: Plot of x− t data and best weighted least squares straight line fit.

and t by characteristic values. Sometimes this is obvious, and sometimes it is not. Whatever
the case, the following form can usually be found

x(t)

xc
= a1

(
t

tc

)a2

.

Here, x is a dependent variable, t is an independent variable, xc is a characteristic value of x
(perhaps its maximum), tc is a characteristic value of t (perhaps its maximum), and a1 and
a2 are curve fit parameters. This fit is not linear in the coefficients, but can be rendered so
by taking the logarithm of both sides to get

ln

(
x(t)

xc

)
= ln

(
a1

(
t

tc

)a2)
= ln(a1) + a2 ln

(
t

tc

)
.

Often times one must not include values at t = 0 because of the logarithmic singularity
there.

Example 7.9
An experiment yields some data, shown next.

t(s) x(nm)
0.0 0.0

1× 10−3 1× 100

1× 10−2 5× 101

1× 100 3× 105

1× 101 7× 109

1× 102 8× 1010
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Analyze.

A plot of the raw data is shown in Fig. 7.21. Notice that the linear plot obscures the data at small
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Figure 7.21: Plot of x− t data in a) linear and b) log-log plots.

time, while the log-log plot makes the trends more clear. Now, to get a curve fit for the log-log plot, we
assume a power law form. We first eliminate the point at the origin, then scale the data, in this case
by the maximum values of t and x, and take appropriate logarithms to get to following values.

t (s) x (nm) t/tmax x/xmax ln
(

t
tmax

)
ln
(

x
xmax

)

1× 10−3 1× 100 1× 10−5 1.25× 10−11 −11.5129 −25.1053
1× 10−2 5× 101 1× 10−4 6.25× 10−10 −9.2013 −21.1933
1× 100 3× 105 1× 10−2 3.75× 10−6 −4.6052 −12.4938
1× 101 7× 109 1× 10−1 8.75× 10−2 −2.3026 −2.4361
1× 102 8× 1010 1× 100 1× 100 0.0000 0.0000

Now, we prepare the system of linear equations to solve

ln

(
x

xmax

)
= ln a1 + a2 ln

(
t

tmax

)
,

−25.1053 = ln a1 + a2(−11.5129),

−21.1933 = ln a1 + a2(−9.2013),

−12.4938 = ln a1 + a2(−4.6052),

−2.4361 = ln a1 + a2(−2.3026),

0.0000 = ln a1 + a2(0.0000).
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In matrix form, this becomes



1 −11.5129
1 −9.2013
1 −4.6052
1 −2.3026
1 0.0000




(
ln a1
a2

)
=




−25.1053
−21.1933
−12.4938
−2.4361
0.0000



.

This is of the form
A · a = b.

As before, we multiply both sides by AT and then solve for a, we get

a =
(
AT ·A

)−1 ·AT · b.

Solving, we find

a =

(
0.4206
2.2920

)
.

So that
ln a1 = 0.4206, a2 = 2.2920,

or
a1 = 1.5228.

So the power law curve fit is

x(t)

8.000× 1010 nm
= 1.5228

(
t

100 s

)2.2920

,

or

x(t) =
(
1.2183× 1011 nm

)( t

100 s

)2.2920

.

A plot of the raw data and curve fit is shown in Fig. 7.22.

Higher order curve fits

As long as the assumed form for the curve fit is linear in the coefficients, it is straight-
forward to extend to high order curve fits as demonstrated in the following example.

Example 7.10
An experiment yields the data that follows.

t x
0.0 1.0
0.7 1.6
0.9 1.8
1.5 2.0
2.6 1.5
3.0 1.1

Find the least squares best fit coefficients a1, a2, and a3 if the assumed functional form is
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Figure 7.22: Plot of raw x − t data and power law curve fit to the data: x(t) =

(1.2183× 1011 nm)
(

t
100 s

)2.2920
.

1. x = a1 + a2t+ a3t
2,

2. x = a1 + a2 sin
(
t
6

)
+ a3 sin

(
t
3

)
.

Plot on a single graph the data points and the two best fit estimates. Which best fit estimate has the
smallest least squares error?

• x = a1 + a2t+ a3t
2 :

We substitute each data point into the assumed form and get the following set of linear equations

1.0 = a1 + a2(0.0) + a3(0.0)
2,

1.6 = a1 + a2(0.7) + a3(0.7)
2,

1.8 = a1 + a2(0.9) + a3(0.9)
2,

2.0 = a1 + a2(1.5) + a3(1.5)
2,

1.5 = a1 + a2(2.6) + a3(2.6)
2,

1.1 = a1 + a2(3.0) + a3(3.0)
2.

These can be rewritten as 


1 0.0 0.0
1 0.7 0.49
1 0.9 0.81
1 1.5 2.25
1 2.6 6.76
1 3.0 9.00






a1
a2
a3


 =




1.0
1.6
1.8
2.0
1.5
1.1



.
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This is of the form
A · a = b.

As before, we multiply both sides by AT and then solve for a to get

a =
(
AT ·A

)−1 ·AT · b.

Solving, we find

a =




0.9778
1.2679
−0.4090


 .

So the best quadratic curve fit to the data is

x(t) ∼ 0.9778 + 1.2679t− 0.4090t2.

The least squares error norm is
||A · a− x||2 = 0.0812.

• x = a1 + a2 sin
(
t
6

)
+ a3 sin

(
t
3

)
:

This form has applied a bit of intuition. The curve looks like a sine wave of wavelength 6 that has
been transposed. So we suppose it is of such a form. The term a1 is the transposition; the term on
a2 is the fundamental frequency, also known as the first harmonic, that fits in the domain; the term
on a3 is the second harmonic; we have thrown that in for good measure.

We substitute each data point into the assumed form and get the following set of linear equations

1.0 = a1 + a2 sin

(
0.0

6

)
+ a3 sin

(
0.0

3

)
,

1.6 = a1 + a2 sin

(
0.7

6

)
+ a3 sin

(
0.7

3

)
,

1.8 = a1 + a2 sin

(
0.9

6

)
+ a3 sin

(
0.9

3

)
,

2.0 = a1 + a2 sin

(
1.5

6

)
+ a3 sin

(
1.5

3

)
,

1.5 = a1 + a2 sin

(
2.6

6

)
+ a3 sin

(
2.6

3

)
,

1.1 = a1 + a2 sin

(
3.0

6

)
+ a3 sin

(
3.0

3

)
.

This can be rewritten as 


1 0.0 0.0
1 0.1164 0.2312
1 0.1494 0.2955
1 0.2474 0.4794
1 0.4199 0.7622
1 0.4794 0.8415






a1
a2
a3


 =




1.0
1.6
1.8
2.0
1.5
1.1



.

This is of the form
A · a = b.

As before, we multiply both sides by AT and then solve for a, we get

a =
(
AT ·A

)−1 ·AT · b.
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Solving, we find

a =




1.0296
−37.1423
21.1848


 .

So the best curve fit for this form is

x(t) ∼ 1.0296− 37.1423 sin

(
t

6

)
+ 21.1848 sin

(
t

3

)
.

The least squares error norm is
||A · a− x||2 = 0.1165.

Because the error norm for the quadratic curve fit is less than that for the sinusoidal curve fit, the
quadratic curve fit is better in this case. A plot of the raw data and the two best fit curves is shown
in Fig. 7.23.

1 2 3

1

2

t

x quadratic
polynomial
curve fit

two-term sinusoidal
curve fit 

Figure 7.23: Plot of x − t data and two least squares curve fits x(t) ∼ 0.9778 + 1.2679t −
0.4090t2, and x(t) ∼ 1.0296− 37.1423 sin (t/6) + 21.1848 sin (t/3).
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