"Temperature & Humidity Control in Surgery Rooms" By: John Murphy ASHRE Journal, June 2006

Presented by: Lucy Summerville

Introduction

Goal: Control temperature and humidity in surgery rooms
Influencing factors

Temperature and humidity requirements
High air change rates

Salf is	Dry Bulb	Relative Humidity	Room ACH	Outdoor ACH	Outdoor Air
ASHRAE	68°F-75°F (20°C-24°C)	30%-60%	25	5	20%
AIA ²	68°F-73°F (20°C-23°C)	30%-60%	15	3	20%
VA ⁵	62°F-80°F (17°C-27°C)	45%-55%	15	15	100%

Designs

Temperature only design

- $Q_s = 1.085 \times 1,125 cfm \times (62^{\circ} F T_{sa}) = 8,190 Btu / h$
- Smaller $\Delta T (T_{sa} = 55^{\circ}F)$
- **Results in \Phi that is too large (\Phi=70%)**

• **Temperature and Humidity design** $Q_L = 0.7 \times 1,125 cfm \times (50 gr/lb - W_{sa}) = 1,600 Btu/h$

- Low humidity ratio (W_{sa}=48 gr/lb)
- Will overcool room ($T_{sa} = 47^{\circ}F$)

One Cooling Coil

- Reheats air to avoid overcooling
- Requires a new chiller to cool water
 - Water from existing plant may not be cold enough
 Could be adapted to work with an existing central plant

Two Cooling Coils

Upstream coil Cools and partially dehumidifies air Uses existing chiller Downstream coil Requires new chiller Finishes dehumidifying air Advantage over single coil ■ New chiller can be smaller

Series Desiccant Wheel

Desiccant wheel

Absorbs water vapor

Delivers drier air without affecting coil temperature

Has added airside pressure drop

Benefits

- No regeneration air stream required
- Warmer air leaving coil

Conclusion

Design comparisons

	Space RH	Cooling Capacity	Leaving-Coil DB	Reheat Capacity
Cool and Reheat (Single Cooling Coil)	60%	3 tons (10.6 kW)	48°F (9°C)	8,500 Btu/h (2.5 kW)
Cool and Reheat (Two Cooling Colls In Series	60% ;)	3 tons (10.6 kW)		8,500 Btu/h (2.5 kW)
Upstream Cooling Coll		1.8 tons (6.3 kW)	55°F (13°C)	
Downstream Cooling Coi	1	1.2 tons (4.2 kW)	48°F (9°C)	
Series Desiccant Wheel	55%	2.1 tons (7.4 kW)	52°F (11°C)	0 Btu/h (0 kW)

Series Desiccant Wheel is most favorable

- Lower Humidity
- Sufficiently warm air
- Compatible with existing chiller plants
- Less overall cooling capacity