Combustion Performance of Biodiesel and Diesel-Vegetable Oil Blends in a Simulated Gas Turbine Burner

> Heena V. Panchasara Benjamin M. Simmons Ajay K. Agrawal University of Alabama

Presented by Dan Behrens

April 29, 2009

Introduction

- NO_x and CO
- Gas turbines run continuously
 - Octane number not a constraint

Description		
Commercial Grade No. 2		
Methyl soyate made from soybean oil		
Methyl soyate made from chicken fat		
100% refined soybean oil		
90% diesel-10% VO		
80% diesel-20% VO		
70% diesel-30% VO		

Measurement of Fuel Properties

• GC-MS

- Determine mass % of species present
- TGA
 - Determine thermal stability and volatility
- Density, viscosity, surface tension

Property	Fuel			
	Diesel	BD-1	BD-2	VO
Mol. weight (kg/kmol)	142.2	291.45	289.06	_
Density at 25°C (kg/m ³)	834.0 ± 9.2	880.0 ± 8.3	868.0 ± 8.8	925.0 ± 8.6
Viscosity at 25°C (mm ² /s)	3.88 ± 0.016	5.61 ± 0.016	6.14 ± 0.016	53.74 ± 0.22
Surface tension at 25°C (mN/m)	28.2 ± 0.6	31.1 ± 0.6	30.7 ± 0.6	30.1 ± 0.6
LHV (kJ/kg)	44,601.7	38,002.3	37,659.7	37,000 [4]
LHV (MJ/m ³)	37,198 [12]	33,442	32,689	34,225 [4]

Table 3 Physical properties of fuels

Experimental Setup

- Air pumped with compressor, atomizing air and primary air
- Moves through marbles to eliminate swirling
- Mixed with fuel
- Injected into enclosure and ignited

Spray Angle and Droplet Size

- Effect of Atomizing Airflow (AA) rate
- Sauter mean diameter for droplet size

$$\frac{SMD}{d_o} = 0.48 \left(\frac{\sigma}{\rho_A U_R^2 d_o}\right)^{0.4} \left(1 + \frac{1}{ALR}\right)^{0.4} + 0.15 \left(\frac{\mu_L^2}{\sigma \rho_L d_o}\right)^{0.5} \left(1 + \frac{1}{ALR}\right)$$

Results

- Constant heat input (Q) more appropriate model.
- Biodiesel emissions exceed those for standard diesel
- Increasing AA decreases overall emissions, but same trend continues.

Conclusions

- Fuel atomization and flow have a greater effect than fuel chemistry
- Fuel injector can be optimized to reduce emissions
- Increasing the AA rate by 67% decreases CO by a factor of 5
- Increasing the AA rate by 67% decreases
 NO_x by a factor of 10

