COMBUSTOR INSTABILITY SUPPRESSION IN AIRCRAFT GAS TURBINE ENGINES

DOUG CARDER
AME 50531
DECEMBER 8, 2010

CHANG, C.T., DELAAT, J.C., KOPASAKIS, G. "ADAPTIVE INSTABILITY SUPPRESSION CONTROLS METHOD FOR AIRCRAFT GAS TURBINE ENGINE COMBUSTORS," JOURNAL OF PROPULSION AND POWER, VOL. 25, NO. 3, Pp. 618-627, MAY-JUNE 2009.

COMBUSTOR INSTABILITY

- LEAN COMBUSTION IS BETTER FOR LOW NO_X EMISSIONS BUT IS SHOWN TO HAVE MORE INSTABILITY
- INSTABILITY LIMITS OPERATING RANGE
- INSTABILITY CAN CAUSE FLAME TO EXTINGUISH

PRESSURE INSTABILITY

SOLUTION: FUEL MODULATION

- CHOSEN METHOD: ADAPTIVE SLIDING PHASOR AVERAGED CONTROL (ASPAC)
- ☐ MONITOR THE PRESSURE INSTABILITY IN THE COMBUSTOR USING DYNAMIC PRESSURE SENSORS
- ☐ ALTER THE FUEL FLOW INTO THE COMBUSTOR TO ALTER THE PRESSURE INSTABILITY

$$G_V = \frac{K_V \omega_V^2}{s^2 + 2\zeta_V \omega_V s + \omega_V^2}$$

DIAGRAM OF SYSTEM

ASPAC METHOD

ASPAC CONTROL DIAGRAM

$$f_{HFRC} = 533 \text{ Hz}, f_{LFRC} = 315 \text{ Hz}$$

EXPERIMENTAL APPARATUS

TEST RIG CONFIGURATION

RESULTS

LFRC PRESSURE INSTABILITY PLOT

- ASPAC METHOD
 SUPPRESSED AMPLITUDE
 90% IN LFRC AND 80%
 REDUCTION IN RMS
 PRESSURE
- CLOSED-LOOP CONTROL
 EXHIBITED PRESSURE
 SPIKES AT AND NEAR
 INSTABILITY FREQUENCY

COUPLING

- ☐ COUPLING OBSERVED
 BETWEEN FIRST AND
 SECOND HARMONIC
- ☐ FUNDAMENTAL HARMONIC
 RESPONDS TO
 SECONDARY HARMONIC
 SUPRESSION

CONCLUSIONS

- ☐ COMBUSTOR HIGHLY CONDUCIVE TO DYNAMIC COUPLING
- COUPLING BETWEEN THE FUNDAMENTAL MODE AND ITS HARMONICS WAS EXPLOITED TO REACH GREATER SUPPRESSION LEVELS
- ☐ SECOND HARMONIC OF THE INSTABILITY WAS PARTICULARLY EFFECTIVE AT SUPPRESSION
- ☐ OPEN-LOOP SYSTEM MORE EFFECTIVE AT SUPPRESSION THAN CLOSED-LOOP SYSTEM